1
|
Yuan X, Ji H, Zhang Y, Peng H, Cao NH, Ren JJ, Yao XR, Liang X, Kim NH, Xu YN, Li YH. Mangiferin promotes porcine oocyte maturation and delays the postovulatory aging process by up-regulating NRF2 levels. Theriogenology 2025; 239:117384. [PMID: 40086422 DOI: 10.1016/j.theriogenology.2025.117384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/07/2025] [Accepted: 03/07/2025] [Indexed: 03/16/2025]
Abstract
Mangiferin (MGN), a flavonoid known for its anti-inflammatory and antioxidant properties, was evaluated in this study for its effects on porcine oocyte maturation in vitro, as well as its potential to modulate the mechanisms associated with aging oocytes. The inclusion of 0.1 μM MGN in the IVM culture medium significantly enhanced blastocyst development following parthenogenetic activation, while also notably upregulating the expression of key embryonic development genes, including SOX2, PCNA, POU5F1, and DNMT3A. MGN treatment improved the oocytes' antioxidant capacity and mitochondrial functionality, concurrently reducing cathepsin B activity and lowering LC3B protein expression (1.06 ± 0.09 vs. 0.55 ± 0.12). To investigate the underlying mechanisms, NRF2 expression was assessed, revealing a marked increase in NRF2 fluorescence and a significant elevation in both NRF2 mRNA and protein levels (1.00 ± 0.05 vs. 1.25 ± 0.09) following MGN treatment compared to the control group. Additionally, MGN treatment enhanced the early developmental potential of aged oocytes, elevating GSH levels and mitochondrial membrane potential and reducing ROS accumulation. Furthermore, MGN treatment upregulated antioxidant genes (SOD1, SOD2). Collectively, these findings suggest that MGN improves porcine oocyte maturation in vitro and enhances subsequent developmental potential through the activation of NRF2 signaling. Moreover, MGN may also delay postovulatory oocyte aging by boosting antioxidant defense and mitochondrial function in aged oocytes.
Collapse
Affiliation(s)
- Xiuwen Yuan
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529000, Guangdong Province, China
| | - Hewei Ji
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529000, Guangdong Province, China
| | - Yuhao Zhang
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529000, Guangdong Province, China
| | - Huilin Peng
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529000, Guangdong Province, China
| | - Neng-Hao Cao
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529000, Guangdong Province, China
| | - Jia-Jun Ren
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529000, Guangdong Province, China
| | - Xue-Rui Yao
- Institute of Neurology, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330000, Jiangxi Province, China
| | - Xingwei Liang
- College of Animal Science & Technology, Guangxi University, Nanning, 530004, Guangxi Province, China
| | - Nam-Hyung Kim
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529000, Guangdong Province, China
| | - Yong-Nan Xu
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529000, Guangdong Province, China
| | - Ying-Hua Li
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529000, Guangdong Province, China.
| |
Collapse
|
2
|
Lim GM, Cho GW. Mangiferin protects mesenchymal stem cells against DNA damage and cellular aging via SIRT1 activation. Mech Ageing Dev 2025; 224:112038. [PMID: 39874993 DOI: 10.1016/j.mad.2025.112038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/27/2024] [Accepted: 01/22/2025] [Indexed: 01/30/2025]
Abstract
The protective effects of mangiferin (MAG) against etoposide- and high glucose (HG)-induced DNA damage and aging were investigated in human bone marrow-mesenchymal stem cells (hBM-MSCs). Etoposide, a topoisomerase II inhibitor, was used to induce double-strand breaks (DSBs) in hBM-MSCs, resulting in increased genotoxicity, elevated levels of the DNA damage sensor ATM and CDKN1A, and decreased levels of the aging markers H3 and H4. MAG activated AMPK and SIRT1, thus protecting against DSB-induced damage. Following long-term exposure to HG, MAG significantly mitigated DNA damage and delayed cellular aging, as evidenced by the preservation of H3, H4, LMNB1, and SIRT1 mRNA levels and reduction in γ-H2AX foci and DSBs. Furthermore, MAG improved genome stability, as indicated by decreased LINE1 expression and increased levels of the heterochromatin marker TRIM28, thereby maintaining H3K9me3 levels. MAG and metformin treatment enhanced cell proliferation, reduced senescence-associated β-galactosidase staining, and lowered the levels of the senescence-associated secretory phenotype factors IL-1A, IL-1B, IL-6, IL-8, CCL2, and CCL20 and senescence marker CDKN1A, CDKN2A and p53. MAG may reduce DNA damage and delay aging in hBM-MSCs under HG conditions, highlighting their potential as therapeutic agents for aging-related diseases.
