1
|
Sheng XM, Guan W. GRIN2A and Schizophrenia: Scientific Evidence and Biological Mechanisms. Curr Neuropharmacol 2025; 23:621-634. [PMID: 39501956 DOI: 10.2174/011570159x327712241023084944] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/19/2024] [Accepted: 09/10/2024] [Indexed: 05/07/2025] Open
Abstract
Schizophrenia is a severe psychiatric disorder and a complex polygenic inherited disease that affects nearly 1% of the global population. Although considerable progress has been made over the past 10 years in the treatment of schizophrenia, antipsychotics are not universally effective and may have serious side effects. The hypofunction of glutamate NMDA receptors (NMDARs) in GABAergic interneurons has long been postulated to be the principal pathophysiology of schizophrenia. A recent study has shown that GRIN2A pathogenic variants are closely related to the aetiology of the disorder. GRIN2A encodes the GluN2A protein, which is a subunit of NMDAR. Most GRIN2A variants have been predicted to cause protein truncation, which results in reduced gene expression. Preclinical studies have indicated that GRIN2A mutations lead to NMDAR loss of function and substantially increase the risk of schizophrenia; however, their role in schizophrenia is not well understood. We hypothesise that the heterozygous loss of GRIN2A induces NMDAR hypofunction sufficient to confer a substantial risk of schizophrenia. Therefore, this review focuses on GRIN2A as a target for novel antipsychotics and discusses the mechanisms by which GRIN2A modulates antischizophrenic activities. Moreover, our review contributes to the understanding of the pathophysiology of schizophrenia to facilitate finding treatments for the cognitive and negative symptoms of schizophrenia.
Collapse
Affiliation(s)
- Xiao-Ming Sheng
- Department of Trauma Center, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Wei Guan
- Department of Pharmacology, Pharmacy College, Nantong University, Nantong 226001, Jiangsu, China
| |
Collapse
|
2
|
Uliana DL, Lisboa JRF, Gomes FV, Grace AA. The excitatory-inhibitory balance as a target for the development of novel drugs to treat schizophrenia. Biochem Pharmacol 2024; 228:116298. [PMID: 38782077 PMCID: PMC11410545 DOI: 10.1016/j.bcp.2024.116298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
The intricate balance between excitation and inhibition (E/I) in the brain plays a crucial role in normative information processing. Dysfunctions in the E/I balance have been implicated in various psychiatric disorders, including schizophrenia (SCZ). In particular, abnormalities in GABAergic signaling, specifically in parvalbumin (PV)-containing interneurons, have been consistently observed in SCZ pathophysiology. PV interneuron function is vital for maintaining an ideal E/I balance, and alterations in PV interneuron-mediated inhibition contribute to circuit deficits observed in SCZ, including hippocampus hyperactivity and midbrain dopamine system overdrive. While current antipsychotic medications primarily target D2 dopamine receptors and are effective primarily in treating positive symptoms, novel therapeutic strategies aiming to restore the E/I balance could potentially mitigate not only positive symptoms but also negative symptoms and cognitive deficits. This could involve, for instance, increasing the inhibitory drive onto excitatory neurons or decreasing the putative enhanced pyramidal neuron activity due to functional loss of PV interneurons. Compounds targeting the glycine site at glutamate NMDA receptors and muscarinic acetylcholine receptors on PV interneurons that can increase PV interneuron drive, as well as drugs that increase the postsynaptic action of GABA, such as positive allosteric modulators of α5-GABA-A receptors, and decrease glutamatergic output, such as mGluR2/3 agonists, represent promising approaches. Preventive strategies aiming at E/I balance also represent a path to reduce the risk of transitioning to SCZ in high-risk individuals. Therefore, compounds with novel mechanisms targeting E/I balance provide optimism for more effective and tailored interventions in the management of SCZ.
Collapse
Affiliation(s)
- Daniela L Uliana
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Joao Roberto F Lisboa
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Felipe V Gomes
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Anthony A Grace
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
3
|
Valvassori SS, da Rosa RT, Dal-Pont GC, Varela RB, Mastella GA, Daminelli T, Fries GR, Quevedo J, Zugno AI. Haloperidol alters neurotrophic factors and epigenetic parameters in an animal model of schizophrenia induced by ketamine. Int J Dev Neurosci 2023; 83:691-702. [PMID: 37635268 DOI: 10.1002/jdn.10296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 08/29/2023] Open
Abstract
This study aimed to evaluate Haloperidol's (Hal) effects on the behavioral, neurotrophic factors, and epigenetic parameters in an animal model of schizophrenia (SCZ) induced by ketamine (Ket). Injections of Ket or saline were administered intraperitoneal (once a day) between the 1st and 14th days of the experiment. Water or Hal was administered via gavage between the 8th and 14th experimental days. Thirty minutes after the last injection, the animals were subjected to behavioral analysis. The activity of DNA methyltransferase (DNMT), histone deacetylase (HDAC), and histone acetyltransferase and levels of brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), neurotrophin-3 (NT-3), and glial-derived neurotrophic factor (GDNF) were evaluated in the frontal cortex, hippocampus, and striatum. Ket increased the covered distance and time spent in the central area of the open field, and Hal did not reverse these behavioral alterations. Significant increases in the DNMT and HDAC activities were detected in the frontal cortex and striatum from rats that received Ket, Hal, or a combination thereof. Besides, Hal per se increased the activity of DNMT and HDAC in the hippocampus of rats. Hal per se or the association of Ket plus Hal decreased BDNF, NGF, NT-3, and GDNF, depending on the brain region and treatment regimen. The administration of Hal can alter the levels of neurotrophic factors and the activity of epigenetic enzymes, which can be a factor in the development of effect collateral in SCZ patients. However, the precise mechanisms involved in these alterations are still unclear.
Collapse
Affiliation(s)
- Samira S Valvassori
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Santa Catarina, Brazil
| | - Richard T da Rosa
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Santa Catarina, Brazil
| | - Gustavo C Dal-Pont
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Santa Catarina, Brazil
| | - Roger B Varela
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Santa Catarina, Brazil
| | - Gustavo A Mastella
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Santa Catarina, Brazil
| | - Thiani Daminelli
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Santa Catarina, Brazil
| | - Gabriel R Fries
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, USA
- Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, USA
| | - João Quevedo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Santa Catarina, Brazil
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, USA
- Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, USA
- Neuroscience Graduate Program, University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - Alexandra I Zugno
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Santa Catarina, Brazil
| |
Collapse
|
4
|
Oprisan SA, Clementsmith X, Tompa T, Lavin A. Empirical mode decomposition of local field potential data from optogenetic experiments. Front Comput Neurosci 2023; 17:1223879. [PMID: 37476356 PMCID: PMC10354259 DOI: 10.3389/fncom.2023.1223879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 06/19/2023] [Indexed: 07/22/2023] Open
Abstract
Introduction This study investigated the effects of cocaine administration and parvalbumin-type interneuron stimulation on local field potentials (LFPs) recorded in vivo from the medial prefrontal cortex (mPFC) of six mice using optogenetic tools. Methods The local network was subject to a brief 10 ms laser pulse, and the response was recorded for 2 s over 100 trials for each of the six subjects who showed stable coupling between the mPFC and the optrode. Due to the strong non-stationary and nonlinearity of the LFP, we used the adaptive, data-driven, Empirical Mode Decomposition (EMD) method to decompose the signal into orthogonal Intrinsic Mode Functions (IMFs). Results Through trial and error, we found that seven is the optimum number of orthogonal IMFs that overlaps with known frequency bands of brain activity. We found that the Index of Orthogonality (IO) of IMF amplitudes was close to zero. The Index of Energy Conservation (IEC) for each decomposition was close to unity, as expected for orthogonal decompositions. We found that the power density distribution vs. frequency follows a power law with an average scaling exponent of ~1.4 over the entire range of IMF frequencies 2-2,000 Hz. Discussion The scaling exponent is slightly smaller for cocaine than the control, suggesting that neural activity avalanches under cocaine have longer life spans and sizes.
Collapse
Affiliation(s)
- Sorinel A. Oprisan
- Department of Physics and Astronomy, College of Charleston, Charleston, SC, United States
| | - Xandre Clementsmith
- Department of Computer Science, College of Charleston, Charleston, SC, United States
| | - Tamas Tompa
- Faculty of Healthcare, Department of Preventive Medicine, University of Miskolc, Miskolc, Hungary
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States
| | - Antonieta Lavin
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
5
|
Matrisciano F. Epigenetic regulation of metabotropic glutamate 2/3 receptors: Potential role for ultra-resistant schizophrenia? Pharmacol Biochem Behav 2023:173589. [PMID: 37348609 DOI: 10.1016/j.pbb.2023.173589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/05/2023] [Accepted: 06/15/2023] [Indexed: 06/24/2023]
Abstract
Schizophrenia is a severe and debilitating psychiatric disorder characterized by early cognitive deficits, emotional and behavioral abnormalities resulted by a dysfunctional gene x environment interaction. Genetic and epigenetic abnormalities in cortical parvalbumin-positive GABAergic interneurons lead to alterations in glutamate-mediated excitatory neurotransmission, synaptic plasticity, and neuronal development. Epigenetic alterations during pregnancy or early phases of postnatal life are associated with schizophrenia vulnerability as well as inflammatory processes which are at the basis of brain pathology. An epigenetic animal model of schizophrenia showed specific changes in promoter DNA methylation activity of genes related to schizophrenia such as reelin, BDNF and GAD67, and altered expression and function of mGlu2/3 receptors in the frontal cortex. Although antipsychotic medications represent the main treatment for schizophrenia and generally show an optimal efficacy profile for positive symptoms and relatively poor efficacy for negative or cognitive symptoms, a considerable percentage of individuals show poor response, do not achieve a complete remission, and approximately 30 % of patients show treatment-resistance. Here, we explore the potential role of epigenetic abnormalities linked to metabotropic glutamate 2/3 receptors changes in expression and function as key molecular factors underlying the difference in response to antipsychotics.
Collapse
Affiliation(s)
- Francesco Matrisciano
- The Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois Chicago (UIC), Chicago, IL, USA.
| |
Collapse
|
6
|
Wawrzczak-Bargieła A, Bilecki W, Maćkowiak M. Epigenetic Targets in Schizophrenia Development and Therapy. Brain Sci 2023; 13:brainsci13030426. [PMID: 36979236 PMCID: PMC10046502 DOI: 10.3390/brainsci13030426] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/24/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023] Open
Abstract
Schizophrenia is regarded as a neurodevelopmental disorder with its course progressing throughout life. However, the aetiology and development of schizophrenia are still under investigation. Several data suggest that the dysfunction of epigenetic mechanisms is known to be involved in the pathomechanism of this mental disorder. The present article revised the epigenetic background of schizophrenia based on the data available in online databases (PubMed, Scopus). This paper focused on the role of epigenetic regulation, such as DNA methylation, histone modifications, and interference of non-coding RNAs, in schizophrenia development. The article also reviewed the available data related to epigenetic regulation that may modify the severity of the disease as a possible target for schizophrenia pharmacotherapy. Moreover, the effects of antipsychotics on epigenetic malfunction in schizophrenia are discussed based on preclinical and clinical results. The obtainable data suggest alterations of epigenetic regulation in schizophrenia. Moreover, they also showed the important role of epigenetic modifications in antipsychotic action. There is a need for more data to establish the role of epigenetic mechanisms in schizophrenia therapy. It would be of special interest to find and develop new targets for schizophrenia therapy because patients with schizophrenia could show little or no response to current pharmacotherapy and have treatment-resistant schizophrenia.
Collapse
|
7
|
Smith RC, Sershen H, Youssef M, Lajtha A, Jin H, Zhang M, Chen A, Guidotti A, Davis JM. Deficits in odor discrimination versus odor identification in patients with schizophrenia and negative correlations with GABAergic and DNA methyltransferase mRNAs in lymphocytes. Front Psychiatry 2023; 14:1115399. [PMID: 37056402 PMCID: PMC10088370 DOI: 10.3389/fpsyt.2023.1115399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 03/02/2023] [Indexed: 04/15/2023] Open
Abstract
Introduction People with schizophrenia have been reported to show deficits in tests of olfactory function. DNA methylation and GABAergic input have been implicated in biochemical processes controlling odor in animal studies, but this has not been investigated in human studies. Methods In a study of measures of DNA methylation and GABAergic mRNAs in lymphocytes, we also measured odor identification and discrimination with the Sniffin' Sticks battery in 58 patients with chronic schizophrenia (CSZ) and 48 controls. mRNAs in lymphocytes were assessed by qPCR using TaqManTM probes. Cognition was assessed by the MATRICS battery (Measurement and Treatment Research to Improve Cognition in Schizophrenia) in CSZ and controls, and symptoms in CSZ were assessed by PANSS scale (Positive and Negative Symptom Scale). The relationships of odor deficits with mRNA, cognition, and symptoms were explored by correlation analysis. Variables which significantly differentiated CSZ from controls were explored by logistic regression. Results Overall, CSZ showed significantly (P≤.001) lower scores on odor discrimination compared to controls, with a moderate effect size, but no difference in odor identification. Deficits in odor discrimination, which has not been standardly assessed in many prior studies, strongly differentiated CSZ from controls. In logistic regression analysis, odor discrimination, but not odor identification, was a significant variable predicting schizophrenia versus control class membership. This is the first study to report relationship between odor deficits and DNA methylation and GABAergic mRNAs in blood cells of human subjects. There were negative correlations of odor identification with DNA methylation enzymes mRNAs and significant negative correlations with odor discrimination and GABAergic mRNAs. Lower odor scores were significantly associated with lower cognitive scores on the MATRICS battery in CSZ but not control subjects. In CSZ, lower odor scores were significantly associated with negative symptom scores, while higher odor identification scores were associated with PANNS Excitement factor. Discussion Odor discrimination was a more powerful variable than odor identification in discriminating CSZ from controls and should be used more regularly as an odor measure in studies of schizophrenia. The substantive meaning of the negative correlations of odor discrimination and GABAergic mRNA variables in peripheral lymphocytes of CSZ needs more investigation and comparison with results in neural tissue.
