1
|
Abdelaala N, El-Shoura EAM, Khalaf MM, Zafaar D, A N Ahmed A, Atwa AM, Abdel-Wahab BA, Ahmed YH, Abomandour A, Salem EA. Reno-protective impact of diosmin and perindopril in amikacin-induced nephrotoxicity rat model: modulation of SIRT1/p53/C-FOS, NF-κB-p65, and keap-1/Nrf2/HO-1 signaling pathways. Immunopharmacol Immunotoxicol 2025; 47:287-304. [PMID: 40017009 DOI: 10.1080/08923973.2025.2469220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 02/13/2025] [Indexed: 03/01/2025]
Abstract
PURPOSE Amikacin (AMC), an aminoglycoside antibiotic known for its rapid and potent bactericidal activity, is also associated with nephrotoxicity. Diosmin and perindopril have been reported to improve renal function and hold promise as therapeutic agents for preventing drug-induced nephrotoxicity. This study aimed to investigate the protective effect of Diosmin and perindopril, either alone or in combination, against renal damage induced by AMC toxicity and to elucidate the underlying mechanisms. MATERIALS AND METHODS The researchers evaluated the impact of Diosmin (50 mg/kg, orally) and perindopril (2 mg/kg, intraperitoneally) on AMC-induced kidney injury (1.2 g/kg, intraperitoneally) in rats. Invasive blood pressure, serum kidney function and toxicity parameters, oxidative stress biomarkers, and inflammatory cytokine levels in serum and renal tissue were assessed. Histopathological changes in the kidney were examined using hematoxylin and eosin (H&E) staining, electron microscopy, and immunohistochemical analysis. The molecular mechanisms underlying the protective effect of the combination pretreatment on kidney injury were investigated using enzyme-linked immunosorbent assay (ELISA) and Western blotting techniques. RESULTS The findings demonstrated that the combination therapy improved kidney function by attenuating pathological changes observed in H&E staining including tubular necrosis and glomerular damage, in addition to reducing levels of kidney function including serum levels of creatinine compared to the AMC group, blood urea nitrogen (BUN) uric acid, and albumin. Mean arterial blood pressure, and toxicity markers including Kidney Injury Molecule-1 (KIM-1), Cystatin-c were also decreased in samples of combination group compared to AMC group. Furthermore, the protective combination therapy downregulated NF-κB-p65, P53, Keap-1, and C-FOS, while upregulating Mammalian sirtuin 1 (SIRT1), inhibitor of nuclear factor kappa B (Iκβ), nuclear factor erythroid 2-related factor 2 (Nrf2), and Heme oxygenase-1 (HO-1) levels. CONCLUSIONS The findings reveal the potential clinical application of combining Diosmin and perindopril to reduce AMC-induced nephrotoxicity, which requires further research in clinical settings.
Collapse
Affiliation(s)
- Nashwa Abdelaala
- GI Medical Oncology Department, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ehab A M El-Shoura
- Clinical Pharmacy Department, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Marwa M Khalaf
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Dalia Zafaar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Giza, Egypt
| | - Ahmed A N Ahmed
- Pharmacology Department, Faculty of Medicine, Al-Azhar University, Assuit, Egypt
| | - Ahmed M Atwa
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Egyptian Russian of Egyptian Russian University, Cairo, Egypt
- College of Pharmacy, Al-Ayen Iraqi University, AUIQ, An Nasiriyah, Iraq
| | - Basel A Abdel-Wahab
- Pharmacology Department, College of Pharmacy, Najran University, Najran, Saudia Arabia
| | - Yasmine H Ahmed
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Ahmed Abomandour
- Clinical Pharmacy Department, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Esraa A Salem
- Department of Medical Physiology, Faculty of Medicine, Menoufia University, Sheibin Elkom, Egypt
| |
Collapse
|
2
|
Zhang W, Cui N, Su F, Liu M, Li B, Sun Y, Zeng Y, Yang B, Kuang H, Wang Q. Effects of Rehmanniae Radix Praeparata polysaccharides on LPS-induced immune activation in mice based on gut microbiota, metabolomics and transcriptomics. Int J Biol Macromol 2025; 311:143981. [PMID: 40339850 DOI: 10.1016/j.ijbiomac.2025.143981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/27/2025] [Accepted: 05/05/2025] [Indexed: 05/10/2025]
Abstract
This study explored the immunomodulatory effects of Rehmanniae Radix Praeparata polysaccharides (RP) on LPS-induced immune activation. RP, characterized as a heteropolysaccharide (6.34 kDa and 4.63 kDa) rich in galactose and glucose, was administered to LPS-challenged BALB/c mice at 25 mg/kg and 50 mg/kg doses. Results showed RP significantly reduced pro-inflammatory cytokines (TNF-α, IL-6), lowered oxidative stress (MDA), and boosted antioxidant enzymes (SOD, GSH-Px). It restored splenic structure, mitigated apoptosis, and suppressed the TNF-α/NF-κB/IL-6 pathway. Metabolomics linked RP to sphingolipid metabolism, while gut microbiota analysis revealed increased beneficial bacteria and elevated SCFAs. Transcriptomics confirmed RP's immune regulation via TNF signaling. These findings demonstrate RP's potential in alleviating immune overactivation by modulating inflammation, gut microbiota, and SCFA production, suggesting therapeutic promise for immune-related diseases.