Collapse
Affiliation(s)
- Gyeong Min Lim
- Department of Biological Science, College of Natural Science, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea; BK21 FOUR Education Research Group for Age-Associated Disorder Control Technology, Department of Integrative Biological Science, Chosun University, Gwangju 61452, Republic of Korea
| | - Gwang-Won Cho
- Department of Biological Science, College of Natural Science, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea; BK21 FOUR Education Research Group for Age-Associated Disorder Control Technology, Department of Integrative Biological Science, Chosun University, Gwangju 61452, Republic of Korea; The Basic Science Institute of Chosun University, Chosun University, Gwangju 61452, Republic of Korea.
| |
Collapse
|
3
|
Jung DM, Lee S, Kim EM, Choi CW, Kim KK. Mangiferin, a component of Mangifera indica leaf extracts, inhibits lipid synthesis in human sebocytes. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2024; 26:1489-1501. [PMID: 38952150 DOI: 10.1080/10286020.2024.2369279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 07/03/2024]
Abstract
Inhibition of lipid synthesis in sebocytes is essential for acne treatments. The effects of natural product-derived substances on lipid synthesis are unknown. This study investigated the effects of water extract of Mangifera indica leaves (WEML) on lipid synthesis in human sebocytes. Sebocyte differentiation in low serum conditions increased lipid accumulation and proliferator-activated receptor γ expression. WEML treatment significantly inhibited lipid accumulation and adipogenic mRNA expression in sebocytes. Mangiferin, a bioactive compound in WEML, also reduced lipid accumulation and adipogenic mRNA expression via the AKT pathway. Thus, WEML and mangiferin effectively inhibit lipid synthesis in sebocytes, showing promise for acne treatment.
Collapse
Affiliation(s)
- Da-Min Jung
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, Republic of Korea
| | - Sangsoo Lee
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, Republic of Korea
| | - Eun-Mi Kim
- Department of Bio and Environmental Technology, College of Science and Convergence Technology, Seoul Women's University, Seoul, Republic of Korea
| | - Chong Won Choi
- Department of Dermatology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Gyeonggi-do, Republic of Korea
| | - Kee K Kim
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
4
|
Hui Z, Lai-Fa W, Xue-Qin W, Ling D, Bin-Sheng H, Li JM. Mechanisms and therapeutic potential of chinonin in nervous system diseases. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2024; 26:1405-1420. [PMID: 38975978 DOI: 10.1080/10286020.2024.2371040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 06/17/2024] [Accepted: 06/17/2024] [Indexed: 07/09/2024]
Abstract
The flavonoid compound chinonin is one of the main active components of Rhizoma anemarrhena with multiple activities, including anti-inflammatory and antioxidant properties, protection of mitochondrial function and regulation of immunity. In this paper, we reviewed recent research progress on the protective effect of chinonin on brain injury in neurological diseases. "Chinonin" OR "Mangiferin" AND "Nervous system diseases" OR "Neuroprotection" was used as the terms for search in PumMed. After discarding duplicated and irrelevant articles, a total of 23 articles relevant to chinonin published between 2012 and 2023 were identified in our study.
Collapse
Affiliation(s)
- Zhang Hui
- Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Neurodegenerative Diseases, Changsha Medical University, Changsha 410219, China
- The Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical University, Changsha 410219, China
| | - Wang Lai-Fa
- Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Neurodegenerative Diseases, Changsha Medical University, Changsha 410219, China
| | - Wang Xue-Qin
- Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Neurodegenerative Diseases, Changsha Medical University, Changsha 410219, China
| | - Deng Ling
- Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Neurodegenerative Diseases, Changsha Medical University, Changsha 410219, China
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha 410219, China
| | - He Bin-Sheng
- Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha Medical University, Changsha 410219, China
- The Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical University, Changsha 410219, China
| | - Jian-Ming Li
- Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Neurodegenerative Diseases, Changsha Medical University, Changsha 410219, China
- The Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical University, Changsha 410219, China
| |
Collapse
|
5
|
Pandey VK, Shafi Z, Tripathi A, Singh G, Singh R, Rustagi S. Production of biodegradable food packaging from mango peel via enzymatic hydrolysis and polyhydroxyalkanoates synthesis: A review on microbial intervention. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 7:100292. [PMID: 39497936 PMCID: PMC11533516 DOI: 10.1016/j.crmicr.2024.100292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024] Open
Abstract
The rising environmental problem of plastic packaging waste has led to the development of sustainable alternatives, particularly for food packaging. Polyhydroxyalkanoates (PHAs) are biodegradable, thermoplastic polyesters. They are employed in the production of various products, including packaging films. The bio-based nature and appropriate features of PHAs, similar to conventional synthetic plastics, have garnered significant attention from researchers and industries. The current study aimed to produce biodegradable food packaging using mango peel (a major agricultural waste) with enzymatic hydrolysis and PHAs synthesis. Mango peel is the hub for macro-and micronutrients, including phytochemicals. The process includes an enzymatic hydrolysis step that converts complex carbohydrates into simple sugars using mango peel as a substrate. The produced sugars are used as raw materials for bacteria to synthesize PHAs, which are a class of biodegradable polymers produced by these microorganisms that can serve as packaging materials in the food industry. To solve environmental problems and increase the utilization of agricultural by-products, this review presents a practical method for producing food packaging that is environmentally friendly.
