1
|
Montiel-Herrera F, Batanero-Geraldo A, López JC, Vargas JP, Quintero E, Díaz E. Effects of acute and chronic methylphenidate on prepulse inhibition: A sex difference study in Wistar rats. Physiol Behav 2024; 278:114526. [PMID: 38531426 DOI: 10.1016/j.physbeh.2024.114526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/28/2024] [Accepted: 03/04/2024] [Indexed: 03/28/2024]
Abstract
BACKGROUND The utilization of methylphenidate (MPH) is experiencing a notable surge within the adult population. This growth can be attributed to two key factors: its recreational and cognitive enhancement purposes, as well as the rising prevalence of ADHD diagnoses within this population. This study examined acute and chronic oral MPH effects on attention in male and female Wistar rats. To this end, we used a prepulse inhibition (PPI) task, which is widely used to assess psychoactive drug effects in both humans and rodents. This task allowed us to evaluate changes in attention by analyzing sensorimotor gating associated with stimulus selection process. METHODS Animals were administered a clinically relevant dose of MPH (5 mg/kg) daily for seven days. The estrous cycle phases of the female rats were measured during behavioral sessions. The PPI task was conducted 20 min after drug administration on day 1 (acute), day 7 (chronic), and 48 h post-treatment. RESULTS Results indicated that both acute and chronic MPH treatment impaired PPI expression in male rats, but not in female rats, regardless of their estrous cycle phase. Furthermore, a differential effect of chronic MPH treatment on the PPI task was found in male rats. Specifically, on the seventh treatment day, the PPI effect was observed when animals undertook the PPI task for the first time but was impaired in those animals in which the initial PPI session occurred under the acute influence of the drug (day 1). CONCLUSIONS These findings suggest that the impact of MPH on sensorimotor gating responses may vary based on sex and task experience, possibly leading to state-dependent effects in healthy individuals.
Collapse
Affiliation(s)
- F Montiel-Herrera
- Laboratory of Animal Behavior and Neuroscience, Department of Experimental Psychology, University of Seville, Seville, Spain
| | - A Batanero-Geraldo
- Laboratory of Animal Behavior and Neuroscience, Department of Experimental Psychology, University of Seville, Seville, Spain
| | - J C López
- Laboratory of Animal Behavior and Neuroscience, Department of Experimental Psychology, University of Seville, Seville, Spain
| | - J P Vargas
- Laboratory of Animal Behavior and Neuroscience, Department of Experimental Psychology, University of Seville, Seville, Spain
| | - E Quintero
- Laboratory of Animal Behavior and Neuroscience, Department of Experimental Psychology, University of Seville, Seville, Spain
| | - E Díaz
- Laboratory of Animal Behavior and Neuroscience, Department of Experimental Psychology, University of Seville, Seville, Spain.
| |
Collapse
|
2
|
Sex differences in methylphenidate-induced dopamine increases in ventral striatum. Mol Psychiatry 2022; 27:939-946. [PMID: 34707237 PMCID: PMC9043036 DOI: 10.1038/s41380-021-01294-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 08/16/2021] [Accepted: 09/08/2021] [Indexed: 12/02/2022]
Abstract
Sex differences in the prevalence of dopamine-related neuropsychiatric diseases and in the sensitivity to dopamine-boosting drugs such as stimulants is well recognized. Here we assessed whether there are sex differences in the brain dopamine system in humans that could contribute to these effects. We analyzed data from two independent [11C]raclopride PET brain imaging studies that measured methylphenidate-induced dopamine increases in the striatum using different routes of administration (Cohort A = oral 60 mg; Cohort B = intravenous 0.5 mg/kg; total n = 95; 65 male, 30 female), in blinded placebo-controlled designs. Females when compared to males reported stronger feeling of "drug effects" and showed significantly greater dopamine release in the ventral striatum (where nucleus accumbens is located) to both oral and intravenous methylphenidate. In contrast, there were no significant differences in methylphenidate-induced increases in dorsal striatum for either oral or intravenous administration nor were there differences in levels of methylphenidate in plasma. The greater dopamine increases with methylphenidate in ventral but not dorsal striatum in females compared to males suggests an enhanced sensitivity specific to the dopamine reward system that might underlie sex differences in the vulnerability to substance use disorders and to attention-deficit/hyperactivity disorder (ADHD).
Collapse
|
3
|
Caballero-Puntiverio M, Lerdrup LS, Arvastson L, Aznar S, Andreasen JT. ADHD medication and the inverted U-shaped curve: A pharmacological study in female mice performing the rodent Continuous Performance Test (rCPT). Prog Neuropsychopharmacol Biol Psychiatry 2020; 99:109823. [PMID: 31765714 DOI: 10.1016/j.pnpbp.2019.109823] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND The rodent Continuous Performance Test (rCPT) is an analogue of human CPTs where mice have to discriminate between target and non-target stimuli. The rCPT offers a readout of attentional performance and impulsive behaviour. This study aimed to determine if female C57BL/6 J mice could be trained in the rCPT since previously published rCPT studies have only used male mice and to study whether the effects of methylphenidate (MPH), atomoxetine (ATX), and dexamphetamine (AMPH) on attention and impulsivity depend on baseline (reference) levels of performance. METHODS 48 female mice underwent rCPT training. Effects of MPH (1, 2, and 3 mg/kg), ATX (1, 3, and 5 mg/kg) and AMPH (0.3, 0.6, and 1 mg/kg) were assessed in a variable stimulus duration probe. Drugs were administered intraperitoneally and sequentially tested following a Latin-square design. Data were analysed using a repeated measurements mixed effect model and reference-dependent effects were studied. RESULTS ATX and AMPH improved performance as seen by increases in discriminability. These improvements were a result of a decreased false-alarm rate. AMPH showed a reference-dependent effect, improving the task performance of low-performing mice and decreasing the performance of high-performing mice. MPH also showed this reference-dependent effects, albeit to a lesser extent. ATX and AMPH decreased premature responses and increased response criterion, but no reference-dependent effects were observed for these parameters. CONCLUSION This study presents a novel method to analyse baseline-dependent effects. It shows that the rCPT can be successfully used in pharmacological studies in female mice and demonstrates that the effect of ADHD medication is in line with the inverted U-shape theory of performance-arousal relationship.
Collapse
Affiliation(s)
- M Caballero-Puntiverio
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, Copenhagen 2100, Denmark; Symptoms Biology, H. Lundbeck A/S, Ottiliavej 9, Valby 2500, Denmark
| | - L S Lerdrup
- Symptoms Biology, H. Lundbeck A/S, Ottiliavej 9, Valby 2500, Denmark
| | - L Arvastson
- Bioinformatics, H. Lundbeck A/S, Ottiliavej 9, Valby 2500, Denmark
| | - S Aznar
- Molecular Biology, Bispebjerg Hospital, Copenhagen University Hospital, Bispebjerg Bakke 23, Copenhagen 2400, Denmark
| | - J T Andreasen
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, Copenhagen 2100, Denmark.
