1
|
Abella LMR, Neumann J, Hofmann B, Kirchhefer U, Gergs U. Clebopride stimulates 5-HT 4-serotonin receptors in the human atrium. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04075-1. [PMID: 40128365 DOI: 10.1007/s00210-025-04075-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Accepted: 03/18/2025] [Indexed: 03/26/2025]
Abstract
Clebopride resembles in its structural formula metoclopramide. Clebopride, an approved drug, is used to treat gastrointestinal diseases. Here, we tested the hypothesis that clebopride like metoclopramide acts as a partial agonist at human cardiac 5-HT4-serotonin-receptors. Clebopride enhanced the force of contraction (FOC) in isolated, electrically stimulated (1 Hz) left atrial preparations (LA) from transgenic mice with cardiac specific overexpression of the human 5-HT4-serotonin receptors (5-HT4-TG). Subsequently applied GR125487 (1 µM), a specific 5-HT4-serotonin-receptor antagonist, diminished this positive inotropic effect (PIE) of clebopride in LA from 5-HT4-TG. Clebopride failed to heighten FOC in LA from littermate wild-type mouse hearts (WT). Clebopride augmented the beating rate in isolated right atrial preparations (RA) from 5-HT4-TG but unable to do so in RA from WT. Clebopride alone (up to 10 µM) failed to augment FOC in isolated electrically stimulated (1Hz) human right atrial preparations (HAP) obtained during open heart surgery from adult patients with severe coronary heart disease. Interestingly, in the presence of the phosphodiesterase III inhibitor cilostamide, clebopride heightened FOC in HAP. GR125487 attenuated this PIE in HAP. Furthermore, when 1 µM serotonin had raised FOC in HAP, additionally applied 10 µM clebopride diminished FOC in HAP. We conclude that clebopride can act as an agonist and as an antagonist at 5-HT4-serotonin receptors in the human atrium.
Collapse
Affiliation(s)
- Lina Maria Rayo Abella
- Medical Faculty, Institute for Pharmacology and Toxicology, Martin Luther University Halle-Wittenberg, Magdeburger Straße 4, D-06112, Halle (Saale), Germany
| | - Joachim Neumann
- Medical Faculty, Institute for Pharmacology and Toxicology, Martin Luther University Halle-Wittenberg, Magdeburger Straße 4, D-06112, Halle (Saale), Germany.
| | - Britt Hofmann
- Department of Cardiac Surgery, Mid-German Heart Centre, University Hospital Halle, Halle (Saale), Germany
| | - Uwe Kirchhefer
- Medical Faculty, Institute for Pharmacology and Toxicology, University Münster, Münster, Germany
| | - Ulrich Gergs
- Medical Faculty, Institute for Pharmacology and Toxicology, Martin Luther University Halle-Wittenberg, Magdeburger Straße 4, D-06112, Halle (Saale), Germany
| |
Collapse
|
2
|
Abella LMR, Neumann J, Hofmann B, Gergs U. Bromopride stimulates 5-HT 4-serotonin receptors in the human atrium. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04013-1. [PMID: 40095050 DOI: 10.1007/s00210-025-04013-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 03/03/2025] [Indexed: 03/19/2025]
Abstract
Bromopride, an analogue of metoclopramide, is approved in some countries to treat gastrointestinal diseases. These therapeutic effects of bromopride are explained by antagonism at D2-dopamine receptors in the gut and the brain. We tested here the hypothesis that bromopride acts as an agonist or antagonist at the human cardiac 5-HT4-serotonin receptors. To this end, the force of contraction (FOC) was measured in isolated human atrial preparations (HAP), in isolated left atrial preparations (LA), and in isolated spontaneously beating right atrial (RA) preparations from mice with cardiac specific overexpression of the human 5-HT4-serotonin receptors (5-HT4-TG). Bromopride concentration dependently increased FOC in LA from 5-HT4-TG. The positive inotropic effect (PIE) of bromopride in LA from 5-HT4-TG was abolished by GR125487, a 5-HT4-serotonin receptor antagonist. Only in the presence of the phosphodiesterase III inhibitor cilostamide did bromopride raise FOC under isometric conditions in HAP. The PIE of 10 µM bromopride in HAP was extinguished by 1 µM GR125487. When serotonin had elevated FOC in HAP, additionally applied bromopride reduced FOC. These data suggest that bromopride is a partial agonist at human cardiac 5-HT4-serotonin receptors.
