1
|
Duan H, Wang L, Huangfu M, Li H. The impact of microbiota-derived short-chain fatty acids on macrophage activities in disease: Mechanisms and therapeutic potentials. Biomed Pharmacother 2023; 165:115276. [PMID: 37542852 DOI: 10.1016/j.biopha.2023.115276] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/07/2023] Open
Abstract
Short-chain fatty acids (SCFAs) derived from the fermentation of carbohydrates by gut microbiota play a crucial role in regulating host physiology. Among them, acetate, propionate, and butyrate are key players in various biological processes. Recent research has revealed their significant functions in immune and inflammatory responses. For instance, butyrate reduces the development of interferon-gamma (IFN-γ) generating cells while promoting the development of regulatory T (Treg) cells. Propionate inhibits the initiation of a Th2 immune response by dendritic cells (DCs). Notably, SCFAs have an inhibitory impact on the polarization of M2 macrophages, emphasizing their immunomodulatory properties and potential for therapeutics. In animal models of asthma, both butyrate and propionate suppress the M2 polarization pathway, thus reducing allergic airway inflammation. Moreover, dysbiosis of gut microbiota leading to altered SCFA production has been implicated in prostate cancer progression. SCFAs trigger autophagy in cancer cells and promote M2 polarization in macrophages, accelerating tumor advancement. Manipulating microbiota- producing SCFAs holds promise for cancer treatment. Additionally, SCFAs enhance the expression of hypoxia-inducible factor 1 (HIF-1) by blocking histone deacetylase, resulting in increased production of antibacterial effectors and improved macrophage-mediated elimination of microorganisms. This highlights the antimicrobial potential of SCFAs and their role in host defense mechanisms. This comprehensive review provides an in-depth analysis of the latest research on the functional aspects and underlying mechanisms of SCFAs in relation to macrophage activities in a wide range of diseases, including infectious diseases and cancers. By elucidating the intricate interplay between SCFAs and macrophage functions, this review aims to contribute to the understanding of their therapeutic potential and pave the way for future interventions targeting SCFAs in disease management.
Collapse
Affiliation(s)
- Hongliang Duan
- Department of Thyroid Surgery, the Second Hospital of Jilin University, Changchun 130000, China
| | - LiJuan Wang
- Department of Endocrinology, the Second Hospital of Jilin University, Changchun 130000, China.
| | - Mingmei Huangfu
- Department of Thyroid Surgery, the Second Hospital of Jilin University, Changchun 130000, China
| | - Hanyang Li
- Department of Endocrinology, the Second Hospital of Jilin University, Changchun 130000, China
| |
Collapse
|
2
|
Liu F, Nong X, Qu W, Li X. Pharmacokinetics and tissue distribution of 12 major active components in normal and chronic gastritis rats after oral administration of Weikangling capsules. JOURNAL OF ETHNOPHARMACOLOGY 2023:116722. [PMID: 37271330 DOI: 10.1016/j.jep.2023.116722] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 05/28/2023] [Accepted: 05/31/2023] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Weikangling Capsules (WKLCs) have been used in the clinic for the treatment of gastrointestinal disorders for more than 30 years. However, the pharmacokinetic characteristics and tissue distribution of its major bioactive components in rats under different physiological and pathological conditions are unclear. AIM OF THE STUDY In this study, we aimed to clarify the differences in pharmacokinetic parameters and tissue distribution of the major active components in WKLCs under physiological and pathological states. MATERIALS AND METHOD Normal and ethanol-induced chronic gastritis rats received 2.16 g/kg WKLCs by gavage, and urine, feces, plasma, and tissue (heart, liver, spleen, lung, kidney, stomach, and small intestine) samples were obtained. The active components in urine, feces and plasma were detected by ultra-high-performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry (UHPLC-Q-TOF-MS/MS). A rapid and sensitive analytical method, ultra-high-performance liquid chromatography coupled with triple-quadrupole linear ion-trap tandem mass spectrometry (UHPLC-QTRAP-MS/MS), was established and validated to clarify and compare the pharmacokinetics and tissue distribution of the major active components in normal and chronic gastritis rats. RESULTS A total of 36 chemical components in the feces, urine, and plasma of chronic gastritis rats were identified by UHPLC-Q-TOF-MS/MS. Among them, 20 were the prototype components of WKLCs, and 16 were metabolites. The pharmacokinetic characteristics and tissue distribution of 12 prototype components were successfully analyzed by UHPLC-QTRAP-MS/MS. The pharmacokinetic results showed that the Cmax, AUC0-t, and AUC0-∞ of paeoniflorin, glycyrrhizic acid, and glycyrrhetinic acid were distinctly higher than those of the other components in normal and chronic gastritis rats. Compared to normal rats, the Cmax, AUC0-t, and AUC0-∞ of albiflorin, liquiritin apioside, liquiritin, isoliquiritin, ononin, isoliquiritigenin, dactylorhin A, and glycyrrhizic acid were significantly increased in chronic gastritis rats (P < 0.05), while the Cmax, AUC0-t and AUC0-∞ of militarine and liquiritigenin had significantly lower decreases in chronic gastritis rats (P < 0.05). The results of the tissue distribution showed that the 12 components were widely distributed in the heart, liver, spleen, lung, kidney, stomach, and small intestine of rats, of which the liver, kidney, stomach, and small intestine were the main accumulative organs. Compared with normal rats, the concentrations of 12 components in the liver, kidney, stomach, and small intestine of chronic gastritis rats were widely higher than those of normal rats at the same time points. CONCLUSION The pharmacokinetic characteristics and tissue distribution of 12 active components of WKLCs were comprehensively characterized and elucidated in normal and chronic gastritis rats. These findings laid a solid foundation for revealing the pharmacodynamic material basis of WKLCs in treating gastrointestinal disorders.