| |
Collapse
|
4
|
Ehrhardt C, Boucherie Q, Pauly V, Braunstein D, Ronflé E, Thirion X, Frauger E, Micallef J. Methylphenidate: Gender trends in adult and pediatric populations over a 7 year period. Therapie 2017; 72:635-641. [DOI: 10.1016/j.therap.2017.05.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 05/19/2017] [Accepted: 05/23/2017] [Indexed: 01/11/2023]
|
5
|
Antagonism of mGlu2/3 receptors in the nucleus accumbens prevents oxytocin from reducing cued methamphetamine seeking in male and female rats. Pharmacol Biochem Behav 2017; 161:13-21. [PMID: 28870523 DOI: 10.1016/j.pbb.2017.08.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 08/28/2017] [Accepted: 08/30/2017] [Indexed: 11/23/2022]
Abstract
Methamphetamine (meth) addiction is a prevalent health concern worldwide, yet remains without approved pharmacological treatments. Preclinical evidence suggests that oxytocin may decrease relapse, but the neuronal underpinnings driving this effect remain unknown. Here we investigate whether oxytocin's effect is dependent on presynaptic glutamatergic regulation in the nucleus accumbens core (NAcore) by blocking metabotropic glutamate receptors 2/3 (mGluR2/3). Male and female Sprague-Dawley rats self-administered meth or sucrose on an escalating fixed ratio, followed by extinction and cue-induced reinstatement sessions. Reinstatement tests consisted of systemic (Experiment 1) or site-specific application of the drugs into the NAcore (Experiments 2 and 3). Before reinstatement sessions, rats received LY341495, an mGluR2/3 antagonist, or its vehicle followed by a second infusion/injection of oxytocin or saline. As expected, both males and females reinstated lever pressing to meth associated cues, and LY341495 alone did not impact this behavior. Oxytocin injected systemically or infused into the NAcore decreased cued meth seeking. Importantly, combined LY341495 and oxytocin administration restored meth cued reinstatement. Interestingly, neither oxytocin nor LY341495 impacted sucrose-cued reinstatement, suggesting distinct mechanisms between meth and sucrose. These findings were consistent between males and females. Overall, we report that oxytocin reduced responding to meth-associated cues and blocking presynaptic mGluR2/3 reversed this effect. Further, oxytocin's effects were specific to meth cues as NAcore oxytocin was without an effect on sucrose cued reinstatement. Results are discussed in terms of oxytocin receptor localization in the NAcore and modulation of presynaptic regulation of glutamate in response to drug associated cues.
Collapse
|
6
|
Vassoler FM, Wright SJ, Byrnes EM. Exposure to opiates in female adolescents alters mu opiate receptor expression and increases the rewarding effects of morphine in future offspring. Neuropharmacology 2015; 103:112-21. [PMID: 26700246 DOI: 10.1016/j.neuropharm.2015.11.026] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 11/18/2015] [Accepted: 11/25/2015] [Indexed: 12/22/2022]
Abstract
Prescription opiate use and abuse has increased dramatically over the past two decades, including increased use in adolescent populations. Recently, it has been proposed that use during this critical period may affect future offspring even when use is discontinued prior to conception. Here, we utilize a rodent model to examine the effects of adolescent morphine exposure on the reward functioning of the offspring. Female Sprague Dawley rats were administered morphine for 10 days during early adolescence (post-natal day 30-39) using an escalating dosing regimen. Animals then remained drug free until adulthood at which point they were mated with naïve males. Adult offspring (F1 animals) were tested for their response to morphine-induced (0, 1, 2.5, 5, and 10 mg/kg, s.c.) conditioned place preference (CPP) and context-independent morphine-induced sensitization. Naïve littermates were used to examine mu opiate receptor expression in the nucleus accumbens and ventral tegmental area. Results indicate that F1 females whose mothers were exposed to morphine during adolescence (Mor-F1) demonstrate significantly enhanced CPP to the lowest doses of morphine compared with Sal-F1 females. There were no differences in context-independent sensitization between maternal treatment groups. Protein expression analysis showed significantly increased levels of accumbal mu opiate receptor in Mor-F1 offspring and decreased levels in the VTA. Taken together, these findings demonstrate a shift in the dose response curve with regard to the rewarding effects of morphine in Mor-F1 females which may in part be due to altered mu opiate receptor expression in the nucleus accumbens and VTA.
Collapse
Affiliation(s)
- Fair M Vassoler
- Department of Biomedical Sciences, Cummings School of Veterinary Medicine, Tufts University, Peabody Pavilion, 200 Westborough Road, Grafton, MA 01536, USA.
| | - Siobhan J Wright
- Department of Biomedical Sciences, Cummings School of Veterinary Medicine, Tufts University, Peabody Pavilion, 200 Westborough Road, Grafton, MA 01536, USA
| | - Elizabeth M Byrnes
- Department of Biomedical Sciences, Cummings School of Veterinary Medicine, Tufts University, Peabody Pavilion, 200 Westborough Road, Grafton, MA 01536, USA
| |
Collapse
|
7
|
Rowan JD, McCarty MK, Kundey SMA, Osburn CD, Renaud SM, Kelley BM, Matoushek AW, Fountain SB. Adolescent exposure to methylphenidate impairs serial pattern learning in the serial multiple choice (SMC) task in adult rats. Neurotoxicol Teratol 2015. [PMID: 26225921 DOI: 10.1016/j.ntt.2015.07.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The long-term effects of adolescent exposure to methylphenidate (MPD) on adult cognitive capacity are largely unknown. We utilized a serial multiple choice (SMC) task, which is a sequential learning paradigm for studying complex learning, to observe the effects of methylphenidate exposure during adolescence on later serial pattern acquisition during adulthood. Following 20.0mg/kg/day MPD or saline exposure for 5 days/week for 5 weeks during adolescence, male rats were trained to produce a highly structured serial response pattern in an octagonal operant chamber for water reinforcement as adults. During a transfer phase, a violation to the previously-learned pattern structure was introduced as the last element of the sequential pattern. Results indicated that while rats in both groups were able to learn the training and transfer patterns, adolescent exposure to MPD impaired learning for some aspects of pattern learning in the training phase which are learned using discrimination learning or serial position learning. In contrast adolescent exposure to MPD had no effect on other aspects of pattern learning which have been shown to tap into rule learning mechanisms. Additionally, adolescent MPD exposure impaired learning for the violation element in the transfer phase. This indicates a deficit in multi-item learning previously shown to be responsible for violation element learning. Thus, these results clearly show that adolescent MPD produced multiple cognitive impairments in male rats that persisted into adulthood long after MPD exposure ended.
Collapse
Affiliation(s)
- James D Rowan
- Department of Psychology, Wesleyan College, Macon, GA 31210-4462, USA.
| | - Madison K McCarty
- Department of Psychology, Wesleyan College, Macon, GA 31210-4462, USA.
| | | | - Crystal D Osburn
- Department of Psychology, Wesleyan College, Macon, GA 31210-4462, USA.
| | - Samantha M Renaud
- Department of Psychological Sciences, Kent State University, Kent, OH 44242-0001, USA.
| | - Brian M Kelley
- Department of Psychology, Bridgewater College, Bridgewater, VA 22812, USA.
| | | | - Stephen B Fountain
- Department of Psychological Sciences, Kent State University, Kent, OH 44242-0001, USA.
| |
Collapse
|
8
|
Zhou L, Ghee SM, See RE, Reichel CM. Oxytocin differentially affects sucrose taking and seeking in male and female rats. Behav Brain Res 2015; 283:184-90. [PMID: 25647756 PMCID: PMC4387851 DOI: 10.1016/j.bbr.2015.01.050] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 12/17/2014] [Accepted: 01/23/2015] [Indexed: 02/08/2023]
Abstract
Oxytocin has a modulatory role in natural and drug reward processes. While the role of oxytocin in pair bonding and reproduction has been extensively studied, sex differences in conditioned and unconditioned behavioral responses to oxytocin treatment have not been fully characterized. Here, we determined whether male and female rats would show similar dose response curves in response to acute oxytocin on measures of locomotor activity, sucrose seeking, and sucrose intake. Male and freely cycling female rats received vehicle or oxytocin (0.1, 0.3, 1, 3 mg/kg, IP) injections before behavioral tests designed to assess general motor activity, as well as sucrose self-administration and seeking. Lower doses of oxytocin decreased motor activity in a novel environment in females relative to males. Likewise, lower doses of oxytocin in females decreased responding for sucrose during maintenance of sucrose self-administration and reinstatement to sucrose-conditioned cues. However, sucrose seeking in response to a sucrose prime was only decreased by the highest oxytocin dose in both sexes. In general, oxytocin had similar effects in both sexes. However, females were more sensitive to lower doses of oxytocin than males. These findings are consistent with the notion that oxytocin regulates many of the same behaviors in males and females, but that the effects are typically more profound in females. Therapeutic use of oxytocin should include sex as a factor in determining dose regimens.