Collapse
Affiliation(s)
- Vinay Kumar Pandey
- Research & Development Cell, Biotechnology Department, Manav Rachna International Institute of Research and Studies (Deemed to Be University) Faridabad 121004 Haryana, India
| | - Zaryab Shafi
- Department of Biosciences, Integral University, Lucknow-226026, Uttar Pradesh, India
| | - Anjali Tripathi
- School of Health Sciences and Technology, UPES University Dehradun, Dehradun, India
| | - Gurmeet Singh
- Department of chemistry, Guru Nanak College of Pharmaceutical & Paramedical Sciences, Dehradun, Uttarakhand, India
| | - Rahul Singh
- Department of Bioengineering, Integral University, Lucknow, Uttar Pradesh, India
| | - Sarvesh Rustagi
- Department of Food Technology, School of Applied & Life Sciences, Uttaranchal University, Dehradun 248007, Uttarakhand, India
| |
Collapse
|
6
|
Irshad N, Naeem H, Shahbaz M, Imran M, Mujtaba A, Hussain M, Al Abdulmonem W, Alsagaby SA, Yehuala TF, Abdelgawad MA, Ghoneim MM, Mostafa EM, Selim S, Al Jaouni SK. Mangiferin: An effective agent against human malignancies. Food Sci Nutr 2024; 12:7137-7157. [PMID: 39479608 PMCID: PMC11521646 DOI: 10.1002/fsn3.4434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 11/02/2024] Open
Abstract
Mangiferin is a bioactive substance present in high concentration in mangoes and also in some other fruits. Owing to its potential as a chemopreventive and chemotherapeutic agent against several types of cancer, this unique, significant, and well-researched polyphenol has received a lot of attention recently. It possesses the ability to treat cancers, including rectal cancer, prostate cancer, ovarian cancer, leukemia, gastric cancer, liver cancer, chronic pancreatitis, and lung cancer. It can control/regulate multiple key signaling pathways, such as signal transducer and activator of transcription 3 (STAT3), second mitochondria-derived activator of caspases/direct inhibitor of apoptosis (IAP)-binding protein with low propidium iodide (pl) (Smac/DIABLO) nuclear factor kappa B (NF-κB), phosphatidylinositol 3 kinase/protein 3 kinase (PI3K/Akt), transforming growth factor beta/suppressor of mothers against decapentaplegic (TGF-β/SMAD), c-jun N-terminal kinase/p38 mitogen-activated protein kinase (JNK/p38-MAPK), and phosphor-I kappa B kinase (p-IκB), which are crucial to the development of cancers. By triggering apoptotic signals and halting the advancement of the cell cycle, it can also prevent some cancer cell types from proliferating and developing. It has been revealed that mangiferin targets a variety of adhesion molecules, cytokines, pro-inflammatory transcription factors, kinases, chemokines, growth factors, and cell-cycle proteins. By means of preventing the onset, advancement, and metastasis of cancer, these targets may mediate the chemopreventive and therapeutic effects of mangiferin. Mangiferin has confirmed potential benefits in lung, cervical, breast, brain, and prostate cancers as well as leukemia whether administered alone or in combination with recognized anticancer compounds. More clinical trials and research investigations are required to completely unleash the potential of mangiferin, which may lower the risk of cancer onset and act as a preventive and therapeutic alternative for a number of cancers.
Collapse
Affiliation(s)
- Nimra Irshad
- Department of Food Science and TechnologyMuhammad Nawaz Shareef University of Agriculture, MultanMultanPakistan
| | - Hammad Naeem
- Department of Food Science and TechnologyMuhammad Nawaz Shareef University of Agriculture, MultanMultanPakistan
- Post‐Harvest Research CentreAyub Agricultural Research Institute, FaisalabadFaisalabadPakistan
| | - Muhammad Shahbaz
- Department of Food Science and TechnologyMuhammad Nawaz Shareef University of Agriculture, MultanMultanPakistan
| | - Muhammad Imran
- Department of Food Science and TechnologyUniversity of NarowalNarowalPakistan
| | - Ahmed Mujtaba
- Department of Food Sciences and Technology, Faculty of Engineering Sciences and TechnologyHamdard University Islamabad CampusIslamabadPakistan
| | - Muzzamal Hussain
- Department of Food SciencesGovernment College University FaisalabadFaisalabadPakistan
| | - Waleed Al Abdulmonem
- Department of Pathology, College of MedicineQassim UniversityBuraidahSaudi Arabia
| | - Suliman A. Alsagaby
- Department of Medical Laboratory Sciences, College of Applied Medical SciencesMajmaah UniversityAL‐MajmaahSaudi Arabia
| | - Tadesse Fenta Yehuala
- Faculty of Chemical and Food Engineering, Bahir Dar Institute of TechnologyBahir Dar UniversityBahir darEthiopia
| | - Mohamed A. Abdelgawad
- Department of Pharmaceutical Chemistry, College of PharmacyJouf UniversitySakakaAljoufSaudi Arabia
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of PharmacyAlMaarefa UniversityAd DiriyahRiyadhSaudi Arabia
