1
|
Wang R, Peterson Z, Balasubramanian N, Khan KM, Chimenti MS, Thedens D, Nickl-Jockschat T, Marcinkiewcz CA. Lateral Septal Circuits Govern Schizophrenia-Like Effects of Ketamine on Social Behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.08.552372. [PMID: 37609170 PMCID: PMC10441349 DOI: 10.1101/2023.08.08.552372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Schizophrenia is marked by poor social functioning that can have a severe impact on quality of life and independence, but the underlying neural circuity is not well understood. Here we used a translational model of subanesthetic ketamine in mice to delineate neural pathways in the brain linked to social deficits in schizophrenia. Mice treated with chronic ketamine (30 mg/kg/day for 10 days) exhibit profound social and sensorimotor deficits as previously reported. Using three- dimensional c-Fos immunolabeling and volume imaging (iDISCO), we show that ketamine treatment resulted in hypoactivation of the lateral septum (LS) in response to social stimuli. Chemogenetic activation of the LS rescued social deficits after ketamine treatment, while chemogenetic inhibition of previously active populations in the LS (i.e. social engram neurons) recapitulated social deficits in ketamine-naïve mice. We then examined the translatome of LS social engram neurons and found that ketamine treatment dysregulated genes implicated in neuronal excitability and apoptosis, which may contribute to LS hypoactivation. We also identified 38 differentially expressed genes (DEGs) in common with human schizophrenia, including those involved in mitochondrial function, apoptosis, and neuroinflammatory pathways. Chemogenetic activation of LS social engram neurons induced downstream activity in the ventral part of the basolateral amygdala, subparafascicular nucleus of the thalamus, intercalated amygdalar nucleus, olfactory areas, and dentate gyrus, and it also reduces connectivity of the LS with the piriform cortex and caudate-putamen. In sum, schizophrenia-like social deficits may emerge via changes in the intrinsic excitability of a discrete subpopulation of LS neurons that serve as a central hub to coordinate social behavior via downstream projections to reward, fear extinction, motor and sensory processing regions of the brain.
Collapse
|
2
|
Saoud H, Kereselidze E, Eybrard S, Louilot A. MK-801-induced behavioral and dopaminergic responses in the shell part of the nucleus accumbens in adult male rats are disrupted after neonatal blockade of the ventral subiculum. Neurochem Int 2021; 150:105195. [PMID: 34582961 DOI: 10.1016/j.neuint.2021.105195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 08/08/2021] [Accepted: 09/25/2021] [Indexed: 11/28/2022]
Abstract
The present study was conducted in the context of animal modeling of schizophrenia. It investigated in adult male rats, after transient neonatal blockade of the ventral subiculum (VSub), the impact of a very specific non-competitive antagonist of NMDA receptors (MK-801) on locomotor activity and dopaminergic (DAergic) responses in the dorsomedial shell part of the nucleus accumbens (Nacc), a striatal subregion described as the common target region for antipsychotics. The functional neonatal inactivation of the VSub was achieved by local microinjection of tetrodotoxin (TTX) at postnatal day 8 (PND8). Control pups were microinjected with the solvent phosphate buffered saline (PBS). Locomotor responses and DAergic variations in the dorsomedial shell part of the Nacc were measured simultaneously using in vivo voltammetry in awake, freely moving male animals after sc administration of MK-801. The following results were obtained: 1) a dose-dependent increase in locomotor activity in PBS and TTX animals, greater in TTX rats/PBS rats; and 2) divergent DAergic responses for PBS and TTX animals. A decrease in DA levels with a return to around basal values was observed in PBS animals. An increase in DA levels was obtained in TTX animals. The present data suggest that neonatal blockade of the VSub results in disruption in NMDA glutamatergic transmission, causing a disturbance in DA release in the dorsomedial shell in adults male rats. In the context of animal modeling of schizophrenia using the same approach it would be interesting to investigate possible changes in postsynaptic NMDA receptors-related proteins in the dorsomedial shell region in the Nacc.
