1
|
Cui H, Hu D, Xu J, Zhao S, Song Y, Qin G, Liu Y. Identification of hub genes associated with diabetic cardiomyopathy using integrated bioinformatics analysis. Sci Rep 2024; 14:15324. [PMID: 38961143 PMCID: PMC11222523 DOI: 10.1038/s41598-024-65773-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 06/24/2024] [Indexed: 07/05/2024] Open
Abstract
Diabetic cardiomyopathy (DCM) is a common cardiovascular complication of diabetes, which may threaten the quality of life and shorten life expectancy in the diabetic population. However, the molecular mechanisms underlying the diabetes cardiomyopathy are not fully elucidated. We analyzed two datasets from Gene Expression Omnibus (GEO). Differentially expressed and weighted gene correlation network analysis (WGCNA) was used to screen key genes and molecules. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, and protein-protein interaction (PPI) network analysis were constructed to identify hub genes. The diagnostic value of the hub gene was evaluated using the receiver operating characteristic (ROC). Quantitative real-time PCR (RT-qPCR) was used to validate the hub genes. A total of 13 differentially co-expressed modules were selected by WGCNA and differential expression analysis. KEGG and GO analysis showed these DEGs were mainly enriched in lipid metabolism and myocardial hypertrophy pathway, cytomembrane, and mitochondrion. As a result, six genes were identified as hub genes. Finally, five genes (Pdk4, Lipe, Serpine1, Igf1r, and Bcl2l1) were found significantly changed in both the validation dataset and experimental mice with DCM. In conclusion, the present study identified five genes that may help provide novel targets for diagnosing and treating DCM.
Collapse
Affiliation(s)
- Hailong Cui
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Academy of Medical Sciences of Zhengzhou University, Zhengzhou, 450052, China
| | - Die Hu
- The Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jing Xu
- The Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shuiying Zhao
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yi Song
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Academy of Medical Sciences of Zhengzhou University, Zhengzhou, 450052, China
| | - Guijun Qin
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Yanling Liu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
2
|
Olaniyi KS, Atuma CL, Mahmud H, Saidi AO, Sabinari IW, Akintayo CO, Ajadi IO, Olatunji LA. Restoration of cardiac metabolic flexibility by acetate in high fat diet-induced obesity is independent of ANP/BNP modulation. Can J Physiol Pharmacol 2022; 100:509-520. [PMID: 35395159 DOI: 10.1139/cjpp-2021-0531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present study hypothesized that cardiac metabolic inflexibility is dependent on cardiac ANP/BNP alteration and HDAC activity. We further sought to investigate the therapeutic potential of SCFA, acetate in high fat diet (HFD)-induced obese rat model. Adult male Wistar rats were assigned into groups (n = 6/group): Control, Obese, Sodium acetate (NaAc)-treated and Obese+ NaAc-treated groups received distilled water once daily (oral gavage), 40% HFD ad libitum, 200 mg/kg NaAc once daily (oral gavage) and 40% HFD+NaAc respectively. The treatments lasted for 12 weeks. HFD resulted in increased food intake, body weight and cardiac mass. It also caused insulin resistance and enhanced β-cell function, increased fasting insulin, lactate, plasma and cardiac triglyceride, total cholesterol, lipid peroxidation, TNF-α, IL-6, HDAC and cardiac troponin T and γ-Glutamyl transferase and decreased plasma and cardiac GSH with unaltered cardiac ANP and BNP. However, these alterations were averted when treated with acetate. Taken together, these results indicate that obesity induces defective cardiac metabolic flexibility, which is accompanied by elevated level of HDAC and not ANP/BNP alteration. The results also suggest that acetate ameliorates obesity-induced cardiac metabolic inflexibility by suppression of HDAC and independent of ANP/BNP modulation.
