1
|
Good MA, Bannerman DM. Hippocampal Synaptic Plasticity: Integrating Memory and Anxiety Impairments in the Early Stages of Alzheimer's Disease. Curr Top Behav Neurosci 2025; 69:27-48. [PMID: 39747797 DOI: 10.1007/7854_2024_565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
A decline in hippocampal function has long been associated with the progression of cognitive impairments in patients with Alzheimer's disease (AD). The disruption of hippocampal synaptic plasticity [primarily the reduction of long-term potentiation LTP] by excess production of soluble beta-amyloid (Aβ) has long been accepted as the mechanism by which AD pathology impairs memory, at least during the early stages of AD pathogenesis. However, the premise that hippocampal LTP underpins the formation of associative, long-term memories has been challenged. Here, we consider evidence that this canonical view of LTP needs to be refined. Similarly, the view that the hippocampus simply supports memory ignores the wealth of data showing that the hippocampus is functionally heterogeneous along its septo-temporal axis. The ventral (but not the dorsal) hippocampus plays a major role in modulating emotional reactions to conflict. Here, we suggest that hippocampal LTP is not involved in forming long-term associative memories, but instead contributes to the disambiguation of overlapping memories in situations of conflict and associative interference. This conceptualisation of hippocampal synaptic plasticity may help explain how early-stage AD pathology may impact both memory and anxiety.
Collapse
Affiliation(s)
- Mark A Good
- School of Psychology, Cardiff University, Park Place, Cardiff, UK.
| | - David M Bannerman
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| |
Collapse
|
2
|
Miranda M, Silva A, Morici JF, Coletti MA, Belluscio M, Bekinschtein P. Retrieval of contextual memory can be predicted by CA3 remapping and is differentially influenced by NMDAR activity in rat hippocampus subregions. PLoS Biol 2024; 22:e3002706. [PMID: 38950066 PMCID: PMC11244845 DOI: 10.1371/journal.pbio.3002706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 07/12/2024] [Accepted: 06/12/2024] [Indexed: 07/03/2024] Open
Abstract
Episodic memory is essential to navigate in a changing environment by recalling past events, creating new memories, and updating stored information from experience. Although the mechanisms for acquisition and consolidation have been profoundly studied, much less is known about memory retrieval. Hippocampal spatial representations are key for retrieval of contextually guided episodic memories. Indeed, hippocampal place cells exhibit stable location-specific activity which is thought to support contextual memory, but can also undergo remapping in response to environmental changes. It is unclear if remapping is directly related to the expression of different episodic memories. Here, using an incidental memory recognition task in rats, we showed that retrieval of a contextually guided memory is reflected by the levels of CA3 remapping, demonstrating a clear link between external cues, hippocampal remapping, and episodic memory retrieval that guides behavior. Furthermore, we describe NMDARs as key players in regulating the balance between retrieval and memory differentiation processes by controlling the reactivation of specific memory traces. While an increase in CA3 NMDAR activity boosts memory retrieval, dentate gyrus NMDAR activity enhances memory differentiation. Our results contribute to understanding how the hippocampal circuit sustains a flexible balance between memory formation and retrieval depending on the environmental cues and the internal representations of the individual. They also provide new insights into the molecular mechanisms underlying the contributions of hippocampal subregions to generate this balance.
Collapse
Affiliation(s)
- Magdalena Miranda
- Laboratorio de Memoria y Cognición Molecular, Instituto de Neurociencia Cognitiva y Traslacional, CONICET-Fundación INECO-Universidad Favaloro, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Azul Silva
- Laboratorio Bases neuronales del comportamiento, Departamento de Ciencias Fisiológicas, Facultad de Ciencias Médicas, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
- CONICET—Universidad de Buenos Aires, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Juan Facundo Morici
- Laboratorio de Memoria y Cognición Molecular, Instituto de Neurociencia Cognitiva y Traslacional, CONICET-Fundación INECO-Universidad Favaloro, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Marcos Antonio Coletti
- Laboratorio Bases neuronales del comportamiento, Departamento de Ciencias Fisiológicas, Facultad de Ciencias Médicas, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
- CONICET—Universidad de Buenos Aires, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Mariano Belluscio
- Laboratorio Bases neuronales del comportamiento, Departamento de Ciencias Fisiológicas, Facultad de Ciencias Médicas, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
- CONICET—Universidad de Buenos Aires, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Pedro Bekinschtein
- Laboratorio de Memoria y Cognición Molecular, Instituto de Neurociencia Cognitiva y Traslacional, CONICET-Fundación INECO-Universidad Favaloro, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
3
|
Bannerman DM, Barkus C, Eltokhi A. Behavioral Analysis of NMDAR Function in Rodents: Tests of Long-Term Spatial Memory. Methods Mol Biol 2024; 2799:107-138. [PMID: 38727905 DOI: 10.1007/978-1-0716-3830-9_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
NMDAR-dependent forms of synaptic plasticity in brain regions like the hippocampus are widely believed to provide the neural substrate for long-term associative memory formation. However, the experimental data are equivocal at best and may suggest a more nuanced role for NMDARs and synaptic plasticity in memory. Much of the experimental data available comes from studies in genetically modified mice in which NMDAR subunits have been deleted or mutated in order to disrupt NMDAR function. Behavioral assessment of long-term memory in these mice has involved tests like the Morris watermaze and the radial arm maze. Here we describe these behavioral tests and some of the different testing protocols that can be used to assess memory performance. We discuss the importance of distinguishing selective effects on learning and memory processes from nonspecific effects on sensorimotor or motivational aspects of performance.
Collapse
Affiliation(s)
- David M Bannerman
- Department of Experimental Psychology, University of Oxford, Oxford, UK.
| | - Chris Barkus
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Ahmed Eltokhi
- Department of Biomedical Sciences, School of Medicine, Mercer University, Columbus, GA, USA
| |
Collapse
|
4
|
Marquardt K, Josey M, Kenton JA, Cavanagh JF, Holmes A, Brigman JL. Impaired cognitive flexibility following NMDAR-GluN2B deletion is associated with altered orbitofrontal-striatal function. Neuroscience 2021; 475:230-245. [PMID: 34656223 PMCID: PMC8592269 DOI: 10.1016/j.neuroscience.2021.07.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A common feature across neuropsychiatric disorders is inability to discontinue an action or thought once it has become detrimental. Reversal learning, a hallmark of executive control, requires plasticity within cortical, striatal and limbic circuits and is highly sensitive to disruption of N-methyl-d-aspartate receptor (NMDAR) function. In particular, selective deletion or antagonism of GluN2B containing NMDARs in cortical regions including the orbitofrontal cortex (OFC), promotes maladaptive perseveration. It remains unknown whether GluN2B functions to maintain local cortical activity necessary for reversal learning, or if it exerts a broader influence on the integration of neural activity across cortical and subcortical systems. To address this question, we utilized in vivo electrophysiology to record neuronal activity and local field potentials (LFP) in the orbitofrontal cortex and dorsal striatum (dS) of mice with deletion of GluN2B in neocortical and hippocampal principal cells while they performed touchscreen reversal learning. Reversal impairment produced by corticohippocampal GluN2B deletion was paralleled by an aberrant increase in functional connectivity between the OFC and dS. These alterations in coordination were associated with alterations in local OFC and dS firing activity. These data demonstrate highly dynamic patterns of cortical and striatal activity concomitant with reversal learning, and reveal GluN2B as a molecular mechanism underpinning the timing of these processes.
Collapse
Affiliation(s)
- Kristin Marquardt
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Megan Josey
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Johnny A Kenton
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | | | - Andrew Holmes
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - Jonathan L Brigman
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA; New Mexico Alcohol Research Center, UNM Health Sciences Center, Albuquerque, NM, USA.
| |
Collapse
|
5
|
Regan SL, Pitzer EM, Hufgard JR, Sugimoto C, Williams MT, Vorhees CV. A novel role for the ADHD risk gene latrophilin-3 in learning and memory in Lphn3 knockout rats. Neurobiol Dis 2021; 158:105456. [PMID: 34352385 PMCID: PMC8440465 DOI: 10.1016/j.nbd.2021.105456] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/21/2021] [Accepted: 07/29/2021] [Indexed: 02/07/2023] Open
Abstract
Latrophilins (LPHNs) are adhesion G protein-coupled receptors with three isoforms but only LPHN3 is brain specific (caudate, prefrontal cortex, dentate, amygdala, and cerebellum). Variants of LPHN3 are associated with ADHD. Null mutations of Lphn3 in rat, mouse, zebrafish, and Drosophila result in hyperactivity, but its role in learning and memory (L&M) is largely unknown. Using our Lphn3 knockout (KO) rats we examined the cognitive abilities, long-term potentiation (LTP) in CA1, NMDA receptor expression, and neurohistology from heterozygous breeding pairs. KO rats were impaired in egocentric L&M in the Cincinnati water maze, spatial L&M and cognitive flexibility in the Morris water maze (MWM), with no effects on conditioned freezing, novel object recognition, or temporal order recognition. KO-associated locomotor hyperactivity had no effect on swim speed. KO rats had reduced early-LTP but not late-LTP and had reduced hippocampal NMDA-NR1 expression. In a second experiment, KO rats responded to a light prepulse prior to an acoustic startle pulse, reflecting visual signal detection. In a third experiment, KO rats given extra MWM pretraining and hidden platform overtraining showed no evidence of reaching WT rats' levels of learning. Nissl histology revealed no structural abnormalities in KO rats. LPHN3 has a selective effect on egocentric and allocentric L&M without effects on conditioned freezing or recognition memory.
Collapse
Affiliation(s)
- Samantha L Regan
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA; Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH, 45229, USA.
| | - Emily M Pitzer
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA; Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH, 45229, USA.
| | - Jillian R Hufgard
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA; Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH, 45229, USA
| | - Chiho Sugimoto
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA; Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH, 45229, USA
| | - Michael T Williams
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA; Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH, 45229, USA.
| | - Charles V Vorhees
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA; Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH, 45229, USA.
| |
Collapse
|
6
|
Tomášková A, Šlamberová R, Černá M. Influence of Prenatal Methamphetamine Abuse on the Brain. EPIGENOMES 2020; 4:14. [PMID: 34968287 PMCID: PMC8594709 DOI: 10.3390/epigenomes4030014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 11/17/2022] Open
Abstract
Methamphetamine (MA), a psychostimulant, has become a serious problem in recent years. It is one of the most widely abused psychostimulants in the world. In the Czech Republic, ecstasy is the most commonly used non-cannabis drug, followed by hallucinogenic fungi, LSD, MA, cocaine, and finally heroin. The prevalence of the usage of all addictive substances is highest in the age category of 15-34. Approximately 17.2% of registered drug addicts, both male and female, in the Czech Republic use MA as their first-choice drug. This group consists mostly of women who are unemployed and addicted to MA (85%). Almost half of the addicted women switched to MA from other drugs in the course of pregnancy. Psychostimulants such as amphetamine and its synthetic derivate MA induce feelings of calm and happiness by suppressing anxiety and depression. When MA is abused for longer periods, it mimics symptoms of mania and can lead to the development of psychosis. MA is often abused for its anorectic effect, its simple preparation, and compared to heroin and cocaine, its low price. There are significant differences in the susceptibility of users to the stimulant, with reactions to MA fluctuating from person to person. Molecular mechanisms related to the variable response among users might represent an explanation for increased addiction-associated bipolar disorder and psychosis. Currently, there is limited information regarding genetic mechanisms linked to these disorders and the transmission of drug addiction. As such, animal models of drug addiction represent significant sources of information and assets in the research of these issues. The aim of this review is to summarize the mechanism of action of methamphetamine and its effect on pregnant addicted women and their children, including a detailed description of the anatomical structures involved.