Collapse
Affiliation(s)
- Feng Liu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaojing Nong
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wenhua Qu
- Heilongjiang Sunflower Pharmaceutical Co. Ltd., Heilongjiang, 150070, China
| | - Xiaobo Li
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
3
|
Kaya S, Yalçın T, Boydak M, Dönmez HH. Protective Effect of N-Acetylcysteine Against Aluminum-Induced Kidney Tissue Damage in Rats. Biol Trace Elem Res 2023; 201:1806-1815. [PMID: 35553365 DOI: 10.1007/s12011-022-03276-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/29/2022] [Indexed: 11/02/2022]
Abstract
Aluminum (AL) is an important nephrotoxic agent with a high daily exposure rate and property of accumulation in tissues. This study aimed to investigate the potential protective efficacy of N-acetylcysteine (NAC) against AL exposure-induced nephrotoxicity in rats. Twenty-eight rats were randomly divided into 4 groups as control, N-acetylcysteine group (NC), AL, and AL + NC, with an equal number of rats in each group (n = 7). No application was made to the control group. A total of 150 mg/kg/day NAC was administered to the NC group and 30 mg/kg/day AL was administered to the AL group intraperitoneally (i.p.). The AL + NC group received 30 mg/kg/day AL and 150 mg/kg/day NAC i.p. Biochemical parameters in blood serum and histopathological changes in kidney tissue, oxidative stress parameters, spexin (SPX), and apoptotic protein levels were examined after 15 days. Histopathological changes, biochemical parameters, oxidative stress parameters, and apoptotic protein levels were significantly irregular in the AL group compared to the control group. Moreover, SPX levels increased in the AL group. However, NAC treatment regulated AL exposure-related changes in the AL + NC group. NAC treatment may have a prophylactic effect against nephrotoxicity due to AL exposure. SPX may play a role in AL-induced nephrotoxicity.
Collapse
Affiliation(s)
- Sercan Kaya
- Vocational Higher School of Healthcare Studies, Health Services Vocational School, Batman University, Batman, Turkey.
| | - Tuba Yalçın
- Vocational Higher School of Healthcare Studies, Health Services Vocational School, Batman University, Batman, Turkey
| | - Murat Boydak
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Selçuk University, Konya, Turkey
| | - Hasan Hüseyin Dönmez
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Selçuk University, Konya, Turkey
| |
Collapse
|
4
|
Gendy AM, El-Sadek HM, Amin MM, Ahmed KA, El-Sayed MK, El-Haddad AE, Soubh A. Glycyrrhizin prevents 3-nitropropionic acid-induced neurotoxicity by downregulating HMGB1/TLR4/NF-κB p65 signaling, and attenuating oxidative stress, inflammation, and apoptosis in rats. Life Sci 2023; 314:121317. [PMID: 36566881 DOI: 10.1016/j.lfs.2022.121317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/08/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
AIMS Glycyrrhizin (Glyc) is a saponin triterpenoid that has signified its efficacy against Huntington's disease (HD). Nonetheless, its mechanism has not been fully clarified. Accordingly, this study was designed to evaluate the plausible mechanism of action of Glyc against 3-nitropropionic acid (3-NP)-induced HD. MAIN METHODS Rats were treated with Glyc (50 mg/kg, i.p.) for 3 weeks and 3-NP (10 mg/kg, i.p.) was administered at the latter 2 weeks alongside to induce HD. KEY FINDINGS Animals exposed to 3-NP revealed a reduction in body weight, neurobehavioral abnormalities, and various deleterious effects related to overexpression of HMGB1 such as oxidative stress, apoptosis, and inflammation. Promisingly, Glyc administration provided valuable effects by reversing the decline in body weight with improved neurobehavioral deficits. Ameliorating oxidative stress via restoring GSH, SOD, and Nrf2 alongside with MDA suppression was evident. Furthermore, Glyc switched the HMGB1/TLR4/NF-κB p65 signaling off, reduced IL-6, IL-β, TNF-α, caspase-3, and increased Bcl-2 as well as BDNF. All these beneficial effects were mirrored by a better histopathological picture upon using Glyc that suppressed gliosis by reducing GFAP expression as observed in the immunohistochemistry results. SIGNIFICANCE Accordingly, the current study demonstrated a promising neuroprotective effect of Glyc against experimentally induced HD through alleviating deleterious events by diverse mechanisms.