Collapse
Affiliation(s)
- Kehinde Samuel Olaniyi
- Afe Babalola University, 470822, Department of Physiology, Ado Ekiti, Nigeria.,College of Health Sciences University of Ilorin P, Department of Physiology, Ilorin, Nigeria;
| | - Chukwubueze L Atuma
- Afe Babalola University, 470822, Department of Physiology, Ado Ekiti, Nigeria;
| | - Hadiza Mahmud
- Afe Babalola University, 470822, Department of Physiology, Ado Ekiti, Nigeria;
| | - Azeezat O Saidi
- Afe Babalola University, 470822, Department of Physiology, Ado Ekiti, Nigeria;
| | | | - Christopher O Akintayo
- Afe Babalola University College of Medicine and Health Sciences, 473846, Cardio/Repro-metabolic and Microbiome Research Unit, Department of Physiology, Ado Ekiti, Ekiti, Nigeria;
| | - Isaac O Ajadi
- Ladoke Akintola University of Technology College of Health Sciences, 215747, Department of Physiology, Osogbo, Osun, Nigeria;
| | - Lawrence A Olatunji
- College of Health Sciences University of Ilorin P, Department of Physiology, Ilorin, Nigeria;
| |
Collapse
|
3
|
Grant AD, Wilbrecht L, Kriegsfeld LJ. Adolescent Development of Biological Rhythms in Female Rats: Estradiol Dependence and Effects of Combined Contraceptives. Front Physiol 2021; 12:752363. [PMID: 35615288 PMCID: PMC9126190 DOI: 10.3389/fphys.2021.752363] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/11/2021] [Indexed: 01/23/2023] Open
Abstract
Adolescence is a period of continuous development, including the maturation of endogenous rhythms across systems and timescales. Although, these dynamic changes are well-recognized, their continuous structure and hormonal dependence have not been systematically characterized. Given the well-established link between core body temperature (CBT) and reproductive hormones in adults, we hypothesized that high-resolution CBT can be applied to passively monitor pubertal development and disruption with high fidelity. To examine this possibility, we used signal processing to investigate the trajectory of CBT rhythms at the within-day (ultradian), daily (circadian), and ovulatory timescales, their dependence on estradiol (E2), and the effects of hormonal contraceptives. Puberty onset was marked by a rise in fecal estradiol (fE2), followed by an elevation in CBT and circadian power. This time period marked the commencement of 4-day rhythmicity in fE2, CBT, and ultradian power marking the onset of the estrous cycle. The rise in circadian amplitude was accelerated by E2 treatment, indicating a role for this hormone in rhythmic development. Contraceptive administration in later adolescence reduced CBT and circadian power and resulted in disruption to 4-day cycles that persisted after discontinuation. Our data reveal with precise temporal resolution how biological rhythms change across adolescence and demonstrate a role for E2 in the emergence and preservation of multiscale rhythmicity. These findings also demonstrate how hormones delivered exogenously in a non-rhythmic pattern can disrupt rhythmic development. These data lay the groundwork for a future in which temperature metrics provide an inexpensive, convenient method for monitoring pubertal maturation and support the development of hormone therapies that better mimic and support human chronobiology.
Collapse
Affiliation(s)
- Azure D. Grant
- The Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, United States
| | - Linda Wilbrecht
- The Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, United States
- Department of Psychology, University of California, Berkeley, Berkeley, CA, United States
| | - Lance J. Kriegsfeld
- The Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, United States
- Department of Psychology, University of California, Berkeley, Berkeley, CA, United States
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, United States
- Graduate Group in Endocrinology, University of California, Berkeley, Berkeley, CA, United States
| |
Collapse
|
4
|
Guan LY, Hou WL, Zhu ZH, Cao JQ, Tang Z, Yin XY, Xu DW, Yu X, Jia QF, Tang WJ, Zhang JP, Hui L. Associations among gonadal hormone, triglycerides and cognitive decline in female patients with major depressive disorders. J Psychiatr Res 2021; 143:580-586. [PMID: 33213891 DOI: 10.1016/j.jpsychires.2020.11.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/03/2020] [Accepted: 11/06/2020] [Indexed: 01/19/2023]
Abstract
BACKGROUND Cognitive impairment has been identified as a core feature of depression. Serum triglycerides (TG), gonadal hormone and sex difference were shown to influence cognitive performance. The purpose of this study was to investigate the associations among serum TG, gonadal hormone, sex difference and cognitive performance in patients with major depressive disorders (MDD). METHODS The enrolled 183 patients (male/female = 80/103) meeting DSM-IV criteria for MDD were divided into high TG group (patients-HTG) and normal TG group (patients-NTG) according to TG level. Serum TG, estradiol (E2) and testosterone (T) levels were measured by the glycerokinase peroxidase-peroxidase and chemiluminescence methods. Cognition was assessed by the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS). The study was conducted between August 2016 and January 2020. RESULTS In female, patients-HTG had lower immediate memory, language, attention, delayed memory and RBANS total scores than patients-NTG after adjusting for covariates. There were significant differences in serum E2 and T levels between patients-HTG and patients-NTG in female after controlling for covariates. In female patients-HTG, serum E2 level was positively associated with immediate memory, delayed memory and RBANS total scores, and serum T level was positively related to immediate memory, language and RBANS total scores. These findings were not seen in male patients. CONCLUSIONS Our data suggested that patients-HTG exhibited poorer cognitive function compared with patients-NTG in female. Moreover, the decline in serum gonadal hormone level might contribute to the high TG development of female MDD, and was further implicated in their cognitive decline.