Collapse
Affiliation(s)
- Wensen Zhang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Xiangfang District, Harbin 150040, China
| | - Na Cui
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Xiangfang District, Harbin 150040, China
| | - Fazhi Su
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Xiangfang District, Harbin 150040, China
| | - Meng Liu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Xiangfang District, Harbin 150040, China
| | - Biao Li
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Xiangfang District, Harbin 150040, China
| | - Yanping Sun
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Xiangfang District, Harbin 150040, China
| | - Yuanning Zeng
- Guangdong Engineering Technology Research Center for Standardized Processing of Chinese Materia Medica (Guangdong Pharmaceutical University, School of Chinese Materia Medica), Guangdong 510006, China
| | - Bingyou Yang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Xiangfang District, Harbin 150040, China
| | - Haixue Kuang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Xiangfang District, Harbin 150040, China
| | - Qiuhong Wang
- Guangdong Engineering Technology Research Center for Standardized Processing of Chinese Materia Medica (Guangdong Pharmaceutical University, School of Chinese Materia Medica), Guangdong 510006, China
| |
Collapse
|
3
|
Patai R, Csik B, Nyul-Toth A, Gulej R, Vali Kordestan K, Chandragiri SS, Shanmugarama S, Tarantini S, Mukli P, Ungvari A, Yabluchanskiy A, Ungvari Z, Csiszar A. Persisting blood-brain barrier disruption following cisplatin treatment in a mouse model of chemotherapy-associated cognitive impairment. GeroScience 2025:10.1007/s11357-025-01569-x. [PMID: 39982666 DOI: 10.1007/s11357-025-01569-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 02/11/2025] [Indexed: 02/22/2025] Open
Abstract
Chemotherapy-related cognitive impairment, commonly referred to as "chemobrain," significantly affects cancer survivors' quality of life, yet its underlying mechanisms remain unclear. Most chemotherapeutic agents cannot cross the blood-brain barrier (BBB), yet they cause central nervous system side effects, suggesting alternative pathways of toxicity. Given that these drugs interact with the cerebrovascular endothelium at their highest concentrations, it is logical to hypothesize that endothelial damage contributes to these effects. Our recent studies demonstrated that paclitaxel-induced cognitive impairment in a mouse model results in a partial BBB disruption and subsequent neuroinflammation, mediated by chemotherapy-induced endothelial senescence. In this pilot study, we used two-photon microscopy to assess BBB permeability in mice receiving a clinically relevant cisplatin regimen, evaluating the leakage of fluorescent dextran tracers of varying molecular weights. Two months post-treatment, cisplatin-treated mice exhibited significantly increased BBB permeability to smaller molecular tracers (40 kDa, 3 kDa, and 0.3 kDa) compared to controls, indicating sustained BBB disruption. These results align with our findings for paclitaxel and suggest that chemotherapy-induced endothelial damage and senescence play a central role in cognitive impairments. Interventions targeting endothelial health could mitigate these long-term effects, improving cognitive outcomes for cancer survivors.
Collapse
Affiliation(s)
- Roland Patai
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral College/Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary
| | - Boglarka Csik
- Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary
| | - Adam Nyul-Toth
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral College/Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary
| | - Rafal Gulej
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral College/Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary
| | - Kiana Vali Kordestan
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Siva Sai Chandragiri
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Santny Shanmugarama
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Stefano Tarantini
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral College/Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Peter Mukli
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral College/Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary
| | - Anna Ungvari
- Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary.
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral College/Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Zoltan Ungvari
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral College/Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anna Csiszar
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral College/Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
| |
Collapse
|
4
|
Miao Z, Chang D, Du X, Sun C. Berberrubine protects against cisplatin-induced ototoxicity by promoting folate biosynthesis. Front Pharmacol 2025; 15:1496917. [PMID: 39850559 PMCID: PMC11754208 DOI: 10.3389/fphar.2024.1496917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 12/24/2024] [Indexed: 01/25/2025] Open
Abstract
Objective This research investigated the possible shielding properties of BB (Berberrubine) against the harmful auditory effects of cisplatin, preliminarily delving into the underlying mechanisms responsible for this protection. Methods HEI-OC1 cell viability was determined using a Cell Counting Kit-8 (CCK-8). The impact of BB on cochlear hair cells was studied through in vitro cochlear explants culture. Apoptosis levels were measured through Annexin V-PI, Cleaved Caspase-3, and TUNEL staining. The level of ROS (reactive oxygen species) was measured through the application of DCFH-DA, MitoSOX, and JC-1 fluorescent dyes for staining. Immunofluorescence analysis of cochlear samples from mice was conducted to quantify the hair cell count, and concurrently, ABR (Auditory Brainstem Response) testing was utilized to evaluate auditory function. The mechanism of action of BB was explored using RNA-Seq and qRT-PCR analysis. Results BB significantly improved cell survival rates under cisplatin treatment, reduced levels of apoptotic markers (TUNEL, Cleaved Caspase-3, Annexin V-PI), decreased ROS and MitoSOX levels, and improved JC-1 signals in both HEI-OC1 cells and cochlear hair cells in cochlear explants culture. Animal studies demonstrated that treatment with BB enhanced the survival of cochlear hair cells, reduced hearing impairment caused by cisplatin in mice. RNA-seq and qRT-PCR analysis revealed that BB influenced the expression levels of multiple genes (Ccnd2, Reln, Pgf, Mylk3, Ppplr12c, Thbsl), by promoting folate biosynthesis for hearing protection. Conclusion Our findings suggest that BB protects against cisplatin-induced hearing damage by enhancing folate biosynthesis, decreasing intracellular ROS levels, and inhibiting apoptosis.