Collapse
Affiliation(s)
- Lina Maria Rayo Abella
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, Magdeburger Straße 4, D-06112, Halle (Saale), Germany
| | - Joachim Neumann
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, Magdeburger Straße 4, D-06112, Halle (Saale), Germany.
| | - Britt Hofmann
- Department of Cardiac Surgery, mid-German Heart Centre, University Hospital Halle, Halle (Saale), Germany
| | - Ulrich Gergs
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, Magdeburger Straße 4, D-06112, Halle (Saale), Germany
| |
Collapse
|
3
|
Neumann J, Dietrich T, Azatsian K, Hofmann B, Gergs U. Cardiac effects of two hallucinogenic natural products, N,N-dimethyl-tryptamine and 5-methoxy-N,N-dimethyl-tryptamine. Sci Rep 2025; 15:6715. [PMID: 40000760 PMCID: PMC11862204 DOI: 10.1038/s41598-025-91400-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 02/20/2025] [Indexed: 02/27/2025] Open
Abstract
It is unclear whether hallucinogenic tryptamine derivatives namely N,N-dimethyl-tryptamine (DMT) and 5-methoxy-N,N-dimethyl-tryptamine (5-MeO-DMT) exert positive inotropic effects in the human heart. Therefore, we measured the inotropic effects of these drugs in isolated left and right atrial preparations of mice that overexpress human 5-HT4 receptors (5-HT4-TG) and preparations from wild type mice (WT). Moreover, we measured force of contraction in isolated right atrial preparations from adult patients, obtained in the process of open heart surgery due to severe coronary heart disease. DMT and 5-MeO-DMT augmented the force of contraction in isolated paced (1 Hz) left atrial preparations from 5-HT4-TG and raised the spontaneous beating rate of right atrial preparations from 5-HT4-TG. The drugs elevated force of contraction in paced (1 Hz) human right atrial muscle preparations. The maximum inotropic effects of DMT and 5-MeO-DMT were smaller at 10 µM (about 65%) than that of 1 µM 5-HT on the left atria from 5-HT4-TG. The maximum increase in the beating rate due to DMT and 5-MeO-DMT amounted 40 ± 5% of the effect of 5-HT on right atrial preparations from 5-HT4-TG (n = 5-6). DMT and 5-MeO-DMT were inactive in WT. The potency of 5-MeO-DMT to increase force of contraction could be increased by pre-treatment of human atrial preparations by the phosphodiesterase inhibitor cilostamide (1 µM). 5-MeO-DMT increased the phosphorylation state of phospholamban at serine 16 in isolated left atrial muscle strips of 5-HT4-TG. In summary, DMT and 5-MeO-DMT acted as partial agonists on human 5-HT4 receptors.
Collapse
Affiliation(s)
- Joachim Neumann
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Magdeburger Str. 4, 06097, Halle, Germany
| | - Tobias Dietrich
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Magdeburger Str. 4, 06097, Halle, Germany
| | - Karyna Azatsian
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Magdeburger Str. 4, 06097, Halle, Germany
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Gdansk, Poland
| | - Britt Hofmann
- Department of Cardiac Surgery, Mid-German Heart Center, University Hospital Halle, 06097, Halle, Germany
| | - Ulrich Gergs
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Magdeburger Str. 4, 06097, Halle, Germany.