Collapse
Affiliation(s)
- Hana Saoud
- University of Strasbourg, INSERM U 1114, Faculty of Medicine, FMTS, Strasbourg, France
| | - Elora Kereselidze
- University of Strasbourg, INSERM U 1114, Faculty of Medicine, FMTS, Strasbourg, France
| | - Séverine Eybrard
- University of Strasbourg, INSERM U 1114, Faculty of Medicine, FMTS, Strasbourg, France
| | - Alain Louilot
- University of Strasbourg, INSERM U 1114, Faculty of Medicine, FMTS, Strasbourg, France.
| |
Collapse
|
3
|
c-Fos expression in the hypothalamic paraventricular nucleus after a single treatment with a typical haloperidol and nine atypical antipsychotics: a pilot study. Endocr Regul 2018; 52:93-100. [DOI: 10.2478/enr-2018-0011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Abstract
Objective. The aim of the present study was to find out whether acute effect of different doses of selected antipsychotics including aripiprazole (ARI), amisulpride (AMI), asenapine (ASE), haloperidol (HAL), clozapine (CLO), risperidone (RIS), quetiapine (QUE), olanzapine (OLA), ziprasidone (ZIP), and paliperidone (PAL) may have a stimulatory impact on the c-Fos expression in the hypothalamic paraventricular nucleus (PVN) neurons.
Methods. Adult male Wistar rats weighing 280–300 g were used. They were injected intraperitoneally with vehicle or antipsychotics in the following doses (mg/kg of b.w.): ARI (1, 10, 30), AMI (10, 30), ASE (0.3), HAL (1.0, 2.0), CLO (10, 20), RIS (0.5, 2.0), QUE (10, 20), OLA (5, 10), ZIP (10, 30), and PAL (1.0). Ninety min later, the animals were anesthetized with Zoletil and Xylariem and sacrificed by a transcardial perfusion with 60 ml of saline containing 450 μl of heparin (5000 IU/l) followed by 250 ml of fixative containing 4% paraformaldehyde in 0.1 M phosphate buffer (PB, pH 7.4). The brains were postfixed in a fresh fixative overnight, washed two times in 0.1 M PB, infiltrated with 30% sucrose for 2 days at 4 °C, frozen at −80 °C for 120 min, and cut into 30 μm thick serial coronal sections at −16 °C. c-Fos profiles were visualized by nickel intensified DAB immunohistochemistry and examined under Axio-Imager A1 (Zeiss) light microscope.
Results. From ten sorts of antipsychotics tested, only six (ARI-10, CLO-10 and CLO-20, HAL-2, AMI-30, OLA-10, RIS-2 mg/kg b.w.) induced distinct c-Fos expression in the PVN. The antipsychotics predominantly targeted the medial parvocellular subdivision of the PVN.
Conclusions. The present pilot study revealed c-Fos expression increase predominantly in the PVN medial parvocellular subdivision neurons by action of only several sorts of antipsychotics tested indicating that this structure of the brain does not represent a common extra-striatal target area for all antipsychotics.
Collapse
|
4
|
Nishiyama K, Suzuki H, Harasawa T, Suzuki N, Kurimoto E, Kawai T, Maruyama M, Komatsu H, Sakuma K, Shimizu Y, Shimojo M. FTBMT, a Novel and Selective GPR52 Agonist, Demonstrates Antipsychotic-Like and Procognitive Effects in Rodents, Revealing a Potential Therapeutic Agent for Schizophrenia. J Pharmacol Exp Ther 2017; 363:253-264. [PMID: 28851764 DOI: 10.1124/jpet.117.242925] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 08/23/2017] [Indexed: 01/23/2023] Open
Abstract
GPR52 is a Gs-coupled G protein-coupled receptor that is predominantly expressed in the striatum and nucleus accumbens (NAc) and was recently proposed as a potential therapeutic target for schizophrenia. In the current study, we investigated the in vitro and in vivo pharmacologic activities of a novel GPR52 agonist, 4-(3-(3-fluoro-5-(trifluoromethyl)benzyl)-5-methyl-1H-1,2,4-triazol-1-yl)-2-methylbenzamide (FTBMT). FTBMT functioned as a selective GPR52 agonist in vitro and in vivo, as demonstrated by the activation of Camp signaling in striatal neurons. FTBMT inhibited MK-801-induced hyperactivity, an animal model for acute psychosis, without causing catalepsy in mice. The c-fos expression also revealed that FTBMT preferentially induced neuronal activation in the shell of the Nac compared with the striatum, thereby supporting its antipsychotic-like activity with less catalepsy. Furthermore, FTBMT improved recognition memory in a novel object-recognition test and attenuated MK-801-induced working memory deficits in a radial arm maze test in rats. These recognitive effects were supported by the results of FTBMT-induced c-fos expression in the brain regions related to cognition, including the medial prefrontal cortex, entorhinal cortex, and hippocampus. Taken together, these findings suggest that FTBMT shows antipsychotic and recognitive properties without causing catalepsy in rodents. Given its unique pharmacologic profile, which differs from that of current antipsychotics, FTBMT may provide a new therapeutic option for the treatment of positive and cognitive symptoms of schizophrenia.