Collapse
Affiliation(s)
| | | | | | - Changling Sun
- Department of Otolaryngology-Head and Neck Surgery, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
5
|
Albadrani GM, Altyar AE, Kensara OA, Haridy MA, Sayed AA, Mohammedsaleh ZM, Al-Ghadi MQ, Saleem RM, Abdel-Daim MM. Lycopene alleviates 5-fluorouracil-induced nephrotoxicity by modulating PPAR-γ, Nrf2/HO-1, and NF-κB/TNF-α/IL-6 signals. Ren Fail 2024; 46:2423843. [PMID: 39540361 PMCID: PMC11565692 DOI: 10.1080/0886022x.2024.2423843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 10/05/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
5-Fluorouracil (5-FU) is one of the most used anticancer drugs. However, its nephrotoxicity-associated drawback is of clinical concern. Lycopene (LYC) is a red carotenoid with remarkable anti-inflammatory and anti-oxidative properties. In this study, rats were divided randomly into five groups: control, lycopene (10 mg) (10 mg/kg/day; P.O), 5-FU (30 mg/kg/day; i.p.), Lycopene (5 mg) + 5-FU (5 mg/kg + 30 mg/kg/day), and lycopene (10 mg) + 5-FU (10 mg/kg + 30 mg/kg/day). LYC attenuated the loss of renal function induced by 5-FU in a dose-dependent manner. Rats co-treated with LYC had lower serum urea, creatinine, uric acid and KIM-1 levels, and a higher serum albumin level than those receiving 5-FU alone. Furthermore, co-treatment with the high dose of LYC maintained renal oxidant-antioxidant balance by ameliorating/preventing the loss of antioxidants and the elevation of malondialdehyde. Rats treated with 5-FU had markedly lower renal levels of PPAR-gamma, HO-1, Nfr2, and Il-10 and higher levels of NF-kB, TNF-alpha, and IL6 compared to the control rats. Co-treatment with LYC attenuated the reduction in PPAR-gamma, HO-1, Nfr2, and IL-10 levels and moderated the elevated levels of NF-kB, TNF-alpha, and IL-6. The kidneys from rats co-treated with lycopene (10 mg) + 5-FU did not show the degenerative changes in the glomerular tufts and tubules observed for the rats treated with 5-FU alone. In conclusion, LYC is a promising therapeutic strategy for attenuating 5-FU-induced nephrotoxicity through the restoration of antioxidant activities and inhibition of inflammatory responses by modulating PPAR-γ, Nrf2/HO-1, and NF-κB/TNF-α/IL-6, signals.
Collapse
Affiliation(s)
- Ghadeer M. Albadrani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Ahmed E. Altyar
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Pharmacy Program, Batterjee Medical College, Jeddah, Saudi Arabia
| | - Osama A. Kensara
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mohie A.M Haridy
- Department of Pathology and Laboratory Diagnosis, College of Veterinary Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Amany A. Sayed
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Zuhair M. Mohammedsaleh
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Muath Q. Al-Ghadi
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Rasha Mohammed Saleem
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Al-Baha University, Al-Baha, Saudi Arabia
| | - Mohamed M. Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, Jeddah, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
6
|
Bingul E, Bulut S, Mammadov R, Cicek B, Dogru TE, Suleyman H, Mendil AS. Effect of ethyl acetate extract from Usnea longissima on chemotherapy-associated multiple organ dysfunction in rats. Biomed Pharmacother 2024; 181:117636. [PMID: 39489120 DOI: 10.1016/j.biopha.2024.117636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/10/2024] [Accepted: 10/28/2024] [Indexed: 11/05/2024] Open
Abstract
BACKGROUND The toxic effects of doxorubicin and cisplatin in various organs have been associated with oxidative stress. Studies have shown that Usnea longissima has strong antioxidant effects. This study aimed to investigate the protective effect of ethyl acetate extract from Usnea longissima (ULE), which is known to have strong antioxidant effects, on chemotherapeutic-induced heart, kidney, liver, and ovarian toxicity. METHODS Albino Wistar female rats were divided into five groups (12 rats per group): healthy (HG), doxorubicin (DOX), Cisplatin (CIS), Doxorubicin+ ULE (DULE), Cisplatin+ ULE (CULE). In this experiment, ULE was given 100 mg/kg orally. After 1 hour, 2.5 mg/kg doxorubicin and 2.5 mg/kg cisplatin were administered intraperitoneally. Drug treatments continued once a day for seven days. At the end of seven days, six rats from each group were euthanized and heart, kidney, liver, and ovary tissues were analyzed biochemically. The remaining rats were left in the laboratory with male rats for 45 days for reproduction. RESULTS ULE inhibited chemotherapeutic-induced increase in malondialdehyde, tumor necrosis factor-alpha, and interleukin 6 and a decrease in total glutathione in liver, kidney, and ovarian tissues. ULE also inhibited the increase of blood urea nitrogen, creatinine, alanine aminotransferase, and aspartate aminotransferase in serum. ULE treatment had no protective effect against doxorubicin and cisplatin cardiac toxicity. On the other hand, ULE also decreased the delay in pregnancy induced by chemotherapy. CONCLUSION ULE may be considered an adjuvant therapy in patients receiving chemotherapy to reduce liver, kidney, and ovarian toxicity.