Collapse
Affiliation(s)
- Lu Yang Guan
- School of Mental Health, First School of Clinical Medicine, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, PR China; Research Center of Biological Psychiatry, The Affiliated Guangji Hospital of Soochow University, Soochow University, Suzhou, 215137, Jiangsu, PR China
| | - Wen Long Hou
- School of Mental Health, First School of Clinical Medicine, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, PR China; Research Center of Biological Psychiatry, The Affiliated Guangji Hospital of Soochow University, Soochow University, Suzhou, 215137, Jiangsu, PR China
| | - Zhen Hua Zhu
- Research Center of Biological Psychiatry, The Affiliated Guangji Hospital of Soochow University, Soochow University, Suzhou, 215137, Jiangsu, PR China
| | - Jia Qi Cao
- School of Mental Health, First School of Clinical Medicine, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, PR China; Research Center of Biological Psychiatry, The Affiliated Guangji Hospital of Soochow University, Soochow University, Suzhou, 215137, Jiangsu, PR China
| | - Zhen Tang
- Research Center of Biological Psychiatry, The Affiliated Guangji Hospital of Soochow University, Soochow University, Suzhou, 215137, Jiangsu, PR China
| | - Xu Yuan Yin
- Research Center of Biological Psychiatry, The Affiliated Guangji Hospital of Soochow University, Soochow University, Suzhou, 215137, Jiangsu, PR China
| | - Dong Wu Xu
- School of Mental Health, First School of Clinical Medicine, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, PR China
| | - Xin Yu
- School of Mental Health, First School of Clinical Medicine, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, PR China; Institute of Mental Health, Peking University, Beijing, 100083, PR China
| | - Qiu Fang Jia
- Research Center of Biological Psychiatry, The Affiliated Guangji Hospital of Soochow University, Soochow University, Suzhou, 215137, Jiangsu, PR China
| | - Wen Jie Tang
- School of Mental Health, First School of Clinical Medicine, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, PR China; Research Center of Biological Psychiatry, The Affiliated Guangji Hospital of Soochow University, Soochow University, Suzhou, 215137, Jiangsu, PR China.
| | - Jian-Ping Zhang
- Department of Psychiatry, Weill Cornell Medical College, Cornell University, New York, NY, 10605, USA
| | - Li Hui
- School of Mental Health, First School of Clinical Medicine, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, PR China; Research Center of Biological Psychiatry, The Affiliated Guangji Hospital of Soochow University, Soochow University, Suzhou, 215137, Jiangsu, PR China.
| |
Collapse
|
5
|
Olaniyi KS, Owolabi MN, Atuma CL, Agunbiade TB, Alabi BY. Acetate rescues defective brain-adipose metabolic network in obese Wistar rats by modulation of peroxisome proliferator-activated receptor-γ. Sci Rep 2021; 11:18967. [PMID: 34556775 PMCID: PMC8460633 DOI: 10.1038/s41598-021-98605-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 09/09/2021] [Indexed: 02/08/2023] Open
Abstract
We investigated the hypothesis that acetate ameliorates brain-adipose metabolic dysfunction (BAMED) in high fat diet (HFD)-induced obesity, possibly by modulation of peroxisome proliferator-activated receptor-γ (PPAR-γ). Ten-week-old male Wistar rats were randomly assigned into four groups (n = 6/group): Control, acetate and obese with or without acetate groups received vehicle (distilled water; po), acetate (200 mg/kg, po) and 40% HFD with or without acetate respectively. The treatments lasted for 12 weeks. Obese animals showed increase in body weight, visceral fat mass, insulin and triglyceride-glucose index and a reduction in insulin sensitivity. In addition, obese animals also showed increase in plasma/hypothalamic and adipose pyruvate dehydrogenase kinase-4, lactate-pyruvate ratio, malondialdehyde, γ-glutamyl transferase, and a decrease in glucose-6-phosphate dehydrogenase, glutathione, nitric oxide and PPAR-γ. HFD also elevated plasma/hypothalamic lipid and decreased adipose lipid profile, increased hypothalamic and adipose tumor necrosis factor-α, interleukin-6 and histone deacetylase (HDAC), and elevated plasma/adipose leptin. These alterations were reversed by concomitant administration of acetate. The present results demonstrate that obesity is characterized by BAMED, which is accompanied by altered HDAC/PPAR-γ. The results in addition suggest that acetate, an HDAC inhibitor rescues BAMED with consequent normalization of body weight and visceral fat mass by modulation of PPAR-γ and suppression of oxidative stress.