Collapse
MESH Headings
- Animals
- Antipsychotic Agents/chemistry
- Antipsychotic Agents/pharmacology
- Antipsychotic Agents/therapeutic use
- Benzamides/chemistry
- Benzamides/pharmacology
- Benzamides/therapeutic use
- CHO Cells
- Cricetinae
- Cricetulus
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Female
- Locomotion/drug effects
- Locomotion/physiology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Inbred ICR
- Mice, Knockout
- Nootropic Agents/chemistry
- Nootropic Agents/pharmacology
- Nootropic Agents/therapeutic use
- Nucleus Accumbens/drug effects
- Nucleus Accumbens/physiology
- Organ Culture Techniques
- Rats
- Rats, Long-Evans
- Rats, Sprague-Dawley
- Rats, Wistar
- Receptors, G-Protein-Coupled/agonists
- Receptors, G-Protein-Coupled/physiology
- Schizophrenia/drug therapy
- Treatment Outcome
- Triazoles/chemistry
- Triazoles/pharmacology
- Triazoles/therapeutic use
Collapse
Affiliation(s)
- Keiji Nishiyama
- CNS Drug Discovery Unit, Research (K.N., H.S., T.H., N.S., E.K., T.K., M.M., H.K., Y.S., M.S.) and Regenerative Medicine Unit (K.S.), Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Hirobumi Suzuki
- CNS Drug Discovery Unit, Research (K.N., H.S., T.H., N.S., E.K., T.K., M.M., H.K., Y.S., M.S.) and Regenerative Medicine Unit (K.S.), Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Toshiya Harasawa
- CNS Drug Discovery Unit, Research (K.N., H.S., T.H., N.S., E.K., T.K., M.M., H.K., Y.S., M.S.) and Regenerative Medicine Unit (K.S.), Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Noriko Suzuki
- CNS Drug Discovery Unit, Research (K.N., H.S., T.H., N.S., E.K., T.K., M.M., H.K., Y.S., M.S.) and Regenerative Medicine Unit (K.S.), Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Emi Kurimoto
- CNS Drug Discovery Unit, Research (K.N., H.S., T.H., N.S., E.K., T.K., M.M., H.K., Y.S., M.S.) and Regenerative Medicine Unit (K.S.), Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Takayuki Kawai
- CNS Drug Discovery Unit, Research (K.N., H.S., T.H., N.S., E.K., T.K., M.M., H.K., Y.S., M.S.) and Regenerative Medicine Unit (K.S.), Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Minoru Maruyama
- CNS Drug Discovery Unit, Research (K.N., H.S., T.H., N.S., E.K., T.K., M.M., H.K., Y.S., M.S.) and Regenerative Medicine Unit (K.S.), Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Hidetoshi Komatsu
- CNS Drug Discovery Unit, Research (K.N., H.S., T.H., N.S., E.K., T.K., M.M., H.K., Y.S., M.S.) and Regenerative Medicine Unit (K.S.), Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Kensuke Sakuma
- CNS Drug Discovery Unit, Research (K.N., H.S., T.H., N.S., E.K., T.K., M.M., H.K., Y.S., M.S.) and Regenerative Medicine Unit (K.S.), Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Yuji Shimizu
- CNS Drug Discovery Unit, Research (K.N., H.S., T.H., N.S., E.K., T.K., M.M., H.K., Y.S., M.S.) and Regenerative Medicine Unit (K.S.), Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Masato Shimojo
- CNS Drug Discovery Unit, Research (K.N., H.S., T.H., N.S., E.K., T.K., M.M., H.K., Y.S., M.S.) and Regenerative Medicine Unit (K.S.), Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| |
Collapse
|
5
|
Pouvreau T, Tagliabue E, Usun Y, Eybrard S, Meyer F, Louilot A. Neonatal Prefrontal Inactivation Results in Reversed Dopaminergic Responses in the Shell Subregion of the Nucleus Accumbens to NMDA Antagonists. ACS Chem Neurosci 2016; 7:964-71. [PMID: 27145294 DOI: 10.1021/acschemneuro.6b00087] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Striatal dopaminergic dysregulation in schizophrenia could result from a prefronto-striatal dysconnectivity, of neurodevelopmental origin, involving N-methyl-d-aspartate (NMDA) receptors. The dorsomedian shell part of the nucleus accumbens is a striatal subregion of particular interest inasmuch as it has been described as the common target region for