Collapse
Affiliation(s)
- Anežka Tomášková
- Department of Medical Genetics, Third Faculty of Medicine, Charles University, 100 00 Prague, Czech Republic;
| | - Romana Šlamberová
- Department of Physiology, Third Faculty of Medicine, Charles University, 100 00 Prague, Czech Republic;
| | - Marie Černá
- Department of Medical Genetics, Third Faculty of Medicine, Charles University, 100 00 Prague, Czech Republic;
| |
Collapse
|
7
|
Dringenberg HC. The history of long-term potentiation as a memory mechanism: Controversies, confirmation, and some lessons to remember. Hippocampus 2020; 30:987-1012. [PMID: 32442358 DOI: 10.1002/hipo.23213] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 03/24/2020] [Accepted: 04/18/2020] [Indexed: 12/16/2022]
Abstract
The discovery of long-term potentiation (LTP) provided the first, direct evidence for long-lasting synaptic plasticity in the living brain. Consequently, LTP was proposed to serve as a mechanism for information storage among neurons, thus providing the basis for the behavioral and psychological phenomena of learning and long-term memory formation. However, for several decades, the LTP-memory hypothesis remained highly controversial, with inconsistent and contradictory evidence providing a barrier to its general acceptance. This review summarizes the history of these early debates, challenges, and experimental strategies (successful and unsuccessful) to establish a link between LTP and memory. Together, the empirical evidence, gathered over a period of about four decades, strongly suggests that LTP serves as one of the mechanisms affording learning and memory storage in neuronal circuits. Notably, this body of work also offers some important lessons that apply to the broader fields of behavioral and cognitive neuroscience. As such, the history of LTP as a learning mechanism provides valuable insights to neuroscientists exploring the relations between brain and psychological states.
Collapse
Affiliation(s)
- Hans C Dringenberg
- Department of Psychology and Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
8
|
Barker GRI, Warburton EC. Multi-level analyses of associative recognition memory: the whole is greater than the sum of its parts. Curr Opin Behav Sci 2020; 32:80-87. [PMID: 32617383 PMCID: PMC7323598 DOI: 10.1016/j.cobeha.2020.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Associative recognition memory depends on the integration of information concerning an item and the spatio-temporal context in which it was encountered. Such an integration depends on dynamic interactions across a brain-wide memory network. Here we discuss evidence from multiple levels of analysis, behavioural, cellular and synaptic which demonstrating the existence of multiple overlapping, subnetworks embedded within these large-scale networks. Recent advances have revealed that of these subnetworks, a distinct hippocampal-prefrontal networks are engaged by different representations (object-spatial or object temporal). Other subnetworks are recruited by distinct processing demands, such as encoding and retrieval which are supported by distinct cellular and synaptic processes. One challenge to multi-level investigations of memory continues to be that conclusions are drawn from correlations of effects rather than from direct evidence of causation.
Collapse
Affiliation(s)
- Gareth RI Barker
- School of Physiology, Pharmacology andNeuroscience University of Bristol University Walk, Bristol BS8 1TD, United Kingdom
| | - Elizabeth Clea Warburton
- School of Physiology, Pharmacology andNeuroscience University of Bristol University Walk, Bristol BS8 1TD, United Kingdom
| |
Collapse
|
9
|
Fluyau D, Revadigar N, Pierre CG. Clinical benefits and risks of N-methyl-d-aspartate receptor antagonists to treat severe opioid use disorder: A systematic review. Drug Alcohol Depend 2020; 208:107845. [PMID: 31978670 DOI: 10.1016/j.drugalcdep.2020.107845] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 12/24/2019] [Accepted: 12/31/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Demand for treatments for severe opioid use disorder is increasing worldwide. The current pharmacotherapy is mainly focused on opioid and adrenergic receptors. The N-methyl-d-aspartate receptor (NMDAR) is among other receptors that can also be targeted to treat the disease. Findings from randomized controlled trials (RTCs) on NMDAR antagonists to treat severe opioid use disorder amply varied. This study aimed to evaluate the clinical benefits and assess the potential risks for adverse events or side effects of NMDAR antagonists that were investigated for the treatment of severe opioid use disorder. METHODS Articles were searched in PubMed, Scopus, Google Scholar, Proquest. Cochrane Review Database, Medline Ovid, and EMBASE from their inception to March 2019. RTCs on NMDAR antagonists for the treatment of severe opioid use disorder were independently screened and assessed by two authors. The results were synthesized qualitatively. RESULTS Nineteen RTCs of 1459 participants met the inclusion criteria. There is moderate evidence suggesting that ketamine, memantine, amantadine, and dextromethorphan may be able to manage opioid withdrawal symptoms. There is little evidence suggesting that memantine may be able to reduce methadone maintenance dose in participants on methadone, reduce opioid use, and reduce craving. Dropout is noticeable among dextromethorphan's participants. Safety concerns are more likely associated with dextromethorphan and ketamine. CONCLUSIONS NMDAR antagonists have the potentiality to treat severe opioid use disorder. There is insufficient evidence to recommend them for the treatment of severe opioid use disorder due to several limitations inherent to the RCTs reviewed. Further exploration is needed.
Collapse
Affiliation(s)
- Dimy Fluyau
- Emory University School of Medicine, 201 Dowman Dr, Atlanta, GA, 30322, United States.
| | - Neelambika Revadigar
- Columbia University School of Medicine, 630 W 168th St, New York, NY, 10032, United States.
| | - Christopher G Pierre
- Grady Memorial Hospital, 80 Jesse Hill Jr Dr SE, Atlanta, GA, 30303, United States.
| |
Collapse
|
10
|
Marquardt K, Josey M, Kenton JA, Cavanagh JF, Holmes A, Brigman JL. Impaired cognitive flexibility following NMDAR-GluN2B deletion is associated with altered orbitofrontal-striatal function. Neuroscience 2019; 404:338-352. [PMID: 30742964 PMCID: PMC6455963 DOI: 10.1016/j.neuroscience.2019.01.066] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/18/2019] [Accepted: 01/31/2019] [Indexed: 02/02/2023]
Abstract
A common feature across neuropsychiatric disorders is inability to discontinue an action or thought once it has become detrimental. Reversal learning, a hallmark of executive control, requires plasticity within cortical, striatal and limbic circuits and is highly sensitive to disruption of N-methyl-D-aspartate receptor (NMDAR) function. In particular, selective deletion or antagonism of GluN2B containing NMDARs in cortical regions including the orbitofrontal cortex (OFC), promotes maladaptive perseveration. It remains unknown whether GluN2B functions to maintain local cortical activity necessary for reversal learning, or if it exerts a broader influence on the integration of neural activity across cortical and subcortical systems. To address this question, we utilized in vivo electrophysiology to record neuronal activity and local field potentials (LFP) in the orbitofrontal cortex and dorsal striatum (dS) of mice with deletion of GluN2B in neocortical and hippocampal principal cells while they performed touchscreen reversal learning. Reversal impairment produced by corticohippocampal GluN2B deletion was paralleled by an aberrant increase in functional connectivity between the OFC and dS. These alterations in coordination were associated with alterations in local OFC and dS firing activity. These data demonstrate highly dynamic patterns of cortical and striatal activity concomitant with reversal learning, and reveal GluN2B as a molecular mechanism underpinning the timing of these processes.
Collapse
Affiliation(s)
- Kristin Marquardt
- Department of Neurosciences, University of New, Mexico, School of Medicine, Albuquerque, NM
| | - Megan Josey
- Department of Neurosciences, University of New, Mexico, School of Medicine, Albuquerque, NM
| | - Johnny A Kenton
- Department of Neurosciences, University of New, Mexico, School of Medicine, Albuquerque, NM
| | | | - Andrew Holmes
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland, USA
| | - Jonathan L Brigman
- Department of Neurosciences, University of New, Mexico, School of Medicine, Albuquerque, NM; New, Mexico, Alcohol Research Center, UNM Health Sciences Center, Albuquerque, NM.
| |
Collapse
|
11
|
Horton KKA, Goonawardena AV, Sesay J, Howlett AC, Hampson RE. Systemic Blockade of the CB 1 Receptor Augments Hippocampal Gene Expression Involved in Synaptic Plasticity but Perturbs Hippocampus-Dependent Learning Task. Cannabis Cannabinoid Res 2019; 4:33-41. [PMID: 31032421 DOI: 10.1089/can.2018.0061] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Chronic and acute agonism as well as acute antagonism of CB1 receptors reveal modulation of learning and memory during stable performance of a delayed-nonmatch-to-sample (DNMS) memory task. However, it remains unclear how chronic blockade of the CB1 receptor alters acquisition of the behavioral task. We examined the effects of chronic rimonabant exposure during DNMS task acquisition to determine if blockade of the CB1 receptor with the antagonist rimonabant enhanced acquisition of operant task. Long-Evans rats, trained in the DNMS task before imposition of the trial delay, were surgically implanted with osmotic mini pumps to administer rimonabant (1.0 mg/kg/day) or vehicle (dimethyl sulfoxide/Tween-80/Saline). Following surgical recovery, DNMS training was resumed with the imposition of gradually longer delays (1-30 sec). The number of days required to achieve stable performance with either increasing length of delay or reversal of task contingency was compared between vehicle and rimonabant-treated rats. Following the completion of DNMS training, animals were euthanized, and both hippocampi were harvested for gene expression assay analysis. Rimonabant treatment animals required more time to achieve stable DNMS performance than vehicle-treated controls. Quantitative real-time polymerase chain reaction analysis revealed that the expressions of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor subunit, brain-derived neurotrophic factor, and synapsin 1 (Syn1) were significantly increased. These results are consistent with rimonabant increasing mRNAs for proteins associated with hippocampal synapse remodeling, but that those alterations did not necessarily accelerate the acquisition of an operant behavioral task that required learning new contingencies.