Collapse
Affiliation(s)
- Luyi Zhou
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Shannon M Ghee
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Ronald E See
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Carmela M Reichel
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC 29425, USA.
| |
Collapse
|
9
|
Sex differences in adolescent methylphenidate sensitization: effects on glial cell-derived neurotrophic factor and brain-derived neurotrophic factor. Behav Brain Res 2014; 273:139-43. [PMID: 25036427 DOI: 10.1016/j.bbr.2014.07.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 07/03/2014] [Accepted: 07/08/2014] [Indexed: 12/31/2022]
Abstract
This study analyzed sex differences in methylphenidate (MPH) sensitization and corresponding changes in glial cell-derived neurotrophic factor (GDNF) and brain-derived neurotprhic factor protein (BDNF) in adolescent male and female rats. After habituation to a locomotor arena, animals were sensitized to MPH (5mg/kg) or saline from postnatal day (P) 33-49, tested every second day. On P50, one group of animals were injected with saline and behavior assessed for conditioned hyperactivity. Brain tissue was harvested on P51 and analyzed for GDNF protein. A second group of animals was also sensitized to MPH from P33 to 49, and expression of behavioral sensitization was analyzed on a challenge given at P60, and BDNF protein analyzed at P61. Females demonstrated more robust sensitization to MPH than males, but only females given MPH during sensitization demonstrated conditioned hyperactivity. Interestingly, MPH resulted in a significant increase in striatal and accumbal GDNF with no sex differences revealed. Results of the challenge revealed that females sensitized and challenged with MPH demonstrated increased activity compared to all other groups. Regarding BDNF, only males given MPH demonstrated an increase in dorsal striatum, whereas MPH increased accumbal BDNF with no sex differences revealed. A hierarchical regression analysis revealed that behavioral sensitization and the conditioned hyperactivity test were reliable predictors of striatal and accumbal GDNF, whereas sensitization and activity on the challenge were reliable predictors of accumbal BDNF, but had no relationship to striatal BDNF. These data have implications for the role of MPH in addiction and dopamine system plasticity.
Collapse
|
10
|
Cummins ED, Griffin SB, Duty CM, Peterson DJ, Burgess KC, Brown RW. The Role of Dopamine D1and D2Receptors in Adolescent Methylphenidate Conditioned Place Preference: Sex Differences and Brain-Derived Neurotrophic Factor. Dev Neurosci 2014; 36:277-86. [DOI: 10.1159/000360636] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 02/03/2014] [Indexed: 11/19/2022] Open
|
11
|
Cummins ED, Griffin SB, Burgess KC, Peterson DJ, Watson BD, Buendia MA, Stanwood GD, Brown RW. Methylphenidate place conditioning in adolescent rats: an analysis of sex differences and the dopamine transporter. Behav Brain Res 2013; 257:215-23. [PMID: 24084582 DOI: 10.1016/j.bbr.2013.09.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Revised: 09/02/2013] [Accepted: 09/22/2013] [Indexed: 12/01/2022]
Abstract
In two experiments, we analyzed the effects of methylphenidate (MPH) on conditioned place preference (CPP) in adolescent male and female rats, and the effects of MPH on the dopamine transporter (DAT). In Experiment 1, male and female rats were conditioned for 5 consecutive days from postnatal day (P)44 to P48 with saline, 1, or 5mg/kg MPH. On the post conditioning preference test, the group administered the 1mg/kg dose of MPH resulted in no significant preference compared to controls, whereas the 5mg/kg dose of MPH produced a robust significant preference for the paired context, but there were no sex differences. Analysis of the DAT revealed that animals conditioned with the 5mg/kg dose of MPH demonstrated a significant decrease of the dopamine transporter (DAT) in the nucleus accumbens and striatum compared to controls. In Experiment 2, animals were conditioned using an every second day paradigm from P33-41 to model a previous MPH treatment regimen that had revealed sex differences in behavioral sensitization. MPH produced an increased preference for the paired context on a post-conditioning preference test in Experiment 2, but as in Experiment 1, no sex differences were observed. These data show that a relatively high dose of MPH has rewarding associative effects in both adolescent male and female rats reliably across two different conditioning paradigms and ages in adolescence, but no sex difference. In addition, MPH results in a significant decrease of the DAT in drug reward brain areas which has implications toward plasticity of the brain's reward system.
Collapse
Affiliation(s)
- Elizabeth D Cummins
- Department of Psychology, East Tennessee State University, Johnson City, TN, USA
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Bardo MT, Neisewander JL, Kelly TH. Individual differences and social influences on the neurobehavioral pharmacology of abused drugs. Pharmacol Rev 2013; 65:255-90. [PMID: 23343975 PMCID: PMC3565917 DOI: 10.1124/pr.111.005124] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The interaction of drugs with biologic targets is a critical area of research, particularly for the development of medications to treat substance use disorders. In addition to understanding these drug-target interactions, however, there is a need to understand more fully the psychosocial influences that moderate these interactions. The first section of this review introduces some examples from human behavioral pharmacology that illustrate the clinical importance of this research. The second section covers preclinical evidence to characterize some of the key individual differences that alter drug sensitivity and abuse vulnerability, related primarily to differences in response to novelty and impulsivity. Evidence is presented to indicate that critical neuropharmacological mechanisms associated with these individual differences involve integrated neurocircuits underlying stress, reward, and behavioral inhibitory processes. The third section covers social influences on drug abuse vulnerability, including effects experienced during infancy, adolescence, and young adulthood, such as maternal separation, housing conditions, and social interactions (defeat, play, and social rank). Some of the same neurocircuits involved in individual differences also are altered by social influences, although the precise neurochemical and cellular mechanisms involved remain to be elucidated fully. Finally, some speculation is offered about the implications of this research for the prevention and treatment of substance abuse.
Collapse
Affiliation(s)
- M T Bardo
- Department of Psychology, University of Kentucky, BBSRB Room 447, 741 S. Limestone, Lexington, KY 40536-0509, USA.
| | | | | |
Collapse
|
13
|
Brown RW, Hughes BA, Hughes AB, Sheppard AB, Perna MK, Ragsdale WL, Roeding RL, Pond BB. Sex and dose-related differences in methylphenidate adolescent locomotor sensitization and effects on brain-derived neurotrophic factor. J Psychopharmacol 2012; 26:1480-8. [PMID: 22833365 DOI: 10.1177/0269881112454227] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
This study analyzed repeated methylphenidate (MPH) administration and its effects on brain-derived neurotrophic factor (BDNF) in the dorsal striatum and nucleus accumbens of male and female adolescent rats. In Experiment 1, rats were administered intraperitoneal (ip) saline, 1, 3, or 5 mg/kg dose of MPH every second day from postnatal day (P)33-P49. Locomotor activity was analyzed for 10 min after each administration. Results revealed that the 1 mg/kg dose of MPH produced locomotor suppression, however, the 5 mg/kg dose of MPH produced locomotor sensitization and robust behavioral activation in females as compared to males. In Experiment 2, animals were administered ip saline or the 5 mg/kg dose of MPH using an identical regimen but a 30 min behavioral test was employed. Dorsal striatum and nucleus accumbens tissue was assayed for BDNF at P50. Females demonstrated sensitization to MPH and increased locomotor activation compared to males. Interestingly, females given MPH demonstrated a significant 42% decrease of striatal BDNF whereas males administered MPH demonstrated a significant 50.4% increase of striatal BDNF compared to controls. There were no effects on accumbal BDNF. This report demonstrates robust sex differences in the behavioral response, but sex-dependent changes in striatal BDNF in response to MPH in adolescence.