antipsychotics. Moreover, NMDA receptors located on the dopaminergic endings have been reported in the shell. The present study examines in adult rats the effects of early functional inactivation of the left prefrontal cortex on behavioral and dopaminergic responses in the dorsomedian shell part of the nucleus accumbens following administration of two noncompetitive NMDA receptor antagonists, ketamine, and dizocilpine (MK-801). The results showed that postnatal blockade of the prefrontal cortex led to increased locomotor activity as well as increased extracellular dopamine levels in the dorsomedian shell following administration of both noncompetitive NMDA receptor antagonists, and, more markedly, after treatment with the more specific one, MK-801, whereas decreased dopaminergic levels were observed in respective controls. These data suggest a link between NMDA receptor dysfunctioning and dopamine dysregulation at the level of the dorsomedian shell part of the nucleus accumbens. They may help to understand the pathophysiology of schizophrenia in a neurodevelopmental perspective.
Collapse
Affiliation(s)
- Tiphaine Pouvreau
- INSERM U 1114,
Faculty of Medicine, FMTS, University of Strasbourg, Strasbourg 67085, France
| | - Emmanuelle Tagliabue
- INSERM U 1114,
Faculty of Medicine, FMTS, University of Strasbourg, Strasbourg 67085, France
| | - Yusuf Usun
- INSERM U 1114,
Faculty of Medicine, FMTS, University of Strasbourg, Strasbourg 67085, France
| | - Séverine Eybrard
- INSERM U 1114,
Faculty of Medicine, FMTS, University of Strasbourg, Strasbourg 67085, France
| | - Francisca Meyer
- Department of
Molecular Animal Physiology, Radboud University Nijmegen, Donders
Institute for Brain, Cognition and Behaviour, 6500 HB, Nijmegen, The Netherlands
| | - Alain Louilot
- INSERM U 1114,
Faculty of Medicine, FMTS, University of Strasbourg, Strasbourg 67085, France
| |
Collapse
|
6
|
Collins CM, Wood MD, Elliott JM. Chronic administration of haloperidol and clozapine induces differential effects on the expression of Arc and c-Fos in rat brain. J Psychopharmacol 2014; 28:947-54. [PMID: 24989643 DOI: 10.1177/0269881114536788] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The modulation of genes implicated in synaptic plasticity following administration of antipsychotic drugs has been instrumental in understanding their possible mode of action. Arc (Arg 3.1) is one such gene closely associated with changes in synaptic plasticity. In this study we have investigated the changes in expression of Arc protein following acute and chronic administration of a typical antipsychotic (haloperidol) and an atypical antipsychotic (clozapine) by means of immunohistochemistry compared to the prototypic gene marker c-Fos. In dorsal striatum haloperidol (1 mg/kg) significantly increased Arc expression following both acute and chronic (21 day) administration with evidence of modulation in induction after repeated dosing. No significant changes were observed following either acute or chronic administration of clozapine (20 mg/kg). In the nucleus accumbens shell both clozapine and haloperidol induced Arc expression following acute administration, again with evidence of modulation after chronic dosing. The pattern of induction of Arc expression following haloperidol and clozapine in both dorsal and ventral striatum was similar to that for c-Fos. In medial prefrontal and cingulate cortex, Arc expression was significantly decreased by clozapine but not haloperidol without any indication of modulation following chronic dosing, whereas no significant changes in c-Fos expression were observed with either drug. Since synaptic modulation mediated by Arc is associated with down-regulation of the AMPA glutamate receptor, this study suggests a mechanism whereby enhanced glutamate receptor efficacy in medial cortical areas may be a component of antipsychotic drug action.