| | - Ehab M. Mostafa
- Department of Pharmacognosy, College of PharmacyJouf UniversitySakakaSaudi Arabia
- Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy (Boys)Al‐Azhar UniversityCairoEgypt
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical SciencesJouf UniversitySakakaSaudi Arabia
| | - Soad K. Al Jaouni
- Department of Hematology/Oncology, Yousef Abdulatif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of MedicineKing Abdulaziz UniversityJeddahSaudi Arabia
| |
Collapse
|
7
|
Popa A, Usatiuc LO, Scurtu IC, Murariu R, Cofaru A, Pop R, Tabaran FA, Gherman LM, Valean D, Bolundut AC, Orzan RI, Muresan XM, Morohoschi AG, Andrei S, Lazea C, Agoston-Coldea L. Assessing the Anti-Inflammatory and Antioxidant Activity of Mangiferin in Murine Model for Myocarditis: Perspectives and Challenges. Int J Mol Sci 2024; 25:9970. [PMID: 39337458 PMCID: PMC11432486 DOI: 10.3390/ijms25189970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/12/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
Myocarditis is a major cause of heart failure and death, particularly in young individuals. Current treatments are mainly symptomatic, but emerging therapies focus on targeting inflammation and fibrosis pathways. Natural bioactive compounds like flavonoids and phenolic acids show promising anti-inflammatory and antioxidant properties. Corticosteroids are frequently employed in the treatment of autoimmune myocarditis and appear to lower mortality rates compared to conventional therapies for heart failure. This study aims to explore the effects of Mangiferin on pro-inflammatory cytokine levels, nitro-oxidative stress markers, histopathological alterations, and cardiac function in experimental myosin-induced autoimmune myocarditis. The effects were compared to Prednisone, used as a reference anti-inflammatory compound, and Trolox, used as a reference antioxidant. The study involved 30 male Wistar-Bratislava rats, which were randomly divided into five groups: a negative control group (C-), a positive control group with induced myocarditis using a porcine myosin solution (C+), three groups with induced myocarditis receiving Mangiferin (M), Prednisone (P), or Trolox (T) as treatment. Cardiac function was evaluated using echocardiography. Biochemical measurements of nitro-oxidative stress and inflammatory markers were conducted. Finally, histopathological changes were assessed. At echocardiography, the evaluation of the untreated myocarditis group showed a trend toward decreased left ventricular ejection fraction (LVEF) but was not statistically significant, while all treated groups showed some improvement in LVEF and left ventricular fraction shortening (LVFS). Significant changes were seen in the Mangiferin group, with lower end-diastolic left ventricular posterior wall (LVPWd) by day 21 compared to the Trolox group (p < 0.001). In the first week of the experiment, levels of interleukins (IL)-1β, IL-6, and tumour necrosis factor (TNF)-α were significantly higher in the myosin group compared to the negative control group (p < 0.001, p < 0.001, p < 0.01), indicating the progression of inflammation in this group. Treatment with Mangiferin, Prednisone, and Trolox caused a significant reduction in IL-1β compared to the positive control group (p < 0.001). Notably, Mangiferin resulted in a superior reduction in IL-1β compared to Prednisone (p < 0.05) and Trolox (p < 0.05). Furthermore, Mangiferin treatment led to a statistically significant increase in total oxidative capacity (TAC) (p < 0.001) and a significant reduction in nitric oxide (NOx) levels (p < 0.001) compared to the negative control group. Furthermore, when compared to the Prednisone-treated group, Mangiferin significantly reduced NOx levels (p < 0.001) and increased TAC levels (p < 0.001). Mangiferin treatment significantly lowered creatine kinase (CK) and aspartate aminotransferase (AST) levels on day 7 (p < 0.001 and p < 0.01, respectively) and reduced CK levels on day 21 (p < 0.01) compared to the untreated group. In the nontreated group, the histological findings at the end of the experiment were consistent with myocarditis. In the group treated with Mangiferin, only one case exhibited mild inflammatory infiltrates, represented by mononucleated leukocytes admixed with few neutrophils, with the severity graded as mild. Statistically significant correlations between the grades (0 vs. 1-2) and the study groups have been highlighted (p < 0.005). This study demonstrated Mangiferin's cardioprotective effects in autoimmune myocarditis, showing reduced oxidative stress and inflammation. Mangiferin appears promising as a treatment for acute myocarditis, but further research is needed to compare its efficacy with other treatments like Trolox and Prednisone.