Collapse
Affiliation(s)
- Kehinde Samuel Olaniyi
- Cardio/Repro-Metabolic and Microbiome Research Unit, Department of Physiology, College of Medicine and Health Sciences, Afe Babalola University, P.M.B. 5454, Ado-Ekiti, 360101, Nigeria.
| | - Morounkeji Nicole Owolabi
- Cardio/Repro-Metabolic and Microbiome Research Unit, Department of Physiology, College of Medicine and Health Sciences, Afe Babalola University, P.M.B. 5454, Ado-Ekiti, 360101, Nigeria
| | - Chukwubueze Lucky Atuma
- Cardio/Repro-Metabolic and Microbiome Research Unit, Department of Physiology, College of Medicine and Health Sciences, Afe Babalola University, P.M.B. 5454, Ado-Ekiti, 360101, Nigeria
| | - Toluwani Bosede Agunbiade
- Department of Medical Microbiology and Parasitology, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, 360101, Nigeria
| | - Bolanle Yemisi Alabi
- Department of Hematology and Virology, University of Medical Science Teaching Hospital Complex, Akure, Nigeria
| |
Collapse
|
6
|
Olaniyi KS, Sabinari IW, Olatunji LA. Oral ethinylestradiol–levonorgestrel therapy counteracts fructose-induced renal metabolic impairment in female rats. ENDOCRINE AND METABOLIC SCIENCE 2021. [DOI: 10.1016/j.endmts.2021.100099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
7
|
Pyruvate dehydrogenase kinases (PDKs): an overview toward clinical applications. Biosci Rep 2021; 41:228121. [PMID: 33739396 PMCID: PMC8026821 DOI: 10.1042/bsr20204402] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/12/2021] [Accepted: 03/17/2021] [Indexed: 01/01/2023] Open
Abstract
Pyruvate dehydrogenase kinase (PDK) can regulate the catalytic activity of pyruvate decarboxylation oxidation via the mitochondrial pyruvate dehydrogenase complex, and it further links glycolysis with the tricarboxylic acid cycle and ATP generation. This review seeks to elucidate the regulation of PDK activity in different species, mainly mammals, and the role of PDK inhibitors in preventing increased blood glucose, reducing injury caused by myocardial ischemia, and inducing apoptosis of tumor cells. Regulations of PDKs expression or activity represent a very promising approach for treatment of metabolic diseases including diabetes, heart failure, and cancer. The future research and development could be more focused on the biochemical understanding of the diseases, which would help understand the cellular energy metabolism and its regulation by pharmacological effectors of PDKs.