| |
Collapse
|
4
|
Neumann J, Hesse C, Yahiaoui S, Dallemagne P, Rochais C, Hofmann B, Gergs U. Studies on the mechanisms of action of MR33317. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:8893-8902. [PMID: 38856912 PMCID: PMC11522085 DOI: 10.1007/s00210-024-03226-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
MR33317 was synthesized as an acetylcholinesterase-inhibitor and an agonist at brain 5-HT4-receptors. MR33317 might be used to treat Morbus Alzheimer. This therapeutic action of MR33317 might be based on MR33317´s dual synergistic activity. We tested the hypothesis that MR33317 also stimulates 5-HT4-receptors in the heart. MR33317 (starting at 10 nM) increased force of contraction and beating rate in isolated atrial preparations from mice with cardiac confined overexpression of the human 5-HT4-serotonin receptor (5-HT4-TG) but was inactive in wild type mouse hearts (WT). Only in the presence of the phosphodiesterase III-inhibitor cilostamide, MR33317 raised force of contraction under isometric conditions in isolated paced (1 Hz) human right atrial preparations (HAP). This increase in force of contraction in human atrium by MR33317 was attenuated by 10 µM tropisetron or GR125487. These data suggest that MR33317 is an agonist at human 5-HT4-serotonin receptors in the human atrium. Clinically, one would predict that MR33317 may lead to atrial fibrillation.
Collapse
Affiliation(s)
- Joachim Neumann
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, Magdeburger Straße 4, 06097, Halle (Saale), Germany.
| | - C Hesse
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, Magdeburger Straße 4, 06097, Halle (Saale), Germany
| | - S Yahiaoui
- Normandie Univ, UNICAEN CERMN (Centre d'Etudes Et de Recherche Sur Le Médicament de Normandie), 14032, Caen, France
| | - P Dallemagne
- Normandie Univ, UNICAEN CERMN (Centre d'Etudes Et de Recherche Sur Le Médicament de Normandie), 14032, Caen, France
| | - C Rochais
- Normandie Univ, UNICAEN CERMN (Centre d'Etudes Et de Recherche Sur Le Médicament de Normandie), 14032, Caen, France
| | - B Hofmann
- Department of Cardiac Surgery, Mid-German Heart Center, University Hospital Halle, Ernst-Grube Straße 40, 06097, Halle (Saale), Germany
| | - U Gergs
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, Magdeburger Straße 4, 06097, Halle (Saale), Germany
| |
Collapse
|
5
|
Hesse C, Neumann J, Compan V, Ponimaskin E, Müller FE, Hofmann B, Gergs U. Tegaserod Stimulates 5-HT 4 Serotonin Receptors in the Isolated Human Atrium. Int J Mol Sci 2024; 25:11133. [PMID: 39456915 PMCID: PMC11508481 DOI: 10.3390/ijms252011133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/09/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Tegaserod (1-{[(5-methoxy-1H-indol-3-yl)methyliden]amino}-3-pentylguanidine) is a potent agonist at human recombinant 5-HT4 serotonin receptors. Consequently, tegaserod is utilized in the treatment of bowel diseases. The objective of this study was to test the hypothesis that tegaserod stimulates human cardiac atrial 5-HT4-receptors via cyclic adenosine monophosphate (cAMP)-dependent pathways. Tegaserod exerted positive inotropic effects (PIEs) and positive chronotropic effects (PCEs) in isolated left and right atrial preparations, respectively, from mice with cardiac-specific overexpression of the human 5-HT4 serotonin receptor (5-HT4-TG) in a concentration- and time-dependent manner. However, no effect was observed in the hearts of littermates of wild-type mice (WT). Western blot analysis revealed that the expression of 5-HT4 receptors was significantly higher in 5-HT4-TG mice compared to WT mice. The specificity of the signal for the 5-HT4 receptor was confirmed by the absence of the signal in the hearts of 5-HT4 receptor knockout mice. Furthermore, tegaserod increased the force of contraction (at concentrations as low as 10 nM), reduced the time of tension relaxation, and increased the rate of tension development in isolated electrically stimulated (at a rate of 60 beats per minute) human right atrial preparations (HAPs, obtained during open-heart surgery) when administered alone. The potency and efficacy of tegaserod to raise the force of contraction were enhanced in the presence of cilostamide, a phosphodiesterase III inhibitor. The positive inotropic effect of tegaserod in HAPs was found to be attenuated by the 5-HT4 serotonin receptor antagonist GR 125487 (0.1 µM). The efficacy of tegaserod (10 µM) in raising the force of contraction in HAPs was less pronounced than that of serotonin (10 µM) or isoprenaline (1 µM). Tegaserod shifted the concentration-response curve of the force of contraction to serotonin to the right in HAPs, indicating that it is a partial agonist at 5-HT4 serotonin receptors in this model. We propose that the mechanism of action of tegaserod in HAPs involves cAMP-dependent phosphorylation of cardiac regulatory proteins.