Collapse
Affiliation(s)
- Robert C. Smith
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States
- Department of Psychiatry, NYU Grossman School of Medicine, New York, NY, United States
- *Correspondence: Robert C. Smith, ;
| | - Henry Sershen
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States
- Department of Psychiatry, NYU Grossman School of Medicine, New York, NY, United States
| | - Mary Youssef
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States
| | - Abel Lajtha
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States
- Department of Psychiatry, NYU Grossman School of Medicine, New York, NY, United States
| | - Hua Jin
- Department of Psychiatry and VA San Diego Healthcare System, University of California San Diego, San Diego, CA, United States
| | - Mumei Zhang
- Columbia University Mailman School of Public Health, New York, NY, United States
| | - Anmei Chen
- Columbia University Mailman School of Public Health, New York, NY, United States
| | - Alessandro Guidotti
- Department of Psychiatry, Psychiatric Institute University of Illinois, Chicago, IL, United States
| | - John M. Davis
- Department of Psychiatry, Psychiatric Institute University of Illinois, Chicago, IL, United States
| |
Collapse
|
8
|
Matrisciano F. Functional Nutrition as Integrated Intervention for In- and Outpatient with Schizophrenia. Curr Neuropharmacol 2023; 21:2409-2423. [PMID: 36946488 PMCID: PMC10616917 DOI: 10.2174/1570159x21666230322160259] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 03/23/2023] Open
Abstract
Schizophrenia is a chronic and progressive disorder characterized by cognitive, emotional, and behavioral abnormalities associated with neuronal development and synaptic plasticity alterations. Genetic and epigenetic abnormalities in cortical parvalbumin-positive GABAergic interneurons and consequent alterations in glutamate-mediated excitatory neurotransmission during early neurodevelopment underlie schizophrenia manifestation and progression. Also, epigenetic alterations during pregnancy or early phases of postnatal life are associated with schizophrenia vulnerability and inflammatory processes, which are at the basis of brain pathology and a higher risk of comorbidities, including cardiovascular diseases and metabolic syndrome. In addition, schizophrenia patients adopt an unhealthy lifestyle and poor nutrition, leading to premature death. Here, I explored the role of functional nutrition as an integrated intervention for the long-term management of patients with schizophrenia. Several natural bioactive compounds in plant-based whole foods, including flavonoids, phytonutrients, vitamins, fatty acids, and minerals, modulate brain functioning by targeting neuroinflammation and improving cognitive decline. Although further clinical studies are needed, a functional diet rich in natural bioactive compounds might be effective in synergism with standard treatments to improve schizophrenia symptoms and reduce the risk of comorbidities.
Collapse
Affiliation(s)
- Francesco Matrisciano
- The Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois Chicago (UIC), Chicago, IL, USA
| |
Collapse
|
9
|
Auta J, Locci A, Guidotti A, Davis JM, Dong H. Sex-dependent sensitivity to positive allosteric modulation of GABA action in an APP knock-in mouse model of Alzheimer's disease: Potential epigenetic regulation. CURRENT RESEARCH IN NEUROBIOLOGY 2022; 3:100025. [DOI: 10.1016/j.crneur.2021.100025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 12/15/2022] Open
|
10
|
Myint AM, Halaris A. Imbalances in Kynurenines as Potential Biomarkers in the Diagnosis and Treatment of Psychiatric Disorders. Front Psychiatry 2022; 13:913303. [PMID: 35836656 PMCID: PMC9275364 DOI: 10.3389/fpsyt.2022.913303] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/27/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Aye-Mu Myint
- Department of Psychiatry, Loyola University School of Medicine and Loyola University Medical Center, Maywood, IL, United States
| | - Angelos Halaris
- Department of Psychiatry, Loyola University School of Medicine and Loyola University Medical Center, Maywood, IL, United States
| |
Collapse
|
11
|
Maksymetz J, Byun NE, Luessen DJ, Li B, Barry RL, Gore JC, Niswender CM, Lindsley CW, Joffe ME, Conn PJ. mGlu 1 potentiation enhances prelimbic somatostatin interneuron activity to rescue schizophrenia-like physiological and cognitive deficits. Cell Rep 2021; 37:109950. [PMID: 34731619 PMCID: PMC8628371 DOI: 10.1016/j.celrep.2021.109950] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 08/09/2021] [Accepted: 10/14/2021] [Indexed: 01/03/2023] Open
Abstract
Evidence for prefrontal cortical (PFC) GABAergic dysfunction is one of the most consistent findings in schizophrenia and may contribute to cognitive deficits. Recent studies suggest that the mGlu1 subtype of metabotropic glutamate receptor regulates cortical inhibition; however, understanding the mechanisms through which mGlu1 positive allosteric modulators (PAMs) regulate PFC microcircuit function and cognition is essential for advancing these potential therapeutics toward the clinic. We report a series of electrophysiology, optogenetic, pharmacological magnetic resonance imaging, and animal behavior studies demonstrating that activation of mGlu1 receptors increases inhibitory transmission in the prelimbic PFC by selective excitation of somatostatin-expressing interneurons (SST-INs). An mGlu1 PAM reverses cortical hyperactivity and concomitant cognitive deficits induced by N-methyl-d-aspartate (NMDA) receptor antagonists. Using in vivo optogenetics, we show that prelimbic SST-INs are necessary for mGlu1 PAM efficacy. Collectively, these findings suggest that mGlu1 PAMs could reverse cortical GABAergic deficits and exhibit efficacy in treating cognitive dysfunction in schizophrenia.
Collapse
Affiliation(s)
- James Maksymetz
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA
| | - Nellie E Byun
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Deborah J Luessen
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA
| | - Brianna Li
- Vanderbilt University, Nashville, TN 37232, USA
| | - Robert L Barry
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Radiology & Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - John C Gore
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Radiology & Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, USA
| | - Colleen M Niswender
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Institute for Chemical Biology, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232, USA
| | - Craig W Lindsley
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Institute for Chemical Biology, Vanderbilt University, Nashville, TN 37232, USA; Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA
| | - Max E Joffe
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA
| | - P Jeffrey Conn
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Institute for Chemical Biology, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
12
|
Cai HY, Fu XX, Jiang H, Han S. Adjusting vascular permeability, leukocyte infiltration, and microglial cell activation to rescue dopaminergic neurons in rodent models of Parkinson's disease. NPJ Parkinsons Dis 2021; 7:91. [PMID: 34625569 PMCID: PMC8501121 DOI: 10.1038/s41531-021-00233-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 09/13/2021] [Indexed: 01/03/2023] Open
Abstract
Animal studies have indicated that increased blood-brain barrier (BBB) permeability and inflammatory cell infiltration are involved during the progression of Parkinson's disease (PD). This study used C16, a peptide that competitively binds to integrin αvβ3 and inhibits inflammatory cell infiltration, as well as angiopoietin-1 (Ang-1), an endothelial growth factor crucial for blood vessel protection, to reduce inflammation and improve the central nervous system (CNS) microenvironment in murine models of PD. The combination of C16 and Ang-1 yielded better results compared to the individual drugs alone in terms of reducing dopaminergic neuronal apoptosis, ameliorating cognitive impairment, and electrophysiological dysfunction, attenuating inflammation in the CNS microenvironment, and improving the functional disability in PD mice or rats. These results suggest neuroprotective and anti-inflammatory properties of the C16 peptide plus Ang-1 in PD.
Collapse
Affiliation(s)
- Hua-Ying Cai
- Department of Neurology, Sir Run Run Shaw Hospital, Medical College, Zhejiang University, Hangzhou, China
| | - Xiao-Xiao Fu
- Institute of Anatomy and Cell Biology, Medical College, Zhejiang University, Hangzhou, China.
| | - Hong Jiang
- Department of Electrophysiology, Sir Run Run Shaw Hospital, Medical College, Zhejiang University, Hangzhou, China
| | - Shu Han
- Institute of Anatomy and Cell Biology, Medical College, Zhejiang University, Hangzhou, China.
| |
Collapse
|
13
|
Nawaz R, Gul S, Amin R, Huma T, Al Mughairbi F. Overview of schizophrenia research and treatment in Pakistan. Heliyon 2020; 6:e05545. [PMID: 33294688 PMCID: PMC7695967 DOI: 10.1016/j.heliyon.2020.e05545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/12/2020] [Accepted: 11/16/2020] [Indexed: 11/26/2022] Open
Abstract
Mental health is the most neglected health sector in Pakistan, and the majority of citizens have limited or no access to primary and secondary psychiatric services. The incidence of schizophrenia (SCZ) has increased at an alarming rate in Pakistan, relative to that of other psychiatric disorders. While numerous studies have investigated SCZ, few have addressed the issue about the Pakistani population. In the present review, the researchers discuss current data integral to the prevalence, pathophysiology, and molecular genetics of SCZ; treatment approaches to the disease; and patient responses to drugs prescribed for SCZ in Pakistan. Most Pakistani patients exhibit poor responses to antipsychotic drugs. Based on our review, the researchers hypothesize that genetic dissimilarities between Pakistani and Western populations contribute to such poor responses. Consequently, an understanding of such genetic differences and the provision of personalized treatment may simultaneously aid in improving SCZ treatment in Pakistan.
Collapse
Affiliation(s)
- Rukhsana Nawaz
- Department of Clinical Psychology, College of Medicine & Health Sciences, UAE University 15551 Al Ain, United Arab Emirates
| | - Saima Gul
- Department of Rehabilitation Science, Faculty of Pharmacy & Allied Health Sciences, Shifa Tameer e Millat University, Islamabad, Pakistan
| | - Rafat Amin
- Department of Pathology, Institute of Biological, Biochemical and Pharmaceutical Sciences, Dow University of Health Sciences, Ojha Campus, Karachi, Pakistan
| | | | - Fadwa Al Mughairbi
- Department of Clinical Psychology, College of Medicine & Health Sciences, UAE University 15551 Al Ain, United Arab Emirates
| |
Collapse
|
14
|
Zafar S, Jabeen I. Molecular Dynamic Simulations to Probe Stereoselectivity of Tiagabine Binding with Human GAT1. Molecules 2020; 25:molecules25204745. [PMID: 33081136 PMCID: PMC7587590 DOI: 10.3390/molecules25204745] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/08/2020] [Accepted: 10/12/2020] [Indexed: 12/11/2022] Open
Abstract
The human gamma aminobutyric acid transporter subtype 1 (hGAT1) located in the nerve terminals is known to catalyze the neuronal function by the electrogenic reuptake of γ-aminobutyric acid (GABA) with the co-transport of Na+ and Cl− ions. In the past, there has been a major research drive focused on the dysfunction of hGAT1 in several neurological disorders. Thus, hGAT1 of the GABAergic system has been well established as an attractive target for such diseased conditions. Till date, there are various reports about stereo selectivity of –COOH group of tiagabine, a Food and Drug Administration (FDA)-approved hGAT1-selective antiepileptic drug. However, the effect of the stereochemistry of the protonated –NH group of tiagabine has never been scrutinized. Therefore, in this study, tiagabine has been used to explore the binding hypothesis of different enantiomers of tiagabine. In addition, the impact of axial and equatorial configuration of the–COOH group attached at the meta position of the piperidine ring of tiagabine enantiomers was also investigated. Further, the stability of the finally selected four hGAT1–tiagabine enantiomers namely entries 3, 4, 6, and 9 was evaluated through 100 ns molecular dynamics (MD) simulations for the selection of the best probable tiagabine enantiomer. The results indicate that the protonated –NH group in the R-conformation and the –COOH group of Tiagabine in the equatorial configuration of entry 4 provide maximum strength in terms of interaction within the hGAT1 binding pocket to prevent the change in hGAT1 conformational state, i.e., from open-to-out to open-to-in as compared to other selected tiagabine enantiomers 3, 6, and 9.
Collapse
|
15
|
Jiang S, Zhou D, Wang YY, Jia P, Wan C, Li X, He G, Cao D, Jiang X, Kendler KS, Tsuang M, Mize T, Wu JS, Lu Y, He L, Chen J, Zhao Z, Chen X. Identification of de novo mutations in prenatal neurodevelopment-associated genes in schizophrenia in two Han Chinese patient-sibling family-based cohorts. Transl Psychiatry 2020; 10:307. [PMID: 32873781 PMCID: PMC7463022 DOI: 10.1038/s41398-020-00987-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 08/01/2020] [Accepted: 08/10/2020] [Indexed: 12/31/2022] Open
Abstract
Schizophrenia (SCZ) is a severe psychiatric disorder with a strong genetic component. High heritability of SCZ suggests a major role for transmitted genetic variants. Furthermore, SCZ is also associated with a marked reduction in fecundity, leading to the hypothesis that alleles with large effects on risk might often occur de novo. In this study, we conducted whole-genome sequencing for 23 families from two cohorts with unaffected siblings and parents. Two nonsense de novo mutations (DNMs) in GJC1 and HIST1H2AD were identified in SCZ patients. Ten genes (DPYSL2, NBPF1, SDK1, ZNF595, ZNF718, GCNT2, SNX9, AACS, KCNQ1, and MSI2) were found to carry more DNMs in SCZ patients than their unaffected siblings by burden test. Expression analyses indicated that these DNM implicated genes showed significantly higher expression in prefrontal cortex in prenatal stage. The DNM in the GJC1 gene is highly likely a loss function mutation (pLI = 0.94), leading to the dysregulation of ion channel in the glutamatergic excitatory neurons. Analysis of rare variants in independent exome sequencing dataset indicates that GJC1 has significantly more rare variants in SCZ patients than in unaffected controls. Data from genome-wide association studies suggested that common variants in the GJC1 gene may be associated with SCZ and SCZ-related traits. Genes co-expressed with GJC1 are involved in SCZ, SCZ-associated pathways, and drug targets. These evidences suggest that GJC1 may be a risk gene for SCZ and its function may be involved in prenatal and early neurodevelopment, a vulnerable period for developmental disorders such as SCZ.
Collapse
Affiliation(s)
- Shan Jiang
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Daizhan Zhou
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yin-Ying Wang
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Peilin Jia
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Chunling Wan
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xingwang Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guang He
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dongmei Cao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoqian Jiang
- School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Kenneth S Kendler
- Virginia Institute of Psychiatric and Behavioral Genetics, Medical College of Virginia and Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Ming Tsuang
- Department of Psychiatry, University of California at San Diego, San Diego, CA, 92093, USA
| | - Travis Mize
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO, 80309, USA
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Jain-Shing Wu
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA
| | - Yimei Lu
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA
| | - Lin He
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China.