Collapse
Affiliation(s)
- Russell W Brown
- Department of Psychology, East Tennessee State University, Johnson City, TN 37614, USA.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Heyser CJ, Ferris JS. Object exploration in the developing rat: Methodological considerations. Dev Psychobiol 2012; 55:373-81. [DOI: 10.1002/dev.21041] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 04/09/2012] [Indexed: 11/10/2022]
|
15
|
The suppression of appetite and food consumption by methylphenidate: the moderating effects of gender and weight status in healthy adults. Int J Neuropsychopharmacol 2012; 15:181-7. [PMID: 21733284 DOI: 10.1017/s1461145711001039] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Females typically show greater behavioural responses to stimulant drugs than males, including loss of appetite; as seen, for example, in those who use methylphenidate (MP) therapeutically for treatment of attention deficit hyperactivity disorder (ADHD). This is a relevant issue because of the strong link between ADHD and obesity. In a sample (n=132) of normal-weight (BMI <25) and obese (BMI >30) men and women we assessed appetite, cravings, and snack-food intake in response to MP (0.5 mg/kg) and placebo. Results indicated a significant three-way interaction for the three dependent variables--food-related responding diminishing in all groups from placebo to MP, except in obese males who showed no decreases to the MP challenge. These data show for the first time the existence of gender differences in the appetite response to MP, and are relevant for finding a dopamine pathway to new weight-loss medications, which would be utilized differently in males than in females.
Collapse
|
16
|
Pitychoutis PM, Pallis EG, Mikail HG, Papadopoulou-Daifoti Z. Individual differences in novelty-seeking predict differential responses to chronic antidepressant treatment through sex- and phenotype-dependent neurochemical signatures. Behav Brain Res 2011; 223:154-68. [DOI: 10.1016/j.bbr.2011.04.036] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2011] [Revised: 04/12/2011] [Accepted: 04/18/2011] [Indexed: 01/05/2023]
|
17
|
Chelaru MI, Yang PB, Dafny N. Sex differences in the behavioral response to methylphenidate in three adolescent rat strains (WKY, SHR, SD). Behav Brain Res 2011; 226:8-17. [PMID: 21889544 DOI: 10.1016/j.bbr.2011.08.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Accepted: 08/17/2011] [Indexed: 02/05/2023]
Abstract
Methylphenidate (MPD) is the most widely used drug in the treatment of attention-deficit hyperactivity disorder (ADHD). ADHD has a high incidence in children and can persist in adolescence and adulthood. The relation between sex and the effects of acute and chronic MPD treatment was examined using adolescent male and female rats from three genetically different strains: spontaneously hyperactive rat (SHR), Wistar-Kyoto (WKY) and Sprague-Dawley (SD). Rats from each strain and sex were randomly divided into a control group that received saline injections and three MPD groups that received either 0.6 or 2.5 or 10mg/kg MPD injections. All rats received saline on experimental day 1 (ED1). On ED2 to ED7 and ED11, the rats were injected either with saline or MPD and received no treatment on ED8-ED10. The open field assay was used to assess the dose-response of acute and chronic MPD administration. Significant sex differences were found. Female SHR and SD rats were significantly more active after MPD injections than their male counterparts, while the female WKY rats were less active than the male WKY rats. Dose dependent behavioral sensitization or tolerance to MPD treatment was not observed for SHR or SD rats, but tolerance to MPD was found in WKY rats for the 10mg/kg MPD dose. The use of dose-response protocol and evaluating different locomotor indices provides the means to identify differences between the sexes and the genetic strain in adolescent rats. In addition these differences suggest that the differences to MPD treatment between the sexes are not due to the reproductive hormones.
Collapse
Affiliation(s)
- Mircea I Chelaru
- Department of Neurobiology & Anatomy, University of Texas-Houston, Medical School, Houston, TX 77030, USA
| | | | | |
Collapse
|
18
|
Harty SC, Ivanov I, Newcorn JH, Halperin JM. The impact of conduct disorder and stimulant medication on later substance use in an ethnically diverse sample of individuals with attention-deficit/hyperactivity disorder in childhood. J Child Adolesc Psychopharmacol 2011; 21:331-9. [PMID: 21823914 PMCID: PMC3157746 DOI: 10.1089/cap.2010.0074] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE To examine late adolescent substance use outcomes in relation to childhood conduct disorder (CD) and psychostimulant treatment in urban youth found to have attention-deficit/hyperactivity disorder (ADHD) in childhood. METHODS Ninety-seven adolescents, evaluated during childhood, were seen for follow-up on average 9.30 (SD = 1.65) years later along with a well-matched never-ADHD control group. Stimulant treatment history was coded: Never (n = 28), up to 1 year (n = 19), 1 to 5 years (n = 28), and greater than 5 years (n = 22). Substance use at outcome was coded dimensionally for severity (frequency × intensity) and categorically for substance use disorders (SUDs). RESULTS Individuals with ADHD+CD in childhood had significantly higher rates of SUD and substance use severity than those with childhood ADHD and controls. The ADHD and control groups did not differ significantly. Among those with childhood ADHD, there were no significant differences in SUD status or substance use severity as a function of medication history. CONCLUSIONS Within an ethnically diverse urban sample, the increased rate of substance use associated with ADHD was fully accounted for by the presence of CD. These results extend previous findings indicating little impact of psychostimulant treatment on later substance use to an ethnically diverse urban sample and to individuals who received treatment for up to 12 years.
Collapse
Affiliation(s)
- Seth C. Harty
- Neuropsychology Doctoral Program, Clinical Psychology, CUNY Graduate Center, New York, New York.,Division of Child and Adolescent Psychiatry, Mount Sinai School of Medicine, New York, New York
| | - Iliyan Ivanov
- Division of Child and Adolescent Psychiatry, Mount Sinai School of Medicine, New York, New York
| | - Jeffrey H. Newcorn
- Division of Child and Adolescent Psychiatry, Mount Sinai School of Medicine, New York, New York
| | - Jeffrey M. Halperin
- Neuropsychology Doctoral Program, Clinical Psychology, CUNY Graduate Center, New York, New York.,Division of Child and Adolescent Psychiatry, Mount Sinai School of Medicine, New York, New York.,Department of Psychology, Queens College of the City University of New York, New York, New York
| |
Collapse
|
19
|
Sex-dependent effects of long-term oral methylphenidate treatment on spontaneous and learned fear behaviors. Neurosci Lett 2011; 496:30-4. [DOI: 10.1016/j.neulet.2011.03.080] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Revised: 03/18/2011] [Accepted: 03/27/2011] [Indexed: 11/20/2022]
|
20
|
Anderson RI, Spear LP. Autoshaping in adolescence enhances sign-tracking behavior in adulthood: impact on ethanol consumption. Pharmacol Biochem Behav 2011; 98:250-60. [PMID: 21238477 DOI: 10.1016/j.pbb.2011.01.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Revised: 12/31/2010] [Accepted: 01/07/2011] [Indexed: 01/02/2023]
Abstract
Autoshaping refers to a procedure during which a cue repeatedly paired with a reward elicits a conditioned response directed at either the reward delivery location ("goal-tracking") or the cue itself ("sign- tracking"). Individual differences in expression of sign-tracking behavior may be predictive of voluntary ethanol intake. The present study was designed to explore the development of differences in sign-tracking behavior in adolescent and adult male and female rats in an 8-day autoshaping procedure. Consistency of sign-tracking and goal-tracking across age was examined by retesting adolescents again in adulthood and comparing their adult data with animals tested only as adults to explore pre-exposure effects on adult responding. In order to assess the relationship between sign-tracking and ethanol intake, voluntary ethanol consumption was measured in an 8-day, 2-hr limited access drinking paradigm following the 8-day autoshaping procedure in adulthood. Animals tested as adolescents showed notably less sign-tracking behavior than animals tested as adults, and sign-tracking behavior was not correlated across age. Animals exposed to the autoshaping procedure as adolescents demonstrated greater sign-tracking behavior as adults when compared to control animals tested only in adulthood. When examining the relationship in adulthood between sign-tracking and ethanol intake, an increase in ethanol intake among sign-trackers was found only in animals pre-exposed to autoshaping as adolescents. Whether or not these results reflect an adolescent-specific experience effect is unclear without further work to determine whether comparable pre-exposure effects are seen if the initial autoshaping sessions are delayed into adulthood.