Collapse
Affiliation(s)
- Christin Hesse
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, 06097 Halle, Germany; (C.H.); (U.G.)
| | - Joachim Neumann
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, 06097 Halle, Germany; (C.H.); (U.G.)
| | - Valerie Compan
- Brains’ Laboratory Lsco, Department of Sciences, Nîmes University, 30021 Nîmes, France;
| | - Evgeni Ponimaskin
- Cellular Neurophysiology, Center of Physiology, Hannover Medical School, 30625 Hannover, Germany; (E.P.); (F.E.M.)
| | - Franziska E. Müller
- Cellular Neurophysiology, Center of Physiology, Hannover Medical School, 30625 Hannover, Germany; (E.P.); (F.E.M.)
| | - Britt Hofmann
- Department of Cardiac Surgery, Mid-German Heart Center, University Hospital Halle, 06097 Halle, Germany;
| | - Ulrich Gergs
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, 06097 Halle, Germany; (C.H.); (U.G.)
| |
Collapse
|
6
|
Neumann J, Hesse C, Hofmann B, Gergs U. Mosapride stimulates human 5-HT 4-serotonin receptors in the heart. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:6705-6720. [PMID: 38498060 PMCID: PMC11422274 DOI: 10.1007/s00210-024-03047-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/09/2024] [Indexed: 03/19/2024]
Abstract
Mosapride (4-amino-5-chloro-2-ethoxy-N-[[4-[(4-fluorophenyl) methyl]-2-morpholinyl]-methyl] benzamide) is a potent agonist at gastrointestinal 5-HT4 receptors. Mosapride is an approved drug to treat several gastric diseases. We tested the hypothesis that mosapride also stimulates 5-HT4 receptors in the heart. Mosapride increased the force of contraction and beating rate in isolated atrial preparations from mice with cardiac overexpression of human 5-HT4-serotonin receptors (5-HT4-TG). However, it is inactive in wild-type mouse hearts (WT). Mosapride was less effective and potent than serotonin in raising the force of contraction or the beating rate in 5-HT4-TG. Only in the presence of cilostamide (1 μM), a phosphodiesterase III inhibitor, mosapride, and its primary metabolite time dependently raised the force of contraction under isometric conditions in isolated paced human right atrial preparations (HAP, obtained during open heart surgery). In HAP, mosapride (10 μM) reduced serotonin-induced increases in the force of contraction. Mosapride (10 µM) shifted the concentration-response curves to serotonin in HAP to the right. These data suggest that mosapride is a partial agonist at 5-HT4-serotonin receptors in HAP.
Collapse
Affiliation(s)
- Joachim Neumann
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, Magdeburger Straße 4, 06112, Halle (Saale), Germany.