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Institute of Neuropsychiatric Science and Systems Biological Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Jingchun Chen
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA.
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, 77030, USA.
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
| | | |
Collapse
|
16
|
Frajman A, Maggio N, Muler I, Haroutunian V, Katsel P, Yitzhaky A, Weiser M, Hertzberg L. Gene expression meta-analysis reveals the down-regulation of three GABA receptor subunits in the superior temporal gyrus of patients with schizophrenia. Schizophr Res 2020; 220:29-37. [PMID: 32376074 DOI: 10.1016/j.schres.2020.04.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 03/17/2020] [Accepted: 04/19/2020] [Indexed: 11/30/2022]
Abstract
One of the main theories accounting for the underlying pathophysiology of schizophrenia posits alterations in GABAergic neurotransmission. While previous gene expression studies of postmortem brain samples typically report the down-regulation of GABA related genes in schizophrenia, the results are often inconsistent and not uniform across studies. We performed a systematic gene expression analysis of 22 GABA related genes in postmortem superior temporal gyrus (STG) samples of 19 elderly subjects with schizophrenia (mean age: 77) and 14 matched controls from the Icahn school of Medicine at Mount Sinai (MSSM) cohort. To test the validity and robustness of the resulting differentially expressed genes, we then conducted a meta-analysis of the MSSM and an independent dataset from the Stanley Consortium of 14 STG samples of relatively young subjects with schizophrenia (mean age: 44) and 15 matched controls. For the first time, the findings showed the down-regulation of three GABA-receptor subunits of type A, GABRA1, GABRA2 and GABRB3, in the STG samples of subjects with schizophrenia, in both the elderly and the relatively young patients. These findings, as well as previous results, lend weight to the notion of a common upstream pathology that alters GABAergic neurotransmission in schizophrenia. GABRA1, GABRA2 and GABRB3 down-regulation may contribute to the pathophysiology and clinical manifestations of schizophrenia through altered oscillation synchronization in the STG.
Collapse
Affiliation(s)
- Assaf Frajman
- Sackler School of Medicine, Tel-Aviv University, Israel
| | - Nicola Maggio
- Department of Neurology, The Chaim Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel; Department of Neurology and Neurosurgery, Sackler Faculty of Medicine, Sagol School of Neuroscience, Tel-Aviv University, Israel
| | - Inna Muler
- Childhood Leukemia Research Institute, Department of Pediatric Hemato-Oncology, Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel; Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Vahram Haroutunian
- Department of Psychiatry, The Icahn School of Medicine at Mount Sinai Hospital, New York, NY, USA; Department of Psychiatry (MIRECC), James J. Peters VA Medical Center, Bronx, NY, USA
| | - Pavel Katsel
- Department of Psychiatry, The Icahn School of Medicine at Mount Sinai Hospital, New York, NY, USA
| | - Assif Yitzhaky
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel
| | - Mark Weiser
- Department of Psychiatry, Chaim Sheba Medical Center, Ramat-Gan and the Sackler School of Medicine, Tel-Aviv University, Israel
| | - Libi Hertzberg
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel; Shalvata Mental Health Center, Affiliated with the Sackler School of Medicine, Tel-Aviv University, Israel.
| |
Collapse
|
17
|
Jatczak-Śliwa M, Kisiel M, Czyzewska MM, Brodzki M, Mozrzymas JW. GABA A Receptor β 2E155 Residue Located at the Agonist-Binding Site Is Involved in the Receptor Gating. Front Cell Neurosci 2020; 14:2. [PMID: 32116555 PMCID: PMC7026498 DOI: 10.3389/fncel.2020.00002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 01/06/2020] [Indexed: 12/02/2022] Open
Abstract
GABAA receptors (GABAARs) play a crucial role in mediating inhibition in the adult brain. In spite of progress in describing (mainly) the static structures of this receptor, the molecular mechanisms underlying its activation remain unclear. It is known that in the α1β2γ2L receptors, the mutation of the β2E155 residue, at the orthosteric binding site, strongly impairs the receptor activation, but the molecular and kinetic mechanisms of this effect remain elusive. Herein, we investigated the impact of the β2E155C mutation on binding and gating of the α1β2γ2L receptor. To this end, we combined the macroscopic and single-channel analysis, the use of different agonists [GABA and muscimol (MSC)] and flurazepam (FLU) as a modulator. As expected, the β2E155C mutation caused a vast right shift of the dose–response (for GABA and MSC) and, additionally, dramatic changes in the time course of current responses, indicative of alterations in gating. Mutated receptors showed reduced maximum open probability and enhanced receptor spontaneous activity. Model simulations for macroscopic currents revealed that the primary effect of the mutation was the downregulation of the preactivation (flipping) rate. Experiments with MSC and FLU further confirmed a reduction in the preactivation rate. Our single-channel analysis revealed the mutation impact mainly on the second component in the shut times distributions. Based on model simulations, this finding further confirms that this mutation affects mostly the preactivation transition, supporting thus the macroscopic data. Altogether, we provide new evidence that the β2E155 residue is involved in both binding and gating (primarily preactivation).
Collapse
Affiliation(s)
- Magdalena Jatczak-Śliwa
- Laboratory of Neuroscience, Department of Biophysics, Wrocław Medical University, Wrocław, Poland.,Department of Molecular Physiology and Neurobiology, University of Wrocław, Wrocław, Poland
| | - Magdalena Kisiel
- Laboratory of Neuroscience, Department of Biophysics, Wrocław Medical University, Wrocław, Poland
| | | | - Marek Brodzki
- Laboratory of Neuroscience, Department of Biophysics, Wrocław Medical University, Wrocław, Poland.,Department of Molecular Physiology and Neurobiology, University of Wrocław, Wrocław, Poland
| | | |
Collapse
|
18
|
Shaw AD, Knight L, Freeman TCA, Williams GM, Moran RJ, Friston KJ, Walters JTR, Singh KD. Oscillatory, Computational, and Behavioral Evidence for Impaired GABAergic Inhibition in Schizophrenia. Schizophr Bull 2020; 46:345-353. [PMID: 31219602 PMCID: PMC7442335 DOI: 10.1093/schbul/sbz066] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The dysconnection hypothesis of schizophrenia (SZ) proposes that psychosis is best understood in terms of aberrant connectivity. Specifically, it suggests that dysconnectivity arises through aberrant synaptic modulation associated with deficits in GABAergic inhibition, excitation-inhibition balance and disturbances of high-frequency oscillations. Using a computational model combined with a graded-difficulty visual orientation discrimination paradigm, we demonstrate that, in SZ, perceptual performance is determined by the balance of excitation-inhibition in superficial cortical layers. Twenty-eight individuals with a DSM-IV diagnosis of SZ, and 30 age- and gender-matched healthy controls participated in a psychophysics orientation discrimination task, a visual grating magnetoencephalography (MEG) recording, and a magnetic resonance spectroscopy (MRS) scan for GABA. Using a neurophysiologically informed model, we quantified group differences in GABA, gamma measures, and the predictive validity of model parameters for orientation discrimination in the SZ group. MEG visual gamma frequency was reduced in SZ, with lower peak frequency associated with more severe negative symptoms. Orientation discrimination performance was impaired in SZ. Dynamic causal modeling of the MEG data showed that local synaptic connections were reduced in SZ and local inhibition correlated negatively with the severity of negative symptoms. The effective connectivity between inhibitory interneurons and superficial pyramidal cells predicted orientation discrimination performance within the SZ group; consistent with graded, behaviorally relevant, disease-related changes in local GABAergic connections. Occipital GABA levels were significantly reduced in SZ but did not predict behavioral performance or oscillatory measures. These findings endorse the importance, and behavioral relevance, of GABAergic synaptic disconnection in schizophrenia that underwrites excitation-inhibition balance.
Collapse
Affiliation(s)
- Alexander D Shaw
- CUBRIC, School of Psychology, College of Biomedical and Life Sciences, Cardiff University, Cardiff, UK
| | - Laura Knight
- CUBRIC, School of Psychology, College of Biomedical and Life Sciences, Cardiff University, Cardiff, UK,MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Tom C A Freeman
- CUBRIC, School of Psychology, College of Biomedical and Life Sciences, Cardiff University, Cardiff, UK
| | - Gemma M Williams
- CUBRIC, School of Psychology, College of Biomedical and Life Sciences, Cardiff University, Cardiff, UK
| | | | | | - James T R Walters
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Krish D Singh
- CUBRIC, School of Psychology, College of Biomedical and Life Sciences, Cardiff University, Cardiff, UK,To whom correspondence should be addressed; CUBRIC, School of Psychology, College of Biomedical and Life Sciences, Cardiff University, Maindy Road, Cardiff CF24 4HQ, UK; tel: +44-(0)-2920-874690, fax: +44 (0)29 2087 4679, e-mail:
| |
Collapse
|
19
|
Oprisan SA, Clementsmith X, Tompa T, Lavin A. Dopamine receptor antagonists effects on low-dimensional attractors of local field potentials in optogenetic mice. PLoS One 2019; 14:e0223469. [PMID: 31618234 PMCID: PMC6795423 DOI: 10.1371/journal.pone.0223469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 09/16/2019] [Indexed: 11/18/2022] Open
Abstract
The goal of this study was to investigate the effects of acute cocaine injection or dopamine (DA) receptor antagonists on the medial prefrontal cortex (mPFC) gamma oscillations and their relationship to short term neuroadaptation that may mediate addiction. For this purpose, optogenetically evoked local field potentials (LFPs) in response to a brief 10 ms laser light pulse were recorded from 17 mice. D1-like receptor antagonist SCH 23390 or D2-like receptor antagonist sulpiride, or both, were administered either before or after cocaine. A Euclidian distance-based dendrogram classifier separated the 100 trials for each animal in disjoint clusters. When baseline and DA receptor antagonists trials were combined in a single trial, a minimum of 20% overlap occurred in some dendrogram clusters, which suggests a possible common, invariant, dynamic mechanism shared by both baseline and DA receptor antagonists data. The delay-embedding method of neural activity reconstruction was performed using the correlation time and mutual information to determine the lag/correlation time of LFPs and false nearest neighbors to determine the embedding dimension. We found that DA receptor antagonists applied before cocaine cancels out the effect of cocaine and leaves the lag time distributions at baseline values. On the other hand, cocaine applied after DA receptor antagonists shifts the lag time distributions to longer durations, i.e. increase the correlation time of LFPs. Fourier analysis showed that a reasonable accurate decomposition of the LFP data can be obtained with a relatively small (less than ten) Fourier coefficients.
Collapse
Affiliation(s)
- Sorinel A. Oprisan
- Department of Physics and Astronomy, College of Charleston, Charleston, SC, United States of America
- * E-mail:
| | - Xandre Clementsmith
- Department of Computer Science, College of Charleston, Charleston, SC, United States of America
| | - Tamas Tompa
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States of America
- Faculty of Healthcare, Department of Preventive Medicine, University of Miskolc, Miskolc, Hungary
| | - Antonieta Lavin
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States of America
| |
Collapse
|
20
|
Taylor SF, Grove TB, Ellingrod VL, Tso IF. The Fragile Brain: Stress Vulnerability, Negative Affect and GABAergic Neurocircuits in Psychosis. Schizophr Bull 2019; 45:1170-1183. [PMID: 31150555 PMCID: PMC6811817 DOI: 10.1093/schbul/sbz046] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Persons with schizophrenia exhibit sensitivity to stress and negative affect (NA), both strongly correlated with poor functional outcome. This theoretical review suggests that NA reflects a "fragile brain," ie, vulnerable to stress, including events not experienced as stressful by healthy individuals. Based on postmortem evidence of altered gamma-aminobutyric acid (GABA) function in parvalbumin positive interneurons (PVI), animal models of PVI abnormalities and neuroimaging data with GABAergic challenge, it is suggested that GABAergic disruptions weaken cortical regions, which leads to stress vulnerability and excessive NA. Neurocircuits that respond to stressful and salient environmental stimuli, such as the hypothalamic-pituitary-adrenal axis and the amygdala, are highly dysregulated in schizophrenia, exhibiting hypo- and hyper-activity. PVI abnormalities in lateral prefrontal cortex and hippocampus have been hypothesized to affect cognitive function and positive symptoms, respectively; in the medial frontal cortex (dorsal anterior cingulate cortex and dorsal medial prefrontal cortex), these abnormalities may lead to vulnerability to stress, NA and dysregulation of stress responsive systems. Given that postmortem PVI disruptions have been identified in other conditions, such as bipolar disorder and autism, stress vulnerability may reflect a transdiagnostic dimension of psychopathology.
Collapse
Affiliation(s)
- Stephan F Taylor
- Department of Psychiatry, University of Michigan, Rachel Upjohn Building, Ann Arbor, MI,To whom correspondence should be addressed; tel: 734-936-4955, fax: 734-936-7868, e-mail:
| | - Tyler B Grove
- Department of Psychiatry, University of Michigan, Rachel Upjohn Building, Ann Arbor, MI
| | | | - Ivy F Tso
- Department of Psychiatry, University of Michigan, Rachel Upjohn Building, Ann Arbor, MI
| |
Collapse
|
21
|
Ford TC, Crewther DP, Abu-Akel A. Psychosocial deficits across autism and schizotypal spectra are interactively modulated by excitatory and inhibitory neurotransmission. AUTISM : THE INTERNATIONAL JOURNAL OF RESEARCH AND PRACTICE 2019; 24:364-373. [PMID: 31339349 DOI: 10.1177/1362361319866030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Continued human and animal research has strengthened evidence for aberrant excitatory-inhibitory neural processes underlying autism and schizophrenia spectrum disorder psychopathology, particularly psychosocial functioning, in clinical and nonclinical populations. We investigated the extent to which autistic traits and schizotypal dimensions were modulated by the interactive relationship between excitatory glutamate and inhibitory GABA neurotransmitter concentrations in the social processing area of the superior temporal cortex using proton magnetic resonance spectroscopy. In total, 38 non-clinical participants (20 females; age range = 18-35 years, mean (standard deviation) = 23.22 (5.52)) completed the autism spectrum quotient and schizotypal personality questionnaire, and underwent proton magnetic resonance spectroscopy to quantify glutamate and GABA concentrations in the right and left superior temporal cortex. Regression analyses revealed that glutamate and GABA interactively modulated autistic social skills and schizotypal interpersonal features (pcorr < 0.05), such that those with high right superior temporal cortex glutamate but low GABA concentrations exhibited poorer social and interpersonal skills. These findings evidence an excitation-inhibition imbalance that is specific to psychosocial features across the autism and schizophrenia spectra.