Collapse
Affiliation(s)
- Eda Bingul
- Gynecology and Obstetrics Clinic, Erzurum City Hospital, Erzurum 25240, Turkey.
| | - Seval Bulut
- Department of Pharmacology, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan 24100, Turkey.
| | - Renad Mammadov
- Department of Pharmacology, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan 24100, Turkey.
| | - Betul Cicek
- Department of Physiology, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan 24100, Turkey.
| | - Tugba Erkmen Dogru
- Department of Biochemistry, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan 24100, Turkey.
| | - Halis Suleyman
- Department of Pharmacology, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan 24100, Turkey.
| | - Ali Sefa Mendil
- Department of Pathology, Faculty of Veterinary, Erciyes University, Kayseri 38280, Turkey.
| |
Collapse
|
7
|
Ali GF, Hassanein EHM, Mohamed WR. Molecular mechanisms underlying methotrexate-induced intestinal injury and protective strategies. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:8165-8188. [PMID: 38822868 PMCID: PMC11522073 DOI: 10.1007/s00210-024-03164-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 05/13/2024] [Indexed: 06/03/2024]
Abstract
Methotrexate (MTX) is a folic acid reductase inhibitor that manages various malignancies as well as immune-mediated inflammatory chronic diseases. Despite being frequently prescribed, MTX's severe multiple toxicities can occasionally limit its therapeutic potential. Intestinal toxicity is a severe adverse effect associated with the administration of MTX, and patients are significantly burdened by MTX-provoked intestinal mucositis. However, the mechanism of such intestinal toxicity is not entirely understood, mechanistic studies demonstrated oxidative stress and inflammatory reactions as key factors that lead to the development of MTX-induced intestinal injury. Besides, MTX causes intestinal cells to express pro-inflammatory cytokines like interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α), which activate nuclear factor-kappa B (NF-κB). This is followed by the activation of the Janus kinase/signal transducer and activator of the transcription3 (JAK/STAT3) signaling pathway. Moreover, because of its dual anti-inflammatory and antioxidative properties, nuclear factor erythroid-2-related factor 2/heme oxygenase-1 (Nrf2/HO-1) has been considered a critical signaling pathway that counteracts oxidative stress in MTX-induced intestinal injury. Several agents have potential protective effects in counteracting MTX-provoked intestinal injury such as omega-3 polyunsaturated fatty acids, taurine, umbelliferone, vinpocetine, perindopril, rutin, hesperidin, lycopene, quercetin, apocynin, lactobacillus, berberine, zinc, and nifuroxazide. This review aims to summarize the potential redox molecular mechanisms of MTX-induced intestinal injury and how they can be alleviated. In conclusion, studying these molecular pathways might open the way for early alleviation of the intestinal damage and the development of various agent plans to attenuate MTX-mediated intestinal injury.
Collapse
Affiliation(s)
- Gaber F Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef, 62514, Egypt
| | - Emad H M Hassanein
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Assiut Branch, Al-Azhar University, Assiut, 71524, Egypt
| | - Wafaa R Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef, 62514, Egypt.
| |
Collapse
|
8
|
Immunomodulatory Activity of the Most Commonly Used Antihypertensive Drugs-Angiotensin Converting Enzyme Inhibitors and Angiotensin II Receptor Blockers. Int J Mol Sci 2022; 23:ijms23031772. [PMID: 35163696 PMCID: PMC8836033 DOI: 10.3390/ijms23031772] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 02/06/2023] Open
Abstract
This review article is focused on antihypertensive drugs, namely angiotensin converting enzyme inhibitors (ACEI) and angiotensin II receptor blockers (ARB), and their immunomodulatory properties reported in hypertensive patients as well as in experimental settings involving studies on animal models and cell lines. The immune regulatory action of ACEI and ARB is mainly connected with the inhibition of proinflammatory cytokine secretion, diminished expression of adhesion molecules, and normalization of CRP concentration in the blood plasma. The topic has significant importance in future medical practice in the therapy of patients with comorbidities with underlying chronic inflammatory responses. Thus, this additional effect of immune regulatory action of ACEI and ARB may also benefit the treatment of patients with metabolic syndrome, allergies, or autoimmune disorders.
Collapse
|
9
|
Sayed AM, Abdel-Fattah MM, Arab HH, Mohamed WR, Hassanein EHM. Targeting inflammation and redox aberrations by perindopril attenuates methotrexate-induced intestinal injury in rats: Role of TLR4/NF-κB and c-Fos/c-Jun pro-inflammatory pathways and PPAR-γ/SIRT1 cytoprotective signals. Chem Biol Interact 2022; 351:109732. [PMID: 34737150 DOI: 10.1016/j.cbi.2021.109732] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/05/2021] [Accepted: 10/27/2021] [Indexed: 01/06/2023]
Abstract
AIMS The use of methotrexate (MTX), a classical immunosuppressant and anti-cancer agent, is associated with multiple organ toxicities, including the intestinal injury. Components of the renin-angiotensin system are expressed in the intestinal epithelium and mucosal immune cells where they provoke pro-inflammatory and pro-oxidant action. The present study was conducted to investigate the potential ability of perindopril (PER), an angiotensin-converting enzyme inhibitor (ACEI), to attenuate MTX-induced intestinal injury with emphasis on the role of the pro-inflammatory TLR4/NF-κB and c-Fos/c-Jun pathways alongside PPAR-γ and SIRT1 cytoprotective signals. MATERIALS AND METHODS The intestinal injury was induced by a single-dose injection of 20 mg/kg of MTX i.p at the end of the 5th day. PER was administrated once daily in a dose of 1 mg/kg, i.p, for five days before MTX and five days later. RESULTS Herein, perindopril attenuated the intestinal injury as seen by lowering the histopathological aberrations and preserving the goblet cells in villi/crypts. These beneficial actions were associated with downregulating the expression of the pro-inflammatory angiotensin II, TNF-α, IL-1β, and IL-6 cytokines, alongside upregulating the anti-inflammatory angiotensin (1-7) and IL-10. At the molecular level, perindopril downregulated the TLR4/NF-κB and c-Fos/c-Jun pathways in inflamed intestine of rats. Moreover, it attenuated the pro-oxidant events by lowering intestinal MDA and boosting GSH, SOD, and GST antioxidants together with PPAR-γ and SIRT1 cytoprotective signals. The aforementioned findings were also highlighted using molecular docking and network pharmacology analysis. CONCLUSIONS Perindopril demonstrated notable mitigation of MTX-induced intestinal injury through suppression of TLR4/NF-κB and c-Fos/c-Jun pathways alongside the augmentation of PPAR-γ/SIRT1 cytoprotective signals.