Collapse
Affiliation(s)
- Rachel I Anderson
- Binghamton University, Department of Psychology, 4400 Vestal Parkway East, Binghamton, NY 13902-6000, USA
| | | |
Collapse
|
21
|
Wooters TE, Bardo MT, Dwoskin LP, Midde NM, Gomez AM, Mactutus CF, Booze RM, Zhu J. Effect of environmental enrichment on methylphenidate-induced locomotion and dopamine transporter dynamics. Behav Brain Res 2011; 219:98-107. [PMID: 21219939 DOI: 10.1016/j.bbr.2011.01.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 12/14/2010] [Accepted: 01/03/2011] [Indexed: 01/01/2023]
Abstract
Rats raised in an enriched condition (EC) are less sensitive to the locomotor effects of stimulant drugs than rats raised in an impoverished condition (IC). Methylphenidate (MPD), a primary pharmacotherapy for attention-deficit/hyperactivity disorder, has abuse potential. This study determined whether environmental enrichment differentially altered the effects of MPD on locomotor activity and dopamine (DA) transporter (DAT) function. Acute and repeated MPD (3 or 10 mg/kg, s.c.) increased locomotion in EC, IC and social condition (SC) rats; however, EC rats showed a blunted response to repeated MPD (3 mg/kg). The maximal velocity (V(max)) of [(3)H]DA uptake in the presence of the combination of phorbol 12-myristate 13-acetate, a protein kinase C (PKC) activator and okadaic acid, a protein phosphatase inhibitor was decreased in EC and IC rats by 68% and 40%, respectively, indicating that DAT in prefrontal cortex (PFC) is more sensitive to PKC-mediated down-regulation in EC rats. Acute MPD (10 mg/kg) administration decreased the V(max) of [(3)H]DA uptake in PFC and striatum in EC rats, but not in IC rats. Furthermore, [(3)H]WIN 35,428 binding density was decreased in PFC of EC and IC rats, and in striatum of EC rats given repeated MPD (10 mg/kg). These results demonstrate that environmental enrichment modulates DAT dynamics in PFC. However, since the change in DAT function was observed only following the high dose of MPH (10 mg/kg), the attenuated locomotor response to repeated MPD (3 mg/kg) in EC rats is not likely due to a specific DAT alteration in the brain regions examined.
Collapse
Affiliation(s)
- Thomas E Wooters
- Department of Psychology, University of Kentucky, Lexington, KY 40506, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Modulation of methylphenidate effects on wheel running and acoustic startle by acute food deprivation in commercially and selectively bred rats. Pharmacol Biochem Behav 2011; 97:500-8. [DOI: 10.1016/j.pbb.2010.10.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Revised: 09/25/2010] [Accepted: 10/23/2010] [Indexed: 11/18/2022]
|
23
|
Walker QD, Morris SE, Arrant AE, Nagel JM, Parylak S, Zhou G, Caster JM, Kuhn CM. Dopamine uptake inhibitors but not dopamine releasers induce greater increases in motor behavior and extracellular dopamine in adolescent rats than in adult male rats. J Pharmacol Exp Ther 2010; 335:124-32. [PMID: 20605908 PMCID: PMC2957786 DOI: 10.1124/jpet.110.167320] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Accepted: 06/04/2010] [Indexed: 11/22/2022] Open
Abstract
Most life-long drug addiction begins during adolescence. Important structural and functional changes in brain occur during adolescence and developmental differences in forebrain dopamine systems could mediate a biologic vulnerability to drug addiction during adolescence. Studies investigating age differences in psychostimulant responses have yielded mixed results, possibly because of different mechanisms for increasing extracellular dopamine. Recent research from our laboratory suggests that adolescent dopamine systems may be most affected by selective dopamine uptake inhibitors. We investigated age-related behavioral responses to acute administration of several dopamine uptake inhibitors [methylphenidate, 1-{2-[bis-(4-fluorophenyl)methoxy]ethyl}-4-(3-phenylpropyl)piperazine (GBR12909), and nomifensine] and releasing agents [amphetamine and methylenedioxymethamphetamine (MDMA)] in adolescent and adult male rats. Methylphenidate and amphetamine effects on stimulated dopamine efflux were determined using fast-scan cyclic voltammetry in vivo. Dopamine uptake inhibitors but not dopamine releasing agents induced more locomotion and/or stereotypy in adolescent relative to adult rats. MDMA effects were greater in adults at early time points after dosing. Methylphenidate but not amphetamine induced much greater dopamine efflux in periadolescent relative to adult rats. Periadolescent male rats are particularly sensitive to psychostimulants that are DAT inhibitors but are not internalized and do not release dopamine. Immaturity of DAT and/or DAT associated signaling systems in adolescence specifically enhances behavioral and dopaminergic responses in adolescence.
Collapse
Affiliation(s)
- Q David Walker
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Hensleigh E, Smedley L, Pritchard LM. Sex, but not repeated maternal separation during the first postnatal week, influences novel object exploration and amphetamine sensitivity. Dev Psychobiol 2010; 53:132-40. [PMID: 20886535 DOI: 10.1002/dev.20499] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Accepted: 08/13/2010] [Indexed: 11/12/2022]
Abstract
Sensation seeking and early life stress are both risk factors for developing substance use disorders. Neural adaptations resulting from early life stress may mediate individual differences in novelty responsiveness, and, in turn, contribute to drug abuse vulnerability. Animal models also demonstrate associations between novelty responsiveness or early life stress and increased sensitivity to psychostimulants. We investigated whether repeated maternal separation affects responses to novelty during adolescence and to amphetamine during adulthood, and whether maternal separation alters the relationship between these behavioral variables. Rat pups underwent separation (180 min/day) or control procedures (15 min/day) on postnatal days (PND) 2-8. Novel object exploration and amphetamine response were tested at PND 38 and 60, respectively. Adolescent males were less active in a novel environment and approached novel objects more frequently than females, but adult females showed greater amphetamine-induced locomotion. Maternal separation did not affect novelty responsiveness or amphetamine sensitivity. Locomotor activity in an inescapable, novel environment during adolescence predicted amphetamine-induced locomotor activity during adulthood in maternally separated rats, but not in controls. The results of this study suggest that adolescent responses to novelty may be particularly predictive of future substance abuse among survivors of early life trauma. Furthermore, sex differences in novelty and amphetamine responsiveness may complicate the relationship between these behavioral variables.
