1
|
Chaves T, Török B, Fazekas CL, Correia P, Sipos E, Várkonyi D, Tóth ZE, Dóra F, Dobolyi Á, Zelena D. The Dopaminergic Cells in the Median Raphe Region Regulate Social Behavior in Male Mice. Int J Mol Sci 2024; 25:4315. [PMID: 38673899 PMCID: PMC11050709 DOI: 10.3390/ijms25084315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
According to previous studies, the median raphe region (MRR) is known to contribute significantly to social behavior. Besides serotonin, there have also been reports of a small population of dopaminergic neurons in this region. Dopamine is linked to reward and locomotion, but very little is known about its role in the MRR. To address that, we first confirmed the presence of dopaminergic cells in the MRR of mice (immunohistochemistry, RT-PCR), and then also in humans (RT-PCR) using healthy donor samples to prove translational relevance. Next, we used chemogenetic technology in mice containing the Cre enzyme under the promoter of the dopamine transporter. With the help of an adeno-associated virus, designer receptors exclusively activated by designer drugs (DREADDs) were expressed in the dopaminergic cells of the MRR to manipulate their activity. Four weeks later, we performed an extensive behavioral characterization 30 min after the injection of the artificial ligand (Clozapine-N-Oxide). Stimulation of the dopaminergic cells in the MRR decreased social interest without influencing aggression and with an increase in social discrimination. Additionally, inhibition of the same cells increased the friendly social behavior during social interaction test. No behavioral changes were detected in anxiety, memory or locomotion. All in all, dopaminergic cells were present in both the mouse and human samples from the MRR, and the manipulation of the dopaminergic neurons in the MRR elicited a specific social response.
Collapse
Affiliation(s)
- Tiago Chaves
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (T.C.); (B.T.); (C.L.F.); (P.C.); (D.V.)
- Laboratory of Behavioral and Stress Studies, Institute of Experimental Medicine, H1083 Budapest, Hungary;
- János Szentágothai School of Neurosciences, Semmelweis University, H1085 Budapest, Hungary
| | - Bibiána Török
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (T.C.); (B.T.); (C.L.F.); (P.C.); (D.V.)
- Laboratory of Behavioral and Stress Studies, Institute of Experimental Medicine, H1083 Budapest, Hungary;
- János Szentágothai School of Neurosciences, Semmelweis University, H1085 Budapest, Hungary
| | - Csilla Lea Fazekas
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (T.C.); (B.T.); (C.L.F.); (P.C.); (D.V.)
- Laboratory of Behavioral and Stress Studies, Institute of Experimental Medicine, H1083 Budapest, Hungary;
- János Szentágothai School of Neurosciences, Semmelweis University, H1085 Budapest, Hungary
| | - Pedro Correia
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (T.C.); (B.T.); (C.L.F.); (P.C.); (D.V.)
- Laboratory of Behavioral and Stress Studies, Institute of Experimental Medicine, H1083 Budapest, Hungary;
- János Szentágothai School of Neurosciences, Semmelweis University, H1085 Budapest, Hungary
| | - Eszter Sipos
- Laboratory of Behavioral and Stress Studies, Institute of Experimental Medicine, H1083 Budapest, Hungary;
| | - Dorottya Várkonyi
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (T.C.); (B.T.); (C.L.F.); (P.C.); (D.V.)
- Laboratory of Behavioral and Stress Studies, Institute of Experimental Medicine, H1083 Budapest, Hungary;
| | - Zsuzsanna E. Tóth
- Laboratory of Neuroendocrinology and in Situ Hybridization, Department of Anatomy, Histology and Embryology, Semmelweis University, H1094 Budapest, Hungary;
| | - Fanni Dóra
- Human Brain Tissue Bank, Laboratory of Neuromorphology, Department of Anatomy, Histology and Embryology, Semmelweis University, H1094 Budapest, Hungary;
| | - Árpád Dobolyi
- Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Eötvös Loránd University, H1117 Budapest, Hungary;
| | - Dóra Zelena
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (T.C.); (B.T.); (C.L.F.); (P.C.); (D.V.)
- Laboratory of Behavioral and Stress Studies, Institute of Experimental Medicine, H1083 Budapest, Hungary;
| |
Collapse
|
2
|
Hernandes PM, Batistela MF, Vilela-Costa HH, Sant'Ana AB, Kumpel VD, Tirapelle MC, Bom ADOP, de Andrade TGCS, Zangrossi H. Role of 5-HT 1A receptors in the ventral hippocampus in the regulation of anxiety- and panic-related defensive behaviors in rats. Behav Brain Res 2021; 408:113296. [PMID: 33862061 DOI: 10.1016/j.bbr.2021.113296] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/06/2021] [Accepted: 04/11/2021] [Indexed: 01/04/2023]
Abstract
Changes in 5-HT1A receptor (5-HT1AR)-mediated neurotransmission in the hippocampus have been associated with anxiety, depression and in the mode of action of antidepressant drugs. It has been commonly accepted that whereas the dorsal pole of the hippocampus (DH) is involved in cognitive processing, the ventral pole (VH) is associated with emotional regulation. However, to date, only a few studies have directly addressed the role played by VH 5-HT1ARs in anxiety and panic processing, and their results are conflicting. Here we report that intra-VH administration of the 5-HT1A receptor agonist 8-OH-DPAT, the endogenous agonist serotonin (5-HT), or the standard anxiolytic benzodiazepine midazolam impaired the acquisition of inhibitory avoidance in the elevated T-maze (ETM) of male Wistar rats, indicating an anxiolytic effect. Conversely, local injection of the 5-HT1AR antagonist WAY-100635 caused the opposite effect. These results were equally found in the Vogel conflict test. None of these drugs interfered with locomotor activity in the open-field test, nor did they alter the expression of the escape response in the ETM, a defensive behavior associated with panic. Pre-injection of a sub-effective dose of WAY-100635 in the VH blocked the anxiolytic effect of 5-HT or 8-OH-DPAT in the Vogel test, confirming the involvement of 5-HT1AR for this behavioral effect. The effect in this test was anxiety-selective as none of the drugs affected water consumption or nociception. In conclusion, our results suggest that 5-HT1ARs in the VH play a tonic inhibitory role in anxiety processing. These receptors, however, are not involved in the regulation of panic-related escape behavior.