Collapse
Affiliation(s)
- Ahmed M Sayed
- Biochemistry Laboratory, Chemistry Department, Faculty of Science, Assiut University, 71515, Egypt
| | - Maha M Abdel-Fattah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt.
| | - Hany H Arab
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Wafaa R Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Emad H M Hassanein
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| |
Collapse
|
10
|
Dhall A, Patiyal S, Sharma N, Devi NL, Raghava GPS. Computer-aided prediction of inhibitors against STAT3 for managing COVID-19 associated cytokine storm. Comput Biol Med 2021; 137:104780. [PMID: 34450382 PMCID: PMC8378993 DOI: 10.1016/j.compbiomed.2021.104780] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 08/11/2021] [Accepted: 08/18/2021] [Indexed: 12/27/2022]
Abstract
Background Proinflammatory cytokines are correlated with the severity of disease in patients with COVID-19. IL6-mediated activation of STAT3 proliferates proinflammatory responses that lead to cytokine storm promotion. Thus, STAT3 inhibitors may play a crucial role in managing the COVID-19 pathogenesis. The present study discusses a method for predicting inhibitors against the STAT3 signaling pathway. Method The main dataset comprises 1565 STAT3 inhibitors and 1671 non-inhibitors used for training, testing, and evaluation of models. A number of machine learning classifiers have been implemented to develop the models. Results The outcomes of the data analysis show that rings and aromatic groups are significantly abundant in STAT3 inhibitors compared to non-inhibitors. First, we developed models using 2-D and 3-D chemical descriptors and achieved a maximum AUC of 0.84 and 0.73, respectively. Second, fingerprints are used to build predictive models and achieved 0.86 AUC with an accuracy of 78.70% on the validation dataset. Finally, models were developed using hybrid descriptors, which achieved a maximum of 0.87 AUC with 78.55% accuracy on the validation dataset. Conclusion We used the best model to identify STAT3 inhibitors in FDA-approved drugs and found few drugs (e.g., Tamoxifen and Perindopril) to manage the cytokine storm in COVID-19 patients. A webserver “STAT3In” (https://webs.iiitd.edu.in/raghava/stat3in/) has been developed to predict and design STAT3 inhibitors.
Collapse
Affiliation(s)
- Anjali Dhall
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi, 110020, India.
| | - Sumeet Patiyal
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi, 110020, India.
| | - Neelam Sharma
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi, 110020, India.
| | - Naorem Leimarembi Devi
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi, 110020, India.
| | - Gajendra P S Raghava
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi, 110020, India.
| |
Collapse
|
11
|
Modulatory effects of perindopril on cisplatin-induced nephrotoxicity in mice: Implication of inflammatory cytokines and caspase-3 mediated apoptosis. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2020; 70:515-525. [PMID: 32412432 DOI: 10.2478/acph-2020-0033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/18/2019] [Indexed: 01/19/2023]
Abstract
Cisplatin-induced nephrotoxicity limits its anticancer effectiveness, thus this study's aim was to assess the potential modulatory effect of perindopril on cisplatin-induced nephrotoxicity and to elucidate the possible underlying mechanisms. Renal dysfunction was induced in mice by a single injection of cisplatin (10 mg kg-1, i.p.) and perindopril was administered orally (2 mg kg-1, once daily) for 5 days. Perindopril remarkably ameliorated cisplatin-induced perturbations in renal histology, renal levels of tumor necrosis factor-alpha, interleukin-6 and interleukin-10, apoptosis-regulating protein expressions (Bax and Bcl2), and partially normalized Bax to Bcl2 ratio and active caspase 3 protein expression. Conversely, perindopril had no significant effect on cisplatin-induced elevations in serum creatinine and urea, microalbuminuria, kidney to body weight ratio, lipid peroxidation marker, superoxide dismutase and catalase activities and reduced glutathione content. In conclusion, perindopril may be safely used with cisplatin in mice since it ameliorated cisplatin-induced histopathological changes, inflammation and apoptosis without affecting renal biomarkers or oxidative stress.