Collapse
Affiliation(s)
- E Hensleigh
- Department of Psychology, University of Nevada Las Vegas, Las Vegas, NV 89154-5030, USA
| | | | | |
Collapse
|
25
|
Verheij MMM, de Mulder ELW, De Leonibus E, van Loo KMJ, Cools AR. Rats that differentially respond to cocaine differ in their dopaminergic storage capacity of the nucleus accumbens. J Neurochem 2010; 105:2122-33. [PMID: 18315567 PMCID: PMC2492658 DOI: 10.1111/j.1471-4159.2008.05323.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cocaine (COC) inhibits the re-uptake of dopamine. However, the dopamine response to COC also depends on dopamine inside storage vesicles. The aim of this study was to investigate whether rats that differentially respond to COC differ in their dopaminergic storage capacity of the nucleus accumbens. Total and vesicular levels of accumbal dopamine as well as accumbal vesicular monoamine transporter-2 levels were established in high (HR) and low responders (LR) to novelty rats. Moreover, the effects of reserpine (RES) on the COC-induced increase of extracellular accumbal dopamine were investigated. HR displayed higher accumbal levels of total and vesicular dopamine than LR. Moreover, HR displayed more accumbal vesicular monoamine transporters-2 than LR. COC increased extracellular accumbal dopamine more strongly in HR than in LR. A low dose of RES prevented the COC-induced increase of accumbal dopamine in LR, but not in HR. A higher dose of RES was required to inhibit the COC-induced increase of accumbal dopamine in HR. These data demonstrate that HR were marked by a larger accumbal dopaminergic storage pool than LR. It is hypothesized that HR are more sensitive to COC than LR, because COC can release more dopamine from accumbal storage vesicles in HR than in LR. J. Neurochem. (2008) 105, 2122–2133.
Collapse
Affiliation(s)
- Michel M M Verheij
- Department of Cognitive Neuroscience, Division of Psychoneuropharmacology, Faculty of Medicine, Radboud University of Nijmegen, Nijmegen, The Netherlands.
| | | | | | | | | |
Collapse
|
26
|
Kuhn C, Johnson M, Thomae A, Luo B, Simon SA, Zhou G, Walker QD. The emergence of gonadal hormone influences on dopaminergic function during puberty. Horm Behav 2010; 58:122-37. [PMID: 19900453 PMCID: PMC2883625 DOI: 10.1016/j.yhbeh.2009.10.015] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Revised: 10/22/2009] [Accepted: 10/27/2009] [Indexed: 01/04/2023]
Abstract
Adolescence is the developmental epoch during which children become adults-intellectually, physically, hormonally and socially. Brain development in critical areas is ongoing. Adolescents are risk-taking and novelty-seeking and they weigh positive experiences more heavily and negative experiences less than adults. This inherent behavioral bias can lead to risky behaviors like drug taking. Most drug addictions start during adolescence and early drug-taking is associated with an increased rate of drug abuse and dependence. The hormonal changes of puberty contribute to physical, emotional, intellectual and social changes during adolescence. These hormonal events do not just cause maturation of reproductive function and the emergence of secondary sex characteristics. They contribute to the appearance of sex differences in non-reproductive behaviors as well. Sex differences in drug use behaviors are among the latter. The male predominance in overall drug use appears by the end of adolescence, while girls develop the rapid progression from first use to dependence (telescoping) that represent a female-biased vulnerability. Sex differences in many behaviors including drug use have been attributed to social and cultural factors. A narrowing gap in drug use between adolescent boys and girls supports this thesis. However, some sex differences in addiction vulnerability reflect biologic differences in brain circuits involved in addiction. The purpose of this review is to summarize the contribution of sex differences in the function of ascending dopamine systems that are critical to reinforcement, to briefly summarize the behavioral, neurochemical and anatomical changes in brain dopaminergic functions related to addiction that occur during adolescence and to present new findings about the emergence of sex differences in dopaminergic function during adolescence.
Collapse
Affiliation(s)
- Cynthia Kuhn
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | | | | | | | | | |
Collapse
|
27
|
Bahcelioglu M, Gozil R, Take G, Elmas C, Oktem H, Kadioglu D, Calguner E, Erdogan D, Sargon MF, Yazici AC, Tas M, Bardakci Y, Senol S. Dose-related immunohistochemical and ultrastructural changes after oral methylphenidate administration in cerebrum and cerebellum of the rat. World J Biol Psychiatry 2010; 10:531-43. [PMID: 19707959 DOI: 10.1080/15622970903176683] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Methylphenidate is a piperidine derivative and is the drug most often used to treat attention deficit/hyperactivity disorder of children and young adults. Our aim is to investigate dose-dependent dopamine-2 receptor and glial fibrillary acidic protein expression and ultrastructural changes of the rat brain, to demonstrate possible toxicity of the long-term and high dose use of the methylphenidate. In this study, 27 female prepubertal Wistar albino rats, divided into three different dose groups (5, 10 and 20 mg/kg) were treated orally with methylphenidate dissolved in saline solution for 5 days per week during 3 months. At the end of the third month, tissues were removed and sections were collected for immunohistochemical and ultrastructural studies. We believe that methylphenidate causes dose-related activation of the dopaminergic system in several brain regions especially in ventral tegmental area and also causing neuronal degeneration and capillary wall structural changes such as basal membrane thickness and augmentation of the pinostatic vesicle in the endothelial cells. Also, increased dose of Ritalin is inducing astrocytes hypertrophy especially astrogliosis in pia-glial membrane and this is the result of the degenerative changes in prefrontal cortex region due to high dose methylphenidate administration. The dose-related accumulation of the astrocytes in capillary wall might well be a consequence of the need for nutrition of the neuronal tissue, due to transport mechanism deficiency related to neuronal and vascular degeneration. Thus, we believe that the therapeutic dose of methylphenidate must be kept in minimum level to prevent ultrastructural changes.
Collapse
Affiliation(s)
- Meltem Bahcelioglu
- Department of Anatomy, Faculty of Medicine, University of Gazi, Ankara, Turkey.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Individual differences in activity predict locomotor activity and conditioned place preference to amphetamine in both adolescent and adult rats. Pharmacol Biochem Behav 2010; 95:63-71. [DOI: 10.1016/j.pbb.2009.12.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Revised: 11/12/2009] [Accepted: 12/07/2009] [Indexed: 11/18/2022]
|
29
|
Burton CL, Nobrega JN, Fletcher PJ. The effects of adolescent methylphenidate self-administration on responding for a conditioned reward, amphetamine-induced locomotor activity, and neuronal activation. Psychopharmacology (Berl) 2010; 208:455-68. [PMID: 20020108 DOI: 10.1007/s00213-009-1745-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Accepted: 11/24/2009] [Indexed: 10/20/2022]
Abstract
BACKGROUND Abuse of methylphenidate (Ritalin) is rising, particularly during adolescence and early adulthood, but the long-term effects of its abuse during adolescence are unclear. METHODS In experiment 1, we examined the effect of adolescent methylphenidate self-administration (0.0625 mg/infusion), as compared with cocaine self-administration (0.125 mg/infusion), under a fixed ratio 1 schedule of reinforcement in male Sprague-Dawley rats during adolescence (postnatal day (PND) 32-47) on adult dopamine-mediated behaviors (PND >70). These included responding for a conditioned reward (CR), a measure of incentive motivation, and amphetamine-induced locomotor activity. In experiment 2, we aimed to replicate and enhance the effects observed in experiment 1, and we also examined the effects of methylphenidate self-administration during adolescence on adult amphetamine-induced zif268 messenger ribonucleic acid (mRNA) expression. RESULTS Adolescent rats self-administered both cocaine and methylphenidate. There was no effect of adolescent drug self-administration on adult baseline or amphetamine-induced responding for a CR. However, both adolescent methylphenidate and cocaine self-administration increased amphetamine-induced locomotion. Adolescent methylphenidate self-administration also enhanced amphetamine-induced zif268 mRNA expression in the nucleus accumbens. CONCLUSIONS Our findings suggest that repeated, behaviorally contingent exposure to methylphenidate during adolescence enhances responsivity to the locomotor-stimulating and neuronal activating effects of amphetamine but not incentive motivation.