| | - Christin Hesse
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, Magdeburger Straße 4, 06112, Halle (Saale), Germany
| | - Britt Hofmann
- Department of Cardiac Surgery, Mid-German Heart Center, University Hospital Halle, Ernst-Grube-Straße 40, 06097, Halle (Saale), Germany
| | - Ulrich Gergs
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, Magdeburger Straße 4, 06112, Halle (Saale), Germany
| |
Collapse
|
7
|
Neumann J, Hesse C, Hofmann B, Gergs U. Zacopride stimulates 5-HT 4 serotonin receptors in the human atrium. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:6821-6835. [PMID: 38557827 PMCID: PMC11422277 DOI: 10.1007/s00210-024-03051-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/13/2024] [Indexed: 04/04/2024]
Abstract
Zacopride (4-amino-5-chloro-2-methoxy-N-(quinuclidin-3-yl)-benzamide) is a potent agonist in human 5-HT4 serotonin receptors in vitro and in the gastrointestinal tract. Zacopride was studied as an antiemetic drug and was intended to treat gastric diseases. Zacopride has been speculated to be useful as an antiarrhythmic agent in the human ventricle by inhibiting cardiac potassium channels. It is unknown whether zacopride is an agonist in human cardiac 5-HT4 serotonin receptors. We tested the hypothesis that zacopride stimulates human cardiac atrial 5-HT4 serotonin receptors. Zacopride increased the force of contraction and beating rate in isolated atrial preparations from mice with cardiac-specific overexpression of human 5-HT4 serotonin receptors (5-HT4-TG). However, it was inactive in wild-type mouse hearts (WT). Zacopride was as effective as serotonin in raising the force of contraction and beating rate in atrial preparations of 5-HT4-TG. Zacopride raised the force of contraction in human right atrial preparations (HAP) in the absence and presence of the phosphodiesterase III inhibitor cilostamide (1 µM). The positive inotropic effect of zacopride in HAP was attenuated by either 10 µM tropisetron or 1 µM GR125487, both of which are antagonists at 5-HT4 serotonin receptors. These data suggest that zacopride is also an agonist at 5-HT4 serotonin receptors in the human atrium.
Collapse
Affiliation(s)
- Joachim Neumann
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, Magdeburger Straße 4, D-06097, Halle (Saale), Germany.
| | - Christin Hesse
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, Magdeburger Straße 4, D-06097, Halle (Saale), Germany
| | - Britt Hofmann
- Department of Cardiac Surgery, Mid-German Heart Center, University Hospital Halle, Ernst-Grube-Straße 40, D-06097, Halle (Saale), Germany
| | - Ulrich Gergs
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, Magdeburger Straße 4, D-06097, Halle (Saale), Germany
| |
Collapse
|
8
|
Neumann J, Dimov K, Azatsian K, Hofmann B, Gergs U. Effects of psilocin and psilocybin on human 5-HT 4 serotonin receptors in atrial preparations of transgenic mice and humans. Toxicol Lett 2024; 398:55-64. [PMID: 38876450 DOI: 10.1016/j.toxlet.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/27/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
Several fungi belonging to the genus Psilocybe, also called "magic mushrooms", contain the hallucinogenic drugs psilocybin and psilocin. They are chemically related to serotonin (5-HT). In addition to being abused as drugs, they are now also being discussed or used as a treatment option for depression. Here, we hypothesized that psilocybin and psilocin may act also on cardiac serotonin receptors and studied them in vitro in atrial preparations of our transgenic mouse model with cardiac myocytes-specific overexpression of the human 5-HT4 receptor (5-HT4-TG) as well as in human atrial preparations. Both psilocybin and psilocin enhanced the force of contraction in isolated left atrial preparations from 5-HT4-TG, increased the beating rate in isolated spontaneously beating right atrial preparations from 5-HT4-TG and augmented the force of contraction in the human atrial preparations. The inotropic and chronotropic effects of psilocybin and psilocin at 10 µM were smaller than that of 1 µM 5-HT on the left and right atria from 5-HT4-TG, respectively. Psilocybin and psilocin were inactive in WT. In the human atrial preparations, inhibition of the phosphodiesterase III by cilostamide was necessary to unmask the positive inotropic effects of psilocybin or psilocin. The effects of 10 µM psilocybin and psilocin were abrogated by 10 µM tropisetron or by 1 µM GR125487, a more selective 5-HT4 receptor antagonist. In summary, we demonstrated that psilocin and psilocybin act as agonists on cardiac 5-HT4 receptors.