Collapse
Affiliation(s)
- Cheryl M Collins
- Leicester School of Pharmacy, De Montfort University, Leicester, UK Current address: Loxbridge Research, Royal Free Hampstead NHS Trust, London, UK
| | - Martyn D Wood
- GlaxoSmithKline, Harlow, UK Current address: CNS Research, UCB S.A., B-1420 Braine -l'Alleud, Belgium
| | - J Martin Elliott
- Leicester School of Pharmacy, De Montfort University, Leicester, UK
| |
Collapse
|
7
|
Iasevoli F, Ambesi-Impiombato A, Fiore G, Panariello F, Muscettola G, de Bartolomeis A. Pattern of acute induction of Homer1a gene is preserved after chronic treatment with first- and second-generation antipsychotics: effect of short-term drug discontinuation and comparison with Homer1a-interacting genes. J Psychopharmacol 2011; 25:875-87. [PMID: 20147574 DOI: 10.1177/0269881109358199] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Homer1a is a glutamate-related gene whose expression is induced by antipsychotics acutely (i.e. 90 min after treatment). Acute Homer1a expression is preserved after prolonged antipsychotic treatments, while the effects of short-term discontinuation after chronic antipsychotic treatment have not yet been assessed. Here, we studied early and long-term effects on gene expression by antipsychotics for Homer1a and other components of glutamatergic synapses. In the first paradigm, we evaluated Homer1a acute expression by single administration of antipsychotics (haloperidol 0.8 mg/kg, ziprasidone 10 and 4 mg/kg, clozapine 15 mg/kg). Haloperidol and ziprasidone induced Homer1a in the striatum. Induction by ziprasidone was dose-dependent. These results suggest that acute Homer1a expression correlates with dopaminergic affinity and motor side effects of antipsychotics. In the second paradigm, we studied antipsychotic-mediated long-term changes in Homer1a and glutamate-related genes. Rats were treated (21 days) with haloperidol 0.8 mg/kg, ziprasidone 4 mg/kg, or vehicle, and then sacrificed at 90 min (early time-point) or 24 h (delayed time-point) after last injection. Gene expression at these two time-points was compared. Homer1a preserved its pattern of expression at the early but not at the delayed time-point. Significant changes were also observed for PSD-95. The results suggest that Homer1a preserves its expression profile after chronic antipsychotics.