Collapse
Affiliation(s)
- Christie L Burton
- Department of Psychology, University of Toronto, 100 St. George Street, Toronto, ON M5S3G3, Canada.
| | | | | |
Collapse
|
30
|
The interactive effects of methylphenidate and ethanol on ethanol consumption and locomotor activity in mice. Pharmacol Biochem Behav 2010; 95:267-72. [PMID: 20122954 DOI: 10.1016/j.pbb.2010.01.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 01/20/2010] [Accepted: 01/26/2010] [Indexed: 12/19/2022]
Abstract
The concomitant use of alcohol (EtOH) and the psychotherapeutic agent dl-methylphenidate (MPH) has risen as a consequence of an increase in ADHD diagnoses within the drinking age population. It was recently found that the combination of MPH and EtOH increases the self-report of pleasurable feelings relative to MPH alone. This finding raises concerns regarding the combined abuse liability for these two widely used drugs. The present behavioral study reports on the development of an adult male C57BL/6J (B6) mouse model to further characterize this MPH-EtOH interaction. We examined the effects of MPH on EtOH consumption in a limited access paradigm and EtOH stimulation of locomotor activity. B6 mice consumed about 2g/kg EtOH daily and MPH dose-dependently reduced drinking. The most effective dose of MPH was 1.25mg/kg, which produced a 41% decrease in drinking and had no effect on locomotor activity. However, when the 1.25mg/kg dose of MPH was combined with a stimulatory dose of ethanol (1.75g/kg) by intraperitoneal injection, there was a significantly enhanced stimulation of locomotor activity. The drug combination increased activity compared to the vehicle or MPH injections by 45% and increased the activity relative to EtOH alone by an additional 25%. The results of the EtOH and MPH interactions observed with the mouse model appear to be behaviorally relevant and suggest several converging mechanisms that may underlie MPH-EtOH interactions.
Collapse
|
31
|
Harrod SB, Van Horn ML. Sex differences in tolerance to the locomotor depressant effects of lobeline in periadolescent rats. Pharmacol Biochem Behav 2009; 94:296-304. [PMID: 19766134 PMCID: PMC2766100 DOI: 10.1016/j.pbb.2009.09.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Revised: 08/12/2009] [Accepted: 09/09/2009] [Indexed: 12/31/2022]
Abstract
Lobeline is being tested in clinical trials as a pharmacotherapy for methamphetamine abuse and attention deficit hyperactivity disorder. Preclinical research demonstrates that lobeline produces locomotor hypoactivity apart from its therapeutic effects; however, the hypothesis that there are sex differences in hypoactivity or in the development of tolerance to its locomotor depressant effects has not been investigated. Periadolescent rats were injected with saline to determine baseline locomotor activity. Animals received saline or lobeline (1.0-10mg/kg) daily for 7 consecutive days (post natal days 29-35), and were challenged with saline 24h later to assess baseline activity. Lobeline produced hypoactivity in total horizontal activity and center distance travelled. Tolerance developed to the lobeline-induced hypoactivity and sex differences in lobeline tolerance were observed on both measures. Females acquired tolerance to lobeline 5.6 mg/kg at a slower rate than males. Saline challenge revealed a linear dose-dependent trend of hyperactivity on both measures, which indicates that rats exhibited altered locomotor behavior 24h after the final lobeline treatment. These findings demonstrate sex differences in the hypoactive response to lobeline prior to puberty and suggest that females may experience more locomotor depressant effects than males. Chronic lobeline may induce hyperactivity following cessation of treatment.
Collapse
Affiliation(s)
- Steven B Harrod
- Department of Psychology, University of South Carolina, United States.
| | | |
Collapse
|
32
|
Nicotinic receptors differentially modulate the induction and expression of behavioral sensitization to methylphenidate in rats. Psychopharmacology (Berl) 2009; 204:551-62. [PMID: 19229521 PMCID: PMC2682633 DOI: 10.1007/s00213-009-1487-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Accepted: 01/31/2009] [Indexed: 12/25/2022]
Abstract
RATIONALE Nicotinic acetylcholine receptors (nAChRs) regulate sensitization to stimulant drugs such as d-amphetamine and cocaine. OBJECTIVES The current study determined if nAChRs modulate the induction and/or expression of behavioral sensitization to high methylphenidate doses. METHODS In experiment 1, rats received saline or mecamylamine (3 mg/kg, sc), followed by saline or methylphenidate (5.6 or 10 mg/kg, sc) during 10 daily sessions; the effect of methylphenidate (1-17 mg/kg, sc) alone was determined 14 days later. In experiment 2, rats received saline or dihydro-beta-erythroidine (DHbetaE; 3 mg/kg, sc), followed by saline or 5.6 mg/kg of methylphenidate. In experiment 3, rats received saline or methylphenidate (5.6 or 10 mg/kg, sc) alone for 10 days; the effect of acute mecamylamine (3 mg/kg, sc) on the response to methylphenidate (1-17 mg/kg, sc) was determined 14 days later. Locomotor activity, sniffing, rearing, grooming, and stereotypy ratings were dependent measures. RESULTS Methylphenidate produced dose-dependent increases in locomotor activity, sniffing, and stereotypy on day 1 and these effects were enhanced on day 10, indicative of sensitization. Mecamylamine attenuated methylphenidate-induced stereotypy only on day 1, but reduced locomotor activity, sniffing, rearing, and stereotypy on day 10 and during the methylphenidate challenge phase; similar results were obtained with DHbetaE. However, acute mecamylamine did not alter the effects of the methylphenidate challenge following the induction of sensitization to methylphenidate alone. CONCLUSIONS Although nAChRs do not appear to regulate the expression of methylphenidate-induced behavioral sensitization, inhibition of high-affinity beta2 subunit nAChRs attenuates the induction of behavioral sensitization to high doses of methylphenidate.
Collapse
|
33
|
Souza RP, Soares EC, Rosa DVF, Souza BR, Réus GZ, Barichello T, Gomes KM, Gomez MV, Quevedo J, Romano-Silva MA. Methylphenidate alters NCS-1 expression in rat brain. Neurochem Int 2008; 53:12-6. [PMID: 18514368 DOI: 10.1016/j.neuint.2008.04.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Accepted: 04/21/2008] [Indexed: 01/25/2023]
Abstract
Methylphenidate has been used as an effective treatment for attention deficit hyperactivity disorder (ADHD). Methylphenidate (MPH) blocks dopamine and norepinephrine transporters causing an increase in extracellular levels. The use of psychomotor stimulants continues to rise due to both the treatment of ADHD and illicit abuse. Methylphenidate sensitization mechanism has still poor knowledge. Neuronal calcium sensor 1 was identified as a dopaminergic receptor interacting protein. When expressed in mammalian cells, neuronal calcium sensor 1 attenuates dopamine-induced D2 receptor internalization by a mechanism that involves a reduction in D2 receptor phosphorylation. Neuronal calcium sensor 1 appears to play a pivotal role in regulating D2 receptor function, it will be important to determine if there are alterations in neuronal calcium sensor 1 in neuropathologies associated with deregulation in dopaminergic signaling. Then, we investigated if methylphenidate could alter neuronal calcium sensor 1 expression in five brain regions (striatum, hippocampus, prefrontal cortex, cortex and cerebellum) in young and adult rats. These regions were chosen because some are located in brain circuits related with attention deficit hyperactivity disorder. Our results showed changes in neuronal calcium sensor 1 expression in hippocampus, prefrontal cortex and cerebellum mainly in adult rats. The demonstration that methylphenidate induces changes in neuronal calcium sensor 1 levels in rat brain may help to understand sensitization mechanisms as well as methylphenidate therapeutic effects to improve attention deficit hyperactivity disorder symptoms.