Collapse
Affiliation(s)
- Paloma Molina Hernandes
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Matheus Fitipaldi Batistela
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Heloísa Helena Vilela-Costa
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Ana Beatriz Sant'Ana
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Vinicíus Dias Kumpel
- Department of Biological Science, São Paulo State University (UNESP), Assis, SP, Brazil
| | | | | | | | - Hélio Zangrossi
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP, Brazil.
| |
Collapse
|
3
|
Affiliation(s)
- Satoshi Ikemoto
- National Institue on Drug Abuse, National Institutes of Health, 251 Bayview Boulevard, Suite 200, Baltimore, MD 21224, USA
| |
Collapse
|
4
|
Sant’Ana AB, Vilela-Costa HH, Vicente MA, Hernandes PM, de Andrade TGCS, Zangrossi H. Role of 5-HT2C receptors of the dorsal hippocampus in the modulation of anxiety- and panic-related defensive responses in rats. Neuropharmacology 2019; 148:311-319. [DOI: 10.1016/j.neuropharm.2019.01.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 01/21/2019] [Accepted: 01/23/2019] [Indexed: 11/26/2022]
|
5
|
Holschbach MA, Vitale EM, Lonstein JS. Serotonin-specific lesions of the dorsal raphe disrupt maternal aggression and caregiving in postpartum rats. Behav Brain Res 2018; 348:53-64. [PMID: 29653128 DOI: 10.1016/j.bbr.2018.04.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 03/28/2018] [Accepted: 04/06/2018] [Indexed: 11/29/2022]
Abstract
The behavioral modifications associated with early motherhood, which include high aggression, caring for the young, and low anxiety, are all affected by acute pharmacological manipulation of serotonin signaling. However, the effects on all these behaviors of permanently disrupting serotonin signaling from one of its primary sources, the dorsal raphe nucleus (DR), have not been examined in detail. To address this, serotonin-specific lesions centered on the dorsomedial DR (DRdm; DR subregion strongly implicated in emotional behaviors) were induced at mid-pregnancy (day 15) or early postpartum (day 2) in rats using a saporin-conjugated neurotoxin targeting the serotonin transporter (Anti-SERT-SAP). Prepartum or postpartum Anti-SERT-SAP reduced DRdm serotonin immunoreactivity by ∼40-65%, and postpartum Anti-SERT-SAP also reduced it in the ventromedial and lateral wings of the DR, as well as in the median raphe. Serotonin-immunoreactive fibers were significantly reduced in the anterior hypothalamus, but not medial preoptic area, of lesioned dams. Pre- or postpartum lesions both greatly reduced maternal aggression, but while prepartum lesions did not affect later undisturbed maternal caregiving, the larger postpartum lesions prevented the postpartum decline in kyphotic nursing and reduced pup licking. Serotonin lesions did not affect pup retrieval, but the prepartum lesions temporarily increased maternal hovering over and licking the pups observed immediately after the disruptive retrieval tests. Dams' anxiety-like behaviors and litter weight gains were unaffected by the lesions. These findings suggest that DRdm serotonin projecting to the AH is particularly critical for maternal aggression, but that more widespread disruption of midbrain raphe serotonin is necessary to greatly impair maternal caregiving. Postpartum anxiety may rely more on other neurochemical systems or different midbrain serotonergic cell populations.
Collapse
Affiliation(s)
- M Allie Holschbach
- Neuroscience Program, 108 Giltner Hall, Michigan State University, East Lansing, MI, 48824, USA
| | - Erika M Vitale
- Department of Psychology, 108 Giltner Hall, Michigan State University, East Lansing, MI, 48824, USA
| | - Joseph S Lonstein
- Neuroscience Program, 108 Giltner Hall, Michigan State University, East Lansing, MI, 48824, USA; Department of Psychology, 108 Giltner Hall, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
6
|
Sociability trait and regional cerebral oxidative metabolism in rats: Predominantly nonlinear relations. Behav Brain Res 2018; 337:186-192. [DOI: 10.1016/j.bbr.2017.08.049] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 08/25/2017] [Accepted: 08/28/2017] [Indexed: 12/15/2022]
|
7
|
Andrade TGCSD, Silva JVDS, Batistela MF, Frei F, Sant'Ana AB. Interaction between estradiol and 5-HT 1A receptors in the median raphe nucleus on acquisition of aversive information and association to the context in ovariectomized rats. Neurobiol Stress 2017. [PMID: 28626786 PMCID: PMC5470534 DOI: 10.1016/j.ynstr.2017.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The median raphe nucleus (MRN) is related to stress resistance and defensive responses, a crucial source of serotonergic neurons that project to prosencephalic structures related to stress and anxiety. Estrogen receptors were identified in this mesencephalic structure. It is possible that the estrogen action is related to serotonin effect on somatodendritic 5-HT1A receptors, inhibiting the function of serotonergic neurons and thus preventing of the stress effect and inducing anxiolysis. So, in order to evaluate these aspects, female Wistar rats were ovariectomized and 21 days later were given a direct microinjection of estradiol benzoate (EB) (1200 ng) into the MRN, preceded by microinjections of saline or WAY100.635 (100 ng), a 5-HT1A receptor antagonist. Immediately after the two microinjections, the ovariectomized rats were conditioned with an aversive event (foot shock) session in a Skinner box. Twenty-four hours later, they were exposed to the same context in a test session for 5 min for behavioral assessment: freezing, rearing, locomotion, grooming, and autonomic responses (fecal boluses and micturition). EB microinjection in the MRN prior to the exposure of animals to the foot shocks in the conditioning session did not alter their behavior in this session, but neutralized the association of the aversive experience to the context: there was a decrease in the expression of freezing and an increased rearing activity in the test session. This effect was reversed by prior microinjection of WAY100.635. In conclusion, EB acted on serotonergic neurons in the MRN of the ovariectomized rats, impairing the association of the aversive experience to the context, by co-modulating the functionality of somatodendritic 5-HT1A.
Collapse
Affiliation(s)
| | | | | | - Fernando Frei
- UNESP - Univ Estadual Paulista, FCL, Department of Biological Science, Avenida Dom Antonio, 2100, 19.806-900 Assis, São Paulo, Brazil
| | | |
Collapse
|
8
|
Marcinkiewcz CA, Lowery-Gionta EG, Kash TL. Serotonin's Complex Role in Alcoholism: Implications for Treatment and Future Research. Alcohol Clin Exp Res 2016; 40:1192-201. [PMID: 27161942 DOI: 10.1111/acer.13076] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 03/11/2016] [Indexed: 11/28/2022]
Abstract
Current pharmacological treatments for alcohol dependence have focused on reducing alcohol consumption, but to date there are few treatments that also address the negative affective symptoms during acute and protracted alcohol withdrawal which are often exacerbated in people with comorbid anxiety and depression. Selective serotonin reuptake inhibitors (SSRIs) are sometimes prescribed to ameliorate these symptoms but can exacerbate anxiety and cravings in a select group of patients. In this critical review, we discuss recent literature describing an association between alcohol dependence, the SERT linked polymorphic region (5-HTTLPR), and pharmacological response to SSRIs. Given the heterogeneity in responsiveness to serotonergic drugs across the spectrum of alcoholic subtypes, we assess the contribution of specific 5-HT circuits to discrete endophenotypes of alcohol dependence. 5-HT circuits play a distinctive role in reward, stress, and executive function which may account for the variation in response to serotonergic drugs. New optogenetic and chemogenetic methods for dissecting 5-HT circuits in alcohol dependence may provide clues leading to more effective pharmacotherapies. Although our current understanding of the role of 5-HT systems in alcohol dependence is incomplete, there is some evidence to suggest that 5-HT3 receptor antagonists are effective in people with the L/L genotype of the 5-HTTLPR polymorphism while SSRIs may be more beneficial to people with the S/L or S/S genotype. Studies that assess the impact of serotonin transporter polymorphisms on 5-HT circuit function and the subsequent development of alcohol use disorders will be an important step forward in treating alcohol dependence.