Collapse
Affiliation(s)
- Talitha C Ford
- Deakin University, Australia.,Swinburne University of Technology, Australia
| | | | | |
Collapse
|
22
|
Zhang X, Green MV, Thayer SA. HIV gp120-induced neuroinflammation potentiates NMDA receptors to overcome basal suppression of inhibitory synapses by p38 MAPK. J Neurochem 2019; 148:499-515. [PMID: 30520043 DOI: 10.1111/jnc.14640] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 11/21/2018] [Accepted: 11/27/2018] [Indexed: 12/18/2022]
Abstract
HIV-associated neurocognitive disorder affects about half of HIV-infected patients. HIV impairs neuronal function through indirect mechanisms mainly mediated by inflammatory cytokines and neurotoxic viral proteins, such as the envelope protein gp120. HIV gp120 elicits a neuroinflammatory response that potentiates NMDA receptor function and induces the loss of excitatory synapses. How gp120 influences neuronal inhibition remains unknown. In this study, we expressed a green fluorescent protein (GFP)-tagged recombinant antibody-like protein that binds to the post-synaptic scaffolding protein gephyrin to label inhibitory synapses in living neurons. Treatment with 600 pM gp120 for 24 h increased the number of labeled inhibitory synapses. HIV gp120 evoked the release of interleukin-1β (IL-1β) from microglia to activate IL-1 receptors on neurons. Subsequent activation of the tyrosine kinase Src and GluN2A-containing NMDA receptors increased the number of inhibitory synapses via a process that required protein synthesis. In naïve cultures, inhibition of neuronal p38 mitogen-activated protein kinase (p38 MAPK) increased the number of inhibitory synapses suggesting that p38 MAPK produces a basal suppression of inhibitory synapses that is overcome in the presence of gp120. Direct activation of a mutant form of p38 MAPK expressed in neurons mimicked basal suppression of inhibitory synapses. This study shows for the first time that gp120-induced neuroinflammation increases the number of inhibitory synapses and that this increase overcomes a basal suppression of synaptic inhibition. Increased inhibition may be an adaptive mechanism enabling neurons to counteract excess excitatory input in order to maintain network homeostasis. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/.
Collapse
Affiliation(s)
- Xinwen Zhang
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Matthew V Green
- Graduate Program in Neuroscience, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Stanley A Thayer
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota, USA.,Graduate Program in Neuroscience, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| |
Collapse
|
23
|
Ford TC, Abu-Akel A, Crewther DP. The association of excitation and inhibition signaling with the relative symptom expression of autism and psychosis-proneness: Implications for psychopharmacology. Prog Neuropsychopharmacol Biol Psychiatry 2019; 88:235-242. [PMID: 30075170 DOI: 10.1016/j.pnpbp.2018.07.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 07/09/2018] [Accepted: 07/29/2018] [Indexed: 10/28/2022]
Abstract
The underlying mechanisms of autism and schizophrenia are poorly understood, partly due to a lack of dimension-specific research. Aberrant excitatory and inhibitory neurotransmission are implicated in both conditions, particularly in social dysfunction. This study investigates the extent to which the degree of autistic tendency and psychosis-proneness exclusively and interactively predict excitatory and inhibitory neurotransmitter concentrations in the superior temporal cortex (STC). In 38 adults (18 male, 18-40 years), we obtained autistic tendencies (Autism-Spectrum Quotient [AQ]) and psychosis-proneness scores (Schizotypal Personality Questionnaire [PP]); magnetic resonance spectroscopy (MRS) quantified glutamate and GABA+ concentrations from the STC. Results demonstrated a negative AQ/PP interaction with glutamate concentration for the left STC voxel, where PP increased with glutamate for average AQ, while AQ decreased with glutamate for average-high PP. There was a negative AQ/PP interaction with glutamate/GABA+ ratio for the right STC, AQ increasing with glutamate/GABA+ for low-average PP, while PP decreased with glutamate/GABA+ for high AQ. Consistent with animal studies, we also reveal that overall reduced glutamate/GABA+ ratio might be precipitated by increased right hemisphere GABA+ concentrations. These findings illustrate the importance of considering the concurrent effects of autism and psychosis dimensions on understanding the pathophysiological mechanisms implicated in either condition, and can advance psychopharmacological research into better treatment options for patients.
Collapse
Affiliation(s)
- Talitha C Ford
- Centre for Human Psychopharmacology, Arts and Design, Swinburne University of Technology, Melbourne, Victoria, Australia.
| | - Ahmad Abu-Akel
- Institute of Psychology, University of Lausanne, Lausanne, Switzerland
| | - David P Crewther
- Centre for Human Psychopharmacology, Arts and Design, Swinburne University of Technology, Melbourne, Victoria, Australia
| |
Collapse
|
24
|
O'Donovan SM, Franco-Villanueva A, Ghisays V, Caldwell JL, Haroutunian V, Privette Vinnedge LM, McCullumsmith RE, Solomon MB. Sex differences in DEK expression in the anterior cingulate cortex and its association with dementia severity in schizophrenia. Schizophr Res 2018; 202:188-194. [PMID: 30017458 PMCID: PMC6289789 DOI: 10.1016/j.schres.2018.07.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 05/08/2018] [Accepted: 07/01/2018] [Indexed: 01/23/2023]
Abstract
DEK is a chromatin-remodeling phosphoprotein found in most human tissues, but its expression and function in the human brain is largely unknown. DEK depletion in vitro induces cellular and molecular anomalies associated with cognitive impairment, including down-regulation of the canonical Wnt/β-catenin signaling pathway. ToppGene analyses link DEK loss to genes associated with various dementias and age-related cognitive decline. To examine the role of DEK in cognitive impairment in severe mental illness, DEK protein expression was assayed by immunoblot in the anterior cingulate cortex (ACC) of subjects with schizophrenia. Cognitive impairment is a core feature of schizophrenia and cognitive function in subjects was assessed antemortem using the clinical dementia rating (CDR) scale. DEK protein expression was not significantly altered in schizophrenia (n = 20) compared to control subjects (n = 20). Further analysis revealed significant reduction in DEK protein expression in women with schizophrenia, and a significant increase in expression in men with schizophrenia, relative to their same-sex controls. DEK protein expression levels were inversely correlated with dementia severity in women. Conversely, in men, DEK protein expression and dementia severity were positively correlated. Notably, there was no sex difference in DEK protein expression in the control group, suggesting that this sex difference is specific to schizophrenia and not due to inherent differences in DEK expression between males and females. These results suggest a novel, sex-specific role for DEK in cognitive performance and highlight a putative sex-specific link between central nervous system DEK protein expression and a neuropsychiatric disease that is commonly associated with cognitive impairment.
Collapse
Affiliation(s)
- Sinead M O'Donovan
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH 45237, USA
| | - Ana Franco-Villanueva
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH 45237, USA
| | - Valentina Ghisays
- Department of Psychology Experimental Psychology Graduate Program University of Cincinnati, Cincinnati, OH 45221, USA
| | - Jody L Caldwell
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH 45237, USA
| | - Vahraim Haroutunian
- Department of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lisa M Privette Vinnedge
- Division of Oncology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Robert E McCullumsmith
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH 45237, USA
| | - Matia B Solomon
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH 45237, USA; Department of Psychology Experimental Psychology Graduate Program University of Cincinnati, Cincinnati, OH 45221, USA.
| |
Collapse
|
25
|
Matrisciano F, Dong E, Nicoletti F, Guidotti A. Epigenetic Alterations in Prenatal Stress Mice as an Endophenotype Model for Schizophrenia: Role of Metabotropic Glutamate 2/3 Receptors. Front Mol Neurosci 2018; 11:423. [PMID: 30564095 PMCID: PMC6289213 DOI: 10.3389/fnmol.2018.00423] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 10/30/2018] [Indexed: 01/13/2023] Open
Abstract
Mice subjected to prenatal restraint stress (PRS mice) showed biochemical and behavioral abnormalities consistent with a schizophrenia-like phenotype (Matrisciano et al., 2016). PRS mice are characterized by increased DNA-methyltransferase 1 (DNMT1) and ten-eleven methylcytosine dioxygenase 1 (TET1) expression levels and exhibit an enrichment of 5-methylcytosine (5MC) and 5-hydroxymethylcytosine (5HMC) at neocortical GABAergic and glutamatergic gene promoters. Activation of group II metabotropic glutamate receptors (mGlu2 and−3 receptors) showed a potential epigenetically-induced antipsychotic activity by reversing the molecular and behavioral changes observed in PRS mice. This effect was most likely caused by the increase in the expression of growth arrest and DNA damage 45-β (Gadd45-β) protein, a molecular player of DNA demethylation, induced by the activation of mGlu2/3 receptors. This effect was mimicked by clozapine and valproate but not by haloperidol. Treatment with the selective mGlu2/3 receptors agonist LY379268 also increased the amount of Gadd45-β bound to specific promoter regions of reelin, BDNF, and GAD67. A meta-analysis of several clinical trials showed that treatment with an orthosteric mGlu2/3 receptor agonist improved both positive and negative symptoms of schizophrenia, but only in patients who were early-in-disease and had not been treated with atypical antipsychotic drugs (Kinon et al., 2015). Our findings show that PRS mice are valuable model for the study of epigenetic mechanisms involved in the pathogenesis of schizophrenia and support the hypothesis that pharmacological modulation of mGlu2/3 receptors could impact the early phase of schizophrenia and related neurodevelopmental disorders by regulating epigenetic processes that lie at the core of the disorders.
Collapse
Affiliation(s)
- Francesco Matrisciano
- Department of Psychiatry, Psychiatric Institute, College of Medicine, University of Illinois Chicago, Chicago, IL, United States
| | - Erbo Dong
- Department of Psychiatry, Center for Alcohol Research in Epigenetics College of Medicine, University of Illinois Chicago, Chicago, IL, United States
| | - Ferdinando Nicoletti
- Department of Physiology and Pharmacology, University of Rome "Sapienza", Rome, Italy.,IRCCS, Neuromed, Pozzilli, Italy
| | - Alessandro Guidotti
- Department of Psychiatry, Psychiatric Institute, College of Medicine, University of Illinois Chicago, Chicago, IL, United States.,Department of Psychiatry, Center for Alcohol Research in Epigenetics College of Medicine, University of Illinois Chicago, Chicago, IL, United States
| |
Collapse
|
26
|
Büki A, Horvath G, Benedek G, Ducza E, Kekesi G. Impaired GAD1 expression in schizophrenia‐related WISKET rat model with sex‐dependent aggressive behavior and motivational deficit. GENES BRAIN AND BEHAVIOR 2018; 18:e12507. [DOI: 10.1111/gbb.12507] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 07/24/2018] [Accepted: 07/24/2018] [Indexed: 01/10/2023]
Affiliation(s)
- A. Büki
- Department of Physiology, Faculty of MedicineUniversity of Szeged Szeged Hungary
| | - G. Horvath
- Department of Physiology, Faculty of MedicineUniversity of Szeged Szeged Hungary
| | - G. Benedek
- Department of Physiology, Faculty of MedicineUniversity of Szeged Szeged Hungary
| | - E. Ducza
- Department of Pharmacodynamics and BiopharmacyFaculty of Pharmacy, University of Szeged Szeged Hungary
| | - G. Kekesi
- Department of Physiology, Faculty of MedicineUniversity of Szeged Szeged Hungary
| |
Collapse
|
27
|
Stępnicki P, Kondej M, Kaczor AA. Current Concepts and Treatments of Schizophrenia. Molecules 2018; 23:molecules23082087. [PMID: 30127324 PMCID: PMC6222385 DOI: 10.3390/molecules23082087] [Citation(s) in RCA: 309] [Impact Index Per Article: 44.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 08/10/2018] [Accepted: 08/18/2018] [Indexed: 01/04/2023] Open
Abstract
Schizophrenia is a debilitating mental illness which involves three groups of symptoms, i.e., positive, negative and cognitive, and has major public health implications. According to various sources, it affects up to 1% of the population. The pathomechanism of schizophrenia is not fully understood and current antipsychotics are characterized by severe limitations. Firstly, these treatments are efficient for about half of patients only. Secondly, they ameliorate mainly positive symptoms (e.g., hallucinations and thought disorders which are the core of the disease) but negative (e.g., flat affect and social withdrawal) and cognitive (e.g., learning and attention disorders) symptoms remain untreated. Thirdly, they involve severe neurological and metabolic side effects and may lead to sexual dysfunction or agranulocytosis (clozapine). It is generally agreed that the interactions of antipsychotics with various neurotransmitter receptors are responsible for their effects to treat schizophrenia symptoms. In particular, several G protein-coupled receptors (GPCRs), mainly dopamine, serotonin and adrenaline receptors, are traditional molecular targets for antipsychotics. Comprehensive research on GPCRs resulted in the exploration of novel important signaling mechanisms of GPCRs which are crucial for drug discovery: intentionally non-selective multi-target compounds, allosteric modulators, functionally selective compounds and receptor oligomerization. In this review, we cover current hypotheses of schizophrenia, involving different neurotransmitter systems, discuss available treatments and present novel concepts in schizophrenia and its treatment, involving mainly novel mechanisms of GPCRs signaling.
Collapse
Affiliation(s)
- Piotr Stępnicki
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances, Faculty of Pharmacy with Division of Medical Analytics, Medical University of Lublin, 4A Chodzki St., PL-20093 Lublin, Poland.
| | - Magda Kondej
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances, Faculty of Pharmacy with Division of Medical Analytics, Medical University of Lublin, 4A Chodzki St., PL-20093 Lublin, Poland.
| | - Agnieszka A Kaczor
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances, Faculty of Pharmacy with Division of Medical Analytics, Medical University of Lublin, 4A Chodzki St., PL-20093 Lublin, Poland.