Collapse
Affiliation(s)
- Joachim Neumann
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle D-06097, Germany
| | - Kiril Dimov
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle D-06097, Germany
| | - Karyna Azatsian
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle D-06097, Germany; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Gdansk, Poland
| | - Britt Hofmann
- Department of Cardiac Surgery, Mid-German Heart Center, University Hospital Halle, Halle D-06097, Germany
| | - Ulrich Gergs
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle D-06097, Germany.
| |
Collapse
|
9
|
Neumann J, Hofmann B, Dhein S, Gergs U. Cardiac Roles of Serotonin (5-HT) and 5-HT-Receptors in Health and Disease. Int J Mol Sci 2023; 24:4765. [PMID: 36902195 PMCID: PMC10003731 DOI: 10.3390/ijms24054765] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 03/06/2023] Open
Abstract
Serotonin acts solely via 5-HT4-receptors to control human cardiac contractile function. The effects of serotonin via 5-HT4-receptors lead to positive inotropic and chronotropic effects, as well as arrhythmias, in the human heart. In addition, 5-HT4-receptors may play a role in sepsis, ischaemia, and reperfusion. These presumptive effects of 5-HT4-receptors are the focus of the present review. We also discuss the formation and inactivation of serotonin in the body, namely, in the heart. We identify cardiovascular diseases where serotonin might play a causative or additional role. We address the mechanisms which 5-HT4-receptors can use for cardiac signal transduction and their possible roles in cardiac diseases. We define areas where further research in this regard should be directed in the future, and identify animal models that might be generated to this end. Finally, we discuss in what regard 5-HT4-receptor agonists or antagonists might be useful drugs that could enter clinical practice. Serotonin has been the target of many studies for decades; thus, we found it timely to summarise our current knowledge here.
Collapse
Affiliation(s)
- Joachim Neumann
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, D-06097 Halle, Germany
| | - Britt Hofmann
- Cardiac Surgery, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, D-06097 Halle, Germany
| | - Stefan Dhein
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Universität Leipzig, D-04109 Leipzig, Germany
| | - Ulrich Gergs
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, D-06097 Halle, Germany
| |
Collapse
|
10
|
Cardiovascular effects of bufotenin on human 5-HT 4 serotonin receptors in cardiac preparations of transgenic mice and in human atrial preparations. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023:10.1007/s00210-023-02414-8. [PMID: 36754881 DOI: 10.1007/s00210-023-02414-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 01/30/2023] [Indexed: 02/10/2023]
Abstract
It is unclear whether bufotenin (= N,N-dimethyl-serotonin = 5-hydroxy-N,N-dimethyl-tryptamine), a hallucinogenic drug, can act on human cardiac serotonin 5-HT4 receptors. Therefore, the aim of the study was to examine the cardiac effects of bufotenin and for comparison tryptamine in transgenic mice that only express the human 5-HT4 receptor in cardiomyocytes (5-HT4-TG), in their wild-type littermates (WT) and in isolated electrically driven (1 Hz) human atrial preparations. In 5-HT4-TG, we found that both bufotenin and tryptamine enhanced the force of contraction in left atrial preparations (pD2 = 6.77 or 5.5, respectively) and the beating rate in spontaneously beating right atrial preparations (pD2 = 7.04 or 5.86, respectively). Bufotenin (1 µM) increased left ventricular force of contraction and beating rate in Langendorff perfused hearts from 5-HT4-TG, whereas it was inactive in hearts from WT animals, as was tryptamine. The positive inotropic and chronotropic effects of bufotenin and tryptamine were potentiated by an inhibitor of monoamine oxidases (50 µM pargyline). Furthermore, bufotenin concentration- (0.1-10 µM) and time-dependently elevated force of contraction in isolated electrically stimulated musculi pectinati from the human atrium and these effects were likewise reversed by tropisetron (10 µM). We found that bufotenin (10 µM) increased the phosphorylation state of phospholamban in the isolated perfused hearts, left and right atrial muscle strips of 5-HT4-TG but not from WT and in isolated human right atrial preparations. In summary, we showed that bufotenin can increase the force of contraction via stimulation of human 5-HT4 receptors transgenic mouse cardiac preparations but notably also in human atrial preparations.