Collapse
Affiliation(s)
- Felice Iasevoli
- Laboratory of Molecular Psychiatry and Psychopharmacotherapy, Section of Psychiatry, Department of Neuroscience, University School of Medicine 'Federico II', Naples, Italy
| | | | | | | | | | | |
Collapse
|
8
|
Latent inhibition-related dopaminergic responses in the nucleus accumbens are disrupted following neonatal transient inactivation of the ventral subiculum. Neuropsychopharmacology 2011; 36:1421-32. [PMID: 21430650 PMCID: PMC3096811 DOI: 10.1038/npp.2011.26] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Schizophrenia would result from a defective connectivity between several integrative regions as a consequence of neurodevelopmental failure. Various anomalies reminiscent of early brain development disturbances have been observed in patients' left ventral subiculum of the hippocampus (SUB). Numerous data support the hypothesis of a functional dopaminergic dysregulation in schizophrenia. The common target structure for the action of antipsychotics appears to be a subregion of the ventral striatum, the dorsomedial shell part of the nucleus accumbens. Latent inhibition, a cognitive marker of interest for schizophrenia, has been found to be disrupted in acute patients. The present study set out to investigate the consequences of a neonatal functional inactivation of the left SUB by tetrodotoxin (TTX) in 8-day-old rats for the latent inhibition-related dopaminergic responses, as monitored by in vivo voltammetry in freely moving adult animals (11 weeks) in the left core and dorsomedial shell parts of the nucleus accumbens in an olfactory aversion procedure. Results obtained during the retention session of a three-stage latent inhibition protocol showed that the postnatal unilateral functional blockade of the SUB was followed in pre-exposed TTX-conditioned adult rats by a disruption of the behavioral expression of latent inhibition and induced a total and a partial reversal of the latent inhibition-related dopaminergic responses in the dorsomedial shell and core parts of the nucleus accumbens, respectively. The present data suggest that neonatal inactivation of the SUB has more marked consequences for the dopaminergic responses recorded in the dorsomedial shell part, than in the core part of the nucleus accumbens. These findings may provide new insight into the pathophysiology of schizophrenia.
Collapse
|
9
|
von Wilmsdorff M, Bouvier ML, Henning U, Schmitt A, Gaebel W. The impact of antipsychotic drugs on food intake and body weight and on leptin levels in blood and hypothalamic ob-r leptin receptor expression in wistar rats. Clinics (Sao Paulo) 2010; 65:885-94. [PMID: 21049217 PMCID: PMC2954740 DOI: 10.1590/s1807-59322010000900012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Accepted: 06/22/2010] [Indexed: 03/31/2023] Open
Abstract
OBJECTIVES The aim of our study was to investigate the impact of typical and atypical antipsychotic drugs on leptin concentration in blood and changes in the receptor expression in the hypothalamus of male Wistar rats. METHODS From the age of 13 to 18 weeks, three groups of 20 animals were fed an average dose of 3.5 + 0.03 mg/ kg body weight (BW) haloperidol; 30.6 + 0.22 mg/kg BW clozapine; or 14.9 + 0.13 mg/kg BW ziprasidone in ground food pellets containing 15% fat. Twenty control animals received no drugs. Blood samples were taken at week 14, 16, and 19. Locomotor activity and exploratory behavior were measured using the alcove test at weeks 15 and 17. The expression of the hypothalamic leptin receptor in rat brains was determined by using a Western blot. RESULTS Rats medicated with haloperidol and ziprasidone showed a significantly decreased percentage weight gain and food consumption. We observed no differences in the alcove test, but locomotor activity was significantly reduced in the haloperidol group. Except for rats in the clozapine and ziprasidone groups, after 2 weeks of drug application, we found no changes in the leptin blood concentrations among the four groups or animals within each group. Moreover, we did not find specific differences in hypothalamic leptin receptor expression among the groups. CONCLUSION We concluded that in male Wistar rats during this treatment period, the tested drugs did not act directly on the leptin regulatory system. We recommend further studies using long-term treatment of different rat strains.
Collapse
|
10
|
Abstract
Schizophrenia and autism are neurodevelopmental diseases that have genetic as well as environmental etiologies. Both disorders have been associated with prenatal viral infection. Brain imaging and postmortem studies have found alterations in the structure of the cerebellum as well as changes in gene expression. Our laboratory has developed an animal model using prenatal infection of mice with human influenza virus that has demonstrated changes in behavior, pharmacology, structure, and gene expression in the brains of exposed offspring. In the current communication we describe altered expression of cerebellar genes associated with development of brain disorder in a mouse model for schizophrenia and autism and correlate these changes with those involved in the pathology of these two disorders.