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1, P.O. Box 1627, FI-70211 Kuopio, Finland.
| |
Collapse
|
28
|
Zhang T, Li J, Yu H, Shi Y, Li Z, Wang L, Wang Z, Lu T, Wang L, Yue W, Zhang D. Meta-analysis of GABRB2 polymorphisms and the risk of schizophrenia combined with GWAS data of the Han Chinese population and psychiatric genomics consortium. PLoS One 2018; 13:e0198690. [PMID: 29894498 PMCID: PMC5997335 DOI: 10.1371/journal.pone.0198690] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 05/23/2018] [Indexed: 12/31/2022] Open
Abstract
Schizophrenia (SCZ) is a severe psychiatric disorder with evidence of a strong genetic component in the complex etiologies. Some studies indicated that gamma-aminobutyric acid (GABA)A receptor β2 subunit gene (GABRB2) was associated with SCZ. Other studies reported a negative association. Moreover, the results of two previous meta-analyses of GABRB2 with SCZ were inconsistent and the sample sizes were limited. Therefore, an updated meta-analysis combined with genome-wide association study (GWAS) data of the Han Chinese population and Psychiatric Genomics Consortium (PGC) was performed. Available case–control and family-based genetic data were extracted from association studies, and the GWAS data were included. The findings showed no association between six single-nucleotide polymorphisms of GABRB2 (rs6556547, rs1816071, rs1816072, rs194072, rs252944, and rs187269) and SCZ in a total of 51,491 patients and 74,667 controls. The ethnic subgroup analysis revealed no significant association in Asian populations. Since the PGC data of SCZ (SCZ-PGC, 2014) contained 3 studies of Asian populations (1866 patients and 3418 controls), only the data of European samples in SCZ-PGC were used for the meta-analysis of the Caucasian population in the present study. The result still showed no association in the Caucasian population. In conclusion, the present meta-analysis on combined data from GWASs of the Han Chinese population and PGC suggested that GABRB2 polymorphisms might not be associated with SCZ.
Collapse
Affiliation(s)
- Tian Zhang
- Peking University Sixth Hospital, Beijing, China
- Peking University Institute of Mental Health, Beijing, China
- Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China
- National Clinical Research Center for Mental Disorders, (Peking University Sixth Hospital), Beijing, China
| | - Jun Li
- Peking University Sixth Hospital, Beijing, China
- Peking University Institute of Mental Health, Beijing, China
- Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China
- National Clinical Research Center for Mental Disorders, (Peking University Sixth Hospital), Beijing, China
| | - Hao Yu
- Department of Psychiatry, Jining Medical University, Jining, Shandong, China
| | - Yongyong Shi
- Affiliated Hospital of Qingdao University and Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, China
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
- Institute of Social Cognitive and Behavioral Sciences, Shanghai Jiao Tong University, Shanghai, China
- Institute of Neuropsychiatric Science and Systems Biological Medicine, Shanghai Jiao Tong University, Shanghai, China
- Department of Psychiatry, First Teaching Hospital of Xinjiang Medical University, Urumqi, China
- Changning Mental Health Center, Shanghai, China
| | - Zhiqiang Li
- Affiliated Hospital of Qingdao University and Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, China
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
- Institute of Social Cognitive and Behavioral Sciences, Shanghai Jiao Tong University, Shanghai, China
- Institute of Neuropsychiatric Science and Systems Biological Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Linyan Wang
- Peking University Sixth Hospital, Beijing, China
- Peking University Institute of Mental Health, Beijing, China
- Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China
- National Clinical Research Center for Mental Disorders, (Peking University Sixth Hospital), Beijing, China
| | - Ziqi Wang
- Peking University Sixth Hospital, Beijing, China
- Peking University Institute of Mental Health, Beijing, China
- Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China
- National Clinical Research Center for Mental Disorders, (Peking University Sixth Hospital), Beijing, China
| | - Tianlan Lu
- Peking University Sixth Hospital, Beijing, China
- Peking University Institute of Mental Health, Beijing, China
- Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China
- National Clinical Research Center for Mental Disorders, (Peking University Sixth Hospital), Beijing, China
| | - Lifang Wang
- Peking University Sixth Hospital, Beijing, China
- Peking University Institute of Mental Health, Beijing, China
- Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China
- National Clinical Research Center for Mental Disorders, (Peking University Sixth Hospital), Beijing, China
- * E-mail: (LW); (WY); (DZ)
| | - Weihua Yue
- Peking University Sixth Hospital, Beijing, China
- Peking University Institute of Mental Health, Beijing, China
- Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China
- National Clinical Research Center for Mental Disorders, (Peking University Sixth Hospital), Beijing, China
- * E-mail: (LW); (WY); (DZ)
| | - Dai Zhang
- Peking University Sixth Hospital, Beijing, China
- Peking University Institute of Mental Health, Beijing, China
- Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China
- National Clinical Research Center for Mental Disorders, (Peking University Sixth Hospital), Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
- * E-mail: (LW); (WY); (DZ)
| |
Collapse
|
29
|
Chiu PW, Lui SSY, Hung KSY, Chan RCK, Chan Q, Sham PC, Cheung EFC, Mak HKF. In vivo gamma-aminobutyric acid and glutamate levels in people with first-episode schizophrenia: A proton magnetic resonance spectroscopy study. Schizophr Res 2018; 193:295-303. [PMID: 28751130 DOI: 10.1016/j.schres.2017.07.021] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 07/07/2017] [Accepted: 07/07/2017] [Indexed: 12/23/2022]
Abstract
BACKGROUND Gamma-aminobutyric acid (GABA) dysfunction and its consequent imbalance are implicated in the pathophysiology of schizophrenia. Reduced GABA production would lead to a disinhibition of glutamatergic neurons and subsequently cause a disruption of the modulation between GABAergic interneurons and glutamatergic neurons. In this study, levels of GABA, Glx (summation of glutamate and glutamine), and other metabolites in the anterior cingulate cortex were measured and compared between first-episode schizophrenia subjects and healthy controls (HC). Diagnostic potential of GABA and Glx as upstream biomarkers for schizophrenia was explored. METHODS Nineteen first-episode schizophrenia subjects and fourteen HC participated in this study. Severity of clinical symptoms of patients was measured with Positive and Negative Syndrome Scale (PANSS). Metabolites were measured using proton magnetic resonance spectroscopy, and quantified using internal water as reference. RESULTS First-episode schizophrenia subjects revealed reduced GABA and myo-inositol (mI), and increased Glx and choline (Cho), compared to HC. No significant correlation was found between metabolite levels and PANSS scores. Receiver operator characteristics analyses showed Glx had higher sensitivity and specificity (84.2%, 92.9%) compared to GABA (73.7%, 64.3%) for differentiating schizophrenia patients from HC. Combined model of both GABA and Glx revealed the best sensitivity and specificity (89.5%, 100%). CONCLUSION This study simultaneously showed reduction in GABA and elevation in Glx in first-episode schizophrenia subjects, and this might provide insights on explaining the disruption of modulation between GABAergic interneurons and glutamatergic neurons. Elevated Cho might indicate increased membrane turnover; whereas reduced mI might reflect dysfunction of the signal transduction pathway. In vivo Glx and GABA revealed their diagnostic potential for schizophrenia.
Collapse
Affiliation(s)
- P W Chiu
- Department of Diagnostic Radiology, The University of Hong Kong, Hong Kong, China; State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China
| | - Simon S Y Lui
- Castle Peak Hospital, Hong Kong, China; Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | | | - Raymond C K Chan
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China; Department of Psychiatry, The University of Hong Kong, Hong Kong, China
| | | | - P C Sham
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China; Department of Psychiatry, The University of Hong Kong, Hong Kong, China
| | | | - Henry K F Mak
- Department of Diagnostic Radiology, The University of Hong Kong, Hong Kong, China; State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China; Alzheimer's Disease Research Network, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
30
|
Memi F, Zecevic N, Radonjić N. Multiple roles of Sonic Hedgehog in the developing human cortex are suggested by its widespread distribution. Brain Struct Funct 2018; 223:2361-2375. [PMID: 29492654 PMCID: PMC5968052 DOI: 10.1007/s00429-018-1621-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 01/25/2018] [Indexed: 01/01/2023]
Abstract
Sonic Hedgehog (Shh) plays an instrumental role in brain development, fine-tuning processes such as cell proliferation, patterning, and fate specification. Although, mutations in the SHH pathway in humans are associated with various neurodevelopmental disorders, ranging from holoprosencephaly to schizophrenia, its expression pattern in the developing human brain is not well established. We now determined the previously not reported wide expression of SHH in the human fetal cerebral cortex during most of the gestation period (10–40 gestational weeks). This spatiotemporal distribution puts Shh in a position to influence the fundamental processes involved in corticogenesis. SHH expression increased during development, shifting from progenitor cells in the proliferative zones to neurons, both glutamatergic and GABAergic, and astrocytes in upper cortical compartments. Importantly, the expression of its downstream effectors and complementary receptors revealed evolutionary differences in SHH-pathway gene expression between humans and rodents.
Collapse
Affiliation(s)
- Fani Memi
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, 06030, USA. .,Department of Cell and Developmental Biology, University College London, 21 University Street, London, WC1E 6DE, UK.
| | - Nada Zecevic
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Nevena Radonjić
- Department of Psychiatry, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT, 06030, USA.
| |
Collapse
|
31
|
Zhu C, Liang M, Li Y, Feng X, Hong J, Zhou R. Involvement of Epigenetic Modifications of GABAergic Interneurons in Basolateral Amygdala in Anxiety-like Phenotype of Prenatally Stressed Mice. Int J Neuropsychopharmacol 2018; 21:570-581. [PMID: 29471396 PMCID: PMC6007574 DOI: 10.1093/ijnp/pyy006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Prenatal stress is considered a risk factor for anxiety disorder. Downregulation in the expression of GABAergic gene, that is, glutamic acid decarboxylase 67, associated with DNA methyltransferase overexpression in GABAergic neurons has been regarded as a characteristic component of anxiety disorder. Prenatal stress has an adverse effect on the development of the basolateral amygdala, which is a key region in anxiety regulation. The aim of this study is to analyze the possibility of epigenetic alterations of GABAergic neurons in the basolateral amygdala participating in prenatal stress-induced anxiety. METHODS Behavioral tests were used to explore the prenatal stress-induced anxiety behaviors of female adult mice. Real-time RT-PCR, western blot, chromatin immunoprecipitation, and electrophysiological analysis were employed to detect epigenetic changes of GABAergic system in the basolateral amygdala. RESULTS Prenatal stress mice developed an anxiety-like phenotype accompanied by a significant increase of DNA methyltransferase 1 and a reduced expression of glutamic acid decarboxylase 67 in the basolateral amygdala. Prenatal stress mice also showed the increased binding of DNA methyltransferase 1 and methyl CpG binding protein 2 to glutamic acid decarboxylase 67 promoter region. The decrease of glutamic acid decarboxylase 67 transcript was paralleled by an enrichment of 5-methylcytosine in glutamic acid decarboxylase 67 promoter regions. Electrophysiological study revealed the increase of postsynaptic neuronal excitability in the cortical-basolateral amygdala synaptic transmission of prenatal stress mice. 5-Aza-deoxycytidine treatment restored the increased synaptic transmission and anxiety-like behaviors in prenatal stress mice via improving GABAergic system. CONCLUSION The above results suggest that DNA epigenetic modifications of GABAergic interneurons in the basolateral amygdala participate in the etiology of anxiety-like phenotype in prenatal stress mice.
Collapse
Affiliation(s)
- Chunting Zhu
- Department of Physiology, Nanjing Medical University, Jiangsu, China
| | - Min Liang
- Department of Physiology, Nanjing Medical University, Jiangsu, China
| | - Yingchun Li
- Department of Physiology, Nanjing Medical University, Jiangsu, China
| | - Xuejiao Feng
- Department of Physiology, Nanjing Medical University, Jiangsu, China
| | - Juan Hong
- Department of Physiology, Nanjing Medical University, Jiangsu, China
| | - Rong Zhou
- Department of Physiology, Nanjing Medical University, Jiangsu, China,Correspondence: Rong Zhou, PhD, Department of Physiology, Nanjing Medical University, Longmian Avenue 101, Jiangning District, Nanjing City, Jiangsu Province, China 211166 ()
| |
Collapse
|
32
|
Oprisan SA, Imperatore J, Helms J, Tompa T, Lavin A. Cocaine-Induced Changes in Low-Dimensional Attractors of Local Field Potentials in Optogenetic Mice. Front Comput Neurosci 2018; 12:2. [PMID: 29445337 PMCID: PMC5797774 DOI: 10.3389/fncom.2018.00002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 01/04/2018] [Indexed: 12/13/2022] Open
Abstract
Optogenetically evoked local field potential (LFP) recorded from the medial prefrontal cortex (mPFC) of mice during basal conditions and following a systemic cocaine administration were analyzed. Blue light stimuli were delivered to mPFC through a fiber optic every 2 s and each trial was repeated 100 times. As in the previous study, we used a surrogate data method to check that nonlinearity was present in the experimental LFPs and only used the last 1.5 s of steady activity to measure the LFPs phase resetting induced by the brief 10 ms light stimulus. We found that the steady dynamics of the mPFC in response to light stimuli could be reconstructed in a three-dimensional phase space with topologically similar "8"-shaped attractors across different animals. Therefore, cocaine did not change the complexity of the recorded nonlinear data compared to the control case. The phase space of the reconstructed attractor is determined by the LFP time series and its temporally shifted versions by a multiple of some lag time. We also compared the change in the attractor shape between cocaine-injected and control using (1) dendrogram clustering and (2) Frechet distance. We found about 20% overlap between control and cocaine trials when classified using dendrogram method, which suggest that it may be possible to describe mathematically both data sets with the same model and slightly different model parameters. We also found that the lag times are about three times shorter for cocaine trials compared to control. As a result, although the phase space trajectories for control and cocaine may look similar, their dynamics is significantly different.