Collapse
Affiliation(s)
- Catherine A Marcinkiewcz
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Emily G Lowery-Gionta
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Thomas L Kash
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
9
|
Cellular architecture and transmitter phenotypes of neurons of the mouse median raphe region. Brain Struct Funct 2016; 222:287-299. [PMID: 27044051 PMCID: PMC5225166 DOI: 10.1007/s00429-016-1217-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 03/16/2016] [Indexed: 01/25/2023]
Abstract
The median raphe region (MRR, which consist of MR and paramedian raphe regions) plays a crucial role in regulating cortical as well as subcortical network activity and behavior, while its malfunctioning may lead to disorders, such as schizophrenia, major depression, or anxiety. Mouse MRR neurons are classically identified on the basis of their serotonin (5-HT), vesicular glutamate transporter type 3 (VGLUT3), and gamma-aminobutyric acid (GABA) contents; however, the exact cellular composition of MRR regarding transmitter phenotypes is still unknown. Using an unbiased stereological method, we found that in the MR, 8.5 % of the neurons were 5-HT, 26 % were VGLUT3, and 12.8 % were 5-HT and VGLUT3 positive; whereas 37.2 % of the neurons were GABAergic, and 14.4 % were triple negative. In the whole MRR, 2.1 % of the neurons were 5-HT, 7 % were VGLUT3, and 3.6 % were 5-HT and VGLUT3 positive; whereas 61 % of the neurons were GABAergic. Surprisingly, 25.4 % of the neurons were triple negative and were only positive for the neuronal marker NeuN. PET-1/ePET-Cre transgenic mouse lines are widely used to specifically manipulate only 5-HT containing neurons. Interestingly, however, using the ePET-Cre transgenic mice, we found that far more VGLUT3 positive cells expressed ePET than 5-HT positive cells, and about 38 % of the ePET cells contained only VGLUT3, while more than 30 % of 5-HT cells were ePET negative. These data should facilitate the reinterpretation of PET-1/ePET related data in the literature and the identification of the functional role of a putatively new type of triple-negative neuron in the MRR.
Collapse
|
10
|
Noguerón-Merino MC, Jiménez-Ferrer E, Román-Ramos R, Zamilpa A, Tortoriello J, Herrera-Ruiz M. Interactions of a standardized flavonoid fraction from Tilia americana with Serotoninergic drugs in elevated plus maze. JOURNAL OF ETHNOPHARMACOLOGY 2015; 164:319-327. [PMID: 25656001 DOI: 10.1016/j.jep.2015.01.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 01/20/2015] [Accepted: 01/21/2015] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tilia americana var. mexicana (Schltdl) Hardin (Tiliaceae) aerial parts (bracts and flowers) are used in the traditional Mexican medicine to treat nervous disorders, as sedative and to treat insomnia. A fraction of this species called FC1 (organic fraction from this plant) was proposed, described as anxiolytic and characterized by the presence of flavonoids. In the present work, this fraction was standardized, and its interaction with different serotonergic drugs was tested. We used the elevated plus maze model as anxiety test and the open field test so as to observe a possible effect on mice׳s motor behavior. MATERIAL AND METHODOLOGY HPLC technique was used to quantify the flavonoids contained in a fraction called F1C. Different doses of F1C were administered to ICR mice (12.5, 25, 37.5 and 50mg/kg, oral pathway) then they were exposed to elevated plus maze or open field test. After, each dose of F1C fraction was co-administered with different drugs, in order to evaluate the animal׳s behavior: DOI agonist (2.0mg/kg) and KET antagonist (0.03mg/kg) of 5-HT2A receptors; 8-OH-DPAT (0.1mg/kg) selective agonist and WAY100635 (0.5mg/kg) antagonist of 5HT1 receptors. RESULTS The HPLC quantitative analysis revealed the F1C composition (mg/g of extract): tiliroside (28.56), glucoside of quercetin (16.25), quercitrin (7.96), rutin (3.93), Kaempferol (2.83). The Emax for F1C curve was 80.6% for time to open arms with an ED50 of 15.09 mg/kg. The combination of F1C with DOI gives a significant increase of the F1C anxiolytic effect (Emax=111% and ED50=13.51 mg/kg), while KET blocks it completely (Emax=12.25% and ED50=2.4 mg/kg). The administration of F1C with 8-OH-DPAT does not generate significant changes on the time to open arms, although it does induce a decrement in F1C potency (Emax=83.3% and ED50=33.3mg/kg). When F1C and WAY-100365 are combined, the anxiolytic activity of the fraction decreases (Emax=33.3% and ED50=102.10mg/kg). CONCLUSIONS The medicinal use attributed to Tilia americana for their effect on central nervous system, could be in part in the flavonoid fraction (F1C) with anxiolytic activity which is dose dependent, and has the ability to interact with the serotonergic system. It is necessary to advance in the study of the mechanism of action, using other techniques such in vitro analysis.
Collapse
Affiliation(s)
- M C Noguerón-Merino
- Centro de Investigación Biomédica del Sur (CIBIS), Instituto Mexicano del Seguro Social (IMSS), Argentina No. 1, Col. Centro, C.P. 62790 Xochitepec, Morelos, Mexico; Programa de Doctorado de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco No. 186, Col. Vicentina C.P. 09340, Iztapalapa, México D.F., Mexico; Departamento de Farmacología, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco No. 186, Col. Vicentina C.P. 09340, Iztapalapa, México D.F., Mexico.
| | - E Jiménez-Ferrer
- Centro de Investigación Biomédica del Sur (CIBIS), Instituto Mexicano del Seguro Social (IMSS), Argentina No. 1, Col. Centro, C.P. 62790 Xochitepec, Morelos, Mexico.
| | - R Román-Ramos
- Departamento de Farmacología, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco No. 186, Col. Vicentina C.P. 09340, Iztapalapa, México D.F., Mexico.
| | - A Zamilpa
- Centro de Investigación Biomédica del Sur (CIBIS), Instituto Mexicano del Seguro Social (IMSS), Argentina No. 1, Col. Centro, C.P. 62790 Xochitepec, Morelos, Mexico.
| | - J Tortoriello
- Centro de Investigación Biomédica del Sur (CIBIS), Instituto Mexicano del Seguro Social (IMSS), Argentina No. 1, Col. Centro, C.P. 62790 Xochitepec, Morelos, Mexico.