Collapse
Affiliation(s)
- Kofi-Kermit A Horton
- Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Winston-Salem, North Carolina.,Division of Pulmonary, Critical Care and Sleep Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Anushka V Goonawardena
- Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Winston-Salem, North Carolina.,Biosciences Division, SRI International, Menlo Park, California
| | - John Sesay
- Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Winston-Salem, North Carolina
| | - Allyn C Howlett
- Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Winston-Salem, North Carolina
| | - Robert E Hampson
- Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Winston-Salem, North Carolina
| |
Collapse
|
12
|
Thonnard D, Dreesen E, Callaerts-Vegh Z, D'Hooge R. NMDA receptor dependence of reversal learning and the flexible use of cognitively demanding search strategies in mice. Prog Neuropsychopharmacol Biol Psychiatry 2019; 90:235-244. [PMID: 30529376 DOI: 10.1016/j.pnpbp.2018.12.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 11/29/2018] [Accepted: 12/05/2018] [Indexed: 10/27/2022]
Abstract
Cognitive flexibility helps organisms to respond adaptively to environmental changes. Deficits in this executive function have been associated with a variety of brain disorders, and it has been shown to rely on various concomitant neurobiological mechanisms. However, the involvement of the glutamatergic system in general, and NMDA receptors in particular, has been debated. Therefore, we injected C57BL/6 mice repeatedly with low-doses of the non-competitive NMDA receptor antagonist MK-801 (dizocilpine, 0.1 mg/kg, i.p.). Reversal learning and the use of specific cognitive strategies were assessed in a non-spatial discrimination touchscreen task and the Morris water maze (MWM) spatial learning task. In addition, mice were subjected to a non-mnemonic test battery. Although initial acquisition learning was not affected by MK-801 administration, it did induce deficits in reversal learning, both in the non-spatial and spatial task. Defects in non-spatial reversal learning appeared to be caused by perseverative errors. Also, MK-801 administration induced perseverative behaviours as well as inefficient spatial strategy use during MWM reversal learning. These effects could not be reduced to changes in exploratory (anxiety-related) behaviours, nor to motor deficits. This was consistent with results in the non-mnemonic test battery, during which MK-801 evoked hyperlocomotion and subtle motor defects, but failed to alter general motor activity and exploratory behaviours. In conclusion, NMDA receptors appear to be involved in the flexible cognitive processes that underlie reversal learning in spatial as well as non-spatial tasks. Our results also indicate that reversal learning as well as the use of cognitively demanding strategies are more sensitive to NMDA receptor blockage than some other functions that have been suggested to be NMDA receptor dependent.
Collapse
Affiliation(s)
- David Thonnard
- Laboratory of Biological Psychology, University of Leuven, Belgium
| | - Eline Dreesen
- Laboratory of Biological Psychology, University of Leuven, Belgium
| | | | - Rudi D'Hooge
- Laboratory of Biological Psychology, University of Leuven, Belgium.
| |
Collapse
|
13
|
Mathews MJ, Mead RN, Galizio M. Effects of N-Methyl-D-aspartate (NMDA) antagonists ketamine, methoxetamine, and phencyclidine on the odor span test of working memory in rats. Exp Clin Psychopharmacol 2018; 26:6-17. [PMID: 29389166 PMCID: PMC5797997 DOI: 10.1037/pha0000158] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The glutamate hypothesis proposes that N-Methyl-D-aspartate (NMDA) receptor hypofunction underlies cognitive and perhaps other schizophrenic symptoms. The present study used the odor span task to assess the effects of NMDA antagonists on remembering multiple stimuli in rodents. This task uses an incrementing nonmatching-to-sample procedure in which responses to a new olfactory stimulus are reinforced on each trial, whereas responses to previously presented stimuli are not. NMDA antagonists have been associated with memory impairments in a variety of animal models; however, there are inconsistencies across different NMDA antagonists and tasks used. The current study compared the acute effects of phencyclidine (PCP), ketamine (KET), and the novel NMDA antagonist methoxetamine (MXE) on responding in the odor span task and a simple discrimination control task. PCP and MXE impaired odor span accuracy at doses that did not impair simple discrimination in most rats; however, the effects of KET were less selective. Within-session analyses indicated that the effects of PCP and MXE depended on the number of stimuli to remember, that is, impairment only occurred when the memory load was relatively high. These effects of PCP and MXE were consistent with the hypothesis that NMDA antagonists may interfere with working memory, but the basis for less selective results with KET are unclear. (PsycINFO Database Record
Collapse
|
14
|
Ebrahimi-Ghiri M, Rostampour M, Jamshidi-Mehr M, Nasehi M, Zarrindast MR. Role of CA1 GABAA and GABAB receptors on learning deficit induced by D-AP5 in passive avoidance step-through task. Brain Res 2018; 1678:164-173. [DOI: 10.1016/j.brainres.2017.10.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 06/24/2017] [Accepted: 10/03/2017] [Indexed: 10/18/2022]
|
15
|
Phencyclidine Discoordinates Hippocampal Network Activity But Not Place Fields. J Neurosci 2017; 37:12031-12049. [PMID: 29118102 DOI: 10.1523/jneurosci.0630-17.2017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 09/22/2017] [Accepted: 10/17/2017] [Indexed: 11/21/2022] Open
Abstract
We used the psychotomimetic phencyclidine (PCP) to investigate the relationships among cognitive behavior, coordinated neural network function, and information processing within the hippocampus place cell system. We report in rats that PCP (5 mg/kg, i.p.) impairs a well learned, hippocampus-dependent place avoidance behavior in rats that requires cognitive control even when PCP is injected directly into dorsal hippocampus. PCP increases 60-100 Hz medium-freguency gamma oscillations in hippocampus CA1 and these increases correlate with the cognitive impairment caused by systemic PCP administration. PCP discoordinates theta-modulated medium-frequency and slow gamma oscillations in CA1 LFPs such that medium-frequency gamma oscillations become more theta-organized than slow gamma oscillations. CA1 place cell firing fields are preserved under PCP, but the drug discoordinates the subsecond temporal organization of discharge among place cells. This discoordination causes place cell ensemble representations of a familiar space to cease resembling pre-PCP representations despite preserved place fields. These findings point to the cognitive impairments caused by PCP arising from neural discoordination. PCP disrupts the timing of discharge with respect to the subsecond timescales of theta and gamma oscillations in the LFP. Because these oscillations arise from local inhibitory synaptic activity, these findings point to excitation-inhibition discoordination as the root of PCP-induced cognitive impairment.SIGNIFICANCE STATEMENT Hippocampal neural discharge is temporally coordinated on timescales of theta and gamma oscillations in the LFP and the discharge of a subset of pyramidal neurons called "place cells" is spatially organized such that discharge is restricted to locations called a cell's "place field." Because this temporal coordination and spatial discharge organization is thought to represent spatial knowledge, we used the psychotomimetic phencyclidine (PCP) to disrupt cognitive behavior and assess the importance of neural coordination and place fields for spatial cognition. PCP impaired the judicious use of spatial information and discoordinated hippocampal discharge without disrupting firing fields. These findings dissociate place fields from spatial cognitive behavior and suggest that hippocampus discharge coordination is crucial to spatial cognition.
Collapse
|
16
|
|
17
|
Vyazovskiy VV, Walton ME, Peirson SN, Bannerman DM. Sleep homeostasis, habits and habituation. Curr Opin Neurobiol 2017; 44:202-211. [PMID: 28575718 DOI: 10.1016/j.conb.2017.05.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 04/06/2017] [Accepted: 05/01/2017] [Indexed: 02/08/2023]
Abstract
The importance of sleep for behavioural performance during waking is long-established, but the underlying reasons and mechanisms remain elusive. Waking and sleep are associated with changes in the levels of GluA1 AMPAR subunit in synaptic membranes, while studies using genetically-modified mice have identified an important role for GluA1-dependent synaptic plasticity in a non-associative form of memory that underlies short-term habituation to recently experienced stimuli. Here we posit that sleep may play a role in dishabituation, which restores attentional capacity and maximises the readiness of the animal for learning and goal-directed behaviour during subsequent wakefulness. Furthermore we suggest that sleep disturbance may fundamentally change the nature of behaviour, making it more model-free and habitual as a result of reduced attentional capacity.
Collapse
Affiliation(s)
- Vladyslav V Vyazovskiy
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, United Kingdom; Sleep and Circadian Neuroscience Institute, Oxford Molecular Pathology Institute, Sir William Dunn School of Pathology, South Parks Road, Oxford OX1 3RE, United Kingdom.
| | - Mark E Walton
- Department of Experimental Psychology, University of Oxford,South Parks Road, Oxford OX1 3UD, United Kingdom
| | - Stuart N Peirson
- Sleep and Circadian Neuroscience Institute, Oxford Molecular Pathology Institute, Sir William Dunn School of Pathology, South Parks Road, Oxford OX1 3RE, United Kingdom
| | - David M Bannerman
- Sleep and Circadian Neuroscience Institute, Oxford Molecular Pathology Institute, Sir William Dunn School of Pathology, South Parks Road, Oxford OX1 3RE, United Kingdom; Department of Experimental Psychology, University of Oxford,South Parks Road, Oxford OX1 3UD, United Kingdom
| |
Collapse
|
18
|
Kealy J, Bennett R, Woods B, Lowry JP. Real-time changes in hippocampal energy demands during a spatial working memory task. Behav Brain Res 2017; 326:59-68. [PMID: 28249730 DOI: 10.1016/j.bbr.2017.02.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/18/2017] [Accepted: 02/21/2017] [Indexed: 12/11/2022]
Abstract
Activity-dependent changes in hippocampal energy consumption have largely been determined using microdialysis. However, real-time recordings of brain energy consumption can be more accurately achieved using amperometric sensors, allowing for sensitive real-time monitoring of concentration changes. Here, we test the theory that systemic pre-treatment with glucose in rats prevents activity-dependent decreases in hippocampal glucose levels and thus enhances their performance in a spontaneous alternation task. Male Sprague Dawley rats were implanted into the hippocampus with either: 1) microdialysis probe; or 2) an oxygen sensor and glucose biosensor co-implanted together. Animals were pre-treated with either saline or glucose (250mg/kg) 30min prior to performing a single 20-min spontaneous alternation task in a +-maze. There were no significant differences found between either treatment group in terms of spontaneous alternation performance. Additionally, there was a significant difference found between treatment groups on hippocampal glucose levels measured using microdialysis (a decrease associated with glucose pre-treatment in control animals) but not amperometry. There were significant increases in hippocampal oxygen during +-maze exploration. Combining the findings from both methods, it appears that hippocampal activity in the spontaneous alternation task does not cause an increase in glucose consumption, despite an increase in regional cerebral blood flow (using oxygen supply as an index of blood flow) and, as such, pre-treatment with glucose does not enhance spontaneous alternation performance.
Collapse
Affiliation(s)
- John Kealy
- Maynooth University Department of Chemistry, Maynooth University, Maynooth, Co. Kildare, Ireland; Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland.
| | - Rachel Bennett
- Maynooth University Department of Chemistry, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Barbara Woods
- Maynooth University Department of Chemistry, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - John P Lowry
- Maynooth University Department of Chemistry, Maynooth University, Maynooth, Co. Kildare, Ireland
| |
Collapse
|
19
|
Galizio M. Olfactory Stimulus Control and the Behavioral Pharmacology of Remembering. ACTA ACUST UNITED AC 2016; 16:169-178. [PMID: 27896309 DOI: 10.1037/bar0000033] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Behavior analytic approaches and techniques have much to offer to the study of remembering. There is currently great interest in the development of animal models of human memory processes in order to enhance understanding of the neurobiology of memory and treatment of dementia and related disorders. Because rodent models are so important in contemporary neuroscience and genetics, development of procedures to study various forms of memory in rodents is a point of emphasis. The sense of smell plays an important role in rodent behavior and use of olfactory stimuli has permitted demonstrations of complex forms of stimulus control that have also served as baselines for studying drug effects on remembering. This article focuses on the effects of drugs on behavior maintained by two related procedures: delayed matching-to-sample with odors and the Odor Span Task. These types of procedures provide an opportunity to explore drug effects on behavior maintained by multiple stimuli and across a range of delay intervals with potential to advance analysis of the behavioral pharmacology of remembering.