Collapse
|
11
|
Preclinical investigations into the antipsychotic potential of the novel histamine H3 receptor antagonist GSK207040. Psychopharmacology (Berl) 2009; 201:483-94. [PMID: 18762914 DOI: 10.1007/s00213-008-1310-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2008] [Accepted: 08/19/2008] [Indexed: 10/21/2022]
Abstract
OBJECTIVES To test the novel nonimidazole histamine H3 receptor antagonist 5-[(3-cyclobutyl-2,3,4,5-tetrahydro-1H-3-benzazapin-7-yl)oxy]-N-methyl-2-pyrazinecarboxamide (GSK207040) in a series of behavioral and neurochemical paradigms designed to evaluate its antipsychotic potential. MATERIALS AND METHODS Acute orally administered GSK207040 was investigated for its capacity to reverse a 24-h-induced deficit in novel object recognition memory, deficits in prepulse inhibition (PPI) induced by isolation rearing, and hyperlocomotor activity induced by amphetamine. The acute neurochemical effects of GSK207040 were explored by analyzing rat anterior cingulate cortex microdialysates for levels of dopamine, noradrenaline, and acetylcholine and by c-fos immunohistochemistry. The potential for interaction with the antipsychotic dopamine D2 receptor antagonist haloperidol was explored behaviorally (spontaneous locomotor activity and catalepsy), biochemically (plasma prolactin), and via ex vivo receptor occupancy determinations. RESULTS GSK207040 significantly enhanced object recognition memory (3 mg/kg) and attenuated isolation rearing-induced deficits in PPI (1.0 and 3.2 mg/kg) but did not reverse amphetamine-induced increases in locomotor activity. There was no evidence of an interaction of GSK207040 with haloperidol. GSK207040 (3.2 mg/kg) raised extracellular concentrations of dopamine, noradrenaline, and acetylcholine in the anterior cingulate cortex and c-fos expression in the core of the nucleus accumbens was increased at doses of 3.2 and 10.0 mg/kg. CONCLUSIONS The behavioral and neurochemical profile of GSK207040 supports the potential of histamine H3 receptor antagonism to treat the cognitive and sensory gating deficits of schizophrenia. However, the failure of GSK207040 to reverse amphetamine-induced locomotor hyperactivity suggests that the therapeutic utility of histamine H(3) receptor antagonism versus positive symptoms is less likely, at least following acute administration.
Collapse
|
12
|
Tomasetti C, Dell’Aversano C, Iasevoli F, de Bartolomeis A. Homer splice variants modulation within cortico-subcortical regions by dopamine D2 antagonists, a partial agonist, and an indirect agonist: Implication for glutamatergic postsynaptic density in antipsychotics action. Neuroscience 2007; 150:144-58. [DOI: 10.1016/j.neuroscience.2007.08.022] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2007] [Revised: 08/14/2007] [Accepted: 08/16/2007] [Indexed: 10/22/2022]
|
13
|
Medhurst AD, Atkins AR, Beresford IJ, Brackenborough K, Briggs MA, Calver AR, Cilia J, Cluderay JE, Crook B, Davis JB, Davis RK, Davis RP, Dawson LA, Foley AG, Gartlon J, Gonzalez MI, Heslop T, Hirst WD, Jennings C, Jones DNC, Lacroix LP, Martyn A, Ociepka S, Ray A, Regan CM, Roberts JC, Schogger J, Southam E, Stean TO, Trail BK, Upton N, Wadsworth G, Wald JA, White T, Witherington J, Woolley ML, Worby A, Wilson DM. GSK189254, a novel H3 receptor antagonist that binds to histamine H3 receptors in Alzheimer's disease brain and improves cognitive performance in preclinical models. J Pharmacol Exp Ther 2007; 321:1032-45. [PMID: 17327487 DOI: 10.1124/jpet.107.120311] [Citation(s) in RCA: 246] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