Collapse
Affiliation(s)
- Abdallah M Gendy
- Pharmacology and Toxicology Department, Faculty of Pharmacy, October 6 University, Giza 12585, Egypt.
| | - Hagar M El-Sadek
- Pharmacology and Toxicology Department, Faculty of Pharmacy, October 6 University, Giza 12585, Egypt
| | - Mohamed M Amin
- Pharmacology Department, Medical Research and Clinical Studies Institute, National Research Centre, Dokki, Giza 12622, Egypt
| | - Kawkab A Ahmed
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Mohamed Kotb El-Sayed
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Helwan University, Helwan 11790, Egypt
| | - Alaadin E El-Haddad
- Pharmacognosy Department, Faculty of Pharmacy, October 6 University, Giza 12585, Egypt
| | - Ayman Soubh
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Ahram Canadian University, Giza, 12566, Egypt
| |
Collapse
|
5
|
Hiring of the Anti-Quorum Sensing Activities of Hypoglycemic Agent Linagliptin to Alleviate the Pseudomonas aeruginosa Pathogenesis. Microorganisms 2022; 10:microorganisms10122455. [PMID: 36557708 PMCID: PMC9783625 DOI: 10.3390/microorganisms10122455] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/27/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022] Open
Abstract
Bacteria communicate with each other using quorum sensing (QS) which works in an inducer/receptor manner. QS plays the main role in orchestrating diverse bacterial virulence factors. Pseudomonas aeruginosa is one of the most clinically important bacterial pathogens that can cause infection in almost all body tissues. Besides its efficient capability to develop resistance to different antibiotics, P. aeruginosa acquires a huge arsenal of virulence factors that are controlled mainly by QS. Challenging QS with FDA-approved drugs and natural products was proposed as a promising approach to mitigate bacterial virulence enabling the host immunity to complete the eradication of bacterial infection. The present study aims to evaluate the dipeptidase inhibitor-4 inhibitor hypoglycemic linagliptin anti-QS and anti-virulence activities against P. aeruginosa in vitro, in vivo, and in silico. The current results revealed the significant ability to diminish the production of protease and pyocyanin, motility, and biofilm formation in P. aeruginosa. Furthermore, the histopathological examination of liver and kidney tissues of mice injected with linagliptin-treated bacteria showed an obvious reduction of pathogenesis. Linagliptin downregulation to QS-encoding genes, besides the virtual ability to interact with QS receptors, indicates its anti-QS activities. In conclusion, linagliptin is a promising anti-virulence and anti-QS candidate that can be used solely or in combination with traditional antimicrobial agents in the treatment of P. aeruginosa aggressive infections.
Collapse
|
6
|
Tan D, Tseng HHL, Zhong Z, Wang S, Vong CT, Wang Y. Glycyrrhizic Acid and Its Derivatives: Promising Candidates for the Management of Type 2 Diabetes Mellitus and Its Complications. Int J Mol Sci 2022; 23:10988. [PMID: 36232291 PMCID: PMC9569462 DOI: 10.3390/ijms231910988] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a chronic metabolic disease, which is characterized by hyperglycemia, chronic insulin resistance, progressive decline in β-cell function, and defect in insulin secretion. It has become one of the leading causes of death worldwide. At present, there is no cure for T2DM, but it can be treated, and blood glucose levels can be controlled. It has been reported that diabetic patients may suffer from the adverse effects of conventional medicine. Therefore, alternative therapy, such as traditional Chinese medicine (TCM), can be used to manage and treat diabetes. In this review, glycyrrhizic acid (GL) and its derivatives are suggested to be promising candidates for the treatment of T2DM and its complications. It is the principal bioactive constituent in licorice, one type of TCM. This review comprehensively summarized the therapeutic effects and related mechanisms of GL and its derivatives in managing blood glucose levels and treating T2DM and its complications. In addition, it also discusses existing clinical trials and highlights the research gap in clinical research. In summary, this review can provide a further understanding of GL and its derivatives in T2DM as well as its complications and recent progress in the development of potential drugs targeting T2DM.