Collapse
Affiliation(s)
- Mark Galizio
- Department of Psychology, University of North Carolina Wilmington
| |
Collapse
|
20
|
Chang SD, Liang KC. The hippocampus integrates context and shock into a configural memory in contextual fear conditioning. Hippocampus 2016; 27:145-155. [DOI: 10.1002/hipo.22679] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Shih-Dar Chang
- Department of Psychology; National Taiwan University; Taipei 10617 Taiwan
| | - K. C. Liang
- Department of Psychology; National Taiwan University; Taipei 10617 Taiwan
- Graduate Institute for Brain and Mind Science, National Taiwan University; Taipei 10617 Taiwan
- Neurobiology and Cognitive Science Center, National Taiwan University; Taipei 10617 Taiwan
| |
Collapse
|
21
|
Galizio M, April B, Deal M, Hawkey A, Panoz-Brown D, Prichard A, Bruce K. Behavioral pharmacology of the odor span task: Effects of flunitrazepam, ketamine, methamphetamine and methylphenidate. J Exp Anal Behav 2016; 106:173-194. [PMID: 27747877 DOI: 10.1002/jeab.224] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 08/31/2016] [Indexed: 12/23/2022]
Abstract
The Odor Span Task is an incrementing non-matching-to-sample procedure that permits the study of behavior under the control of multiple stimuli. Rats are exposed to a series of odor stimuli and selection of new stimuli is reinforced. Successful performance thus requires remembering which stimuli have previously been presented during a given session. This procedure has been frequently used in neurobiological studies as a rodent model of working memory; however, only a few studies have examined the effects of drugs on performance in this task. The present experiments explored the behavioral pharmacology of a modified version of the Odor Span Task by determining the effects of stimulant drugs methylphenidate and methamphetamine, NMDA antagonist ketamine, and positive GABAA modulator flunitrazepam. All four drugs produced dose-dependent impairment of performances on the Odor Span Task, but for methylphenidate and methamphetamine, these occurred only at doses that had similar effects on performance of a simple odor discrimination. Generally, these disruptions were based on omission of responding at the effective doses. The effects of ketamine and flunitrazepam were more selective in some rats. That is, some rats tested under flunitrazepam and ketamine showed decreases in accuracy on the Odor Span Task at doses that did not affect simple discrimination performance. These selective effects indicate disruption of within-session stimulus control. Overall, these findings support the potential of the Odor Span Task as a baseline for the behavioral pharmacological analysis of remembering.
Collapse
|
22
|
Parsaei L, Torkaman-Boutorabi A, Asadi F, Zarrindast MR. Interaction between dorsal hippocampal NMDA receptors and lithium on spatial learning consolidation in rats. Brain Res Bull 2016; 127:1-10. [DOI: 10.1016/j.brainresbull.2016.07.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 07/04/2016] [Accepted: 07/18/2016] [Indexed: 10/21/2022]
|
23
|
Pritchett D, Taylor AM, Barkus C, Engle SJ, Brandon NJ, Sharp T, Foster RG, Harrison PJ, Peirson SN, Bannerman DM. Searching for cognitive enhancement in the Morris water maze: better and worse performance in D-amino acid oxidase knockout (Dao(-/-)) mice. Eur J Neurosci 2016; 43:979-89. [PMID: 26833794 PMCID: PMC4855640 DOI: 10.1111/ejn.13192] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 01/08/2016] [Accepted: 01/12/2016] [Indexed: 12/17/2022]
Abstract
A common strategy when searching for cognitive‐enhancing drugs has been to target the N‐methyl‐d‐aspartate receptor (NMDAR), given its putative role in synaptic plasticity and learning. Evidence in favour of this approach has come primarily from studies with rodents using behavioural assays like the Morris water maze. D‐amino acid oxidase (DAO) degrades neutral D‐amino acids such as D‐serine, the primary endogenous co‐agonist acting at the glycine site of the synaptic NMDAR. Inhibiting DAO could therefore provide an effective and viable means of enhancing cognition, particularly in disorders like schizophrenia, in which NMDAR hypofunction is implicated. Indirect support for this notion comes from the enhanced hippocampal long‐term potentiation and facilitated water maze acquisition of ddY/Dao− mice, which lack DAO activity due to a point mutation in the gene. Here, in Dao knockout (Dao−/−) mice, we report both better and worse water maze performance, depending on the radial distance of the hidden platform from the side wall of the pool. Dao−/− mice displayed an increased innate preference for swimming in the periphery of the maze (possibly due to heightened anxiety), which facilitated the discovery of a peripherally located platform, but delayed the discovery of a centrally located platform. By contrast, Dao−/− mice exhibited normal performance in two alternative assays of long‐term spatial memory: the appetitive and aversive Y‐maze reference memory tasks. Taken together, these results question the proposed relationship between DAO inactivation and enhanced long‐term associative spatial memory. They also have generic implications for how Morris water maze studies are performed and interpreted.
Collapse
Affiliation(s)
- David Pritchett
- Nuffield Department of Clinical Neurosciences (Nuffield Laboratory of Ophthalmology), John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Amy M Taylor
- Department of Experimental Psychology, University of Oxford, Tinbergen Building, 9 South Parks Road, Oxford, OX1 3UD, UK
| | | | | | | | - Trevor Sharp
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Russell G Foster
- Nuffield Department of Clinical Neurosciences (Nuffield Laboratory of Ophthalmology), John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Paul J Harrison
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, UK
| | - Stuart N Peirson
- Nuffield Department of Clinical Neurosciences (Nuffield Laboratory of Ophthalmology), John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - David M Bannerman
- Department of Experimental Psychology, University of Oxford, Tinbergen Building, 9 South Parks Road, Oxford, OX1 3UD, UK
| |
Collapse
|
24
|
Thompson SM, Josey M, Holmes A, Brigman JL. Conditional loss of GluN2B in cortex and hippocampus impairs attentional set formation. Behav Neurosci 2015; 129:105-12. [PMID: 25798630 DOI: 10.1037/bne0000045] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The ability to attend to appropriate stimuli, to plan actions and then alter those actions when environmental conditions change, is essential for an organism to thrive. There is increasing evidence that these executive control processes are mediated in part by N-methyl-D-aspartate receptors (NMDAR). NMDAR subunits confer different physiological properties to the receptor, interact with distinct intracellular postsynaptic scaffolding and signaling molecules and are differentially expressed during development. Recent findings have suggested that the GluN2B subunit may play a unique role in both the acquisition of adaptive choice and the behavioral flexibility required to shift between choices. Here we investigated the role of GluN2B containing NMDARs in the ability to learn, reverse and shift between stimulus dimensions. Mutant mice (floxed-GluN2B x CaMKII-Cre) lacking GluN2B in the dorsal CA1 of the hippocampus and throughout the cortex were tested on an attentional set-shifting task. To explore the role that alterations in motor behavior may have on these behaviors, gross and fine motor behaviors were analyzed in mutant and floxed-control mice. Results show that corticohippocampal loss of GluN2B selectively impaired an initial reversal in a stimulus specific manner and impaired the ability of mutant mice to form an attentional set. Further, GluN2B mice showed normal motor behavior in both overall movement and individual limb behaviors. Together, these results further support the role of NMDAR, and GluN2B in particular, in aspects of executive control including behavioral flexibility and attentional processes.
Collapse
Affiliation(s)
- Shannon M Thompson
- Department of Neurosciences, University of New Mexico School of Medicine
| | - Megan Josey
- Department of Neurosciences, University of New Mexico School of Medicine
| | - Andrew Holmes
- Laboratory of Behavioral and Genomic Neuroscience, National Institutes of Health
| | - Jonathan L Brigman
- Department of Neurosciences, University of New Mexico School of Medicine
| |
Collapse
|
25
|
Fioriti L, Myers C, Huang YY, Li X, Stephan JS, Trifilieff P, Colnaghi L, Kosmidis S, Drisaldi B, Pavlopoulos E, Kandel ER. The Persistence of Hippocampal-Based Memory Requires Protein Synthesis Mediated by the Prion-like Protein CPEB3. Neuron 2015; 86:1433-48. [PMID: 26074003 DOI: 10.1016/j.neuron.2015.05.021] [Citation(s) in RCA: 147] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 12/02/2014] [Accepted: 05/05/2015] [Indexed: 11/28/2022]
Abstract
Consolidation of long-term memories depends on de novo protein synthesis. Several translational regulators have been identified, and their contribution to the formation of memory has been assessed in the mouse hippocampus. None of them, however, has been implicated in the persistence of memory. Although persistence is a key feature of long-term memory, how this occurs, despite the rapid turnover of its molecular substrates, is poorly understood. Here we find that both memory storage and its underlying synaptic plasticity are mediated by the increase in level and in the aggregation of the prion-like translational regulator CPEB3 (cytoplasmic polyadenylation element-binding protein). Genetic ablation of CPEB3 impairs the maintenance of both hippocampal long-term potentiation and hippocampus-dependent spatial memory. We propose a model whereby persistence of long-term memory results from the assembly of CPEB3 into aggregates. These aggregates serve as functional prions and regulate local protein synthesis necessary for the maintenance of long-term memory.