| | - M Herrera-Ruiz
- Centro de Investigación Biomédica del Sur (CIBIS), Instituto Mexicano del Seguro Social (IMSS), Argentina No. 1, Col. Centro, C.P. 62790 Xochitepec, Morelos, Mexico.
| |
Collapse
|
11
|
Serotonin in anxiety and panic: Contributions of the elevated T-maze. Neurosci Biobehav Rev 2014; 46 Pt 3:397-406. [DOI: 10.1016/j.neubiorev.2014.03.007] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 02/05/2014] [Accepted: 03/03/2014] [Indexed: 11/21/2022]
|
12
|
Liu B, Feng J, Wang JH. Protein kinase C is essential for kainate-induced anxiety-related behavior and glutamatergic synapse upregulation in prelimbic cortex. CNS Neurosci Ther 2014; 20:982-90. [PMID: 25180671 DOI: 10.1111/cns.12313] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 07/21/2014] [Accepted: 07/21/2014] [Indexed: 12/24/2022] Open
Abstract
AIM Anxiety is one of common mood disorders, in which the deficit of serotonergic and GABAergic synaptic functions in the amygdala and prefrontal cortex is believed to be involved. The pathological changes at the glutamatergic synapses and neurons in these brain regions as well as their underlying mechanisms remain elusive, which we aim to investigate. METHODS An agonist of kainate-type glutamate receptors, kainic acid, was applied to induce anxiety-related behaviors. The morphology and functions of glutamatergic synapses in the prelimbic region of mouse prefrontal cortex were analyzed using cellular imaging and electrophysiology. RESULTS After kainate-induced anxiety is onset, the signal transmission at the glutamatergic synapses is upregulated, and the dendritic spine heads are enlarged. In terms of the molecular mechanisms, the upregulated synaptic plasticity is associated with the expression of more protein kinase C (PKC) in the dendritic spines. Chelerythrine, a PKC inhibitor, reverses kainate-induced anxiety and anxiety-related glutamatergic synapse upregulation. CONCLUSION The activation of glutamatergic kainate-type receptors leads to anxiety-related behaviors and glutamatergic synapse upregulation through protein kinase C in the prelimbic region of the mouse prefrontal cortex.
Collapse
Affiliation(s)
- Bei Liu
- College of Life Science, University of Science and Technology of China, Hefei, China; State Key Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | | | | |
Collapse
|
13
|
Harro J, Kanarik M, Kaart T, Matrov D, Kõiv K, Mällo T, Del Río J, Tordera RM, Ramirez MJ. Revealing the cerebral regions and networks mediating vulnerability to depression: oxidative metabolism mapping of rat brain. Behav Brain Res 2014; 267:83-94. [PMID: 24662150 DOI: 10.1016/j.bbr.2014.03.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Revised: 03/09/2014] [Accepted: 03/13/2014] [Indexed: 01/13/2023]
Abstract
The large variety of available animal models has revealed much on the neurobiology of depression, but each model appears as specific to a significant extent, and distinction between stress response, pathogenesis of depression and underlying vulnerability is difficult to make. Evidence from epidemiological studies suggests that depression occurs in biologically predisposed subjects under impact of adverse life events. We applied the diathesis-stress concept to reveal brain regions and functional networks that mediate vulnerability to depression and response to chronic stress by collapsing data on cerebral long term neuronal activity as measured by cytochrome c oxidase histochemistry in distinct animal models. Rats were rendered vulnerable to depression either by partial serotonergic lesion or by maternal deprivation, or selected for a vulnerable phenotype (low positive affect, low novelty-related activity or high hedonic response). Environmental adversity was brought about by applying chronic variable stress or chronic social defeat. Several brain regions, most significantly median raphe, habenula, retrosplenial cortex and reticular thalamus, were universally implicated in long-term metabolic stress response, vulnerability to depression, or both. Vulnerability was associated with higher oxidative metabolism levels as compared to resilience to chronic stress. Chronic stress, in contrast, had three distinct patterns of effect on oxidative metabolism in vulnerable vs. resilient animals. In general, associations between regional activities in several brain circuits were strongest in vulnerable animals, and chronic stress disrupted this interrelatedness. These findings highlight networks that underlie resilience to stress, and the distinct response to stress that occurs in vulnerable subjects.
Collapse
Affiliation(s)
- Jaanus Harro
- Department of Psychology, Estonian Centre of Behavioural and Health Sciences, University of Tartu, Ravila 14A, 50411 Tartu, Estonia.
| | - Margus Kanarik
- Department of Psychology, Estonian Centre of Behavioural and Health Sciences, University of Tartu, Ravila 14A, 50411 Tartu, Estonia
| | - Tanel Kaart
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51014 Tartu, Estonia
| | - Denis Matrov
- Department of Psychology, Estonian Centre of Behavioural and Health Sciences, University of Tartu, Ravila 14A, 50411 Tartu, Estonia
| | - Kadri Kõiv
- Department of Psychology, Estonian Centre of Behavioural and Health Sciences, University of Tartu, Ravila 14A, 50411 Tartu, Estonia
| | - Tanel Mällo
- Department of Psychology, Estonian Centre of Behavioural and Health Sciences, University of Tartu, Ravila 14A, 50411 Tartu, Estonia
| | - Joaquin Del Río
- Department of Pharmacology, School of Medicine, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain
| | - Rosa M Tordera
- Department of Pharmacology, School of Medicine, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain
| | - Maria J Ramirez
- Department of Pharmacology, School of Medicine, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain
| |
Collapse
|
14
|
Almeida PVG, Trovo MC, Tokumoto AM, Pereira AC, Padovan CM. Role of serotonin 1A receptors in the median raphe nucleus on the behavioral consequences of forced swim stress. J Psychopharmacol 2013; 27:1134-40. [PMID: 24162801 DOI: 10.1177/0269881113508829] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Despite the intense research on the neurobiology of stress, the role of serotonin (5-HT)1A receptors still remains to be elucidated. In the hippocampus, post-synaptic 5-HT1A receptors activation induces anxiolytic effects in animals previously exposed to stressful situations. However, little is known about somatodendritic 5-HT1A receptors in the median raphe nucleus (MRN). Therefore, the aim of this study was to investigate the role of 5-HT1A receptors located in the MRN in rats exposed to forced swim stress. After recovering from surgery, rats were forced to swim for 15 min in a cylinder. Intra-MRN injections of saline, 8-OH-DPAT (3 nmol/0.2 µL) and/or WAY-100635 (0.3 nmol/0.2 µL) were performed immediately before or after pre-exposure or 24 h later (immediately before test). Non-stressed rats received the same treatment 24 h or 10 min before test. Our data showed that 8-OH-DPAT increased latency to display immobility while decreasing time spent immobile in almost all experimental conditions. These effects were not prevented by previous treatment with WAY-100635. No effects of different treatments were described in non-stressed animals. Taken together, our data suggest that in addition to activation of 5-HT1A, 5-HT7 receptors may also be involved in the behavioural consequences of exposure to swim stress.