Collapse
|
11
|
Gergs U, Brückner T, Hofmann B, Neumann J. The proarrhythmic effects of hypothermia in atria isolated from 5-HT 4-receptor-overexpressing mice. Eur J Pharmacol 2021; 906:174206. [PMID: 34048737 DOI: 10.1016/j.ejphar.2021.174206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 11/16/2022]
Abstract
We investigated whether hypothermia would be arrhythmogenic in mice that overexpress the human 5-HT4 receptor only in their cardiac myocytes (5-HT4-TG). Contractile studies were performed in isolated, electrically driven (1 Hz) left and spontaneously beating right atrial preparations of 5-HT4-TG and littermate wild-type control mice (WT). Hypothermia (23 °C) decreased the force of contraction in the mouse right and left atrial preparations. Moreover, the concentration-dependent positive inotropic effects of 5-HT were blunted but still shifted to lower 5-HT concentrations in the left 5-HT4-TG atria in hypothermia compared to normothermia (37 °C). Furthermore, hypothermia increased the incidence of right atrial arrhythmias in 5-HT4-TG more than in WT mice. In contrast, at 37 °C, lowering the potassium concentration from 5.2 to 2.0 mM also induced arrhythmias in the right atrium, but with a similar incidence in WT and 5-HT4-TG mice. In contrast, 10 μM d,l-sotalol and 300 μM erythromycin did not induce arrhythmias. Hypothermia was accompanied by the increased expression of heat shock protein 70 (HSP70) in WT but not in 5-HT4-TG mice. We concluded that without the stimulation of 5-HT4-receptors by exogenous agonists, a simple temperature reduction can increase arrhythmias in 5-HT4-TG mice. It is tempting to speculate that in human patients, 5-HT4 receptors might contribute to potentially deadly hypothermia-induced arrhythmias.
Collapse
Affiliation(s)
- Ulrich Gergs
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, D-06097, Halle, Germany.
| | - Tobias Brückner
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, D-06097, Halle, Germany.
| | - Britt Hofmann
- Cardiac Surgery, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, D-06097, Halle, Germany.
| | - Joachim Neumann
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, D-06097, Halle, Germany.
| |
Collapse
|
12
|
Gergs U, Gerigk T, Wittschier J, Schmidbaur CT, Röttger C, Mahnkopf M, Edler H, Wache H, Neumann J. Influence of Serotonin 5-HT 4 Receptors on Responses to Cardiac Stressors in Transgenic Mouse Models. Biomedicines 2021; 9:569. [PMID: 34070090 PMCID: PMC8158346 DOI: 10.3390/biomedicines9050569] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/12/2021] [Accepted: 05/14/2021] [Indexed: 12/22/2022] Open
Abstract
The current study aimed to deepen our knowledge on the role of cardiac 5-HT4 receptors under pathophysiological conditions. To this end, we used transgenic (TG) mice that overexpressed human 5-HT4a receptors solely in cardiac myocytes (5-HT4-TG mice) and their wild-type (WT) littermates that do not have functional cardiac 5-HT4 receptors as controls. We found that an inflammation induced by lipopolysaccharide (LPS) was detrimental to cardiac function in both 5-HT4-TG and WT mice. In a hypoxia model, isolated left atrial preparations from the 5-HT4-TG mice went into contracture faster during hypoxia and recovered slower following hypoxia than the WT mice. Similarly, using isolated perfused hearts, 5-HT4-TG mice hearts were more susceptible to ischemia compared to WT hearts. To study the influence of 5-HT4 receptors on cardiac hypertrophy, 5-HT4-TG mice were crossbred with TG mice overexpressing the catalytic subunit of PP2A in cardiac myocytes (PP2A-TG mice, a model for genetically induced hypertrophy). The cardiac contractility, determined by echocardiography, of the resulting double transgenic mice was attenuated like in the mono-transgenic PP2A-TG and, therefore, largely determined by the overexpression of PP2A. In summary, depending on the kind of stress put upon the animal or isolated tissue, 5-HT4 receptor overexpression could be either neutral (genetically induced hypertrophy, sepsis) or possibly detrimental (hypoxia, ischemia) for mechanical function. We suggest that depending on the underlying pathology, the activation or blockade of 5-HT4 receptors might offer novel drug therapy options in patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Joachim Neumann
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, 06097 Halle (Saale), Germany; (U.G.); (T.G.); (J.W.); (C.T.S.); (C.R.); (M.M.); (H.E.); (H.W.)