Collapse
Affiliation(s)
- Luana Fioriti
- Department of Neuroscience, College of Physicians and Surgeons of Columbia University, New York, NY 10032, USA
| | - Cory Myers
- Department of Neuroscience, College of Physicians and Surgeons of Columbia University, New York, NY 10032, USA
| | - Yan-You Huang
- Department of Neuroscience, College of Physicians and Surgeons of Columbia University, New York, NY 10032, USA
| | - Xiang Li
- Department of Neuroscience, College of Physicians and Surgeons of Columbia University, New York, NY 10032, USA
| | - Joseph S Stephan
- Department of Neuroscience, College of Physicians and Surgeons of Columbia University, New York, NY 10032, USA; Howard Hughes Medical Institute, New York, NY 10032, USA
| | - Pierre Trifilieff
- Department of Neuroscience, College of Physicians and Surgeons of Columbia University, New York, NY 10032, USA
| | - Luca Colnaghi
- Department of Neuroscience, College of Physicians and Surgeons of Columbia University, New York, NY 10032, USA; Howard Hughes Medical Institute, New York, NY 10032, USA
| | - Stylianos Kosmidis
- Department of Neuroscience, College of Physicians and Surgeons of Columbia University, New York, NY 10032, USA; Howard Hughes Medical Institute, New York, NY 10032, USA
| | - Bettina Drisaldi
- Department of Neuroscience, College of Physicians and Surgeons of Columbia University, New York, NY 10032, USA
| | - Elias Pavlopoulos
- Department of Neuroscience, College of Physicians and Surgeons of Columbia University, New York, NY 10032, USA
| | - Eric R Kandel
- Department of Neuroscience, College of Physicians and Surgeons of Columbia University, New York, NY 10032, USA; Howard Hughes Medical Institute, New York, NY 10032, USA; Kavli Institute for Brain Science, New York, NY 10032, USA.
| |
Collapse
|
26
|
Marquardt K, Saha M, Mishina M, Young JW, Brigman JL. Loss of GluN2A-containing NMDA receptors impairs extra-dimensional set-shifting. GENES BRAIN AND BEHAVIOR 2014; 13:611-7. [PMID: 25059550 DOI: 10.1111/gbb.12156] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 07/08/2014] [Accepted: 07/21/2014] [Indexed: 11/28/2022]
Abstract
Glutamate neurotransmission via the N-methyl-D-aspartate receptor (NMDAR) is thought to mediate the synaptic plasticity underlying learning and memory formation. There is increasing evidence that deficits in NMDAR function are involved in the pathophysiology of cognitive dysfunction seen in neuropsychiatric disorders and addiction. NMDAR subunits confer different physiological properties to the receptor, interact with distinct intracellular postsynaptic scaffolding and signaling molecules, and are differentially expressed during development. Despite these known differences, the relative contribution of individual subunit composition to synaptic plasticity and learning is not fully elucidated. We have previously shown that constitutive deletion of GluN2A subunit in the mouse impairs discrimination and re-learning phase of reversal when exemplars are complex picture stimuli, but spares acquisition and extinction of non-discriminative visually cued instrumental response. To investigate the role of GluN2A containing NMDARs in executive control, we tested GluN2A knockout (GluN2A(KO) ), heterozygous (GluN2A(HET) ) and wild-type (WT) littermates on an attentional set-shifting task using species-specific stimulus dimensions. To further explore the nature of deficits in this model, mice were tested on a visual discrimination reversal paradigm using simplified rotational stimuli. GluN2A(KO) were not impaired on discrimination or reversal problems when tactile or olfactory stimuli were used, or when visual stimuli were sufficiently easy to discriminate. GluN2A(KO) showed a specific and significant impairment in ventromedial prefrontal cortex-mediated set-shifting. Together these results support a role for GluN2A containing NMDAR in modulating executive control that can be masked by overlapping deficits in attentional processes during high task demands.
Collapse
Affiliation(s)
- K Marquardt
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | | | | | | | | |
Collapse
|
27
|
Shahidi S, Hashemi-Firouzi N. The effects of a 5-HT7 receptor agonist and antagonist on morphine withdrawal syndrome in mice. Neurosci Lett 2014; 578:27-32. [DOI: 10.1016/j.neulet.2014.06.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 05/30/2014] [Accepted: 06/11/2014] [Indexed: 12/16/2022]
|
28
|
Bannerman DM, Sprengel R, Sanderson DJ, McHugh SB, Rawlins JNP, Monyer H, Seeburg PH. Hippocampal synaptic plasticity, spatial memory and anxiety. Nat Rev Neurosci 2014; 15:181-92. [PMID: 24552786 DOI: 10.1038/nrn3677] [Citation(s) in RCA: 499] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Recent studies using transgenic mice lacking NMDA receptors in the hippocampus challenge the long-standing hypothesis that hippocampal long-term potentiation-like mechanisms underlie the encoding and storage of associative long-term spatial memories. However, it may not be the synaptic plasticity-dependent memory hypothesis that is wrong; instead, it may be the role of the hippocampus that needs to be re-examined. We present an account of hippocampal function that explains its role in both memory and anxiety.
Collapse
Affiliation(s)
- David M Bannerman
- Department of Experimental Psychology, University of Oxford, Oxford, OX1 3UD, UK
| | - Rolf Sprengel
- Max Planck Institute for Medical Research, D-69120 Heidelberg, Germany
| | | | - Stephen B McHugh
- Department of Experimental Psychology, University of Oxford, Oxford, OX1 3UD, UK
| | - J Nicholas P Rawlins
- Department of Experimental Psychology, University of Oxford, Oxford, OX1 3UD, UK
| | - Hannah Monyer
- Department of Clinical Neurobiology, Medical Faculty of Heidelberg University and German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Peter H Seeburg
- Max Planck Institute for Medical Research, D-69120 Heidelberg, Germany
| |
Collapse
|
29
|
Tsang KH, Lai SK, Li Q, Yung WH, Liu H, Mak PHS, Ng CCP, McAlonan G, Chan YS, Chan SY. The nucleosome assembly protein TSPYL2 regulates the expression of NMDA receptor subunits GluN2A and GluN2B. Sci Rep 2014; 4:3654. [PMID: 24413569 PMCID: PMC3888966 DOI: 10.1038/srep03654] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 12/16/2013] [Indexed: 12/31/2022] Open
Abstract
TSPYL2 is an X-linked gene encoding a nucleosome assembly protein. TSPYL2 interacts with calmodulin-associated serine/threonine kinase, which is implicated in X-linked mental retardation. As nucleosome assembly and chromatin remodeling are important in transcriptional regulation and neuronal function, we addressed the importance of TSPYL2 through analyzing Tspyl2 loss-of-function mice. We detected down-regulation of N-methyl-D-aspartate receptor subunits 2A and 2B (GluN2A and GluN2B) in the mutant hippocampus. Evidence from luciferase reporter assays and chromatin immunoprecipitation supported that TSPYL2 regulated the expression of Grin2a and Grin2b, the genes encoding GluN2A and GluN2B. We also detected an interaction between TSPYL2 and CBP, indicating that TSPYL2 may activate gene expression through binding CBP. In terms of functional outcome, Tspyl2 loss-of-function impaired long-term potentiation at hippocampal Schaffer collateral-CA1 synapses. Moreover, mutant mice showed a deficit in fear learning and memory. We conclude that TSPYL2 contributes to cognitive variability through regulating the expression of Grin2a and Grin2b.
Collapse
Affiliation(s)
- Ka Hing Tsang
- 1] Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong, China [2] Centre for Reproduction, Development and Growth, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong, China
| | - Suk King Lai
- 1] Department of Physiology, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong, China [2] Research Centre of Heart, Brain, Hormone and Healthy Aging, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong, China
| | - Qi Li
- 1] Centre for Reproduction, Development and Growth, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong, China [2] Department of Psychiatry, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong, China
| | - Wing Ho Yung
- School of Biomedical Sciences, the Chinese University of Hong Kong, Hong Kong, China
| | - Hang Liu
- 1] Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong, China [2] Centre for Reproduction, Development and Growth, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong, China
| | - Priscilla Hoi Shan Mak
- 1] Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong, China [2] Centre for Reproduction, Development and Growth, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong, China
| | - Cypress Chun Pong Ng
- 1] Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong, China [2] Centre for Reproduction, Development and Growth, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong, China
| | - Grainne McAlonan
- 1] Centre for Reproduction, Development and Growth, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong, China [2] Department of Psychiatry, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong, China [3] Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, King's College London, United Kingdom
| | - Ying Shing Chan
- 1] Department of Physiology, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong, China [2] Research Centre of Heart, Brain, Hormone and Healthy Aging, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong, China
| | - Siu Yuen Chan
- 1] Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong, China [2] Centre for Reproduction, Development and Growth, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong, China
| |
Collapse
|
30
|
Post-acquisition hippocampal NMDA receptor blockade sustains retention of spatial reference memory in Morris water maze. Behav Brain Res 2013; 259:261-7. [PMID: 24257072 DOI: 10.1016/j.bbr.2013.11.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 11/06/2013] [Accepted: 11/11/2013] [Indexed: 11/24/2022]
Abstract
Several studies have demonstrated that the hippocampal N-methyl-D-aspartate type glutamate receptors (NMDARs) are necessary for the acquisition but not the retention of spatial reference memory. In contrast, a few studies have shown that post-acquisition repetitive intraperitoneal injections of an NMDAR antagonist facilitate the retention of spatial reference memory in a radial maze task. In the present study, we investigated the role of hippocampal NMDARs in the retention of spatial reference memories in Morris water maze. In Experiment 1, 24 h after training (4 trials/day for 4 days), D-AP5 was chronically infused into the hippocampus of rats for 5 days. In the subsequent probe test (seven days after training), we found that rats infused with D-AP5 spent a significantly longer time in the target quadrant compared to chance level, whereas rats in the control group did not. In Experiment 2, D-AP5 was infused into the hippocampus 1 (immediate) or 7 (delayed) days after the training session. In the probe test, following the retention interval of 13 days, immediate infusion facilitated the performance in a manner similar to Experiment 1, whereas the delayed infusion did not. These findings suggest that hippocampal NMDARs play an important role in the deterioration of spatial reference memory.
Collapse
|
31
|
Rompala GR, Zsiros V, Zhang S, Kolata SM, Nakazawa K. Contribution of NMDA receptor hypofunction in prefrontal and cortical excitatory neurons to schizophrenia-like phenotypes. PLoS One 2013; 8:e61278. [PMID: 23613827 PMCID: PMC3628715 DOI: 10.1371/journal.pone.0061278] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 03/09/2013] [Indexed: 11/18/2022] Open
Abstract
Pharmacological and genetic studies support a role for NMDA receptor (NMDAR) hypofunction in the etiology of schizophrenia. We have previously demonstrated that NMDAR obligatory subunit 1 (GluN1) deletion in corticolimbic interneurons during early postnatal development is sufficient to confer schizophrenia-like phenotypes in mice. However, the consequence of NMDAR hypofunction in cortical excitatory neurons is not well delineated. Here, we characterize a conditional knockout mouse strain (CtxGluN1 KO mice), in which postnatal GluN1 deletion is largely confined to the excitatory neurons in layer II/III of the medial prefrontal cortex and sensory cortices, as evidenced by the lack of GluN1 mRNA expression in in situ hybridization immunocytochemistry as well as the lack of NMDA currents with in vitro recordings. Mutants were impaired in prepulse inhibition of the auditory startle reflex as well as object-based short-term memory. However, they did not exhibit impairments in additional hallmarks of schizophrenia-like phenotypes (e.g. spatial working memory, social behavior, saccharine preference, novelty and amphetamine-induced hyperlocomotion, and anxiety-related behavior). Furthermore, upon administration of the NMDA receptor antagonist, MK-801, there were no differences in locomotor activity versus controls. The mutant mice also showed negligible levels of reactive oxygen species production following chronic social isolation, and recording of miniature-EPSC/IPSCs from layer II/III excitatory neurons in medial prefrontal cortex suggested no alteration in GABAergic activity. All together, the mutant mice displayed cognitive deficits in the absence of additional behavioral or cellular phenotypes reflecting schizophrenia pathophysiology. Thus, NMDAR hypofunction in prefrontal and cortical excitatory neurons may recapitulate only a cognitive aspect of human schizophrenia symptoms.