Collapse
Affiliation(s)
- Sorinel A Oprisan
- Department of Physics and Astronomy, College of Charleston, Charleston, SC, United States
| | - Julia Imperatore
- Department of Physics and Astronomy, College of Charleston, Charleston, SC, United States
| | - Jessica Helms
- Department of Physics and Astronomy, College of Charleston, Charleston, SC, United States
| | - Tamas Tompa
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States.,Department of Preventive Medicine, Faculty of Healthcare, University of Miskolc, Miskolc, Hungary
| | - Antonieta Lavin
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
33
|
Boschen KE, Keller SM, Roth TL, Klintsova AY. Epigenetic mechanisms in alcohol- and adversity-induced developmental origins of neurobehavioral functioning. Neurotoxicol Teratol 2018; 66:63-79. [PMID: 29305195 DOI: 10.1016/j.ntt.2017.12.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 12/11/2017] [Accepted: 12/26/2017] [Indexed: 12/13/2022]
Abstract
The long-term effects of developmental alcohol and stress exposure are well documented in both humans and non-human animal models. Damage to the brain and attendant life-long impairments in cognition and increased risk for psychiatric disorders are debilitating consequences of developmental exposure to alcohol and/or psychological stress. Here we discuss evidence for a role of epigenetic mechanisms in mediating these consequences. While we highlight some of the common ways in which stress or alcohol impact the epigenome, we point out that little is understood of the epigenome's response to experiencing both stress and alcohol exposure, though stress is a contributing factor as to why women drink during pregnancy. Advancing our understanding of this relationship is of critical concern not just for the health and well-being of individuals directly exposed to these teratogens, but for generations to come.
Collapse
Affiliation(s)
- K E Boschen
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC 27599, United States
| | - S M Keller
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, United States
| | - T L Roth
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, United States.
| | - A Y Klintsova
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, United States.
| |
Collapse
|
34
|
Večeřa J, Bártová E, Krejčí J, Legartová S, Komůrková D, Rudá-Kučerová J, Štark T, Dražanová E, Kašpárek T, Šulcová A, Dekker FJ, Szymanski W, Seiser C, Weitzer G, Mechoulam R, Micale V, Kozubek S. HDAC1 and HDAC3 underlie dynamic H3K9 acetylation during embryonic neurogenesis and in schizophrenia-like animals. J Cell Physiol 2018; 233:530-548. [PMID: 28300292 PMCID: PMC7615847 DOI: 10.1002/jcp.25914] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 03/14/2017] [Indexed: 12/21/2022]
Abstract
Although histone acetylation is one of the most widely studied epigenetic modifications, there is still a lack of information regarding how the acetylome is regulated during brain development and pathophysiological processes. We demonstrate that the embryonic brain (E15) is characterized by an increase in H3K9 acetylation as well as decreases in the levels of HDAC1 and HDAC3. Moreover, experimental induction of H3K9 hyperacetylation led to the overexpression of NCAM in the embryonic cortex and depletion of Sox2 in the subventricular ependyma, which mimicked the differentiation processes. Inducing differentiation in HDAC1-deficient mouse ESCs resulted in early H3K9 deacetylation, Sox2 downregulation, and enhanced astrogliogenesis, whereas neuro-differentiation was almost suppressed. Neuro-differentiation of (wt) ESCs was characterized by H3K9 hyperacetylation that was associated with HDAC1 and HDAC3 depletion. Conversely, the hippocampi of schizophrenia-like animals showed H3K9 deacetylation that was regulated by an increase in both HDAC1 and HDAC3. The hippocampi of schizophrenia-like brains that were treated with the cannabinoid receptor-1 inverse antagonist AM251 expressed H3K9ac at the level observed in normal brains. Together, the results indicate that co-regulation of H3K9ac by HDAC1 and HDAC3 is important to both embryonic brain development and neuro-differentiation as well as the pathophysiology of a schizophrenia-like phenotype.
Collapse
MESH Headings
- Acetylation
- Animals
- Antipsychotic Agents/pharmacology
- Brain/drug effects
- Brain/embryology
- Brain/enzymology
- Brain/pathology
- Cannabinoid Receptor Antagonists/pharmacology
- Disease Models, Animal
- Epigenesis, Genetic
- Gene Expression Regulation, Developmental
- Gestational Age
- Histone Deacetylase 1/antagonists & inhibitors
- Histone Deacetylase 1/genetics
- Histone Deacetylase 1/metabolism
- Histone Deacetylase Inhibitors/pharmacology
- Histone Deacetylases/genetics
- Histone Deacetylases/metabolism
- Histones/metabolism
- Methylazoxymethanol Acetate
- Mice, Inbred C57BL
- Neural Cell Adhesion Molecules/genetics
- Neural Cell Adhesion Molecules/metabolism
- Neurogenesis/drug effects
- Neurons/drug effects
- Neurons/enzymology
- Neurons/pathology
- Protein Processing, Post-Translational
- Rats, Sprague-Dawley
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Receptor, Cannabinoid, CB1/metabolism
- SOXB1 Transcription Factors/genetics
- SOXB1 Transcription Factors/metabolism
- Schizophrenia/chemically induced
- Schizophrenia/drug therapy
- Schizophrenia/enzymology
- Schizophrenia/genetics
- Signal Transduction
- Time Factors
Collapse
Affiliation(s)
- Josef Večeřa
- Faculty of Science, Department of Experimental Biology, Masaryk University, Brno, Czech Republic
| | - Eva Bártová
- Institute of Biophysics of the Czech Academy of Sciences, v.v.i., Brno, Czech Republic
| | - Jana Krejčí
- Institute of Biophysics of the Czech Academy of Sciences, v.v.i., Brno, Czech Republic
| | - Soňa Legartová
- Institute of Biophysics of the Czech Academy of Sciences, v.v.i., Brno, Czech Republic
| | - Denisa Komůrková
- Institute of Biophysics of the Czech Academy of Sciences, v.v.i., Brno, Czech Republic
| | - Jana Rudá-Kučerová
- Faculty of Medicine, Department of Pharmacology, Masaryk University, Brno, Czech Republic
| | - Tibor Štark
- Faculty of Medicine, Department of Pharmacology, Masaryk University, Brno, Czech Republic
| | - Eva Dražanová
- Faculty of Medicine, Department of Pharmacology, Masaryk University, Brno, Czech Republic
- Institute of Scientific Instruments of the Czech Academy of Sciences, v.v.i., Brno, Czech Republic
| | - Tomáš Kašpárek
- Behavioral and Social Neuroscience Group, CEITEC—Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Alexandra Šulcová
- Behavioral and Social Neuroscience Group, CEITEC—Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Frank J. Dekker
- Chemical and Pharmaceutical Biology, University of Groningen, Groningen, The Netherlands
| | - Wiktor Szymanski
- Department of Radiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Christian Seiser
- Max F. Perutz Laboratories, Vienna Biocenter (VBC), Vienna, Austria
| | - Georg Weitzer
- Max F. Perutz Laboratories, Vienna Biocenter (VBC), Vienna, Austria
| | - Raphael Mechoulam
- Faculty of Medicine, Institute for Drug Research, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Vincenzo Micale
- Behavioral and Social Neuroscience Group, CEITEC—Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, School of Medicine, University of Catania, Catania, Italy
| | - Stanislav Kozubek
- Faculty of Science, Department of Experimental Biology, Masaryk University, Brno, Czech Republic
| |
Collapse
|
35
|
Shergis JL, Ni X, Sarris J, Zhang AL, Guo X, Xue CC, Lu C, Hugel H. Ziziphus spinosa seeds for insomnia: A review of chemistry and psychopharmacology. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2017; 34:38-43. [PMID: 28899507 DOI: 10.1016/j.phymed.2017.07.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 05/28/2017] [Accepted: 07/02/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND In Chinese medicine, Ziziphus jujuba Mill. var. spinosa (Bunge) Hu ex H. F. Chou is widely used for the treatment of insomnia. PURPOSE/SECTIONS This paper summarises the chemistry, psychopharmacology, and compares the pharmaceutical effects of the seeds of Ziziphus jujuba plant, Ziziphus spinosa (ZS) seeds, with benzodiazepines. Whole extracts and constituent compounds have been evaluated in preclinical and clinical studies. CONCLUSIONS ZS secondary metabolites modulate GABAergic activity and the serotonergic system. The actual therapeutic agents require further confirmation/identification so that new insomnia phytomedicines can be discovered.
Collapse
Affiliation(s)
- Johannah Linda Shergis
- China-Australia International Research Centre for Chinese Medicine, School of Health and Biomedical Sciences, RMIT University, PO Box 71, Bundoora 3083, Australia
| | - Xiaojia Ni
- China-Australia International Research Centre for Chinese Medicine, School of Health and Biomedical Sciences, RMIT University, PO Box 71, Bundoora 3083, Australia; Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, and The Second Clinical College, Guangzhou University of Chinese Medicine, 111 Dade Road, Yuexiu District, Guangzhou 510120, PR China
| | - Jerome Sarris
- Department of Psychiatry and The Melbourne Clinic, The University of Melbourne, Victoria 3121, Australia; Centre for Human Psychopharmacology, Swinburne University of Technology, PO Box 218, Hawthorn 3122, Victoria, Australia
| | - Anthony Lin Zhang
- China-Australia International Research Centre for Chinese Medicine, School of Health and Biomedical Sciences, RMIT University, PO Box 71, Bundoora 3083, Australia
| | - Xinfeng Guo
- Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, and The Second Clinical College, Guangzhou University of Chinese Medicine, 111 Dade Road, Yuexiu District, Guangzhou 510120, PR China
| | - Charlie C Xue
- China-Australia International Research Centre for Chinese Medicine, School of Health and Biomedical Sciences, RMIT University, PO Box 71, Bundoora 3083, Australia; Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, and The Second Clinical College, Guangzhou University of Chinese Medicine, 111 Dade Road, Yuexiu District, Guangzhou 510120, PR China
| | - Chuanjian Lu
- Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, and The Second Clinical College, Guangzhou University of Chinese Medicine, 111 Dade Road, Yuexiu District, Guangzhou 510120, PR China.
| | - Helmut Hugel
- School of Science, RMIT University, PO Box 2476, Melbourne 3001 VIC, Australia.
| |
Collapse
|
36
|
Kaneta H, Ukai W, Tsujino H, Furuse K, Kigawa Y, Tayama M, Ishii T, Hashimoto E, Kawanishi C. Antipsychotics promote GABAergic interneuron genesis in the adult rat brain: Role of heat-shock protein production. J Psychiatr Res 2017; 92:108-118. [PMID: 28414930 DOI: 10.1016/j.jpsychires.2017.03.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 03/07/2017] [Accepted: 03/08/2017] [Indexed: 02/07/2023]
Abstract
Current antipsychotics reduce positive symptoms and reverse negative symptoms in conjunction with cognitive behavioral issues with the goal of restoring impaired occupational and social functioning. However, limited information is available on their influence on gliogenesis or their neurogenic properties in adult schizophrenia brains, particularly on GABAergic interneuron production. In the present study, we used young adult subventricular zone (SVZ)-derived progenitor cells expressing proteoglycan NG2 cultures to examine the oligodendrocyte and GABAergic interneuron genesis effects of several kinds of antipsychotics on changes in differentiation function induced by exposure to the NMDA receptor antagonist MK-801. We herein demonstrated that antipsychotics promoted or restored changes in the oligodendrocyte/GABAergic interneuron differentiation functions of NG2(+) cells induced by the exposure to MK-801, which was considered to be one of the drug-induced schizophrenia model. We also demonstrated that antipsychotics restored heat-shock protein (HSP) production in NG2(+) cells with differentiation impairment. The antipsychotics olanzapine, aripiprazole, and blonanserin, but not haloperidol increased HSP90 levels, which were reduced by the exposure to MK-801. Our results showed that antipsychotics, particularly those recently synthesized, exerted similar GABAergic interneuron genesis effects on NG2(+) neuronal/glial progenitor cells in the adult rat brain by increasing cellular HSP production, and also suggest that HSP90 may play a crucial role in the pathophysiology of schizophrenia and is a key target for next drug development.
Collapse
Affiliation(s)
- Hiroo Kaneta
- Department of Neuropsychiatry, Sapporo Medical University, School of Medicine, S-1, W-16, Chuo-ku, Sapporo, 0608543, Japan.
| | - Wataru Ukai
- Department of Neuropsychiatry, Sapporo Medical University, School of Medicine, S-1, W-16, Chuo-ku, Sapporo, 0608543, Japan.
| | - Hanako Tsujino
- Department of Neuropsychiatry, Sapporo Medical University, School of Medicine, S-1, W-16, Chuo-ku, Sapporo, 0608543, Japan.
| | - Kengo Furuse
- Department of Neuropsychiatry, Sapporo Medical University, School of Medicine, S-1, W-16, Chuo-ku, Sapporo, 0608543, Japan.
| | - Yoshiyasu Kigawa
- Department of Neuropsychiatry, Sapporo Medical University, School of Medicine, S-1, W-16, Chuo-ku, Sapporo, 0608543, Japan.
| | - Masaya Tayama
- Department of Neuropsychiatry, Sapporo Medical University, School of Medicine, S-1, W-16, Chuo-ku, Sapporo, 0608543, Japan.
| | - Takao Ishii
- Department of Neuropsychiatry, Sapporo Medical University, School of Medicine, S-1, W-16, Chuo-ku, Sapporo, 0608543, Japan.
| | - Eri Hashimoto
- Department of Neuropsychiatry, Sapporo Medical University, School of Medicine, S-1, W-16, Chuo-ku, Sapporo, 0608543, Japan.
| | - Chiaki Kawanishi
- Department of Neuropsychiatry, Sapporo Medical University, School of Medicine, S-1, W-16, Chuo-ku, Sapporo, 0608543, Japan.
| |
Collapse
|
37
|
Towards a Better Understanding of GABAergic Remodeling in Alzheimer's Disease. Int J Mol Sci 2017; 18:ijms18081813. [PMID: 28825683 PMCID: PMC5578199 DOI: 10.3390/ijms18081813] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 08/16/2017] [Accepted: 08/17/2017] [Indexed: 12/18/2022] Open
Abstract
γ-aminobutyric acid (GABA) is the primary inhibitory neurotransmitter in the vertebrate brain. In the past, there has been a major research drive focused on the dysfunction of the glutamatergic and cholinergic neurotransmitter systems in Alzheimer’s disease (AD). However, there is now growing evidence in support of a GABAergic contribution to the pathogenesis of this neurodegenerative disease. Previous studies paint a complex, convoluted and often inconsistent picture of AD-associated GABAergic remodeling. Given the importance of the GABAergic system in neuronal function and homeostasis, in the maintenance of the excitatory/inhibitory balance, and in the processes of learning and memory, such changes in GABAergic function could be an important factor in both early and later stages of AD pathogenesis. Given the limited scope of currently available therapies in modifying the course of the disease, a better understanding of GABAergic remodeling in AD could open up innovative and novel therapeutic opportunities.