Collapse
Affiliation(s)
| | | | | | | | - Chi Teng Vong
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Yitao Wang
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| |
Collapse
|
7
|
You H, Tan Y, Yu D, Qiu S, Bai Y, He J, Cao H, Che Q, Guo J, Su Z. The Therapeutic Effect of SCFA-Mediated Regulation of the Intestinal Environment on Obesity. Front Nutr 2022; 9:886902. [PMID: 35662937 PMCID: PMC9157426 DOI: 10.3389/fnut.2022.886902] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/20/2022] [Indexed: 12/12/2022] Open
Abstract
Intestinal environment disorder is a potential pathological mechanism of obesity. There is increasing evidence that disorders in the homeostasis of the intestinal environment can affect various metabolic organs, such as fat and liver, and lead to metabolic diseases. However, there are few therapeutic approaches for obesity targeting the intestinal environment. In this review, on the one hand, we discuss how intestinal microbial metabolites SCFA regulate intestinal function to improve obesity and the possible mechanisms and pathways related to obesity-related pathological processes (depending on SCFA-related receptors such as GPCRs, MCT and SMCT, and through epigenetic processes). On the other hand, we discuss dietary management strategies to enrich SCFA-producing bacteria and target specific SCFA-producing bacteria and whether fecal bacteria transplantation therapy to restore the composition of the gut microbiota to regulate SCFA can help prevent or improve obesity. Finally, we believe that it will be of great significance to establish a working model of gut– SCFA– metabolic disease development in the future for the improvement this human health concern.
Collapse
Affiliation(s)
- Huimin You
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, China.,Key Laboratory of Glucolipid Metabolic Disorder, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yue Tan
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, China.,Key Laboratory of Glucolipid Metabolic Disorder, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
| | - Dawei Yu
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, China.,Key Laboratory of Glucolipid Metabolic Disorder, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
| | - Shuting Qiu
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, China.,Key Laboratory of Glucolipid Metabolic Disorder, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yan Bai
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jincan He
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| | - Hua Cao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou, China
| | - Qishi Che
- Guangzhou Rainhome Pharm & Tech Co., Ltd, Guangzhou, China
| | - Jiao Guo
- Key Laboratory of Glucolipid Metabolic Disorder, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
| | - Zhengquan Su
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, China.,Key Laboratory of Glucolipid Metabolic Disorder, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
8
|
The Anti-Inflammatory Properties of Licorice ( Glycyrrhiza glabra)-Derived Compounds in Intestinal Disorders. Int J Mol Sci 2022; 23:ijms23084121. [PMID: 35456938 PMCID: PMC9025446 DOI: 10.3390/ijms23084121] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 12/12/2022] Open
Abstract
Intestinal diseases, such as inflammatory bowel diseases (IBDs) and colorectal cancer (CRC), are a significant source of morbidity and mortality worldwide. Epidemiological data have shown that IBD patients are at an increased risk for the development of CRC. IBD-associated cancer develops against a background of chronic inflammation and oxidative stress, and their products contribute to cancer development and progression. Therefore, the discovery of novel drugs for the treatment of intestinal diseases is urgently needed. Licorice (Glycyrrhiza glabra) has been largely used for thousands of years in traditional Chinese medicine. Licorice and its derived compounds possess antiallergic, antibacterial, antiviral, anti-inflammatory, and antitumor effects. These pharmacological properties aid in the treatment of inflammatory diseases. In this review, we discuss the pharmacological potential of bioactive compounds derived from Licorice and addresses their anti-inflammatory and antioxidant properties. We also discuss how the mechanisms of action in these compounds can influence their effectiveness and lead to therapeutic effects on intestinal disorders.