Collapse
Affiliation(s)
- P V G Almeida
- 1Departamento de Psicologia da Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brasil
| | | | | | | | | |
Collapse
|
15
|
Abstract
Although the role of the median raphe nucleus (MRN) in the regulation of anxiety has received less attention than that of the dorsal raphe nucleus (DRN) there is substantial evidence supporting this function. Reported results with different animal models of anxiety in rats show that whereas inactivation of serotonergic neurons in the MRN causes anxiolysis, the stimulation of the same neurons is anxiogenic. In particular, studies using the elevated T-maze comparing serotonergic interventions in the MRN and in the DRN indicate that the former affect only the inhibitory avoidance task, which has been related to generalized anxiety. In contrast, similar operations in the DRN change both the inhibitory avoidance and the one-way escape task, the latter being representative of panic disorder. Simultaneous injections of 5-HT-acting drugs in the MRN and in the dorsal hippocampus (DH) suggest that the MRN-DH pathway mediates the regulatory function of the MRN in anxiety. Overall, the results discussed in this review point to a relevant role of the MRN in the regulation of anxiety, but not panic, through the 5-HT pathway that innervates the DH.
Collapse
Affiliation(s)
- Telma Gcs Andrade
- 1Department of Biological Science, São Paulo State University-UNESP, Assis, Brazil
| | | | | |
Collapse
|
16
|
|
17
|
Neurocircuitry of drug reward. Neuropharmacology 2013; 76 Pt B:329-41. [PMID: 23664810 DOI: 10.1016/j.neuropharm.2013.04.031] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 04/06/2013] [Accepted: 04/16/2013] [Indexed: 11/23/2022]
Abstract
In recent years, neuroscientists have produced profound conceptual and mechanistic advances on the neurocircuitry of reward and substance use disorders. Here, we will provide a brief review of intracranial drug self-administration and optogenetic self-stimulation studies that identified brain regions and neurotransmitter systems involved in drug- and reward-related behaviors. Also discussed is a theoretical framework that helps to understand the functional properties of the circuitry involved in these behaviors. The circuitry appears to be homeostatically regulated and mediate anticipatory processes that regulate behavioral interaction with the environment in response to salient stimuli. That is, abused drugs or, at least, some may act on basic motivation and mood processes, regulating behavior-environment interaction. Optogenetics and related technologies have begun to uncover detailed circuit mechanisms linking key brain regions in which abused drugs act for rewarding effects. This article is part of a Special Issue entitled 'NIDA 40th Anniversary Issue'.
Collapse
|
18
|
Zhang J, Fan Y, Li Y, Zhu H, Wang L, Zhu MY. Chronic social defeat up-regulates expression of the serotonin transporter in rat dorsal raphe nucleus and projection regions in a glucocorticoid-dependent manner. J Neurochem 2012; 123:1054-68. [PMID: 23061525 DOI: 10.1111/jnc.12055] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 09/27/2012] [Accepted: 10/02/2012] [Indexed: 01/10/2023]
Abstract
Chronic stress and dysfunction of the serotonergic system in the brain have been considered two of the major risks for development of depression. In this study, adult Fischer 344 rats were subjected to a regimen of chronic social defeat (CSD). To mimic stressful conditions, some rats were not exposed to CSD, but instead treated with corticosterone (CORT) in oral solution while maintained in their home cage. Protein levels of the serotonin transporter (SERT) in the dorsal raphe nucleus (DRN), hippocampus, frontal cortex, and amygdala were examined by Western blotting or immunofluorescence staining. The results showed that CSD up-regulated SERT protein levels in the DRN, hippocampus, frontal cortex, and amygdala regions. This up-regulation was abolished or prevented by adrenalectomy, or treatment with antagonists of corticosteroid receptors mifepristone and spironolactone, alone or in combination. Similarly, up-regulated SERT protein levels in these brain regions were also observed in rats treated with oral CORT ingestion, which was analogously prevented by treatment with mifepristone and spironolactone. Furthermore, both CSD- and CORT-induced up-regulation of SERT protein levels in the DRN and three brain regions were attenuated by simultaneous treatment with fluoxetine, an antidepressant that specifically inhibits serotonin reuptake. The results indicate that up-regulation in SERT protein levels in the DRN and forebrain limbic structures caused by CSD regimen was mainly motivated by CORT through corticosteroid receptors. The present findings demonstrate that chronic stress is closely correlated with the serotonergic system by acting on the regulation of the SERT expression in the DRN and its projection regions, which may contribute to the development of depression.
Collapse
Affiliation(s)
- Jia Zhang
- Departments of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee 37604, USA
| | | | | | | | | | | |
Collapse
|
19
|
The anxiogenic-like effects of dehydration in a semi-desert rodent Meriones shawi indicating the possible involvement of the serotoninergic system. Acta Histochem 2012; 114:603-7. [PMID: 22172710 DOI: 10.1016/j.acthis.2011.11.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 11/08/2011] [Accepted: 11/09/2011] [Indexed: 11/21/2022]
Abstract
Dehydration is a powerful stimulus causing disequilibrium in homeostasis of water and electrolytes resulting from depletion in total body water. Most studies have focused on domestic and laboratory animals; however, the study of desert animals allows improved understanding about water balance and resistance to dehydration and associated behavioral changes, including those related to mood disorders. Meriones shawi (Shaw's Jird) is a desert rodent characterized by its resistance to long periods of thirst that can extend for several months. In the present study, M. shawi were subjected to water deprivation for 1 and 3 months. We used 5-HT immunohistochemistry to evaluate the effects of prolonged dehydration on the serotoninergic system in both dorsal and median raphe nuclei (DRN, MRN), which are the main sources of 5-HT input to several brain areas. In addition, a dark/light box was used to evaluate the anxiolytic-like or anxiogenic-like effects of dehydration on M. shawi. The results showed a reduction in the 5-HT immunolabelling in both DRN and MRN following 1 and 3 months of dehydration. This diminution of serotonin immunoreactivity was accompanied by noticeable changes in anxiety behavior of Meriones, with animals spending more time in the light box, suggesting anxiogenic-like effects caused by dehydration. Overall, the results indicate that dehydration is able to reduce serotoninergic neurotransmission, which might be involved in generating anxiety behavior in this desert animal.