Collapse
Affiliation(s)
- Gregory R. Rompala
- Unit on Genetics of Cognition and Behavior, National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, United States of America
| | - Veronika Zsiros
- Unit on Genetics of Cognition and Behavior, National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, United States of America
| | - Shuqin Zhang
- Unit on Genetics of Cognition and Behavior, National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, United States of America
| | - Stefan M. Kolata
- Unit on Genetics of Cognition and Behavior, National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, United States of America
| | - Kazu Nakazawa
- Unit on Genetics of Cognition and Behavior, National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
32
|
Prepulse inhibition predicts working memory performance whilst startle habituation predicts spatial reference memory retention in C57BL/6 mice. Behav Brain Res 2013; 242:166-77. [DOI: 10.1016/j.bbr.2012.12.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 12/01/2012] [Accepted: 12/06/2012] [Indexed: 12/26/2022]
|
33
|
Transplacental exposure to AZT induces adverse neurochemical and behavioral effects in a mouse model: protection by L-acetylcarnitine. PLoS One 2013; 8:e55753. [PMID: 23409035 PMCID: PMC3567094 DOI: 10.1371/journal.pone.0055753] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 12/31/2012] [Indexed: 11/19/2022] Open
Abstract
Maternal-fetal HIV-1 transmission can be prevented by administration of AZT, alone or in combination with other antiretroviral drugs to pregnant HIV-1-infected women and their newborns. In spite of the benefits deriving from this life-saving prophylactic therapy, there is still considerable uncertainty on the potential long-term adverse effects of antiretroviral drugs on exposed children. Clinical and experimental studies have consistently shown the occurrence of mitochondrial dysfunction and increased oxidative stress following prenatal treatment with antiretroviral drugs, and clinical evidence suggests that the developing brain is one of the targets of the toxic action of these compounds possibly resulting in behavioral problems. We intended to verify the effects on brain and behavior of mice exposed during gestation to AZT, the backbone of antiretroviral therapy during human pregnancy. We hypothesized that glutamate, a neurotransmitter involved in excitotoxicity and behavioral plasticity, could be one of the major actors in AZT-induced neurochemical and behavioral alterations. We also assessed the antioxidant and neuroprotective effect of L-acetylcarnitine, a compound that improves mitochondrial function and is successfully used to treat antiretroviral-induced polyneuropathy in HIV-1 patients. We found that transplacental exposure to AZT given per os to pregnant mice from day 10 of pregnancy to delivery impaired in the adult offspring spatial learning and memory, enhanced corticosterone release in response to acute stress, increased brain oxidative stress also at birth and markedly reduced expression of mGluR1 and mGluR5 subtypes and GluR1 subunit of AMPA receptors in the hippocampus. Notably, administration during the entire pregnancy of L-acetylcarnitine was effective in preventing/ameliorating the neurochemical, neuroendocrine and behavioral adverse effects induced by AZT in the offspring. The present preclinical findings provide a mechanistic hypothesis for the neurobehavioral effects of AZT and strongly suggest that preventive administration of L-acetylcarnitine might be effective in reducing the neurological side-effects of antiretroviral therapy in fetus/newborn.
Collapse
|
34
|
Morris RGM, Steele RJ, Bell JE, Martin SJ. N-methyl-d-aspartate receptors, learning and memory: chronic intraventricular infusion of the NMDA receptor antagonist d-AP5 interacts directly with the neural mechanisms of spatial learning. Eur J Neurosci 2013; 37:700-17. [PMID: 23311352 DOI: 10.1111/ejn.12086] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 11/11/2012] [Indexed: 01/03/2023]
Abstract
Three experiments were conducted to contrast the hypothesis that hippocampal N-methyl-d-aspartate (NMDA) receptors participate directly in the mechanisms of hippocampus-dependent learning with an alternative view that apparent impairments of learning induced by NMDA receptor antagonists arise because of drug-induced neuropathological and/or sensorimotor disturbances. In experiment 1, rats given a chronic i.c.v. infusion of d-AP5 (30 mm) at 0.5 μL/h were selectively impaired, relative to aCSF-infused animals, in place but not cued navigation learning when they were trained during the 14-day drug infusion period, but were unimpaired on both tasks if trained 11 days after the minipumps were exhausted. d-AP5 caused sensorimotor disturbances in the spatial task, but these gradually worsened as the animals failed to learn. Histological assessment of potential neuropathological changes revealed no abnormalities in d-AP5-treated rats whether killed during or after chronic drug infusion. In experiment 2, a deficit in spatial learning was also apparent in d-AP5-treated rats trained on a spatial reference memory task involving two identical but visible platforms, a task chosen and shown to minimise sensorimotor disturbances. HPLC was used to identify the presence of d-AP5 in selected brain areas. In Experiment 3, rats treated with d-AP5 showed a delay-dependent deficit in spatial memory in the delayed matching-to-place protocol for the water maze. These data are discussed with respect to the learning mechanism and sensorimotor accounts of the impact of NMDA receptor antagonists on brain function. We argue that NMDA receptor mechanisms participate directly in spatial learning.
Collapse
Affiliation(s)
- R G M Morris
- Laboratory for Cognitive Neuroscience, Centre for Cognitive and Neural Systems, The University of Edinburgh, Edinburgh, UK.
| | | | | | | |
Collapse
|
35
|
Galizio M, Deal M, Hawkey A, April B. Working memory in the odor span task: effects of chlordiazepoxide, dizocilpine (MK801), morphine, and scopolamine. Psychopharmacology (Berl) 2013; 225:397-406. [PMID: 22918519 PMCID: PMC3529754 DOI: 10.1007/s00213-012-2825-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 07/21/2012] [Indexed: 01/29/2023]
Abstract
RATIONALE A number of tasks are used to assess working memory in rodents, but the odor span task (OST) is unique in studying performance as a function of the number of stimuli to remember. OBJECTIVES The purpose of the present study was to better characterize the behavioral pharmacology of the OST by exploring the effects of several amnestic agents including an NMDA antagonist (dizocilpine), a positive GABA-A modulator (chlordiazepoxide), an anticholinergic compound (scopolamine), and as a negative control, an opiate receptor agonist (morphine). METHODS Rats were trained to perform on the OST which is a non-match-to-sample procedure with an incrementing number of sample odors to remember as the session progresses. Trials with a simple odor discrimination task (SD) were interspersed to provide a control for effects unrelated to memory load. RESULTS All four drugs disrupted performances on the OST task in a dose-dependent fashion, but only the NMDA antagonist dizocilpine produced impairments that were clearly dependent on the number of stimuli to remember. Dizocilpine impaired OST performance at a dose (0.1 mg/kg) that did not affect SD, and that impairment depended on memory load. Chlordiazepoxide (3.0 mg/kg) also produced amnestic effects that were manifest by shorter memory spans and runs of correct responding. In contrast, morphine and scopolamine impaired OST accuracy only at doses that also disrupted SD (18.0 and 0.3 mg/kg, respectively). CONCLUSIONS These results provide evidence of NMDA and benzodiazepine modulation of working memory as assessed by the OST.
Collapse
Affiliation(s)
- Mark Galizio
- University of North Carolina Wilmington, Wilmington, USA.
| | | | | | | |
Collapse
|
36
|
Inglis J, Martin SJ, Morris RGM. Upstairs/downstairs revisited: spatial pretraining-induced rescue of normal spatial learning during selective blockade of hippocampal N-methyl-d-aspartate receptors. Eur J Neurosci 2012; 37:718-27. [PMID: 23278867 DOI: 10.1111/ejn.12087] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 11/11/2012] [Indexed: 11/29/2022]
Abstract
Spatial pretraining can enable spatial learning in another environment that ordinarily requires hippocampal N-methyl-d-aspartate (NMDA) receptor activity to become independent of that activity. This study explored further the circumstances in which this training-induced 'rescue' of later learning in the presence of the NMDA receptor antagonist 2-amino-5-phosphonovaleric acid (D-AP5) can occur. D-AP5 (0, 10, 20 and 30 mm in artificial cerebrospinal fluid) was infused continuously (0.5 μL/h, from a minipump) and bilaterally into the dorsal hippocampus during spatial-reference-memory training in a watermaze (4 trials/day, 8 days). This was preceded either by handling only or by identical spatial training in another watermaze in a separate laboratory with different extramaze cues. In naïve rats, D-AP5 caused a dose-related impairment in spatial reference memory acquisition that was significant at the lowest 5 nm/h infusion concentration. In pretrained rats, the dose-response function was shifted such that, in watermaze 2, spatial learning was normal at this low concentration, with a deficit at higher infusion concentrations. The induction of long-term potentiation in the dentate gyrus in vivo was blocked at all D-AP5 concentrations. Sensorimotor abnormalities sometimes seen with NMDA receptor antagonists were only apparent at the highest concentration. The implication of this paradoxical dissociation between hippocampal NMDA receptor-dependent plasticity and spatial learning is discussed with reference to two rival hypotheses of the impact of pretraining.
Collapse
Affiliation(s)
- Jennifer Inglis
- Laboratory for Cognitive Neuroscience, Centre for Cognitive and Neural Systems, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ, UK
| | | | | |
Collapse
|
37
|
Gilmour G, Dix S, Fellini L, Gastambide F, Plath N, Steckler T, Talpos J, Tricklebank M. NMDA receptors, cognition and schizophrenia – Testing the validity of the NMDA receptor hypofunction hypothesis. Neuropharmacology 2012; 62:1401-12. [DOI: 10.1016/j.neuropharm.2011.03.015] [Citation(s) in RCA: 136] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 03/10/2011] [Accepted: 03/12/2011] [Indexed: 11/25/2022]
|
38
|
Foster TC. Dissecting the age-related decline on spatial learning and memory tasks in rodent models: N-methyl-D-aspartate receptors and voltage-dependent Ca2+ channels in senescent synaptic plasticity. Prog Neurobiol 2012; 96:283-303. [PMID: 22307057 DOI: 10.1016/j.pneurobio.2012.01.007] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 01/09/2012] [Accepted: 01/19/2012] [Indexed: 10/14/2022]
Abstract
In humans, heterogeneity in the decline of hippocampal-dependent episodic memory is observed during aging. Rodents have been employed as models of age-related cognitive decline and the spatial water maze has been used to show variability in the emergence and extent of impaired hippocampal-dependent memory. Impairment in the consolidation of intermediate-term memory for rapidly acquired and flexible spatial information emerges early, in middle-age. As aging proceeds, deficits may broaden to include impaired incremental learning of a spatial reference memory. The extent and time course of impairment has been be linked to senescence of calcium (Ca²⁺) regulation and Ca²⁺-dependent synaptic plasticity mechanisms in region CA1. Specifically, aging is associated with altered function of N-methyl-D-aspartate receptors (NMDARs), voltage-dependent Ca²⁺ channels (VDCCs), and ryanodine receptors (RyRs) linked to intracellular Ca²⁺ stores (ICS). In young animals, NMDAR activation induces long-term potentiation of synaptic transmission (NMDAR-LTP), which is thought to mediate the rapid consolidation of intermediate-term memory. Oxidative stress, starting in middle-age, reduces NMDAR function. In addition, VDCCs and ICS can actively inhibit NMDAR-dependent LTP and oxidative stress enhances the role of VDCC and RyR-ICS in regulating synaptic plasticity. Blockade of L-type VDCCs promotes NMDAR-LTP and memory in older animals. Interestingly, pharmacological or genetic manipulations to reduce hippocampal NMDAR function readily impair memory consolidation or rapid learning, generally leaving incremental learning intact. Finally, evidence is mounting to indicate a role for VDCC-dependent synaptic plasticity in associative learning and the consolidation of remote memories. Thus, VDCC-dependent synaptic plasticity and extrahippocampal systems may contribute to incremental learning deficits observed with advanced aging.