Collapse
Affiliation(s)
- Renan P Souza
- Grupo de Pesquisa em Neuropsiquiatria Clínica e Molecular, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Seymour CM, Wagner JJ. Simultaneous expression of cocaine-induced behavioral sensitization and conditioned place preference in individual rats. Brain Res 2008; 1213:57-68. [PMID: 18455710 DOI: 10.1016/j.brainres.2008.03.054] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2008] [Revised: 03/19/2008] [Accepted: 03/20/2008] [Indexed: 01/07/2023]
Abstract
Conditioned place preference and locomotor sensitization are rodent behavioral models commonly used to investigate the actions of drugs of abuse. However, few studies have examined both paradigms in the same group of animals. We were interested in developing a combined protocol which successfully induced both conditioned place preference and sensitization simultaneously in cocaine-treated Sprague-Dawley rats in order to test the hypothesis that the magnitude of these two phenomena would be positively correlated. We used an open-field with a removable place preference insert to assess these measures independently. Cocaine-conditioned animals demonstrated a significant shift in preference for the drug-paired compartment and a sensitized locomotor response which was not observed in saline-conditioned animals challenged with cocaine. There was no significant relationship between locomotor sensitization and conditioned place preference in individual animals. We further examined these results with respect to each rat's initial response to cocaine, response to a novel environment and central zone entries in an open-field. Locomotor sensitization demonstrated an inverse correlation with the initial cocaine response. In contrast, conditioned place preference demonstrated an inverse correlation with the centre response. These results demonstrate that the combination of the acute cocaine response and the centre response in a novel open-field environment can be used to indicate the propensity of a given rat to exhibit either behavioral sensitization or conditioned place preference; however, it seems that sensitization and place preference are not necessarily co-expressed to a similar extent in the same individual animal.
Collapse
Affiliation(s)
- Claire M Seymour
- Department of Physiology and Pharmacology, University of Georgia, 501 D.W. Brooks Drive, Athens, GA 30602-7389, USA
| | | |
Collapse
|
35
|
Wooters TE, Neugebauer NM, Rush CR, Bardo MT. Methylphenidate enhances the abuse-related behavioral effects of nicotine in rats: intravenous self-administration, drug discrimination, and locomotor cross-sensitization. Neuropsychopharmacology 2008; 33:1137-48. [PMID: 17581534 PMCID: PMC2664110 DOI: 10.1038/sj.npp.1301477] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Stimulant drugs, including D-amphetamine, cocaine, and methylphenidate, increase cigarette smoking in controlled human laboratory experiments. Although the mechanism(s) underlying this effect are unknown, it is possible that stimulants may enhance directly the abuse-related effects of nicotine. In the present study, we characterized the behavioral pharmacological interactions between methylphenidate and nicotine in the intravenous self-administration, drug discrimination, and locomotor cross-sensitization procedures. Adult male Sprague-Dawley rats were trained to respond for intravenous nicotine (0.01 or 0.03 mg/kg/infusion) or sucrose, and the acute effects of methylphenidate (1.25-10 mg/kg) were determined; in addition, separate groups of rats were treated with methylphenidate (2.5 mg/kg) or saline before 12 consecutive nicotine (0.03 mg/kg/infusion) self-administration sessions. Next, the discriminative stimulus effects of nicotine (0.03-0.3 mg/kg) and methylphenidate (1.25-10 mg/kg), alone and in combination with a low nicotine dose (0.056 mg/kg), were tested in nicotine-trained rats. Finally, the locomotor effect of repeated methylphenidate (2.5 mg/kg) was tested in rats previously treated with nicotine (0.2-0.8 mg/kg). Results indicated that acute methylphenidate increased the rate of nicotine self-administration at doses that reduced sucrose-maintained responding; furthermore, tolerance to this effect was not apparent following repeated methylphenidate. Methylphenidate, while not substituting for nicotine alone, dose-dependently enhanced the discriminative stimulus effect of a low nicotine dose. In addition, repeated nicotine exposure promoted the development of locomotor sensitization to methylphenidate. Taken together with recent clinical findings, these results suggest that methylphenidate may enhance the abuse-related behavioral effects of nicotine, perhaps increasing vulnerability to tobacco dependence.
Collapse
Affiliation(s)
- Thomas E. Wooters
- Department of Psychology, College of Arts and Sciences, University of Kentucky Lexington, Kentucky, USA
| | - Nichole M. Neugebauer
- Department of Psychology, College of Arts and Sciences, University of Kentucky Lexington, Kentucky, USA
| | - Craig R. Rush
- Department of Psychology, College of Arts and Sciences, University of Kentucky Lexington, Kentucky, USA
- Department of Behavioral Science, College of Medicine, University of Kentucky Lexington, Kentucky, USA
- Department of Psychiatry, College of Medicine, University of Kentucky Lexington, Kentucky, USA
| | - Michael T. Bardo
- Department of Psychology, College of Arts and Sciences, University of Kentucky Lexington, Kentucky, USA
| |
Collapse
|
36
|
Perry JL, Anderson MM, Nelson SE, Carroll ME. Acquisition of i.v. cocaine self-administration in adolescent and adult male rats selectively bred for high and low saccharin intake. Physiol Behav 2007; 91:126-33. [PMID: 17360010 PMCID: PMC4965876 DOI: 10.1016/j.physbeh.2007.02.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2006] [Revised: 01/31/2007] [Accepted: 02/02/2007] [Indexed: 11/29/2022]
Abstract
Adolescence and excessive intake of saccharin have each been previously associated with enhanced vulnerability to drug abuse. In the present study, we focused on the relationship between these two factors using male adolescent and adult rats selectively bred for high (HiS) and low (LoS) levels of saccharin intake. On postnatal day 25 (adolescents) or 150 (adults), rats were implanted with an intravenous catheter and trained to self-administer cocaine (0.4 mg/kg) using an autoshaping procedure that consisted of two 6-h sessions. In the first 6 h, rats were given non-contingent cocaine infusions at random intervals 10 times per hour, and during the second 6-h session, rats were allowed to self-administer cocaine under a fixed ratio 1 (FR 1) lever-response contingency. Acquisition was defined as a total of at least 250 infusions over 5 consecutive days, and rats were given 30 days to meet the acquisition criterion. Subsequently, saccharin phenotype scores were determined by comparing 24-h saccharin and water consumption in two-bottle tests to verify HiS/LoS status. Adolescent LoS rats had a faster rate of acquisition of cocaine self-administration than adult LoS rats; however, adolescent and adult HiS rats acquired at the same rate. Both HiS and LoS adolescents had significantly higher saccharin phenotype scores than HiS and LoS adults, respectively. Additionally, saccharin score was negatively correlated with the number of days to meet the acquisition criterion for cocaine self-administration, but this was mostly accounted for by the HiS adolescents. These results suggest that during adolescence, compared with adulthood, rats have both an increased avidity for sweets and vulnerability to initiate drug abuse.
Collapse
Affiliation(s)
- Jennifer L Perry
- University of Kentucky, BBSRB, Room 248F, 741 S. Limestone, Lexington, KY 40536-0509, United States.
| | | | | | | |
Collapse
|
37
|
Verheij MMM, Cools AR. Differential contribution of storage pools to the extracellular amount of accumbal dopamine in high and low responders to novelty: effects of reserpine. J Neurochem 2007; 100:810-21. [PMID: 17144901 DOI: 10.1111/j.1471-4159.2006.04259.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The present study examined the effects of reserpine on the extracellular concentration of accumbal dopamine in high responders (HR) and low responders (LR) to novelty rats. Reserpine reduced the baseline concentration of extracellular accumbal dopamine more in HR than in LR, indicating that the dopamine release is more dependent on reserpine-sensitive storage vesicles in non-challenged HR than in non-challenged LR. In addition, reserpine reduced the novelty-induced increase of the extracellular concentration of accumbal dopamine in LR, but not in HR, indicating that the dopamine release in response to novelty depends on reserpine-sensitive storage vesicles only in LR, not in HR. Our data clearly demonstrate that HR and LR differ in the characteristics of those monoaminergic storage vesicles that mediate accumbal dopamine release.
Collapse
Affiliation(s)
- M M M Verheij
- Department of Psychoneuropharmacology, Nijmegen Institute for Neurosciences, Faculty of Medicine, Radboud University of Nijmegen, Nijmegen, The Netherlands.
| | | |
Collapse
|