Collapse
|
20
|
Nunes-de-Souza V, Nunes-de-Souza R, Rodgers RJ, Canto-de-Souza A. Blockade of 5-HT2 receptors in the periaqueductal grey matter (PAG) abolishes the anxiolytic-like effect of 5-HT1A receptor antagonism in the median raphe nucleus in mice. Behav Brain Res 2011; 225:547-53. [DOI: 10.1016/j.bbr.2011.07.056] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 07/26/2011] [Accepted: 07/30/2011] [Indexed: 12/26/2022]
|
21
|
Mezzasalma MA, Mathias KDV, Nascimento I, Valença AM, Nardi AE. Imipramine for vestibular dysfunction in panic disorder: a prospective case series. ARQUIVOS DE NEURO-PSIQUIATRIA 2011; 69:196-201. [DOI: 10.1590/s0004-282x2011000200011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Accepted: 10/11/2010] [Indexed: 11/21/2022]
Abstract
OBJECTIVE: The purpose of this study was to evaluate the efficacy and effectiveness of imipramine on the treatment of comorbid chronic dizziness and panic disorder. METHOD: Nine patients with panic disorder and agoraphobia associated with chronic dizziness underwent otoneurological screening and were treated with a 3-months course of imipramine. Anxiety levels were measured with the Hamilton Anxiety Scale (HAM-A), dizziness levels were evaluated using the Dizziness Handicap Inventory (DHI), and panic severity and treatment outcome were assessed with the Clinical Global Impression Scale (CGI). RESULTS: At the baseline 33.3% (n=3) had a bilateral peripheral deficit vestibulopathy, the mean scores for HAM-A were 27.2±10.4, for DHI were 51.7±22.7, and for CGI-S were 4.8±0.9. All patients had a significant reduction in their HAM-A (11.1±5.5, p=0.008), DHI (11.5±8.1, p=0.008) and CGI-I (1.8±0.7, p=0.011) levels after 3-months imipramine treatment (mean=72.2±23.2 mg/day). CONCLUSION: This study found a decrease in anxiety levels and in the impact of dizziness in the patients' quality of life after a 3-months treatment course with imipramine.
Collapse
|
22
|
dos Santos L, de Andrade TGCS, Graeff FG. Social separation and diazepam withdrawal increase anxiety in the elevated plus-maze and serotonin turnover in the median raphe and hippocampus. J Psychopharmacol 2010; 24:725-31. [PMID: 19939879 DOI: 10.1177/0269881109106954] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The present work aimed to evaluate the effects of social separation for 14 days (chronic stress) and of withdrawal from a 14-day treatment with diazepam (acute stress) on the exploratory behaviour of male rats in the elevated plus-maze and on serotonin (5-hydroxytryptamine) turnover in different brain structures. Social separation had an anxiogenic effect, evidenced by fewer entries into, and less time spent on the open arms of the elevated plus-maze. Separation also selectively increased 5-hydroxytryptamine turnover in the hippocampus and median raphe nucleus. Diazepam withdrawal had a similar anxiogenic effect in grouped animals and increased 5-hydroxytryptamine turnover in the same brain structures. Chronic treatment with imipramine during the 14 days of separation prevented the behavioural and neurochemical changes caused by social separation. It is suggested that the increase in anxiety determined by both acute and chronic stress is mediated by the activation of the median raphe nucleus-hippocampal 5-hydroxytryptamine pathway.
Collapse
|
23
|
Sela VR, Hattanda I, Albrecht CM, De Almeida CB, Obici S, Cortez DA, Audi EA. Effect of xanthone from Kielmeyera coriacea stems on serotonergic neurons of the median raphe nucleus. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2010; 17:274-278. [PMID: 19674881 DOI: 10.1016/j.phymed.2009.07.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Revised: 06/02/2009] [Accepted: 07/02/2009] [Indexed: 05/28/2023]
Abstract
Kielmeyera coriacea Mart. (Clusiaceae), known as "Pau Santo", is used to treat several tropical diseases. The hydroethanolic extract (HE) of Kielmeyera coriacea stems and its semi-pure dichloromethane constituent (DCM) produced an anti-immobility effect in rats submitted to the forced swimming test (FST), suggesting a antidepressant-like profile. This study evaluated the effect of intra-median raphe nucleus (MRN) microinjection of 1,3,7-trihydroxy-2-(3-methylbut-2-enyl)-xanthone, present in large quantity in the HE from Kielmeyera coriacea stems, on immobility behaviour in the FST in rats. The effects of xanthone were compared with intra-MRN microinjections of Way100635 (5-HT1A antagonist) or (+) 8-OH-DPAT (5-HT1A agonist). Locomotor activity in the open-field test (OFT) was evaluated as a complementary measure. Xanthone (0.3ng) or Way100635 (2.5microg) reduced, whereas (+) 8-OH-DPAT (5.0microg) increased immobility time in the FST. Way100635 (2.5 or 5.0microg) completely reversed the effects of (+) 8-OHDPAT (5.0microg), and potentiated the anti-immobility effect of the ineffective dose of xanthone (0.2ng) in the FST. The association of effective doses of (+) 8-OH-DPAT (5.0microg) and xanthone (0.3ng) annulled the effect of each compound on immobility time. These results suggest that xanthone acts as an antagonist at 5-HT1A autoreceptors in MRN and increases serotonin (5-HT) availability in projection regions, proving to be a prototype drug that may be useful in mood isorders such as depression, or indeed be a beneficial adjunctive treatment improving the efficacy and/or accelerating the effects of antidepressant drugs in patients with major depression.
Collapse
Affiliation(s)
- V R Sela
- Department of Pharmacy and Pharmacology, State University of Maringá; Av Colombo 5790, 87020-900 Maringá, Paraná, Brazil
| | | | | | | | | | | | | |
Collapse
|
24
|
Dizziness, migrainous vertigo and psychiatric disorders. The Journal of Laryngology & Otology 2009; 124:285-90. [PMID: 19954562 DOI: 10.1017/s0022215109991976] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVES This study sought to establish the prevalence of vestibular disorders, migraine and definite migrainous vertigo in patients with psychiatric disorders who were referred for treatment of dizziness, without a lifetime history of vertigo. STUDY DESIGN Retrospective study. SETTING Out-patients in a university hospital. MATERIALS AND METHODS Fifty-two dizzy patients with panic disorders and agoraphobia, 30 with panic disorders without agoraphobia, and 20 with depressive disorders underwent otoneurological screening with bithermal caloric stimulation. The prevalence of migraine and migrainous vertigo was assessed. The level of dizziness was evaluated using the Dizziness Handicap Inventory. RESULTS Dizzy patients with panic disorders and agoraphobia had a significantly p = 0.05 regarding the prevalence of peripheral vestibular abnormalities in the group of subjects with PD and agoraphobia and in those with depressive disorders. Migraine was equally represented in the three groups, but panic disorder patients had a higher prevalence of migrainous vertigo definite migrainous vertigo. Almost all patients with a peripheral vestibular disorder had a final diagnosis of definite migrainous vertigo according to Neuhauser criteria. These patients had higher Dizziness Handicap Inventory scores. The Dizziness Handicap Inventory total score was higher in the subgroup of patients with panic disorders with agoraphobia also presenting unilateral reduced caloric responses or definite migrainous vertigo, compared with the subgroup of remaining subjects with panic disorders with agoraphobia (p < 0.001). CONCLUSIONS Our data support the hypothesis that, in patients with panic disorders (and especially those with additional agoraphobia), dizziness may be linked to malfunction of the vestibular system. However, the data are not inconsistent with the hypothesis that migrainous vertigo is the most common pathophysiological mechanism for vestibular disorders.