Collapse
Affiliation(s)
- Alexandra Popa
- Department of Internal Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
- Department of Pediatrics, Iuliu Hatieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| | - Lia-Oxana Usatiuc
- Department of Pediatrics, Iuliu Hatieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
- Department of Pathophysiology, Iuliu Hatieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| | - Iuliu Calin Scurtu
- Department of Small Animal Internal Medicine, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Raluca Murariu
- Department of Small Animal Internal Medicine, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Alexandra Cofaru
- Department of Small Animal Internal Medicine, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Romelia Pop
- Department of Anatomic Pathology, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Flaviu Alexandru Tabaran
- Department of Anatomic Pathology, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Luciana Madalina Gherman
- Experimental Center, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Dan Valean
- Regional Institute of Gastroenterology and Hepatology “O. Fodor”, 400162 Cluj-Napoca, Romania
| | | | - Rares Ilie Orzan
- Department of Internal Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| | - Ximena Maria Muresan
- Department of Translational Medicine, Institute of Medical Research and Life Sciences—MEDFUTURE, Iuliu Hatieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Andreea Georgiana Morohoschi
- Department of Biochemistry, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Sanda Andrei
- Department of Biochemistry, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Cecilia Lazea
- Department of Pediatrics, Iuliu Hatieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| | - Lucia Agoston-Coldea
- Department of Internal Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| |
Collapse
|
8
|
Castro-Muñoz R, Cabezas R, Plata-Gryl M. Mangiferin: A comprehensive review on its extraction, purification and uses in food systems. Adv Colloid Interface Sci 2024; 329:103188. [PMID: 38761602 DOI: 10.1016/j.cis.2024.103188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/07/2024] [Accepted: 05/14/2024] [Indexed: 05/20/2024]
Abstract
With the target of fabricating healthier products, food manufacturing companies look for natural-based nutraceuticals that can potentially improve the physicochemical properties of food systems while being nutritive to the consumer and providing additional health benefits (biological activities). In this regard, Mangiferin joins all these requirements as a potential nutraceutical, which is typically contained in Mangifera indica products and its by-products. Unfortunately, knowing the complex chemical composition of Mango and its by-products, the extraction and purification of Mangiferin remains a challenge. Therefore, this comprehensive review revises the main strategies proposed by scientists for the extraction and purification of Mangiferin. Importantly, this review identifies that there is no report reviewing and criticizing the literature in this field so far. Our attention has been targeted on the timely findings on the primary extraction techniques and the relevant insights into isolation and purification. Our discussion has emphasized the advantages and limitations of the proposed strategies, including solvents, extracting conditions and key interactions with the target xanthone. Additionally, we report the current research gaps in the field after analyzing the literature, as well as some examples of functional food products containing Mangiferin.
Collapse
Affiliation(s)
- Roberto Castro-Muñoz
- Gdansk University of Technology, Faculty of Civil and Environmental Engineering, Department of Sanitary Engineering, 80 - 233 Gdansk, G. Narutowicza St. 11/12, Poland.
| | - René Cabezas
- Departamento de Química Ambiental, Facultad de Ciencias, Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - Maksymilian Plata-Gryl
- Gdansk University of Technology, Faculty of Civil and Environmental Engineering, Department of Sanitary Engineering, 80 - 233 Gdansk, G. Narutowicza St. 11/12, Poland
| |
Collapse
|
9
|
Lu C, Deng S, Liu Y, Yang S, Qin D, Zhang L, Wang RR, Zhang Y. Inhibition of macrophage MAPK/NF-κB pathway and Th2 axis by mangiferin ameliorates MC903-induced atopic dermatitis. Int Immunopharmacol 2024; 133:112038. [PMID: 38621336 DOI: 10.1016/j.intimp.2024.112038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/05/2024] [Accepted: 04/05/2024] [Indexed: 04/17/2024]
Abstract
Available online Atopic dermatitis (AD) is a chronic, persistent inflammatory skin disease characterized by eczema-like lesions and itching. Although topical steroids have been reported for treating AD, they are associated with adverse effects. Thus, safer medications are needed for those who cannot tolerate these agents for long periods. Mangiferin (MAN) is a flavonoid widely found in many herbs, with significant anti-inflammatory and immunomodulatory activities. However, the potential modulatory effects and mechanisms of MAN in treating Th2 inflammation in AD are unknown. In the present study, we reported that MAN could reduce inflammatory cell infiltration and scratching at the lesion site by decreasing MC903-induced levels of Th2-type cytokines, Histamine, thymic stromal lymphopoietin, Leukotriene B4, and immunoglobulin E. The mechanism may be related to reductions in MAPK and NF-κB-associated protein phosphorylation by macrophages. The results suggested that MAN may be a promising therapeutic agent for AD.
Collapse
Affiliation(s)
- Cheng Lu
- School of Chinese Materia Medica,Yunnan University of Chinese Medicine, Kunming 650500, China
| | - ShiJun Deng
- School of Chinese Materia Medica,Yunnan University of Chinese Medicine, Kunming 650500, China
| | - YanJiao Liu
- School of Chinese Materia Medica,Yunnan University of Chinese Medicine, Kunming 650500, China
| | - ShengJin Yang
- School of Chinese Materia Medica,Yunnan University of Chinese Medicine, Kunming 650500, China
| | - DingMei Qin
- School of Chinese Materia Medica,Yunnan University of Chinese Medicine, Kunming 650500, China
| | - LiJuan Zhang
- School of Basic Medical, Yunnan University of Chinese Medicine, Kunming, China
| | - Rui-Rui Wang
- School of Chinese Materia Medica,Yunnan University of Chinese Medicine, Kunming 650500, China.
| | - Yi Zhang
- School of Chinese Materia Medica,Yunnan University of Chinese Medicine, Kunming 650500, China.