Collapse
|
8
|
Sayehmiri K, Ahmadi I, Anvari E. Fructose Feeding and Hyperuricemia: a Systematic Review and Meta-Analysis. Clin Nutr Res 2020; 9:122-133. [PMID: 32395442 PMCID: PMC7192665 DOI: 10.7762/cnr.2020.9.2.122] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/11/2020] [Accepted: 04/16/2020] [Indexed: 12/29/2022] Open
Abstract
High fructose feeding has been suggested to involve in several features of metabolic syndrome including hyperuricemia (HP). We designed and implemented a study to determine the effect size of fructose intake and the relative risk of HP based on the type of fructose feeding (diet or solution), duration of treatment (2–6, 7–10, and > 10 weeks), and animal race. The required information was accepted from international databases, including PubMed/MEDLINE, Science Direct, Scopus, and etc., from 2009 until 2019 on the basis of predetermined eligibility criteria. The data selection and extraction and quality assessment were performed independently by two researchers. Results were pooled as random effects weighting and reported as standardized mean differences with 95% confidence intervals. Thirty-five studies including 244 rats with fructose consumption were included in the final analysis. The heterogeneity rate of parameters was high (I2 = 81.3%, p < 0.001) and estimated based on; 1) type of fructose feeding (diet; I2 = 79.3%, solution 10%; I2 = 83.4%, solution 20%; I2 = 81.3%), 2) duration of treatment (2–6 weeks; I2 = 86.8%, 7–10 weeks; I2 = 76.3%, and > 10 weeks; I2 = 82.8%), 3) the animal race (Wistar; I2 = 78.6%, Sprague-Dawley; I2 = 83.9%). Overall, the pooled estimate for the all parameters was significant (p < 0.001). The results of this study indicated that a significant relationship between HP and fructose intake regardless of the treatment duration, animal race, fructose concentration and route of consumption.
Collapse
Affiliation(s)
- Kourosh Sayehmiri
- Department of Social Medicine, Faculty of Medicine, Ilam University of Medical Sciences, Ilam 6931851147, Iran
| | - Iraj Ahmadi
- Department of Physiology, Faculty of Medicine, Ilam University of Medical Sciences, Ilam 6931851147, Iran
| | - Enayat Anvari
- Department of Physiology, Faculty of Medicine, Ilam University of Medical Sciences, Ilam 6931851147, Iran
| |
Collapse
|
9
|
Olaniyi KS, Woru Sabinari I, Olatunji LA. l-glutamine supplementation exerts cardio-renal protection in estrogen-progestin oral contraceptive-treated female rats. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 74:103305. [PMID: 31790957 DOI: 10.1016/j.etap.2019.103305] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/01/2019] [Accepted: 11/21/2019] [Indexed: 06/10/2023]
Abstract
Glycogen and lipid disruptions represent a spectrum of metabolic disorders that are crucial risk factors for cardiovascular disease in estrogen-progestin oral contraceptive (COC) users. l-glutamine (GLN) has been shown to exert a modulatory effect in metabolic disorders-related syndromes. We therefore hypothesized that GLN supplementation would protect against myocardial and renal glycogen-lipid mishandling in COC-treated animals by modulation of Glucose-6-phosphate dehydrogenase (G6PD) and xanthine oxidase (XO) activities. Adult female Wistar rats were randomly allotted into control, GLN, COC and COC + GLN groups (six rats per group). The groups received vehicle (distilled water, p.o.), GLN (1 g/kg), COC containing 1.0 μg ethinylestradiol plus 5.0 μg levonorgestrel and COC plus GLN respectively, daily for 8 weeks. Data showed that treatment with COC led to metabolically-induced obesity with correspondent increased visceral and epicardial fat mass. It also led to increased plasma, myocardial and renal triglyceride, free fatty acid, malondialdehyde (MDA), XO activity, uric acid content and decreased glutathione content and G6PD activity. In addition, COC increased myocardial but not renal glycogen content, and increased myocardial and renal glycogen synthase activity, increased plasma and renal lactate production and plasma aspartate transaminase/alanine aminotransferase (AST/ALT) ratio. However, these alterations were attenuated when supplemented with GLN except plasma AST/ALT ratio. Collectively, the present results indicate that estrogen-progestin oral contraceptive causes metabolically-induced obesity that is accompanied by differential myocardial and renal metabolic disturbances. The findings also suggest that irrespective of varying metabolic phenotypes, GLN exerts protection against cardio-renal dysmetabolism by modulation of XO and G6PD activities.