Collapse
|
25
|
Effect of estradiol benzoate microinjection into the median raphe nucleus on contextual conditioning. Behav Brain Res 2009; 204:112-6. [DOI: 10.1016/j.bbr.2009.05.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2009] [Revised: 05/18/2009] [Accepted: 05/22/2009] [Indexed: 11/22/2022]
|
26
|
Verheij MMM, Veenvliet JV, Groot Kormelink T, Steenhof M, Cools AR. Individual differences in the sensitivity to serotonergic drugs: a pharmacobehavioural approach using rats selected on the basis of their response to novelty. Psychopharmacology (Berl) 2009; 205:441-55. [PMID: 19434397 PMCID: PMC2712066 DOI: 10.1007/s00213-009-1552-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2008] [Accepted: 04/22/2009] [Indexed: 11/30/2022]
Abstract
RATIONALE The mechanisms underlying individual differences in the response to serotonergic drugs are poorly understood. Rat studies may contribute to our knowledge of the neuronal substrates that underlie these individual differences. OBJECTIVES A pharmacobehavioural study was performed to assess individual differences in the sensitivity to serotonergic drugs in rats that were selected based on their response to a novel environment. METHODS Low responders (LR) and high responders (HR) to novelty rats were tested on the elevated T-maze following systemic injections of increasing doses of various serotonergic agents. The duration of avoidance of the open arms was scored for five trials. RESULTS The duration of avoidance behaviour was larger in saline-treated LR rats compared to saline-treated HR rats. The 5-HT1A agonist 8-OH-DPAT and the 5-HT2 agonists mCPP and DOI decreased the duration of avoidance behaviour in LR rats, but increased it in HR rats. The 5-HT3 agonist SR57227A and the 5-HT releaser/reuptake inhibitor d-fenfluramine increased the duration of avoidance behaviour in both types of rat. However, higher doses of SR57227A were required to alter avoidance behaviour in HR than in LR rats. The onset of the effects of SR57227A, d-fenfluramine and WAY100635 was faster in LR than in HR rats. The described effects were receptor specific. A model explaining the data is presented. CONCLUSIONS These data demonstrate that LR and HR rats differ in their sensitivity to serotonergic drugs that act at 5-HT3, 5-HT2 and 5-HT1A receptors. The implications of these individual differences for individual-specific treatment of substance abuse are briefly discussed.
Collapse
Affiliation(s)
- Michel M. M. Verheij
- Department of Cognitive Neuroscience (CNS), Division of Psychoneuropharmacology (PNF), Radboud University (RU) Nijmegen Medical Centre, 6525 EZ Nijmegen, P.O. Box 9101, The Netherlands
| | - Jesse V. Veenvliet
- Department of Cognitive Neuroscience (CNS), Division of Psychoneuropharmacology (PNF), Radboud University (RU) Nijmegen Medical Centre, 6525 EZ Nijmegen, P.O. Box 9101, The Netherlands
| | - Tom Groot Kormelink
- Department of Cognitive Neuroscience (CNS), Division of Psychoneuropharmacology (PNF), Radboud University (RU) Nijmegen Medical Centre, 6525 EZ Nijmegen, P.O. Box 9101, The Netherlands
| | - Maaike Steenhof
- Department of Cognitive Neuroscience (CNS), Division of Psychoneuropharmacology (PNF), Radboud University (RU) Nijmegen Medical Centre, 6525 EZ Nijmegen, P.O. Box 9101, The Netherlands
| | - Alexander R. Cools
- Department of Cognitive Neuroscience (CNS), Division of Psychoneuropharmacology (PNF), Radboud University (RU) Nijmegen Medical Centre, 6525 EZ Nijmegen, P.O. Box 9101, The Netherlands
| |
Collapse
|
27
|
Modulation of cholinergic functions by serotonin and possible implications in memory: General data and focus on 5-HT1A receptors of the medial septum. Behav Brain Res 2008; 195:86-97. [DOI: 10.1016/j.bbr.2008.02.037] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2007] [Revised: 02/22/2008] [Accepted: 02/22/2008] [Indexed: 11/19/2022]
|
28
|
Involvement of median raphe nucleus 5-HT1A receptors in the regulation of generalized anxiety-related defensive behaviours in rats. Neurosci Lett 2008; 445:204-8. [DOI: 10.1016/j.neulet.2008.09.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2008] [Revised: 08/13/2008] [Accepted: 09/01/2008] [Indexed: 11/23/2022]
|
29
|
Torrejais JCM, Rosa CCM, Boerngen-Lacerda R, Andreatini R. The elevated T-maze as a measure of two types of defensive reactions: a factor analysis. Brain Res Bull 2008; 76:376-9. [PMID: 18502313 DOI: 10.1016/j.brainresbull.2008.03.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2007] [Revised: 03/13/2008] [Accepted: 03/27/2008] [Indexed: 11/30/2022]
Abstract
Using factor analysis, we investigated whether the defensive reactions seen in the elevated T-maze measure different behaviours. Rats were submitted to the elevated T-maze followed by the open-field test. Avoidance 1 and 2 loaded on the same factor, while escape 2 and 3 loaded on a second factor. Baseline avoidance did not load together with locomotor activity in the open-field. These results indicate that the elevated T-maze generates two different defensive behaviours.
Collapse
Affiliation(s)
- José Carlos Miranda Torrejais
- Laboratório de Fisiologia e Farmacologia do Sistema Nervoso Central, Departamento de Farmacologia, Universidade Federal do Paraná, Curitiba, Brazil
| | | | | | | |
Collapse
|
30
|
Dos Santos L, de Andrade TGCS, Zangrossi Junior H. 5-HT1A receptors in the dorsal hippocampus mediate the anxiogenic effect induced by the stimulation of 5-HT neurons in the median raphe nucleus. Eur Neuropsychopharmacol 2008; 18:286-94. [PMID: 17728111 DOI: 10.1016/j.euroneuro.2007.07.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2007] [Revised: 05/22/2007] [Accepted: 07/18/2007] [Indexed: 12/29/2022]
Abstract
We evaluated the involvement of dorsal hippocampus (DH) 5-HT1A receptors in the mediation of the behavioral effects caused by the pharmacological manipulation of 5-HT neurons in the median raphe nucleus (MRN). To this end, we used the rat elevated T-maze test of anxiety. The results showed that intra-DH injection of the 5-HT1A/7 agonist 8-OH-DPAT facilitated inhibitory avoidance, an anxiogenic effect, without affecting escape. Microinjection of the 5-HT1A antagonist WAY-100635 was ineffective. In the elevated T-maze, inhibitory avoidance and escape have been related to generalized anxiety and panic disorders, respectively. Intra-MRN administration of the excitatory amino acid kainic acid, which non-selectively stimulates 5-HT neurons in this brain area facilitated inhibitory avoidance and impaired escape performance, but also affected locomotion. Intra-MRN injection of WAY-100635, which has a disinhibitory effect on the activity of 5-HT neurons in this midbrain area, only facilitated inhibitory avoidance. Pre-administration of WAY-100635 into the DH blocked the behavioral effect of intra-MRN injection of WAY-100635, but not of kainic acid. These results indicate that DH 5-HT1A receptors mediate the anxiogenic effect induced by the selective stimulation of 5-HT neurons in the MRN.