| |
Collapse
|
10
|
Park C, Cha HJ, Hwangbo H, Bang E, Kim HS, Yun SJ, Moon SK, Kim WJ, Kim GY, Lee SO, Shim JH, Choi YH. Activation of Heme Oxygenase-1 by Mangiferin in Human Retinal Pigment Epithelial Cells Contributes to Blocking Oxidative Damage. Biomol Ther (Seoul) 2024; 32:329-340. [PMID: 38586992 PMCID: PMC11063488 DOI: 10.4062/biomolther.2023.175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/04/2023] [Accepted: 11/07/2023] [Indexed: 04/09/2024] Open
Abstract
Mangiferin is a kind of natural xanthone glycosides and is known to have various pharmacological activities. However, since the beneficial efficacy of this compound has not been reported in retinal pigment epithelial (RPE) cells, this study aimed to evaluate whether mangiferin could protect human RPE ARPE-19 cells from oxidative injury mimicked by hydrogen peroxide (H2O2). The results showed that mangiferin attenuated H2O2-induced cell viability reduction and DNA damage, while inhibiting reactive oxygen species (ROS) production and preserving diminished glutathione (GSH). Mangiferin also antagonized H2O2-induced inhibition of the expression and activity of antioxidant enzymes such as manganese superoxide dismutase and GSH peroxidase, which was associated with inhibition of mitochondrial ROS production. In addition, mangiferin protected ARPE-19 cells from H2O2-induced apoptosis by increasing the Bcl-2/Bax ratio, decreasing caspase-3 activation, and blocking poly(ADP-ribose) polymerase cleavage. Moreover, mangiferin suppressed the release of cytochrome c into the cytosol, which was achieved by interfering with mitochondrial membrane disruption. Furthermore, mangiferin increased the expression and activity of heme oxygenase-1 (HO-1) and nuclear factor-erythroid-2 related factor 2 (Nrf2). However, the inhibition of ROS production, cytoprotective and anti-apoptotic effects of mangiferin were significantly attenuated by the HO-1 inhibitor, indicating that mangiferin promoted Nrf2-mediated HO-1 activity to prevent ARPE-19 cells from oxidative injury. The results of this study suggest that mangiferin, as an Nrf2 activator, has potent ROS scavenging activity and may have the potential to protect oxidative stress-mediated ocular diseases.
Collapse
Affiliation(s)
- Cheol Park
- Division of Basic Sciences, College of Liberal Studies, Dong-eui University, Busan 47340, Republic of Korea
| | - Hee-Jae Cha
- Department of Parasitology and Genetics, Kosin University College of Medicine, Busan 49104, Republic of Korea
| | - Hyun Hwangbo
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Republic of Korea
- Department of Biochemistry, College of Korean Medicine, Dong-eui University, Busan 47227, Republic of Korea
| | - EunJin Bang
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Republic of Korea
- Department of Biochemistry, College of Korean Medicine, Dong-eui University, Busan 47227, Republic of Korea
| | - Heui-Soo Kim
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| | - Seok Joong Yun
- Department of Urology, Chungbuk National University College of Medicine, Cheongju 28644, Republic of Korea
| | - Sung-Kwon Moon
- Department of Food and Nutrition, Chung-Ang University, Ansung 17546, Republic of Korea
| | - Wun-Jae Kim
- Department of Urology, Chungbuk National University College of Medicine, Cheongju 28644, Republic of Korea
- Institute of Urotech, Cheongju 28120, Republic of Korea
| | - Gi-Young Kim
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Republic of Korea
| | - Seung-On Lee
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, College of Pharmacy, Mokpo National University, Muan 58554, Republic of Korea
| | - Jung-Hyun Shim
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, College of Pharmacy, Mokpo National University, Muan 58554, Republic of Korea
- The China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan 450008, China
| | - Yung Hyun Choi
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Republic of Korea
- Department of Biochemistry, College of Korean Medicine, Dong-eui University, Busan 47227, Republic of Korea
| |
Collapse
|
11
|
da Silva Lopes FF, Lúcio FNM, da Rocha MN, de Oliveira VM, Roberto CHA, Marinho MM, Marinho ES, de Morais SM. Structure-based virtual screening of mangiferin derivatives with antidiabetic action: a molecular docking and dynamics study and MPO-based drug-likeness approach. 3 Biotech 2024; 14:135. [PMID: 38665880 PMCID: PMC11039600 DOI: 10.1007/s13205-024-03978-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/16/2024] [Indexed: 04/28/2024] Open
Abstract
Extracts from Mangifera indica leaves and its main component, mangiferin, have proven antidiabetic activity. In this study, mangiferin and its natural derivatives Homomangiferin (HMF), Isomangiferin (IMF), Neomangiferin (NMF), Glucomangiferin (GMF), Mangiferin 6'-gallate (MFG), and Norathyriol (NRT) were compared regarding their action on Diabetes mellitus (DM), employing docking and molecular dynamics (MD) simulations to analyze interactions with the aldose reductase enzyme, the precursor to the conversion of glucose into sorbitol. Notably, HMF showed significant affinity to residues in the active site of the enzyme, including Trp 79, His 110, Trp 111, Phe 122, and Phe 300, with an energy of - 7.2 kcal/mol, observed in the molecular docking simulations. MD reinforced the formation of stable complexes for HMF and MFG with the aldose reductase, with interaction potential energies (IPE) in the order of - 300.812 ± 52 kJ/mol and - 304.812 ± 52 kJ/mol, respectively. The drug-likeness assessment, by multiparameter optimization (MPO), highlighted that HMF and IMF have similarities with polyphenols and glycosidic flavonoids recently patented as antidiabetics, revealing that high polarity (TPSA > 180 Å2) is a favorable property for subcutaneous administration, especially because of the gradual passive cell permeability values in biological tissues, with Papp values estimated at < 10 × 10-6 cm/s. These compounds are metabolically stable against metabolic enzymes, resulting in a low toxic incidence by metabolic activation, corroborating with a lethal dose (LD50) greater than 2000 mg/kg. In this way, HMF showed a systematic alignment between predicted pharmacokinetics and pharmacodynamics, characterizing it as the most favorable substance for inhibiting aldose reductase. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-03978-9.