Collapse
|
38
|
Bast T, Pezze M, McGarrity S. Cognitive deficits caused by prefrontal cortical and hippocampal neural disinhibition. Br J Pharmacol 2017; 174:3211-3225. [PMID: 28477384 DOI: 10.1111/bph.13850] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 03/18/2017] [Accepted: 05/03/2017] [Indexed: 12/22/2022] Open
Abstract
We review recent evidence concerning the significance of inhibitory GABA transmission and of neural disinhibition, that is, deficient GABA transmission, within the prefrontal cortex and the hippocampus, for clinically relevant cognitive functions. Both regions support important cognitive functions, including attention and memory, and their dysfunction has been implicated in cognitive deficits characterizing neuropsychiatric disorders. GABAergic inhibition shapes cortico-hippocampal neural activity, and, recently, prefrontal and hippocampal neural disinhibition has emerged as a pathophysiological feature of major neuropsychiatric disorders, especially schizophrenia and age-related cognitive decline. Regional neural disinhibition, disrupting spatio-temporal control of neural activity and causing aberrant drive of projections, may disrupt processing within the disinhibited region and efferent regions. Recent studies in rats showed that prefrontal and hippocampal neural disinhibition (by local GABA antagonist microinfusion) dysregulates burst firing, which has been associated with important aspects of neural information processing. Using translational tests of clinically relevant cognitive functions, these studies showed that prefrontal and hippocampal neural disinhibition disrupts regional cognitive functions (including prefrontal attention and hippocampal memory function). Moreover, hippocampal neural disinhibition disrupted attentional performance, which does not require the hippocampus but requires prefrontal-striatal circuits modulated by the hippocampus. However, some prefrontal and hippocampal functions (including inhibitory response control) are spared by regional disinhibition. We consider conceptual implications of these findings, regarding the distinct relationships of distinct cognitive functions to prefrontal and hippocampal GABA tone and neural activity. Moreover, the findings support the proposition that prefrontal and hippocampal neural disinhibition contributes to clinically relevant cognitive deficits, and we consider pharmacological strategies for ameliorating cognitive deficits by rebalancing disinhibition-induced aberrant neural activity. Linked Articles This article is part of a themed section on Pharmacology of Cognition: a Panacea for Neuropsychiatric Disease? To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.19/issuetoc.
Collapse
Affiliation(s)
- Tobias Bast
- School of Psychology and Neuroscience @Nottingham, University of Nottingham, Nottingham, UK
| | - Marie Pezze
- School of Psychology and Neuroscience @Nottingham, University of Nottingham, Nottingham, UK
| | - Stephanie McGarrity
- School of Psychology and Neuroscience @Nottingham, University of Nottingham, Nottingham, UK
| |
Collapse
|
39
|
Perkovic MN, Erjavec GN, Strac DS, Uzun S, Kozumplik O, Pivac N. Theranostic Biomarkers for Schizophrenia. Int J Mol Sci 2017; 18:E733. [PMID: 28358316 PMCID: PMC5412319 DOI: 10.3390/ijms18040733] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 03/23/2017] [Accepted: 03/27/2017] [Indexed: 12/14/2022] Open
Abstract
Schizophrenia is a highly heritable, chronic, severe, disabling neurodevelopmental brain disorder with a heterogeneous genetic and neurobiological background, which is still poorly understood. To allow better diagnostic procedures and therapeutic strategies in schizophrenia patients, use of easy accessible biomarkers is suggested. The most frequently used biomarkers in schizophrenia are those associated with the neuroimmune and neuroendocrine system, metabolism, different neurotransmitter systems and neurotrophic factors. However, there are still no validated and reliable biomarkers in clinical use for schizophrenia. This review will address potential biomarkers in schizophrenia. It will discuss biomarkers in schizophrenia and propose the use of specific blood-based panels that will include a set of markers associated with immune processes, metabolic disorders, and neuroendocrine/neurotrophin/neurotransmitter alterations. The combination of different markers, or complex multi-marker panels, might help in the discrimination of patients with different underlying pathologies and in the better classification of the more homogenous groups. Therefore, the development of the diagnostic, prognostic and theranostic biomarkers is an urgent and an unmet need in psychiatry, with the aim of improving diagnosis, therapy monitoring, prediction of treatment outcome and focus on the personal medicine approach in order to improve the quality of life in patients with schizophrenia and decrease health costs worldwide.
Collapse
Affiliation(s)
| | | | - Dubravka Svob Strac
- Rudjer Boskovic Institute, Division of Molecular Medicine, 10000 Zagreb, Croatia.
| | - Suzana Uzun
- Clinic for Psychiatry Vrapce, 10090 Zagreb, Croatia.
| | | | - Nela Pivac
- Rudjer Boskovic Institute, Division of Molecular Medicine, 10000 Zagreb, Croatia.
| |
Collapse
|
40
|
Levine A, Clemenza K, Rynn M, Lieberman J. Evidence for the Risks and Consequences of Adolescent Cannabis Exposure. J Am Acad Child Adolesc Psychiatry 2017; 56:214-225. [PMID: 28219487 DOI: 10.1016/j.jaac.2016.12.014] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 12/19/2016] [Accepted: 12/23/2016] [Indexed: 01/08/2023]
Abstract
OBJECTIVE This review of the scientific literature examines the potential adult sequelae of exposure to cannabis and related synthetic cannabinoids in adolescence. We examine the four neuropsychiatric outcomes that are likely most vulnerable to alteration by early cannabinoid use, as identified within both the clinical and preclinical research: cognition, emotional functioning, risk for psychosis, and addiction. METHOD A literature search was conducted through PubMed, PsychInfo, and Google Scholar with no publication date restrictions. The search terms used were "adolescent" and "adult," and either "cannabis," "marijuana," "delta-9-tetra-hydrocannabinol," or "cannabinoid," which was then crossed with one or more of the following terms: "deficit," "impairment," "alteration," "long-term," "persistent," "development," "maturation," and "pubescent." RESULTS The majority of the clinical and preclinical data point to a strong correlation between adolescent cannabinoid exposure and persistent, adverse neuropsychiatric outcomes in adulthood. Although the literature supports the hypothesis that adolescent cannabis use is connected to impaired cognition and mental health in adults, it does not conclusively demonstrate that cannabis consumption alone is sufficient to cause these deficits in humans. The animal literature, however, clearly indicates that adolescent-onset exposure to cannabinoids can catalyze molecular processes that lead to persistent functional deficits in adulthood, deficits that are not found to follow adult-onset exposure and that model some of the adverse outcomes reported in humans among adult populations of early-onset cannabis users. CONCLUSION Based on the data in the current literature, a strong association is found between early, frequent, and heavy adolescent cannabis exposure and poor cognitive and psychiatric outcomes in adulthood, yet definite conclusions cannot yet be made as to whether cannabis use alone has a negative impact on the human adolescent brain. Future research will require animal models and longitudinal studies to be carefully designed with a focus on integrating assessments of molecular, structural, and behavioral outcomes in order to elucidate the full range of potential adverse and long-term consequences of cannabinoid exposure in adolescence.
Collapse
Affiliation(s)
- Amir Levine
- College of Physicians and Surgeons, Columbia University, and the New York State Psychiatric Institute, New York, NY.
| | | | - Moira Rynn
- College of Physicians and Surgeons, Columbia University, and the New York State Psychiatric Institute, New York, NY; New York Presbyterian Hospital-Columbia University Medical Center, New York
| | - Jeffrey Lieberman
- College of Physicians and Surgeons, Columbia University, and the New York State Psychiatric Institute, New York, NY; New York Presbyterian Hospital-Columbia University Medical Center, New York
| |
Collapse
|
41
|
Woźniak M, Acher F, Marciniak M, Lasoń-Tyburkiewicz M, Gruca P, Papp M, Pilc A, Wierońska JM. Involvement of GABAB Receptor Signaling in Antipsychotic-like Action of the Novel Orthosteric Agonist of the mGlu4 Receptor, LSP4-2022. Curr Neuropharmacol 2017; 14:413-26. [PMID: 26769224 PMCID: PMC4983756 DOI: 10.2174/1570159x13666150516000630] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 02/11/2015] [Accepted: 05/12/2015] [Indexed: 01/08/2023] Open
Abstract
Considering that ligands of metabotropic glutamate and GABA receptors may exert beneficial effects on schizophrenia, we assessed the actions of the first mGlu4-selective orthosteric agonist, LSP4-2022, in several tests reflecting positive, negative, and cognitive symptoms of schizophrenia. Moreover, we investigated the possible involvement of GABAB receptors in LSP4-2022-induced actions. Hyperactivity induced by MK-801 or amphetamine and DOI-induced head twitches in mice were used as the models of positive symptoms. The social interaction test, modified forced swim test (FST), and novel object recognition (NOR) test were used as the models of negative and cognitive symptoms of schizophrenia. LSP4-2022 inhibited hyperactivity (in a dose-dependent manner, 0.5-2 mg/kg) induced by MK-801 or amphetamine and DOI-induced head twitches. In mGlu4 receptor knockout mice, LSP4-2022 was not effective. However, it reversed MK-801-induced impairment in the social interaction test and the MK-801-induced increase of immobility in the modified FST. In the NOR test, LSP4-2022 was active at a dose of 2 mg/kg. GABAB receptor antagonist, CGP55845 (10 mg/kg), reversed LSP4-2022-induced effects in hyperactivity and head twitch tests. At the same time, the simultaneous administration of subeffective doses of LSP4-2022 (0.1 mg/kg) and a positive allosteric modulator of GABAB receptor PAM, GS39783 (0.1 mg/kg), induced clear antipsychotic-like effects in those two tests. Such an interaction between mGlu4 and GABAB receptors was not observed in the social interaction and NOR tests. Therefore, we suggest that the activation of the mGlu4 receptor is a promising approach facilitating the discovery of novel antipsychotic drugs, and that the interplay between mGlu4 and GABAB receptors may become the basis for a novel therapy for schizophrenic patients with predomination of positive symptoms.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Joanna M Wierońska
- Institute of Pharmacology, Polish Academy of Sciences, 31-343 Kraków, Poland.
| |
Collapse
|
42
|
Bouamrane L, Scheyer AF, Lassalle O, Iafrati J, Thomazeau A, Chavis P. Reelin-Haploinsufficiency Disrupts the Developmental Trajectory of the E/I Balance in the Prefrontal Cortex. Front Cell Neurosci 2017; 10:308. [PMID: 28127276 PMCID: PMC5226963 DOI: 10.3389/fncel.2016.00308] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 12/26/2016] [Indexed: 12/31/2022] Open
Abstract
The reelin gene is a strong candidate in the etiology of several psychiatric disorders such as schizophrenia, major depression, bipolar disorders, and autism spectrum disorders. Most of these diseases are accompanied by cognitive and executive-function deficits associated with prefrontal dysfunctions. Mammalian prefrontal cortex (PFC) development is characterized by a protracted postnatal maturation constituting a period of enhanced vulnerability to psychiatric insults. The identification of the molecular components underlying this prolonged postnatal development is necessary to understand the synaptic properties of defective circuits participating in these psychiatric disorders. We have recently shown that reelin plays a key role in the maturation of glutamatergic functions in the postnatal PFC, but no data are available regarding the GABAergic circuits. Here, we undertook a cross-sectional analysis of GABAergic function in deep layer pyramidal neurons of the medial PFC of wild-type and haploinsufficient heterozygous reeler mice. Using electrophysiological approaches, we showed that decreased reelin levels impair the maturation of GABAergic synaptic transmission without affecting the inhibitory nature of GABA. This phenotype consequently impacted the developmental sequence of the synaptic excitation/inhibition (E/I) balance. These data indicate that reelin is necessary for the correct maturation and refinement of GABAergic synaptic circuits in the postnatal PFC and therefore provide a mechanism for altered E/I balance of prefrontal circuits associated with psychiatric disorders.
Collapse
Affiliation(s)
| | | | | | | | | | - Pascale Chavis
- INMED, Aix-Marseille University, INSERM Marseille, France
| |
Collapse
|
43
|
de Jonge JC, Vinkers CH, Hulshoff Pol HE, Marsman A. GABAergic Mechanisms in Schizophrenia: Linking Postmortem and In Vivo Studies. Front Psychiatry 2017; 8:118. [PMID: 28848455 PMCID: PMC5554536 DOI: 10.3389/fpsyt.2017.00118] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/22/2017] [Indexed: 01/11/2023] Open
Abstract
Schizophrenia is a psychiatric disorder characterized by hallucinations, delusions, disorganized thinking, and impairments in cognitive functioning. Evidence from postmortem studies suggests that alterations in cortical γ-aminobutyric acid (GABAergic) neurons contribute to the clinical features of schizophrenia. In vivo measurement of brain GABA levels using magnetic resonance spectroscopy (MRS) offers the possibility to provide more insight into the relationship between problems in GABAergic neurotransmission and clinical symptoms of schizophrenia patients. This study reviews and links alterations in the GABA system in postmortem studies, animal models, and human studies in schizophrenia. Converging evidence implicates alterations in both presynaptic and postsynaptic components of GABAergic neurotransmission in schizophrenia, and GABA may thus play an important role in the pathophysiology of schizophrenia. MRS studies can provide direct insight into the GABAergic mechanisms underlying the development of schizophrenia as well as changes during its course.