Collapse
Affiliation(s)
- Thomas C Foster
- Department of Neuroscience, Evelyn F. and William L. McKnight Brain Institute, University of Florida, PO Box 100244, Gainesville, FL 32610-0244, USA. ,
| |
Collapse
|
39
|
Cognitive enhancing effects of an AMPA receptor positive modulator on place learning in mice. Behav Brain Res 2012; 226:18-25. [DOI: 10.1016/j.bbr.2011.08.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 08/23/2011] [Accepted: 08/25/2011] [Indexed: 12/14/2022]
|
40
|
Murphy ER, Fernando ABP, Urcelay GP, Robinson ESJ, Mar AC, Theobald DEH, Dalley JW, Robbins TW. Impulsive behaviour induced by both NMDA receptor antagonism and GABAA receptor activation in rat ventromedial prefrontal cortex. Psychopharmacology (Berl) 2012; 219:401-10. [PMID: 22101355 PMCID: PMC3249210 DOI: 10.1007/s00213-011-2572-1] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Accepted: 11/03/2011] [Indexed: 11/30/2022]
Abstract
RATIONALE Previous work has demonstrated a profound effect of N-methyl-D: -aspartic acid receptor (NMDAR) antagonism in the infralimbic cortex (IL) to selectively elevate impulsive responding in a rodent reaction time paradigm. However, the mechanism underlying this effect is unclear. OBJECTIVES This series of experiments investigated the pharmacological basis of this effect in terms of excitatory and inhibitory neurotransmission. We tested several pharmacological mechanisms that might produce the effect of NMDAR antagonism via disruption or dampening of IL output. METHODS Drugs known to affect brain GABA or glutamate function were tested in rats pre-trained on a five-choice serial reaction time task (5-CSRTT) following either their systemic administration or direct administration into the IL. RESULTS Systemic lamotrigine administration (15 mg/kg), which attenuates excess glutamate release, did not counteract the ability of the intra-IL NMDAR antagonist 3-((R)-2-carboxypiperazin-4-yl)-propyl-L: -phosphonic acid ((R)-CPP) to increase premature responding on the 5-CSRTT. Putative elevation of local extracellular glutamate via intra-IL infusions of the selective glutamate reuptake inhibitor DL: -threo-β-benzyloxyaspartate as well as local α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor antagonism also had no effect on this task. However, intra-IL infusions of the GABA(A) receptor agonist muscimol produced qualitatively but not quantitatively comparable increases in impulsive responding to those elicited by (R)-CPP. Moreover, the GABA(A) receptor antagonist bicuculline blocked the increase in impulsivity produced by (R)-CPP when infused in the IL. CONCLUSIONS These findings implicate glutamatergic and GABAergic mechanisms in the IL in the expression of impulsivity and suggest that excessive glutamate release may not underlie increased impulsivity induced by local NMDA receptor antagonism.
Collapse
Affiliation(s)
- Emily R. Murphy
- Behavioural and Clinical Neuroscience Institute and Department of Experimental Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB UK
| | - Anushka B. P. Fernando
- Behavioural and Clinical Neuroscience Institute and Department of Experimental Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB UK
| | - Gonzalo P. Urcelay
- Behavioural and Clinical Neuroscience Institute and Department of Experimental Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB UK
| | - Emma S. J. Robinson
- Department of Physiology and Pharmacology, School of Medical Sciences, University of Bristol, University Walk, Bristol, BS8 1TD UK
| | - Adam C. Mar
- Behavioural and Clinical Neuroscience Institute and Department of Experimental Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB UK
| | - David E. H. Theobald
- Behavioural and Clinical Neuroscience Institute and Department of Experimental Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB UK
| | - Jeffrey W. Dalley
- Behavioural and Clinical Neuroscience Institute and Department of Experimental Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB UK
- Department of Psychiatry, University of Cambridge, Cambridge, CB2 2QQ UK
| | - Trevor W. Robbins
- Behavioural and Clinical Neuroscience Institute and Department of Experimental Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB UK
| |
Collapse
|
41
|
Moosavi M, Yadollahi Khales G, Rastegar K, Zarifkar A. The effect of sub-anesthetic and anesthetic ketamine on water maze memory acquisition, consolidation and retrieval. Eur J Pharmacol 2011; 677:107-10. [PMID: 22209880 DOI: 10.1016/j.ejphar.2011.12.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2011] [Revised: 11/29/2011] [Accepted: 12/07/2011] [Indexed: 01/07/2023]
Abstract
Ketamine, a non-selective inhibitor of NMDA (N-methyl-D-aspartate) channels is used in anesthetic or sub-anesthetic doses to induce analgesia, amnesia, to suppress fear, anxiety and depression. Although the ketamine's effect on memory acquisition is known, its effects on other aspects of memory are controversial. Morris water maze is a task which assesses spatial learning and memory. This study was aimed to assess the ketamine's differential effect on water maze memory acquisition, consolidation and retrieval. Male Sprague-Dawley rats (250-350 g) were trained in water maze single training session. 24h later a probe trial which was consisted of a single trial without platform was done. To assess the effect of ketamine on water maze memory acquisition it was administered before training; to assess its effect on memory consolidation it was administered immediately after training and to assess its effect on memory retrieval it was injected before probe trial. Ketamine both in sub-anesthetic and anesthetic doses impaired water maze memory acquisition, its anesthetic dose but not sub-anesthetic dose impaired memory consolidation and on retrieval stage, both doses deteriorated memory retrieval. It seems that NMDA receptor activity is not just necessary during water maze memory acquisition but also their post-learning reactivation is required to maintain memory consolidation and retrieval.
Collapse
Affiliation(s)
- Maryam Moosavi
- Shiraz Neuroscience Research Center and Department of Physiology, Shiraz University of Medical Sciences, Shiraz, Iran.
| | | | | | | |
Collapse
|
42
|
Pocivavsek A, Wu HQ, Potter MC, Elmer GI, Pellicciari R, Schwarcz R. Fluctuations in endogenous kynurenic acid control hippocampal glutamate and memory. Neuropsychopharmacology 2011; 36:2357-67. [PMID: 21796108 PMCID: PMC3176574 DOI: 10.1038/npp.2011.127] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Kynurenic acid (KYNA), an astrocyte-derived metabolite, antagonizes the α7 nicotinic acetylcholine receptor (α7nAChR) and, possibly, the glycine co-agonist site of the NMDA receptor at endogenous brain concentrations. As both receptors are involved in cognitive processes, KYNA elevations may aggravate, whereas reductions may improve, cognitive functions. We tested this hypothesis in rats by examining the effects of acute up- or downregulation of endogenous KYNA on extracellular glutamate in the hippocampus and on performance in the Morris water maze (MWM). Applied directly by reverse dialysis, KYNA (30-300 nM) reduced, whereas the specific kynurenine aminotransferase-II inhibitor (S)-4-(ethylsulfonyl)benzoylalanine (ESBA; 0.3-3 mM) raised, extracellular glutamate levels in the hippocampus. Co-application of KYNA (100 nM) with ESBA (1 mM) prevented the ESBA-induced glutamate increase. Comparable effects on hippocampal glutamate levels were seen after intra-cerebroventricular (i.c.v.) application of the KYNA precursor kynurenine (1 mM, 10 μl) or ESBA (10 mM, 10 μl), respectively. In separate animals, i.c.v. treatment with kynurenine impaired, whereas i.c.v. ESBA improved, performance in the MWM. I.c.v. co-application of KYNA (10 μM) eliminated the pro-cognitive effects of ESBA. Collectively, these studies show that KYNA serves as an endogenous modulator of extracellular glutamate in the hippocampus and regulates hippocampus-related cognitive function. Our results suggest that pharmacological interventions leading to acute reductions in hippocampal KYNA constitute an effective strategy for cognitive improvement. This approach might be especially useful in the treatment of cognitive deficits in neurological and psychiatric diseases that are associated with increased brain KYNA levels.
Collapse
Affiliation(s)
- Ana Pocivavsek
- Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Hui-Qiu Wu
- Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Michelle C Potter
- Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD, USA,Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD, USA
| | - Greg I Elmer
- Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Roberto Pellicciari
- Dipartimento di Chimica e Tecnologia del Farmaco, Universitá di Perugia, Perugia, Italy
| | - Robert Schwarcz
- Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD, USA,Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, PO Box 21247, Baltimore, MD 21228, USA, Tel: +1 4 10 402 7635, Fax: +1 4 10 747 2434, E-mail:
| |
Collapse
|
43
|
MacQueen DA, Bullard L, Galizio M. Effects of dizocilpine (MK801) on olfactory span in rats. Neurobiol Learn Mem 2010; 95:57-63. [PMID: 21074629 DOI: 10.1016/j.nlm.2010.11.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Revised: 10/20/2010] [Accepted: 11/05/2010] [Indexed: 11/25/2022]
Abstract
NMDA receptor antagonists interfere with learning and memory in some tasks, but not others. Some recent accounts have suggested that tasks placing demands on working memory are those most likely to be affected, and the present study tested this hypothesis. The purpose of the study was to adapt a recently developed procedure designed to test working memory capacity, the olfactory memory span task, for use in behavioral pharmacology and to then determine the effects of the NMDA receptor antagonist, dizocilpine (MK801) on performance in this task. Rats were trained in a non-match-to-sample procedure under conditions in which they had to remember an increasing number of olfactory stimuli as the session progressed. Simple olfactory discrimination trials were interspersed to provide a performance control. Effects of dizocilpine (.03, .10, .17, .3mg/kg) were determined after stable performances were obtained. Rats were able to sustain stable performances on both the span and simple discrimination tasks with average spans of about 10 items. Accuracy declined as the number of stimuli to remember increased, and dizocilpine impaired accuracy in a dose-dependent and memory-load dependent fashion. The finding that the effects of dizocilpine interacted with the number of stimuli to remember is generally consistent with hypotheses linking NMDA receptors and working memory processes.