Collapse
|
12
|
Kostakoglu U, Mercantepe T, Yilmaz HK, Tumkaya L, Batcik S, Pinarbas E, Uydu HA. The Protective Effects of Perindopril Against Acute Kidney Damage Caused by Septic Shock. Inflammation 2020; 44:148-159. [PMID: 32803666 DOI: 10.1007/s10753-020-01316-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Acute kidney injury (AKI) resulting from septic shock caused by sepsis is an important health problem encountered at rates of 55-73%. Increasing oxidative stress and inflammation following sepsis is a widely observed condition with rising mortality rates. The purpose of this study was to determine whether perindopril (PER) can prevent sepsis-associated AKI with its antioxidant, anti-inflammatory, and anti-apoptotic effects. The control group received an oral saline solution only for 4 days. Cecal ligation and puncture (CLP)-induced sepsis only was applied to the CLP group, while the CLP + PER (2 mg/kg) received CLP-induced sepsis together with 2 mg/kg PER via the oral route for 4 days before induction of sepsis. Finally, all rats were euthanized by anesthesia and sacrificed. TBARS, total SH levels and NF-κβ, TNF-α, and Caspase-3 expression were then calculated for statistical analysis. TBARS, total SH, NF-kβ/p65, TNF-a, and Caspase-3 levels increased in the CLP group. In contrast, oral administration of PER (2 mg/kg) to septic rats reduced TBARS levels and NF-kβ/p65, TNF-α, and Caspase-3 immunopositivity at biochemical analysis. PER treatment appears to be a promising method for preventing sepsis-induced acute kidney injury through its antioxidant anti-inflammation and anti-apoptotic activities.
Collapse
Affiliation(s)
- Ugur Kostakoglu
- Department of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Recep Tayyip Erdogan University, 53100, Rize, Turkey.
| | - Tolga Mercantepe
- Department of Histology and Embryology, Faculty of Medicine, Recep Tayyip Erdogan University, 53100, Rize, Turkey
| | - Hulya Kilic Yilmaz
- Department of Medical Biochemistry, Faculty of Medicine, Recep Tayyip Erdogan University, 53100, Rize, Turkey
| | - Levent Tumkaya
- Department of Histology and Embryology, Faculty of Medicine, Recep Tayyip Erdogan University, 53100, Rize, Turkey
| | - Sule Batcik
- Department of Anaesthesiology and Reanimation, Faculty of Medicine, Recep Tayyip Erdogan University, 53100, Rize, Turkey
| | - Esra Pinarbas
- Department of Medical Biochemistry, Faculty of Medicine, Recep Tayyip Erdogan University, 53100, Rize, Turkey
| | - Huseyin Avni Uydu
- Department of Medical Biochemistry, Faculty of Medicine, Recep Tayyip Erdogan University, 53100, Rize, Turkey
| |
Collapse
|
13
|
Kamel EO, Hassanein EHM, Ahmed MA, Ali FEM. Perindopril Ameliorates Hepatic Ischemia Reperfusion Injury Via Regulation of NF-κB-p65/TLR-4, JAK1/STAT-3, Nrf-2, and PI3K/Akt/mTOR Signaling Pathways. Anat Rec (Hoboken) 2020; 303:1935-1949. [PMID: 31606943 DOI: 10.1002/ar.24292] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 08/28/2019] [Accepted: 09/03/2019] [Indexed: 12/20/2022]
Abstract
Hepatic ischemia reperfusion (IR) is an inevitable clinical problem for surgical procedures such as liver transplantation and liver resection. This study was designed to evaluate the protective effect of perindopril (PER) against hepatic IR injury. Thirty-two rats were used and randomly allocated into four groups. Sham control group was subjected to sham operation and received saline only, IR group was subjected to IR and received vehicle, PER group was pretreated with PER (one milligram per kilogram per day i.p. for 10 consecutive days), and IR+PER group was pretreated with PER then subjected to IR. Liver function biomarkers (aspartate aminotransferase and alanine aminotransferase), oxidative stress (glutathione, malondialdehyde, myeloperoxidase, and superoxide dismutase) and inflammation markers (tumor necrosis factor-alpha, interferon-gamma, and inteleukin-10 [IL-10]), mRNA expression of NF-κB-p65 and TLR-4, as well as protein expression of JAK1, STAT-3, PI3K, mTOR, Akt, and Nrf-2 were investigated concomitantly with histopathological examination. The results indicated that, hepatic IR induced a significant alteration in liver function biomarkers and structure, oxidative stress, and inflammation. At the molecular level, up-regulation of NF-κB-p65, TLR-4, JAK1, and STAT-3 concomitantly with down-regulation of Nrf-2, IL-10, PI3K, Akt, and mTOR were observed. These disturbances were alleviated by pretreatment of IR rats with PER in concomitant with hepatic structural improvement. Conclusively, the protective effect of PER presumably may be relevant to its ability to reduce oxidative stress, ameliorate the inflammatory processes, and modify the related signaling pathways. Anat Rec, 2019. © 2019 American Association for Anatomy Anat Rec, 303:1935-1949, 2020. © 2019 American Association for Anatomy.
Collapse
Affiliation(s)
- Esam O Kamel
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Al-Azhar University, Assiut, Egypt
| | - Emad H M Hassanein
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Marwa A Ahmed
- Department of Pharmacology, Faculty of Medicine, Assiut University, Asyut, Egypt
| | - Fares E M Ali
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| |
Collapse
|
14
|
Ismail RS, El-Awady MS, Hassan MH. Pantoprazole abrogated cisplatin-induced nephrotoxicity in mice via suppression of inflammation, apoptosis, and oxidative stress. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2020; 393:1161-1171. [PMID: 31950223 DOI: 10.1007/s00210-020-01823-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 01/10/2020] [Indexed: 12/17/2022]
Abstract
The current study was designed to evaluate the potential abatement effect of pantoprazole against cisplatin-induced nephrotoxicity and establishing the possible protective mechanisms. Thirty-two male mice were allocated for treatment with saline, single dose of cisplatin (10 mg/kg/i.p), pantoprazole (30 mg/kg/once daily) for 5 days or combination of pantoprazole and cisplatin for 5 days. Urine, blood, and both kidneys were collected for further evaluations. Pantoprazole significantly countermand cisplatin-induced disfigurement of renal histology, kidney weight to body weight ratio, serum levels of creatinine and urea, and microalbuminuria. Furthermore, pantoprazole mostly normalized cisplatin-induced distortion of renal levels of inflammatory cytokines (tumor necrosis factor-alpha, interleukin-6, interleukin-10) and renal content of apoptosis regulating protein expressions (Bax, Bcl2, and active caspase 3). In addition, pantoprazole significantly subsided cisplatin-induced distortion of renal lipid peroxidation marker (MDA), renal superoxide dismutase, and catalase activities and renal reduced glutathione content. This study provides an evidence for the protective utility of short-term pantoprazole against cisplatin-induced nephrotoxicity in mice. The protective mechanism of pantoprazole could be through diminution of cisplatin-induced inflammation, oxidative stress, and their subsequent apoptotic renal cell death via abatement of apoptosis regulating protein expressions (Bax, Bcl2, and active caspase3).