Collapse
Affiliation(s)
- Kehinde Samuel Olaniyi
- HOPE Cardiometabolic Research Team & Department of Physiology, College of Health Sciences, University of Ilorin, P.M.B. 1515, Ilorin, Nigeria; Department of Physiology, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, Nigeria
| | - Isaiah Woru Sabinari
- HOPE Cardiometabolic Research Team & Department of Physiology, College of Health Sciences, University of Ilorin, P.M.B. 1515, Ilorin, Nigeria
| | - Lawrence Aderemi Olatunji
- HOPE Cardiometabolic Research Team & Department of Physiology, College of Health Sciences, University of Ilorin, P.M.B. 1515, Ilorin, Nigeria.
| |
Collapse
|
10
|
Olaniyi KS, Olatunji LA. Preventive effects of l-glutamine on gestational fructose-induced cardiac hypertrophy: involvement of pyruvate dehydrogenase kinase-4. Appl Physiol Nutr Metab 2019; 44:1345-1354. [PMID: 31082323 DOI: 10.1139/apnm-2018-0754] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Gestational fructose exposure has detrimental health consequences on both the maternal and fetus or offspring in the early or later life, contributing to epidemic rise in cardiometabolic syndrome including cardiac events. l-Glutamine has been shown to mitigate cardiac metabolic stress. However, the effect of l-glutamine on cardiac hypertrophy induced by gestational fructose exposure is not known. We therefore hypothesized that l-glutamine would prevent gestational fructose-induced cardiac hypertrophy, possibly by suppression of pyruvate dehydrogenase kinase-4 (PDK-4). Pregnant Wistar rats were allotted into the control, l-glutamine, gestational fructose exposure, and gestational fructose exposure plus l-glutamine groups (6 rats in each group). The groups received distilled water (vehicle, per os), 1 g/kg body weight l-glutamine (per os), 10% fructose (w/v) and 10% fructose (w/v) plus 1 g/kg l-glutamine (per os), respectively, daily for 19 days. Data from this study showed that gestational fructose-enriched drink caused cardiac hypertrophy with correspondent body weight gain, glucose dysregulation, increased cardiac PDK-4, triglyceride, glycogen, lactate, and uric acid production. On the other hand, defective glutathione-dependent antioxidant barrier was also observed in pregnant rats taking fructose-enriched drink. However, the gestational fructose-induced cardiac hypertrophy and its correlates were attenuated by l-glutamine. The present results demonstrate that gestational fructose-enriched drink induces cardiac hypertrophy that is accompanied by increased PDK-4. The findings also suggest that the inhibitory effect of l-glutamine on PDK-4 prevents the development of cardiac hypertrophy, thereby implying that PDK-4 may be a potential novel therapeutic intervention for cardiac hypertrophy especially in pregnancy.
Collapse
Affiliation(s)
- Kehinde Samuel Olaniyi
- HOPE Cardiometabolic Research Team and Department of Physiology, College of Health Sciences, University of Ilorin, P.M.B. 1515, Ilorin, Nigeria.,Department of Physiology, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, Nigeria
| | - Lawrence Aderemi Olatunji
- HOPE Cardiometabolic Research Team and Department of Physiology, College of Health Sciences, University of Ilorin, P.M.B. 1515, Ilorin, Nigeria
| |
Collapse
|
11
|
Chronic Consumption of Fructose Induces Behavioral Alterations by Increasing Orexin and Dopamine Levels in the Rat Brain. Nutrients 2018; 10:nu10111722. [PMID: 30423806 PMCID: PMC6265759 DOI: 10.3390/nu10111722] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/02/2018] [Accepted: 11/08/2018] [Indexed: 01/02/2023] Open
Abstract
It has been widely described that chronic intake of fructose causes metabolic alterations which can be associated with brain function impairment. In this study, we evaluated the effects of fructose intake on the sleep–wake cycle, locomotion, and neurochemical parameters in Wistar rats. The experimental group was fed with 10% fructose in drinking water for five weeks. After treatment, metabolic indicators were quantified in blood. Electroencephalographic recordings were used to evaluate the sleep architecture and the spectral power of frequency bands. Likewise, the locomotor activity and the concentrations of orexin A and monoamines were estimated. Our results show that fructose diet significantly increased the blood levels of glucose, cholesterol, and triglycerides. Fructose modified the sleep–wake cycle of rats, increasing the waking duration and conversely decreasing the non-rapid eye movement sleep. Furthermore, these effects were accompanied by increases of the spectral power at different frequency bands. Chronic consumption of fructose caused a slight increase in the locomotor activity as well as an increase of orexin A and dopamine levels in the hypothalamus and brainstem. Specifically, immunoreactivity for orexin A was increased in the ventral tegmental area after the intake of fructose. Our study suggests that fructose induces metabolic changes and stimulates the activity of orexinergic and dopaminergic neurons, which may be responsible for alterations of the sleep–wake cycle.
Collapse
|