Collapse
Affiliation(s)
- Dave A MacQueen
- University of North Carolina Wilmington, Department of Psychology, 601 S. College Rd., Wilmington, NC 28403, USA
| | | | | |
Collapse
|
44
|
Dix S, Gilmour G, Potts S, Smith JW, Tricklebank M. A within-subject cognitive battery in the rat: differential effects of NMDA receptor antagonists. Psychopharmacology (Berl) 2010; 212:227-42. [PMID: 20676612 DOI: 10.1007/s00213-010-1945-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Accepted: 06/29/2010] [Indexed: 10/19/2022]
Abstract
RATIONALE The range of cognitive and psychotomimetic effects produced by antagonists of the N-methyl-D-aspartate (NMDA) receptor has lead to widespread usage of these molecules as pharmacological models of cognitive impairment for drug discovery. Historically, NMDA receptor antagonists have been used interchangeably on the assumption that they produce analogous effects. OBJECTIVES To profile a subset of these antagonists across a novel within-subject cognitive battery in the rat. METHODS Naïve male Lister Hooded rats were subjected to a series of tests in which they were required to learn a simple visuo-auditory conditional discrimination. They then underwent testing in a delayed discrimination test followed by rule reversal and rule extinction tests. RESULTS All NMDA receptor antagonists tested impaired acquisition performance and, with the exception of ketamine and the GluN2A preferring antagonist, NVP-AAM077, impaired consolidation of extinction. GluN2B antagonism produced a singular profile with potentially enhanced delayed discrimination performance and reduced hit rates in the reversal phase. Only PCP (phencyclidine) and ketamine disrupted performance in the delay phase but did so in a delay-independent manner. MK-801, PCP and memantine all increased the hit rate in the reversal phase; whilst only MK-801 and PCP impaired extinction per se. CONCLUSIONS NMDA receptor-dependent mechanisms are requisite in the acquisition of a simple conditional discrimination and consolidation of extinction. Their role in working memory and reversal tasks appear to be less critical and potentially specific to the paradigm and NMDA receptor antagonist used. It is clearly misleading to generalise across NMDA antagonists with respect to their preclinical cognitive profile.
Collapse
Affiliation(s)
- Sophie Dix
- Lilly Centre for Cognitive Neuroscience, Eli Lilly and Co Ltd, Erl Wood Manor, Sunninghill Road, Windlesham, Surrey GU20 6PH, UK.
| | | | | | | | | |
Collapse
|
45
|
Reduction of endogenous kynurenic acid formation enhances extracellular glutamate, hippocampal plasticity, and cognitive behavior. Neuropsychopharmacology 2010; 35:1734-42. [PMID: 20336058 PMCID: PMC3055476 DOI: 10.1038/npp.2010.39] [Citation(s) in RCA: 180] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
At endogenous brain concentrations, the astrocyte-derived metabolite kynurenic acid (KYNA) antagonizes the alpha 7 nicotinic acetylcholine receptor and, possibly, the glycine co-agonist site of the NMDA receptor. The functions of these two receptors, which are intimately involved in synaptic plasticity and cognitive processes, may, therefore, be enhanced by reductions in brain KYNA levels. This concept was tested in mice with a targeted deletion of kynurenine aminotransferase II (KAT II), a major biosynthetic enzyme of brain KYNA. At 21 days of age, KAT II knock-out mice had reduced hippocampal KYNA levels (-71%) and showed significantly increased performance in three cognitive paradigms that rely in part on the integrity of hippocampal function, namely object exploration and recognition, passive avoidance, and spatial discrimination. Moreover, compared with wild-type controls, hippocampal slices from KAT II-deficient mice showed a significant increase in the amplitude of long-term potentiation in vitro. These functional changes were accompanied by reduced extracellular KYNA (-66%) and increased extracellular glutamate (+51%) concentrations, measured by hippocampal microdialysis in vivo. Taken together, a picture emerges in which a reduction in the astrocytic formation of KYNA increases glutamatergic tone in the hippocampus and enhances cognitive abilities and synaptic plasticity. Our studies raise the prospect that interventions aimed specifically at reducing KYNA formation in the brain may constitute a promising molecular strategy for cognitive improvement in health and disease.
Collapse
|
46
|
Loss of GluN2B-containing NMDA receptors in CA1 hippocampus and cortex impairs long-term depression, reduces dendritic spine density, and disrupts learning. J Neurosci 2010; 30:4590-600. [PMID: 20357110 DOI: 10.1523/jneurosci.0640-10.2010] [Citation(s) in RCA: 271] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
NMDA receptors (NMDARs) are key mediators of certain forms of synaptic plasticity and learning. NMDAR complexes are heteromers composed of an obligatory GluN1 subunit and one or more GluN2 (GluN2A-GluN2D) subunits. Different subunits confer distinct physiological and molecular properties to NMDARs, but their contribution to synaptic plasticity and learning in the adult brain remains uncertain. Here, we generated mice lacking GluN2B in pyramidal neurons of cortex and CA1 subregion of hippocampus. We found that hippocampal principal neurons of adult GluN2B mutants had faster decaying NMDAR-mediated EPSCs than nonmutant controls and were insensitive to GluN2B but not NMDAR antagonism. A subsaturating form of hippocampal long-term potentiation (LTP) was impaired in the mutants, whereas a saturating form of LTP was intact. An NMDAR-dependent form of long-term depression (LTD) produced by low-frequency stimulation combined with glutamate transporter inhibition was abolished in the mutants. Additionally, mutants exhibited decreased dendritic spine density in CA1 hippocampal neurons compared with controls. On multiple assays for corticohippocampal-mediated learning and memory (hidden platform Morris water maze, T-maze spontaneous alternation, and pavlovian trace fear conditioning), mutants were impaired. These data further demonstrate the importance of GluN2B for synaptic plasticity in the adult hippocampus and suggest a particularly critical role in LTD, at least the form studied here. The finding that loss of GluN2B was sufficient to cause learning deficits illustrates the contribution of GluN2B-mediated forms of plasticity to memory formation, with implications for elucidating NMDAR-related dysfunction in disease-related cognitive impairment.
Collapse
|
47
|
Abstract
In recent years, the contribution that different glutamate receptor subtypes and subunits make to spatial learning and memory has been studied extensively using genetically modified mice in which key proteins are knocked out. This has revealed dissociations between different aspects of spatial memory that were not previously apparent from lesion studies. For example, studies with GluA1 AMPAR [AMPA (alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid) receptor] subunit-knockout mice have revealed the presence of a GluA1-dependent, non-associative short-term memory mechanism that is important for performance on spatial working memory tasks, and a GluA1-independent, long-term associative memory mechanism which underlies performance on spatial reference memory tasks. Within this framework we have also studied the contributions of different GluN2-containing NMDARs [NMDA (N-methyl-D-aspartate) receptors] to spatial memory. Studies with GluN2 NMDAR mutants have revealed different contributions from GluN2A- and GluN2B-containing NMDARs to spatial learning. Furthermore, comparison of forebrain- and hippocampus-specific GluN2B-knockout mice has demonstrated that both hippocampal and extra-hippocampal NMDARs make important contributions to spatial memory performance.
Collapse
|
48
|
From rapid place learning to behavioral performance: a key role for the intermediate hippocampus. PLoS Biol 2009; 7:e1000089. [PMID: 19385719 PMCID: PMC2671558 DOI: 10.1371/journal.pbio.1000089] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Accepted: 03/06/2009] [Indexed: 11/19/2022] Open
Abstract
Rapid place encoding by hippocampal neurons, as reflected by place-related firing, has been intensely studied, whereas the substrates that translate hippocampal place codes into behavior have received little attention. A key point relevant to this translation is that hippocampal organization is characterized by functional–anatomical gradients along the septotemporal axis: Whereas the ability of hippocampal neurons to encode accurate place information declines from the septal to temporal end, hippocampal connectivity to prefrontal and subcortical sites that might relate such place information to behavioral-control processes shows an opposite gradient. We examined in rats the impact of selective lesions to relevant parts of the hippocampus on behavioral tests requiring place learning (watermaze procedures) and on in vivo electrophysiological models of hippocampal encoding (long-term potentiation [LTP], place cells). We found that the intermediate hippocampus is necessary and largely sufficient for behavioral performance based on rapid place learning. In contrast, a residual septal pole of the hippocampus, although displaying intact electrophysiological indices of rapid information encoding (LTP, precise place-related firing, and rapid remapping), failed to sustain watermaze performance based on rapid place learning. These data highlight the important distinction between hippocampal encoding and the behavioral performance based on such encoding, and suggest that the intermediate hippocampus, where substrates of rapid accurate place encoding converge with links to behavioral control, is critical to translate rapid (one-trial) place learning into navigational performance. The ability to remember locations in space is dependent on an area of the brain called the hippocampus. A much-studied property of neurons in the hippocampus is that they rapidly come to represent or code for specific places—i.e., the hippocampus “learns” places—as animals or humans move through an environment. Here, we identified in rats the hippocampal substrate enabling the translation of place learning into appropriate search and approach behavior (similar to the task of returning to a novel place where you parked your car). We examined the impact of selective lesions to distinct parts of the hippocampus on behavior requiring rapid place learning and on in vivo electrophysiological models of hippocampal learning such as place-related neuronal activity. We showed that translation of rapid place learning into efficient search behavior requires the “intermediate” region of the hippocampus, a region that likely combines anatomical links to visuospatial information processed by the neocortex with links to behavioral control through prefrontal cortex and subcortical sites. In contrast, the so-called “septal” region of the hippocampus, which features the relevant anatomical links to visuospatial information processing, can sustain rapid place learning (as reflected by formation of place-related neuronal firing), but not translate such learning into appropriate search and approach behavior. The translation of hippocampal rapid place learning into successful search behavior requires the intermediate region of the hippocampus, which integrates accurate visuo-spatial processing with behavioral control.
Collapse
|
49
|
Klyubin I, Wang Q, Reed MN, Irving EA, Upton N, Hofmeister J, Cleary JP, Anwyl R, Rowan MJ. Protection against Aβ-mediated rapid disruption of synaptic plasticity and memory by memantine. Neurobiol Aging 2009; 32:614-23. [PMID: 19446369 DOI: 10.1016/j.neurobiolaging.2009.04.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Revised: 03/30/2009] [Accepted: 04/06/2009] [Indexed: 12/18/2022]
Abstract
Soluble amyloid-β protein (Aβ) may cause cognitive impairment in Alzheimer's disease in the absence of significant neurodegeneration. Here, the ability of the NMDA receptor (NMDAR) antagonist memantine to prevent synthetic Aβ-mediated rapid functional deficits in learned behavior and synaptic plasticity was assessed in the rat. In vitro, pretreatment with a clinically relevant, NMDAR blocking concentration of memantine partially inhibited the induction of long-term potentiation (LTP) in the dentate gyrus and prevented further inhibition caused by exposure to Aβ(1-42). Whereas systemic injection with memantine alone inhibited LTP in the CA1 area in vivo, a subthreshold dose partially abrogated the inhibition of LTP by intracerebroventricular soluble Aβ(1-42). Similarly, systemic treatment with memantine alone impaired performance of an operant learning task and a subthreshold dose prevented the Aβ(1-42)-mediated increase in perseveration errors. The acute protection afforded by memantine, albeit in a narrow dose range, against the rapid disruptive effects of soluble Aβ(1-42) on synaptic plasticity and learned behavior strongly implicate NMDAR-dependent reversible dysfunction of synaptic mechanisms in Aβ-mediated cognitive impairment.
Collapse
Affiliation(s)
- Igor Klyubin
- Department of Pharmacology and Therapeutics, Trinity College, Dublin 2, Ireland
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Aitta-aho T, Vekovischeva OY, Neuvonen PJ, Korpi ER. Reduced benzodiazepine tolerance, but increased flumazenil-precipitated withdrawal in AMPA-receptor GluR-A subunit-deficient mice. Pharmacol Biochem Behav 2009; 92:283-90. [DOI: 10.1016/j.pbb.2008.12.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2008] [Revised: 07/21/2008] [Accepted: 12/16/2008] [Indexed: 11/29/2022]
|