Collapse
Affiliation(s)
- Raed S Ismail
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azahr University, Cairo, Egypt
| | - Mohammed S El-Awady
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Al-Madinah Al-Munawara, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Memy H Hassan
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azahr University, Cairo, Egypt.
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Al-Madinah Al-Munawara, Saudi Arabia.
| |
Collapse
|
15
|
Akaras N, Abuc OO, Koc K, Bal T, Geyikoglu F, Atilay H, Erol HS, Yigit S, Gul M. (1 → 3)-β-d-glucan enhances the toxicity induced by Bortezomib in rat testis. J Food Biochem 2020; 44:e13155. [PMID: 31960484 DOI: 10.1111/jfbc.13155] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 01/01/2020] [Accepted: 01/02/2020] [Indexed: 12/17/2022]
Abstract
We aimed to determine the possible effects of the antioxidant agent (1 → 3)-β-D-glucan on bortezomib-induced rat testis damage. We used five groups of rats; control, (1 → 3)-β-D-glucan (75 mg/kg), bortezomib group, bortezomib + (1 → 3)-β-D-glucan groups (injection of (1 → 3)-β-D-glucan after bortezomib and sacrificed at 48th or 72nd h). The effects of these substances were assessed by measuring the levels of the antioxidant enzymes and LPO, and by performing immunohistochemical analysis with NF-κB. The histology of testis was evaluated using aniline blue staining. (1 → 3)-β-D-glucan leads to significant reductions in the levels of antioxidant enzymes and increased levels of LPO in testes. Moreover, it increased the NF-κB immunopositivity significantly in testis, especially in Bortezomib + (1 → 3)-β-D-glucan group at 48th h. The histological changes were observed in the bortezomib and/or (1 → 3)-β-D-glucan groups. Our results demonstrated that testis damage caused by the treatment with bortezomib was not eliminated by (1 → 3)-β-D-glucan and shockingly it increased the damage. PRACTICAL APPLICATIONS: The testis damage caused by the treatment with bortezomib was not eliminated by (1 → 3)-β-D-glucan and as a result, β-1,3-(D)-glucan enhanced the toxicity by leading a decrease in the levels of GSH, SOD, and CAT, thus caused an elevation in the immunoreactivity of NF-κB and altered the histopathological changes by enhancing the toxic effects of bortezomib. The findings of the previous studies about the antioxidative activity of (1 → 3)-β-D-glucan are controversial. So, it is necessary to consider the cytotoxicity of (1 → 3)-β-D-glucan in testis tissue. Thus, more studies on testis tissue are necessary to confirm that (1 → 3)-β-D-glucan is safe as an antioxidant.
Collapse
Affiliation(s)
- Nurhan Akaras
- Department of Histology and Embryology, Faculty of Medicine, Aksaray University, Aksaray, Turkey
| | - Ozlem Ozgul Abuc
- Department of Histology and Embryology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Kubra Koc
- Department of Biology, Faculty of Science, Ataturk University, Erzurum, Turkey
| | - Tugba Bal
- Department of Histology and Embryology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Fatime Geyikoglu
- Department of Biology, Faculty of Science, Ataturk University, Erzurum, Turkey
| | - Hilal Atilay
- Department of Histology and Embryology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Huseyin Serkan Erol
- Department of Biochemistry, Faculty of Veterinary Medicine, Kastamonu University, Kastamonu, Turkey
| | - Serdar Yigit
- Department of Histology and Embryology, Faculty of Medicine, Kafkas University, Kars, Turkey
| | - Murat Gul
- Department of Urology, Faculty of Medicine, Aksaray University, Aksaray, Turkey
| |
Collapse
|
16
|
Rehman MU, Rather IA. Myricetin Abrogates Cisplatin-Induced Oxidative Stress, Inflammatory Response, and Goblet Cell Disintegration in Colon of Wistar Rats. PLANTS 2019; 9:plants9010028. [PMID: 31878169 PMCID: PMC7020155 DOI: 10.3390/plants9010028] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 12/12/2022]
Abstract
Cisplatin [cis-diamminedichloroplatinum II] is an extensively prescribed drug in cancer chemotherapy; it is also useful for the treatment of diverse types of malignancies. Conversely, cisplatin is associated with a range of side effects such as nephrotoxicity, hepatotoxicity, gastrointestinal toxicity, and so on. Myricetin (3,5,7-trihydroxy-2-(3,4,5-trihydroxyphenyl)-4chromenone) is a very common natural flavonoid found in fruits, tea, and plants. It has been found to have high-value pharmacological properties and strong health benefits. To examine the role of myricetin in colon toxicity induced by cisplatin, we conducted a concurrent prophylactic study in experimental animals that were treated orally with myricetin for 14 days at two doses—25 and 50 mg/kg of body weight. On the 14th day, a single intraperitoneal injection of cisplatin (7.5 mg/kg body weight) was administered in all groups except control. The effects of myricetin in cisplatin-induced toxicity in the colon were assessed in terms of antioxidant status, phase-II detoxification enzymes, the level of inflammatory markers, and goblet cell disintegration. Myricetin was found to restore the level of all the antioxidant enzymes analyzed in the study. In addition, the compound ameliorated cisplatin-induced lipid peroxidation, increase in xanthine oxidase activity, and phase-II detoxifying enzyme activity. Myricetin also attenuated deteriorative effects induced by cisplatin by regulating the level of molecular markers of inflammation (NF-κB, Nrf-2, IL-6, and TNF-α), restoring Nrf-2 levels, and controlling goblet cell disintegration. The current study reinforces the conclusion that myricetin exerts protection in colon toxicity via up-regulation of inflammatory markers, improving anti-oxidant status, and protecting tissue damage.