Collapse
Affiliation(s)
- Jeroen C de Jonge
- Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, Utrecht, Netherlands
| | - Christiaan H Vinkers
- Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, Utrecht, Netherlands
| | - Hilleke E Hulshoff Pol
- Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, Utrecht, Netherlands
| | - Anouk Marsman
- Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, Utrecht, Netherlands.,Danish Research Centre for Magnetic Resonance, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| |
Collapse
|
44
|
A methylome-wide mQTL analysis reveals associations of methylation sites with GAD1 and HDAC3 SNPs and a general psychiatric risk score. Transl Psychiatry 2017; 7:e1002. [PMID: 28094813 PMCID: PMC5545735 DOI: 10.1038/tp.2016.275] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 10/25/2016] [Accepted: 11/27/2016] [Indexed: 12/28/2022] Open
Abstract
Genome-wide association studies have identified a number of single-nucleotide polymorphisms (SNPs) that are associated with psychiatric diseases. Increasing body of evidence suggests a complex connection of SNPs and the transcriptional and epigenetic regulation of gene expression, which is poorly understood. In the current study, we investigated the interplay between genetic risk variants, shifts in methylation and mRNA levels in whole blood from 223 adolescents distinguished by a risk for developing psychiatric disorders. We analyzed 37 SNPs previously associated with psychiatric diseases in relation to genome-wide DNA methylation levels using linear models, with Bonferroni correction and adjusting for cell-type composition. Associations between DNA methylation, mRNA levels and psychiatric disease risk evaluated by the Development and Well-Being Assessment (DAWBA) score were identified by robust linear models, Pearson's correlations and binary regression models. We detected five SNPs (in HCRTR1, GAD1, HADC3 and FKBP5) that were associated with eight CpG sites, validating five of these SNP-CpG pairs. Three of these CpG sites, that is, cg01089319 (GAD1), cg01089249 (GAD1) and cg24137543 (DIAPH1), manifest in significant gene expression changes and overlap with active regulatory regions in chromatin states of brain tissues. Importantly, methylation levels at cg01089319 were associated with the DAWBA score in the discovery group. These results show how distinct SNPs linked with psychiatric diseases are associated with epigenetic shifts with relevance for gene expression. Our findings give a novel insight on how genetic variants may modulate risks for the development of psychiatric diseases.
Collapse
|
45
|
Design, synthesis, and biological evaluation of fluorinated imidazo[1,2- a ]pyridine derivatives with potential antipsychotic activity. Eur J Med Chem 2016; 124:456-467. [DOI: 10.1016/j.ejmech.2016.08.059] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 08/23/2016] [Accepted: 08/24/2016] [Indexed: 10/21/2022]
|
46
|
Matrisciano F, Panaccione I, Grayson DR, Nicoletti F, Guidotti A. Metabotropic Glutamate 2/3 Receptors and Epigenetic Modifications in Psychotic Disorders: A Review. Curr Neuropharmacol 2016; 14:41-7. [PMID: 26813121 PMCID: PMC4787284 DOI: 10.2174/1570159x13666150713174242] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 07/03/2015] [Accepted: 07/08/2015] [Indexed: 01/08/2023] Open
Abstract
Schizophrenia and Bipolar Disorder are chronic psychiatric disorders, both considered as “major psychosis”; they are thought to share some pathogenetic factors involving a dysfunctional gene x environment interaction. Alterations in the glutamatergic transmission have been suggested to be involved in the pathogenesis of psychosis. Our group developed an epigenetic model of schizophrenia originated by Prenatal Restraint Stress (PRS) paradigm in mice. PRS mice developed some behavioral alterations observed in schizophrenic patients and classic animal models of schizophrenia, i.e. deficits in social interaction, locomotor activity and prepulse inhibition. They also showed specific changes in promoter DNA methylation activity of genes related to schizophrenia such as reelin, BDNF and GAD67, and altered expression and function of mGlu2/3 receptors in the frontal cortex. Interestingly, behavioral and molecular alterations were reversed by treatment with mGlu2/3 agonists. Based on these findings, we speculate that pharmacological modulation of these receptors could have a great impact on early phase treatment of psychosis together with the possibility to modulate specific epigenetic key protein involved in the development of psychosis. In this review, we will discuss in more details the specific features of the PRS mice as a suitable epigenetic model for
major psychosis. We will then focus on key proteins of chromatin remodeling machinery as potential target for new
pharmacological treatment through the activation of metabotropic glutamate receptors.
Collapse
Affiliation(s)
- Francesco Matrisciano
- Psychiatry and Behavioral Science, Northwestern University, Feinberg School of Medicine, 303E Chicago Ave, Chicago, IL 60611.
| | | | | | | | | |
Collapse
|
47
|
Karsli-Ceppioglu S. Epigenetic Mechanisms in Psychiatric Diseases and Epigenetic Therapy. Drug Dev Res 2016; 77:407-413. [PMID: 27594444 DOI: 10.1002/ddr.21340] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Preclinical Research Epigenetic mechanisms refer covalent modification of DNA and histone proteins that control transcriptional regulation of gene expression. Epigenetic regulation is involved in the development of the nervous system and plays an important role in the pathophysiology of psychiatric disorders, including depression, bipolar disorder, and schizophrenia. Epigenetic drugs, including histone deacetylation and DNA methylation inhibitors have received increased attention for the management of psychiatric diseases. The purpose of this review is to discuss the potential of epigenetic drugs to treat these disorders and to clarify the mechanisms by which they regulate the dysfunctional genes in the brain. Drug Dev Res 77 : 407-413, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
|
48
|
Rentzsch J, Stadtmann A, Montag C, Kunte H, Plöckl D, Hellweg R, Gallinat J, Kronenberg G, Jockers-Scherübl MC. Attentional dysfunction in abstinent long-term cannabis users with and without schizophrenia. Eur Arch Psychiatry Clin Neurosci 2016; 266:409-21. [PMID: 26182894 DOI: 10.1007/s00406-015-0616-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 07/07/2015] [Indexed: 01/24/2023]
Abstract
Long-term cannabis use may confer cognitive deficits and increased risk of psychosis. However, the relationship between cannabis use and schizophrenia is complex. In particular, little is known about the effects of chronic cannabis use on the attention-related electric brain response in schizophrenia. We investigated auditory novelty and oddball P300 evoked potentials in a mixed sample of first-episode and chronic schizophrenic patients and healthy controls with (SZCA, n = 20; COCA, n = 20, abstinence ≥28 days) or without (SZ, n = 20; CO, n = 20) chronic cannabis use. Duration of regular cannabis use was 8.3 ± 5.6 (SZCA) and 9.1 ± 7.1 (COCA) years. In general, schizophrenic patients showed reduced P300 amplitudes. Cannabis use was associated with both a reduced early and late left-hemispheric novelty P300. There was a significant 'diagnosis × cannabis' interaction for the left-hemispheric late novelty P300 in that cannabis use was associated with a reduced amplitude in the otherwise healthy but not in the schizophrenic group compared with their relative control groups (corrected p < 0.02; p > 0.9, respectively). The left-hemispheric late novelty P300 in the otherwise healthy cannabis group correlated inversely with amount and duration of cannabis use (r = -0.50, p = 0.024; r = -0.57, p = 0.009, respectively). Our study confirms attentional deficits with chronic cannabis use. However, cannabis use may lead to different cognitive sequelae in patients with schizophrenia and in healthy controls, possibly reflecting preexisting alterations in the endocannabinoid system in schizophrenia.
Collapse
Affiliation(s)
- Johannes Rentzsch
- Charité - Universitätsmedizin Berlin, Campus Mitte, Charitéplatz 1, 10117, Berlin, Germany.
| | - Ada Stadtmann
- Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, Eschenallee 3, 14050, Berlin, Germany
| | - Christiane Montag
- Charité - Universitätsmedizin Berlin, Campus Mitte, Charitéplatz 1, 10117, Berlin, Germany.,Psychiatrische Universitätsklinik der Charité im St. Hedwig-Krankenhaus, Große Hamburger Straße 5-11, 10115, Berlin, Germany
| | - Hagen Kunte
- Charité - Universitätsmedizin Berlin, Campus Mitte, Charitéplatz 1, 10117, Berlin, Germany
| | - Doris Plöckl
- Charité - Universitätsmedizin Berlin, Campus Mitte, Charitéplatz 1, 10117, Berlin, Germany
| | - Rainer Hellweg
- Charité - Universitätsmedizin Berlin, Campus Mitte, Charitéplatz 1, 10117, Berlin, Germany
| | - Jürgen Gallinat
- Charité - Universitätsmedizin Berlin, Campus Mitte, Charitéplatz 1, 10117, Berlin, Germany
| | - Golo Kronenberg
- Charité - Universitätsmedizin Berlin, Campus Mitte, Charitéplatz 1, 10117, Berlin, Germany
| | | |
Collapse
|
49
|
Umeda K, Iritani S, Fujishiro H, Sekiguchi H, Torii Y, Habuchi C, Kuroda K, Kaibuchi K, Ozaki N. Immunohistochemical evaluation of the GABAergic neuronal system in the prefrontal cortex of a DISC1 knockout mouse model of schizophrenia. Synapse 2016; 70:508-518. [PMID: 27421906 DOI: 10.1002/syn.21924] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 06/27/2016] [Accepted: 07/11/2016] [Indexed: 01/23/2023]
Abstract
The etiology of schizophrenia remains unknown. However, using molecular biological techniques, some candidate genes have been identified that might be associated with the disease. One of these candidate genes, disrupted-in-schizophrenia 1 (DISC1), was found in a large Scottish family with multiple mental illnesses. The function of DISC1 is considered to be associated with axon elongation and neuron migration in the central nervous system, but the functional consequences of defects in this gene have not been fully clarified in brain neuronal systems. Dysfunction of the gamma-aminobutyric acid (GABA)ergic neuronal system is also considered to contribute to the pathogenesis of schizophrenia. Thus, to clarify the neuropathological changes associated with DISC1 dysfunction, we investigated the number and distribution of GABAergic neurons in the prefrontal cortex of DISC1 knockout mice. We immunohistochemically quantified the laminar density of GABAergic neurons using anti-parvalbumin and anti-calbindin D28k antibodies (markers of GABAergic neuronal subpopulations). We found that the densities of both parvalbumin- and calbindin-immunoreactive neurons in the anterior cingulate, medial prefrontal, and orbitofrontal cortices were markedly lower in DISC1 knockout mice than in wild-type mice. In addition, reductions in cell density were observed in layers II and III and the deep layers of the cortex. This reduction in GABAergic neuronal density was not associated with alterations in neuronal size. These findings suggest that disrupted GABAergic neuronal network formation due to a DISC1 deficit might be involved in the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Kentaro Umeda
- Department of Psychiatry, Graduate School of Medicine, Nagoya University, 65 Tsurumai, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Shuji Iritani
- Department of Psychiatry, Graduate School of Medicine, Nagoya University, 65 Tsurumai, Showa-ku, Nagoya, Aichi, 466-8550, Japan.
| | - Hiroshige Fujishiro
- Department of Psychiatry, Graduate School of Medicine, Nagoya University, 65 Tsurumai, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Hirotaka Sekiguchi
- Department of Psychiatry, Graduate School of Medicine, Nagoya University, 65 Tsurumai, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Youta Torii
- Department of Psychiatry, Graduate School of Medicine, Nagoya University, 65 Tsurumai, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Chikako Habuchi
- Department of Psychiatry, Graduate School of Medicine, Nagoya University, 65 Tsurumai, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Keisuke Kuroda
- Department of Cell Pharmacology, Graduate School of Medicine, Nagoya University, 65 Tsurumai, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Kozo Kaibuchi
- Department of Cell Pharmacology, Graduate School of Medicine, Nagoya University, 65 Tsurumai, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Norio Ozaki
- Department of Psychiatry, Graduate School of Medicine, Nagoya University, 65 Tsurumai, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| |
Collapse
|
50
|
Zhang R, Zhang T, Ali AM, Al Washih M, Pickard B, Watson DG. Metabolomic Profiling of Post-Mortem Brain Reveals Changes in Amino Acid and Glucose Metabolism in Mental Illness Compared with Controls. Comput Struct Biotechnol J 2016; 14:106-16. [PMID: 27076878 PMCID: PMC4813093 DOI: 10.1016/j.csbj.2016.02.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 02/07/2016] [Accepted: 02/09/2016] [Indexed: 12/04/2022] Open
Abstract
Metabolomic profiling was carried out on 53 post-mortem brain samples from subjects diagnosed with schizophrenia, depression, bipolar disorder (SDB), diabetes, and controls. Chromatography on a ZICpHILIC column was used with detection by Orbitrap mass spectrometry. Data extraction was carried out with m/z Mine 2.14 with metabolite searching against an in-house database. There was no clear discrimination between the controls and the SDB samples on the basis of a principal components analysis (PCA) model of 755 identified or putatively identified metabolites. Orthogonal partial least square discriminant analysis (OPLSDA) produced clear separation between 17 of the controls and 19 of the SDB samples (R2CUM 0.976, Q2 0.671, p-value of the cross-validated ANOVA score 0.0024). The most important metabolites producing discrimination were the lipophilic amino acids leucine/isoleucine, proline, methionine, phenylalanine, and tyrosine; the neurotransmitters GABA and NAAG and sugar metabolites sorbitol, gluconic acid, xylitol, ribitol, arabinotol, and erythritol. Eight samples from diabetic brains were analysed, six of which grouped with the SDB samples without compromising the model (R2 CUM 0.850, Q2 CUM 0.534, p-value for cross-validated ANOVA score 0.00087). There appears on the basis of this small sample set to be some commonality between metabolic perturbations resulting from diabetes and from SDB.
Collapse
Affiliation(s)
- Rong Zhang
- Strathclyde Institute of Pharmacy and Biomedical Sciences, 161, Cathedral Street, Glasgow G4 0RE, Scotland, UK; Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, No. 12 Jichang Road, Guangzhou 510405, China
| | - Tong Zhang
- Strathclyde Institute of Pharmacy and Biomedical Sciences, 161, Cathedral Street, Glasgow G4 0RE, Scotland, UK
| | - Ali Muhsen Ali
- Strathclyde Institute of Pharmacy and Biomedical Sciences, 161, Cathedral Street, Glasgow G4 0RE, Scotland, UK; Department of Clinical Biochemistry/Diabetes and Endocrinology Centre, Thi-Qar Health Office, Thi-Qar, Nassiriya, Iraq
| | - Mohammed Al Washih
- Strathclyde Institute of Pharmacy and Biomedical Sciences, 161, Cathedral Street, Glasgow G4 0RE, Scotland, UK; General Directorate of Medical Services, Ministry of Interior, Riyadh 13321, KSA
| | - Benjamin Pickard
- Strathclyde Institute of Pharmacy and Biomedical Sciences, 161, Cathedral Street, Glasgow G4 0RE, Scotland, UK
| | - David G Watson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, 161, Cathedral Street, Glasgow G4 0RE, Scotland, UK
| |
Collapse
|