Collapse
Affiliation(s)
- Lucinéia Dos Santos
- Department of Psychology and Education, FFCLRP, University of São Paulo, 14040-901, Ribeirão Preto-SP, Brazil
| | | | | |
Collapse
|
31
|
Judge SJ, Young RL, Gartside SE. GABA(A) receptor modulation of 5-HT neuronal firing in the median raphe nucleus: implications for the action of anxiolytics. Eur Neuropsychopharmacol 2006; 16:612-9. [PMID: 16531019 DOI: 10.1016/j.euroneuro.2006.01.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2005] [Revised: 01/13/2006] [Accepted: 01/24/2006] [Indexed: 10/24/2022]
Abstract
5-HT neurones in the median raphe nucleus (MRN) are involved in anxiety and the sleep/wake cycle. Here, using in vitro electrophysiology, we examined if the firing of MRN 5-HT neurones is regulated by GABA(A) receptors. The GABA(A) receptor agonists THIP and muscimol caused concentration dependent inhibition of MRN 5-HT neurones. The GABA(A) receptor antagonist bicuculline blocked the responses to THIP and muscimol. Bicuculline alone increased the basal firing activity. Responses to THIP were enhanced by the Z hypnotic zolpidem at concentrations selective for the alpha(2)/alpha(3) subunits of the GABA(A) receptor (0.2 and 1microM) but not at a concentration selective for the alpha(1) subunit (0.02microM). Consistent with these functional data, 5-HT neurones have been shown to express the alpha(3) (but not alpha(2)) subunit. The anxiolytic effects of GABA(A) receptor modulators are reportedly mediated by alpha(3)-containing receptors. Hence the MRN 5-HT system may be a target for anxiolytic drugs.
Collapse
Affiliation(s)
- Sarah J Judge
- Psychobiology Research Group, School of Neurology, Neurobiology and Psychiatry, The Medical School, University of Newcastle upon Tyne, NE2 4HH, UK.
| | | | | |
Collapse
|
32
|
Herdade KCP, Strauss CVDA, Zangrossi Júnior H, Viana MDB. Effects of medial amygdala inactivation on a panic-related behavior. Behav Brain Res 2006; 172:316-23. [PMID: 16806522 DOI: 10.1016/j.bbr.2006.05.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2006] [Revised: 05/15/2006] [Accepted: 05/17/2006] [Indexed: 11/16/2022]
Abstract
In the last years, the role played by the medial nucleus of the amygdala (MeA) in the modulation of fear- and anxiety-related behaviors has been increasingly investigated. This nucleus plays an important role in the processing of predator odor-induced defensive reactions, i.e. freezing and risk-assessment behaviors. Immunohistochemical evidence also indicates that the MeA may be involved in the regulation of escape, a defensive behavior related to panic attacks. In this study, we further addressed this question by investigating the effects of the reversible inactivation of the nucleus on escape behavior generated in male Wistar rats by two different aversive stimuli, electrical stimulation of the dorsal periaqueductal gray matter (dPAG) and exposure to one of the open arms of the elevated T-maze. Results showed that intra-MeA administration of either the reversible sodium channel blocker lidocaine (34 nmol/0.2 microl) or the GABA(A) receptor agonist muscimol (0.22 nmol/0.2 microl) raised the threshold of aversive electrical stimulation, increasing the amount of current that applied to the dPAG evokes escape, an antiaversive effect. Local microinjection of muscimol (0.22 nmol/0.2 microl) inhibited escape behavior in the elevated T-maze, also suggesting an antiaversive effect. In this latter test, muscimol did not affect inhibitory avoidance, a behavior associated with generalized anxiety disorder. Muscimol effect in the elevated T-maze was independent of changes in general exploratory activity as measured in an open-field. Taken together, our data corroborate previous evidences suggesting that the MeA is involved in the modulation of escape. Dysfunction of this regulatory mechanism may be of relevance in the genesis/maintenance of panic disorder.
Collapse
Affiliation(s)
- Karina Costa Paes Herdade
- Laboratório de Psicofarmacologia, FFCLRP, Universidade de São Paulo, 14040-901 Ribeirão Preto, Brazil
| | | | | | | |
Collapse
|
33
|
Egashira N, Yano A, Ishigami N, Mishima K, Iwasaki K, Fujioka M, Matsushita M, Nishimura R, Fujiwara M. Investigation of mechanisms mediating 8-OH-DPAT-induced impairment of spatial memory: Involvement of 5-HT1A receptors in the dorsal hippocampus in rats. Brain Res 2006; 1069:54-62. [PMID: 16386718 DOI: 10.1016/j.brainres.2005.10.103] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2005] [Revised: 10/17/2005] [Accepted: 10/20/2005] [Indexed: 11/24/2022]
Abstract
The purpose of this study was to identify mechanisms that mediate the impairment of spatial memory induced by 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT), a 5-HT1A/5-HT7 receptor agonist, in the eight-arm radial maze in rats. WAY-100635 and NAN-190, 5-HT1A receptor antagonists, reversed the impairment of spatial memory induced by systemic injection of 8-OH-DPAT (1 mg/kg, i.p.). On the other hand, the alpha1-adrenoceptor antagonist prazosin and a selective 5-HT7 receptor antagonist SB269970 had no effect on 8-OH-DPAT-induced impairment of spatial memory. Bilateral microinjection of 8-OH-DPAT (4 microg/side) impaired spatial memory when injected into the dorsal hippocampus (DH). Contrastingly, spatial memory was unaffected by microinjections of 8-OH-DPAT into the other six areas examined: ventral hippocampus (VH), central amygdaloid nucleus (ACE), lateral hypothalamus (LH), nucleus accumbens (NAc), and dorsal (DR) and median (MR) raphe nucleus. Furthermore, NAN-190 significantly reversed the impairment of spatial memory induced by intra-DH injection of 8-OH-DPAT. These findings suggest that 5-HT1A receptors in the DH play an important role in the mechanisms underlying the 8-OH-DPAT-induced impairment of spatial memory in rats.
Collapse
Affiliation(s)
- Nobuaki Egashira
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka 814-0180, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|