6-[(3-Cyclobutyl-2,3,4,5-tetrahydro-1H-3-benzazepin-7-yl)oxy]-N-methyl-3-pyridinecarboxamide hydrochloride (GSK189254) is a novel histamine H(3) receptor antagonist with high affinity for human (pK(i) = 9.59 -9.90) and rat (pK(i) = 8.51-9.17) H(3) receptors. GSK189254 is >10,000-fold selective for human H(3) receptors versus other targets tested, and it exhibited potent functional antagonism (pA(2) = 9.06 versus agonist-induced changes in cAMP) and inverse agonism [pIC(50) = 8.20 versus basal guanosine 5'-O-(3-[(35)S]thio)triphosphate binding] at the human recombinant H(3) receptor. In vitro autoradiography demonstrated specific [(3)H]GSK189254 binding in rat and human brain areas, including cortex and hippocampus. In addition, dense H(3) binding was detected in medial temporal cortex samples from severe cases of Alzheimer's disease, suggesting for the first time that H(3) receptors are preserved in late-stage disease. After oral administration, GSK189254 inhibited cortical ex vivo R-(-)-alpha-methyl[imidazole-2,5(n)-(3)H]histamine dihydrochloride ([(3)H]R-alpha-methylhistamine) binding (ED(50) = 0.17 mg/kg) and increased c-Fos immunoreactivity in prefrontal and somatosensory cortex (3 mg/kg). Microdialysis studies demonstrated that GSK189254 (0.3-3 mg/kg p.o.) increased the release of acetylcholine, noradrenaline, and dopamine in the anterior cingulate cortex and acetylcholine in the dorsal hippocampus. Functional antagonism of central H(3) receptors was demonstrated by blockade of R-alpha-methylhistamine-induced dipsogenia in rats (ID(50) = 0.03 mg/kg p.o.). GSK189254 significantly improved performance of rats in diverse cognition paradigms, including passive avoidance (1 and 3 mg/kg p.o.), water maze (1 and 3 mg/kg p.o.), object recognition (0.3 and 1 mg/kg p.o.), and attentional set shift (1 mg/kg p.o.). These data suggest that GSK189254 may have therapeutic potential for the symptomatic treatment of dementia in Alzheimer's disease and other cognitive disorders.
Collapse
Affiliation(s)
- Andrew D Medhurst
- Neurology and GI Centre of Excellence for Drug Discovery, GlaxoSmithKline, Third Ave., Harlow, Essex, CM19 5AW, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Pae CU. Potential role of lymphotoxin-alpha (tumor necrosis factor-beta) in the development of schizophrenia. Med Hypotheses 2007; 68:1359-62. [PMID: 17140746 DOI: 10.1016/j.mehy.2006.10.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2006] [Accepted: 10/17/2006] [Indexed: 11/30/2022]
Abstract
Immune hypothesis of schizophrenia fits well with the supposed interaction between genetic and environmental factors in understanding its complicated pathogenesis that is not be able to be explained by any one supposed hypothesis. Prenatal infections have been also suggested to be associated with schizophrenia in which cytokines may play a critical role in the translation of prenatal infection to develop schizophrenia. Moreover, antipsychotics are known to have direct or indirect effects on the immune system. Among cytokines, the immunomodulatory functions of lymphotoxin-alpha (tumor necrosis factor (TNF)-beta) is well known and could come up with the pathophysiology of schizophrenia. It affects and modulates production of other cytokines such as TNF-alpha and IL-6 which are consistently proposed to be involved in the development of schizophrenia. TNF-beta is also crucial to prevent prenatal infections. In addition, TNF-beta is effective in the protection of neuronal cells against glutamate and NMDA toxicity which is considered a neurodevelopmental hypothesis of schizophrenia. Moreover, it was also found to be associated with the regulation of glial cells and stimulation of the synthesis and secretion of nerve growth factors (NGFs) in the CNS. Finally, TNF-beta gene is located on the short arm of chromosome 6 (6p21.1-6p21.3), where is a possible susceptibility locus for schizophrenia. Therefore, TNF-beta may provide a new insight for understanding schizophrenia, providing a more systematic organization of immunological contributing factors to the development of schizophrenia.
Collapse
Affiliation(s)
- Chi-Un Pae
- Department of Psychiatry, Kangnam St. Mary' Hospital, The Catholic University of Korea, College of Medicine, 505 Banpo-Dong, Seocho-Gu, Seoul 137-701, Republic of Korea.
| |
Collapse
|