Collapse
Affiliation(s)
| | - Francisco Nithael Melo Lúcio
- Doctoral Program in Biotechnology, Northeast Biotechnology Network, State University of Ceará, Fortaleza, CE Brazil
| | - Matheus Nunes da Rocha
- Postgraduate Program in Natural Sciences, State University of Ceará, Fortaleza, CE Brazil
| | | | | | - Márcia Machado Marinho
- Science and Technology Centre, Course of Chemistry, State University Vale do Acaraú, Sobral, CE Brazil
| | - Emmanuel Silva Marinho
- Postgraduate Program in Natural Sciences, State University of Ceará, Fortaleza, CE Brazil
| | - Selene Maia de Morais
- Doctoral Program in Biotechnology, Northeast Biotechnology Network, State University of Ceará, Fortaleza, CE Brazil
- Postgraduate Program in Natural Sciences, State University of Ceará, Fortaleza, CE Brazil
| |
Collapse
|
12
|
Zivković J, Kumar KA, Rushendran R, Ilango K, Fahmy NM, El-Nashar HAS, El-Shazly M, Ezzat SM, Melgar-Lalanne G, Romero-Montero A, Peña-Corona SI, Leyva-Gomez G, Sharifi-Rad J, Calina D. Pharmacological properties of mangiferin: bioavailability, mechanisms of action and clinical perspectives. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:763-781. [PMID: 37658210 DOI: 10.1007/s00210-023-02682-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 08/20/2023] [Indexed: 09/03/2023]
Abstract
This review aims to provide an in-depth analysis of the pharmacological properties of mangiferin, focusing primarily on its bioavailability and mechanisms of action, and its potential therapeutic applications, especially in the context of chronic diseases. We conducted a comprehensive examination of in vitro and in vivo studies, as well as clinical trials involving mangiferin or plant extracts containing mangiferin. The primary source of mangiferin is Mangifera indica, but it's also found in other plant species from the families Anacardiaceae, Gentianaceae, and Iridaceae. Mangiferin has exhibited a myriad of therapeutic properties, presenting itself as a promising candidate for treating various chronic conditions including neurodegenerative disorders, cardiovascular diseases, renal and pulmonary diseases, diabetes, and obesity. Despite the promising results showcased in many in vitro studies and certain animal studies, the application of mangiferin has been limited due to its poor solubility, absorption, and overall bioavailability. Mangiferin offers significant therapeutic potential in treating a spectrum of chronic diseases, as evidenced by both in vitro and clinical trials. However, the challenges concerning its bioavailability necessitate further research, particularly in optimizing its delivery and absorption, to harness its full medicinal potential. This review serves as a comprehensive update on the health-promoting and therapeutic activities of mangiferin.
Collapse
Affiliation(s)
- Jelena Zivković
- Institute for Medicinal Plants Research "Dr. Josif Pančić", Tadeuša Košćuška 1, Belgrade, Serbia.
| | - Kammala Ananth Kumar
- Department of Obstetrics and Gynecology, Division of Basic Sciences and Translational Medicine, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Rapuru Rushendran
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology (SRMIST), Kattankulatur, 603203, Tamil Nadu, India
| | - Kaliappan Ilango
- School of Pharmacy, Hindustan Institute Technology and Science, Padur, Chennai, 603 103, India
| | - Nouran M Fahmy
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, Egypt
- Center of Drug Discovery Research and Development, Ain Shams University, Cairo, Egypt
| | - Heba A S El-Nashar
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, Egypt
- Center of Drug Discovery Research and Development, Ain Shams University, Cairo, Egypt
| | - Mohamed El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, Egypt
- Department of Pharmaceutical Biology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, 11835, Egypt
| | - Shahira M Ezzat
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt
- Pharmacognosy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, 12451, Egypt
| | - Guiomar Melgar-Lalanne
- Instituto de Ciencias Básicas, Universidad Veracruzana, Avda. Castelazo Ayala S/N, 91190, Xalapa, Veracruz, Mexico
| | - Alejandra Romero-Montero
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, 04510, Ciudad de México, Mexico
| | - Sheila I Peña-Corona
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, 04510, Ciudad de México, Mexico
| | - Gerardo Leyva-Gomez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, 04510, Ciudad de México, Mexico
| | | | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania.