| |
Collapse
|
13
|
Neumann J, Seidler T, Fehse C, Marušáková M, Hofmann B, Gergs U. Cardiovascular effects of metoclopramide and domperidone on human 5-HT 4-serotonin-receptors in transgenic mice and in human atrial preparations. Eur J Pharmacol 2021; 901:174074. [PMID: 33811834 DOI: 10.1016/j.ejphar.2021.174074] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 03/23/2021] [Accepted: 03/26/2021] [Indexed: 11/16/2022]
Abstract
It is unclear whether metoclopramide and domperidone act on human cardiac serotonin 5-HT4-receptors. Therefore, we studied transgenic mice that only express the human 5-HT4 receptor in cardiomyocytes in the atrium and in the ventricle (5-HT4-TG), their wild type-littermates (WT) and isolated human atrial preparations. We found that only metoclopramide but not domperidone enhanced the force of contraction in left atrial preparations (pEC50 = 6.0 ± 0.1; n = 7) from 5-HT4-TG, isolated spontaneously beating right atrial preparations (pEC50 = 6.1 ± 0.1; n = 7) from 5-HT4-TG, Langendorff perfused hearts from 5-HT4-TG, living 5-HT4-TG and human right atrial muscle preparations obtained during bypass surgery of patients suffering from coronary heart disease. The maximum inotropic effect of metoclopramide was smaller (81 ± 2%) than that of 5-HT on the left atria from 5-HT4-TG. The maximum increase in the beating rate due to metoclopramide was 93 ± 2% of effect of 5-HT on right atrial preparations from 5-HT4-TG. Metoclopramide and domperidone were inactive in WT. We found that metoclopramide but not domperidone increased the phosphorylation state of phospholamban in the isolated perfused hearts or muscle strips of 5-HT4-TG, but not in WT. Metoclopramide, but not domperidone, shifted the positive inotropic or chronotropic effects of 5-HT in isolated left atrial and right atrial preparations from 5-HT4-TG dextrally, resp., to higher concentrations: the pEC50 of 5-HT for increase in force was in the absence of metoclopramide 8.6 ± 0.1 (n = 5) versus 8.0 ± 0.3 in the presence of 1 μM metoclopramide (n = 5; P < 0.05); and the beating rate was 7.8 ± 0.2 (n = 7) in the absence of metoclopramide versus 7.2 ± 0.1 in the presence of 1 μM metoclopramide (n = 6; P < 0.05). These results suggested that metoclopramide had an antagonistic effect on human cardiac 5-HT4 receptors. In summary, we showed that metoclopramide, but not domperidone, was a partial agonist at human cardiac 5-HT4-receptors.
Collapse
Affiliation(s)
- Joachim Neumann
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, D-06097, Halle, Germany
| | - Tom Seidler
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, D-06097, Halle, Germany
| | - Charlotte Fehse
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, D-06097, Halle, Germany
| | - Margaréta Marušáková
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, D-06097, Halle, Germany; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University in Bratislava, Slovakia
| | - Britt Hofmann
- Cardiac Surgery, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, D-06097, Halle, Germany
| | - Ulrich Gergs
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, D-06097, Halle, Germany.
| |
Collapse
|
14
|
Daniali M, Nikfar S, Abdollahi M. An overview of the efficacy and safety of prucalopride for the treatment of chronic idiopathic constipation. Expert Opin Pharmacother 2019; 20:2073-2080. [DOI: 10.1080/14656566.2019.1668927] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Marzieh Daniali
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Shekoufeh Nikfar
- Evidence-Based Evaluation of Cost-Effectiveness and Clinical Outcomes Group, Pharmaceutical Sciences Research Center (PSRC), and the Pharmaceutical Management and Economics Research Center (PMERC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacoeconomics and Pharmaceutical Administration, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Abdollahi
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|