Collapse
|
9
|
Kang Y, Kang X, Yang H, Liu H, Yang X, Liu Q, Tian H, Xue Y, Ren P, Kuang X, Cai Y, Tong M, Li L, Fan W. Lactobacillus acidophilus ameliorates obesity in mice through modulation of gut microbiota dysbiosis and intestinal permeability. Pharmacol Res 2022; 175:106020. [PMID: 34896249 DOI: 10.1016/j.phrs.2021.106020] [Citation(s) in RCA: 120] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 02/07/2023]
Abstract
Obesity associated with low-grade chronic inflammation and intestinal dysbiosis is considered as a worldwide public health crisis. In the meanwhile, different probiotics have demonstrated beneficial effects on this condition, thus increasing the interest in the development of probiotic treatments. In this context, the aim of this study is to investigate the anti-obesity effects of potential probiotic Lactobacillus acidophilus isolated from the porcine gut. Then, it is found that L. acidophilus reduces body weight, fat mass, inflammation and insulin resistance in mice fed with a high-fat diet (HFD), accompanied by activation in brown adipose tissue (BAT) as well as improvements of energy, glucose and lipid metabolism. Besides, our data indicate that L. acidophilus not only reverses HFD-induced gut dysbiosis, as indicated by the decreased Firmicutes-to-Bacteroidetes ratios and endotoxin bearing Gram-negative bacteria levels, but also maintains intestinal barrier integrity, reduces metabolic endotoxemia, and inhibits the TLR4 / NF- κB signaling pathway. In addition, the results of microbiome phenotype prediction by BugBase and bacterial functional potential prediction using PICRUSt show that L. acidophilus treatment improves the gut microbiota functions involving metabolism, immune response, and pathopoiesia. Furthermore, the anti-obesity effect is transmissible via horizontal faeces transfer from L. acidophilus-treated mice to HFD-fed mice. According to our data, it is seen that L. acidophilus could be a good candidate for probiotic of ameliorating obesity and associated diseases such as hyperlipidemia, nonalcoholic fatty liver diseases, and insulin resistance through its anti-inflammatory properties and alleviation of endothelial dysfunction and gut dysbiosis.
Collapse
Affiliation(s)
- Yongbo Kang
- Department of microbiology and immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China.
| | - Xing Kang
- Department of microbiology and immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Hao Yang
- Department of microbiology and immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Haixia Liu
- Department of microbiology and immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaodan Yang
- Department of microbiology and immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Qingqing Liu
- Department of microbiology and immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Haixia Tian
- Department of microbiology and immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yang Xue
- Department of microbiology and immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Peng Ren
- Department of microbiology and immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaoyu Kuang
- Department of microbiology and immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yue Cai
- Department of microbiology and immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Mingwei Tong
- Department of microbiology and immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Lin Li
- Department of microbiology and immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Weiping Fan
- Department of microbiology and immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China.
| |
Collapse
|
10
|
Saqr AA, Aldawsari MF, Khafagy ES, Shaldam MA, Hegazy WAH, Abbas HA. A Novel Use of Allopurinol as A Quorum-Sensing Inhibitor in Pseudomonas aeruginosa. Antibiotics (Basel) 2021; 10:antibiotics10111385. [PMID: 34827323 PMCID: PMC8615079 DOI: 10.3390/antibiotics10111385] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/06/2021] [Accepted: 11/09/2021] [Indexed: 12/16/2022] Open
Abstract
Pseudomonas aeruginosa can cause a variety of healthcare-associated infections by its arsenal of virulence factors. Virulence factor production is largely controlled by the cell-to-cell communication system termed quorum sensing (QS). Targeting QS may be a good approach to inhibit the production of virulence factors and attenuate pathogenicity without exerting selective stress on bacterial growth. This will greatly reduce the emergence of resistant mutants. In this work, we investigated the anti-virulence and anti-QS activities of the FDA-approved drug allopurinol against the P. aeruginosa PAO1 strain. Allopurinol at 200 µg/mL (1/10 MIC) significantly decreased the production of the QS-controlled Chromobacterium violaceum CV026 violet pigment violacein and other P. aeruginosa QS-controlled virulence factors phenotypically. Furthermore, allopurinol reduced the infiltration of P. aeruginosa and leucocytes and diminished the congestion in the liver and kidney tissues of infected mice. In silico study showed that allopurinol could compete with the autoinducers on binding to the receptors LasR and RhlR by hydrogen bonding. On the molecular level, qRT-PCR proved that allopurinol showed a significant downregulating effect on all tested QS-encoding genes that regulate virulence factor production. In summary, allopurinol is a promising QS inhibitor that may be useful in the future treatment of P. aeruginosa infection.
Collapse
Affiliation(s)
- Ahmed Al Saqr
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj 11942, Saudi Arabia
| | - Mohammed F Aldawsari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj 11942, Saudi Arabia
| | - El-Sayed Khafagy
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj 11942, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Moataz A Shaldam
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafr El-Sheikh 33511, Egypt
| | - Wael A H Hegazy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Hisham A Abbas
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|