| |
Collapse
|
13
|
Sarfraz M, Khan A, Batiha GES, Akhtar MF, Saleem A, Ajiboye BO, Kamal M, Ali A, Alotaibi NM, Aaghaz S, Siddique MI, Imran M. Nanotechnology-Based Drug Delivery Approaches of Mangiferin: Promises, Reality and Challenges in Cancer Chemotherapy. Cancers (Basel) 2023; 15:4194. [PMID: 37627222 PMCID: PMC10453289 DOI: 10.3390/cancers15164194] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/22/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Mangiferin (MGF), a xanthone derived from Mangifera indica L., initially employed as a nutraceutical, is now being explored extensively for its anticancer potential. Scientists across the globe have explored this bioactive for managing a variety of cancers using validated in vitro and in vivo models. The in vitro anticancer potential of this biomolecule on well-established breast cancer cell lines such as MDA-MB-23, BEAS-2B cells and MCF-7 is closer to many approved synthetic anticancer agents. However, the solubility and bioavailability of this xanthone are the main challenges, and its oral bioavailability is reported to be less than 2%, and its aqueous solubility is also 0.111 mg/mL. Nano-drug delivery systems have attempted to deliver the drugs at the desired site at a desired rate in desired amounts. Many researchers have explored various nanotechnology-based approaches to provide effective and safe delivery of mangiferin for cancer therapy. Nanoparticles were used as carriers to encapsulate mangiferin, protecting it from degradation and facilitating its delivery to cancer cells. They have attempted to enhance the bioavailability, safety and efficacy of this very bioactive using drug delivery approaches. The present review focuses on the origin and structure elucidation of mangiferin and its derivatives and the benefits of this bioactive. The review also offers insight into the delivery-related challenges of mangiferin and its applications in nanosized forms against cancer. The use of a relatively new deep-learning approach to solve the pharmacokinetic issues of this bioactive has also been discussed. The review also critically analyzes the future hope for mangiferin as a therapeutic agent for cancer management.
Collapse
Affiliation(s)
- Muhammad Sarfraz
- College of Pharmacy, Al Ain University, Al Ain P.O. Box 64141, United Arab Emirates
| | - Abida Khan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia;
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, AlBeheira, Egypt
| | - Muhammad Furqan Akhtar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University Lahore, Lahore 54000, Pakistan
| | - Ammara Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, GC University Faisalabad, Faisalabad 38000, Pakistan
| | - Basiru Olaitan Ajiboye
- Phytomedicine and Molecular Toxicology Research Laboratory, Department of Biochemistry, Federal University Oye-Ekiti, Oye 371104, Ekiti State, Nigeria;
| | - Mehnaz Kamal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Abuzer Ali
- Department of Pharmacognosy, College of Pharmacy, Taif University, Taif 21944, Saudi Arabia
| | - Nawaf M. Alotaibi
- Department of Clinical Pharmacy, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| | - Shams Aaghaz
- Department of Pharmacy, School of Medical & Allied Sciences, Galgotias University, Greater Noida 203201, India
| | - Muhammad Irfan Siddique
- Department of Pharmaceutics, Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| | - Mohd Imran
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia;
| |
Collapse
|
14
|
Vieira SF, Araújo J, Gonçalves VMF, Fernandes C, Pinto M, Ferreira H, Neves NM, Tiritan ME. Synthesis and Anti-Inflammatory Evaluation of a Library of Chiral Derivatives of Xanthones Conjugated with Proteinogenic Amino Acids. Int J Mol Sci 2023; 24:10357. [PMID: 37373503 DOI: 10.3390/ijms241210357] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
In recent decades, the relationship between drug chirality and biological activity has been assuming enormous importance in medicinal chemistry. Particularly, chiral derivatives of xanthones (CDXs) have interesting biological activities, including enantioselective anti-inflammatory activity. Herein, the synthesis of a library of CDXs is described, by coupling a carboxyxanthone (1) with both enantiomers of proteinogenic amino esters as chiral building blocks (2-31), following the chiral pool strategy. The coupling reactions were performed at room temperature with good yields (from 44 to 99.9%) and very high enantiomeric purity, with most of them presenting an enantiomeric ratio close to 100%. To afford the respective amino acid derivatives (32-61), the ester group of the CDXs was hydrolyzed in mild alkaline conditions. Consequently, in this work, sixty new derivatives of CDXs were synthetized. The cytocompatibility and anti-inflammatory activity in the presence of M1 macrophages were studied for forty-four of the new synthesized CDXs. A significant decrease in the levels of a proinflammatory cytokine targeted in the treatment of several inflammatory diseases, namely interleukin 6 (IL-6), was achieved in the presence of many CDXs. The amino ester of L-tyrosine (X1AELT) was the most effective in reducing IL-6 production (52.2 ± 13.2%) by LPS-stimulated macrophages. Moreover, it was ≈1.2 times better than the D-enantiomer. Indeed, enantioselectivity was observed for the majority of the tested compounds. Thus, their evaluation as promising anti-inflammatory drugs should be considered.
Collapse
Affiliation(s)
- Sara F Vieira
- 3B's Research Group, I3BS-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - Joana Araújo
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia da Universidade do Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Virgínia M F Gonçalves
- TOXRUN-Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, 4585-116 Gandra, Portugal
- UNIPRO-Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), CESPU, CRL, 4585-116 Gandra, Portugal
| | - Carla Fernandes
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia da Universidade do Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Madalena Pinto
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia da Universidade do Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Helena Ferreira
- 3B's Research Group, I3BS-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - Nuno M Neves
- 3B's Research Group, I3BS-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - Maria Elizabeth Tiritan
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia da Universidade do Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
- TOXRUN-Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, 4585-116 Gandra, Portugal
- UNIPRO-Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), CESPU, CRL, 4585-116 Gandra, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| |
Collapse
|