Collapse
Affiliation(s)
- Muneeb U. Rehman
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, P.O. Box-2457, Riyadh 11451, Saudi Arabia
- Division of Biochemistry, Faculty of Veterinary Science and Animal Husbandry, SKAUST-Kashmir, Alustang, Srinagar, J&K 190006, India
- Correspondence: (M.U.R.); (I.A.R.)
| | - Irfan A. Rather
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU) P.O. Box-80141, Jeddah 21589, Saudi Arabia
- Correspondence: (M.U.R.); (I.A.R.)
| |
Collapse
|
17
|
Effect of selenium and nano-selenium on cisplatin-induced nephrotoxicity in albino rats. UKRAINIAN BIOCHEMICAL JOURNAL 2019. [DOI: 10.15407/ubj91.06.086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
18
|
El-Shoura EAM, Sharkawi SMZ, Messiha BAS, Bakr AG, Hemeida RAM. Perindopril mitigates LPS-induced cardiopulmonary oxidative and inflammatory damage via inhibition of renin angiotensin system, inflammation and oxidative stress. Immunopharmacol Immunotoxicol 2019; 41:630-643. [DOI: 10.1080/08923973.2019.1688346] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Ehab A. M. El-Shoura
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Souty M. Z. Sharkawi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Basim A. S. Messiha
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Adel G. Bakr
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Ramadan A. M. Hemeida
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Deraya University, Minya, Egypt
| |
Collapse
|
19
|
Kostakoglu U, Topcu A, Atak M, Tumkaya L, Mercantepe T, Uydu HA. The protective effects of angiotensin-converting enzyme inhibitor against cecal ligation and puncture-induced sepsis via oxidative stress and inflammation. Life Sci 2019; 241:117051. [PMID: 31733315 DOI: 10.1016/j.lfs.2019.117051] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/06/2019] [Accepted: 11/07/2019] [Indexed: 12/16/2022]
Abstract
AIMS Sepsis is a severe public health problem affecting millions of individuals, with global mortality rates caused by lower respiratory tract infections are approximately 2.38 million people a year die from respiratory failure caused by infection. Although ACE is known to contribute to damage in septicemia, the pathophysiological mechanisms of sepsis remain unclear. While mortality can be significantly reduced through effective and sensitive antibiotic therapy, antibiotic resistance restricts the use of these drugs, and the investigation of novel agents and targets is therefore essential. Our aim was to determine whether Perindopril (PER) has anti-inflammatory and antioxidant capable of preventing these adverse conditions resulting in injury in previous studies. MAIN METHODS Sprague Dawley rats were randomly assigned into the control group, received oral saline solution alone for four days. the cecal ligation and puncture (CLP) group, underwent only cecal ligation and puncture induced sepsis, while the CLP + PER (2 mg/kg) underwent cecal ligation and puncture-induced sepsis together with oral administration of 2 mg/kg PER for four days before induction of sepsis. KEY FINDINGS Malondialdehyde (MDA), tumor necrosis factor-alpha (TNF-α), Caspase-3 and nuclear factor kappa B (NF-kβ/p65) levels increased in the CLP group. On the other hand, PER (2 mg/kg) oral administration to septic rats decreased MDA, TNF-α and increase glutathione (GSH) in the lung tissue. In addition, PER administration also decreased the lung tissue NF-κB and Caspase-3 immunopositivity against sepsis. SIGNIFICANCE PER treatment may represent a promising means of preventing sepsis-induced lung injury via antioxidant and anti-inflammation effects.
Collapse
Affiliation(s)
- Ugur Kostakoglu
- Department of Department of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Recep Tayyip Erdogan University, 53100, Rize, Turkey.
| | - Atilla Topcu
- Department of Pharmacology, Recep Tayyip Erdogan University, Faculty of Medicine, 53100, Rize, Turkey
| | - Mehtap Atak
- Department of Medical Biochemistry, Faculty of Medicine, Recep Tayyip Erdogan University, 53100, Rize, Turkey
| | - Levent Tumkaya
- Department of Histology and Embryology, Faculty of Medicine, Recep Tayyip Erdogan University, 53100, Rize, Turkey
| | - Tolga Mercantepe
- Department of Histology and Embryology, Faculty of Medicine, Recep Tayyip Erdogan University, 53100, Rize, Turkey
| | - Huseyin Avni Uydu
- Department of Medical Biochemistry, Faculty of Medicine, Recep Tayyip Erdogan University, 53100, Rize, Turkey
| |
Collapse
|