1
|
Özcan ÖÖ, Çevreli B, Temizyürek A, Karahan M, Konuk M. Quetiapine improves sensorimotor gating deficit in a sleep deprivation-induced rat model. Sleep Biol Rhythms 2024; 22:269-278. [PMID: 38524169 PMCID: PMC10959884 DOI: 10.1007/s41105-023-00504-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 11/15/2023] [Indexed: 03/26/2024]
Abstract
Background Sleep deprivation (SD) impairs pre-stimulus inhibition, but the effect of quetiapine (QET) remains largely unknown. Objective This study aimed to investigate the behavioral and cognitive effects of QET in both naïve and sleep-deprived rats. Materials and methods Seven groups (n = 49) of male Wistar Albino rats were used in this study. SD was performed using the modified multiple platform technique in a water tank for 72 h. Our study consists of two experiments investigating the effect of QET on pre-pulse inhibition (PPI) of the acoustic startle reflex. The first experiment tested the effect of short- and long-term administration of QET on PPI response in non-sleeping (NSD) rats. The second experiment used 72 h REM sleep deprivation as a model for SD-induced impairment of the PPI response. Here, we tested the effect of QET on the % PPI of SD rats by short- and long-term intraperitoneal injection at the last 90 min of sleep SD and immediately subsequently tested for PPI. Results 72 h SD impaired PPI, reduced startle amplitude, and attenuated the PPI% at + 4 dB, + 8 dB, and + 16 dB prepulse intensities. 10 mg/kg short and long-term QET administration completely improved sensorimotor gating deficit, increased startle amplitude, and restored the impaired PPI% at + 4 dB, + 8 dB, and + 16 dB after 72 h SD in rats. Conclusion Our results showed short- and long-term administration of QET improved sensorimotor gating deficit in 72 h SD. Further research is required for the etiology of insomnia and the dose-related behavioral effects of QET.
Collapse
Affiliation(s)
- Öznur Özge Özcan
- Electroneurophysiology, Vocational School of Health Sciences, Üsküdar University, Istanbul, Turkey
| | - Burcu Çevreli
- Neuropsychopharmacology Practice and Research Center, Üsküdar University, Istanbul, Turkey
| | - Arzu Temizyürek
- Department of Physiology, Faculty of Medicine, Altınbaş University, Istanbul, Turkey
| | - Mesut Karahan
- Medical Laboratory Techniques, Vocational School of Health Sciences, Üsküdar University, Mimar Sinan, Selmani Pak, Üsküdar, 34672 Istanbul, Turkey
| | - Muhsin Konuk
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Üsküdar University, Istanbul, Turkey
| |
Collapse
|
2
|
Newman-Tancredi A, Depoortère RY, Kleven MS, Kołaczkowski M, Zimmer L. Translating biased agonists from molecules to medications: Serotonin 5-HT 1A receptor functional selectivity for CNS disorders. Pharmacol Ther 2021; 229:107937. [PMID: 34174274 DOI: 10.1016/j.pharmthera.2021.107937] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/01/2021] [Accepted: 06/17/2021] [Indexed: 12/18/2022]
Abstract
Biased agonism (or "functional selectivity") at G-protein-coupled receptors has attracted rapidly increasing interest as a means to improve discovery of more efficacious and safer pharmacotherapeutics. However, most studies are limited to in vitro tests of cellular signaling and few biased agonists have progressed to in vivo testing. As concerns 5-HT1A receptors, which exert a major control of serotonergic signaling in diverse CNS regions, study of biased agonism has previously been limited by the poor target selectivity and/or partial agonism of classically available ligands. However, a new generation of highly selective, efficacious and druggable agonists has advanced the study of biased agonism at this receptor and created new therapeutic opportunities. These novel agonists show differential properties for G-protein signaling, cellular signaling (particularly pERK), electrophysiological effects, neurotransmitter release, neuroimaging by PET and pharmacoMRI, and behavioral tests of mood, motor activity and side effects. Overall, NLX-101 (a.k.a. F15599) exhibits preferential activation of cortical and brain stem 5-HT1A receptors, whereas NLX-112 (a.k.a. befiradol or F13640) shows prominent activation of 5-HT1A autoreceptors in Raphe nuclei and in regions associated with motor control. Accordingly, NLX-101 is potently active in rodent models of depression and respiratory control, whereas NLX-112 shows promising activity in models of Parkinson's disease across several species - rat, marmoset and macaque. Moreover, NLX-112 has also been labeled with 18F to produce the first agonist PET radiopharmaceutical (known as [18F]-F13640) for investigation of the active state of 5-HT1A receptors in rodent, primate and human. The structure-functional activity relationships of biased agonists have been investigated by receptor modeling and novel compounds have been identified which exhibit increased affinity at 5-HT1A receptors and new profiles of cellular signaling bias, notably for β-arrestin recruitment versus pERK. Taken together, the data suggest that 5-HT1A receptor biased agonists constitute potentially superior pharmacological agents for treatment of CNS disorders involving serotonergic mechanisms.
Collapse
Affiliation(s)
| | | | | | | | - Luc Zimmer
- Université Claude Bernard Lyon1, Lyon, France; Hospices Civils de Lyon, Lyon, France; Lyon Neuroscience Research Center, CNRS-INSERM, France
| |
Collapse
|
3
|
Tuplin EW, Holahan MR. Aripiprazole, A Drug that Displays Partial Agonism and Functional Selectivity. Curr Neuropharmacol 2017; 15:1192-1207. [PMID: 28412910 PMCID: PMC5725548 DOI: 10.2174/1570159x15666170413115754] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 03/06/2017] [Accepted: 04/07/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The treatment of schizophrenia is challenging due to the wide range of symptoms (positive, negative, cognitive) associated with the disease. Typical antipsychotics that antagonize D2 receptors are effective in treating positive symptoms, but extrapyramidal side-effects (EPS) are a common occurrence. Atypical antipsychotics targeting 5-HT2A and D2 receptors are more effective at treating cognitive and negative symptoms compared to typical antipsychotics, but these drugs also result in side-effects such as metabolic syndromes. OBJECTIVE To identify evidence in the literature that elucidates the pharmacological profile of aripiprazole.s. METHODS We searched PubMed for peer reviewed articles on aripiprazole and its clinical efficacy, side-effects, pharmacology, and effects in animal models of schizophrenia symptoms. RESULTS Aripiprazole is a newer atypical antipsychotic that displays a unique pharmacological profile, including partial D2 agonism and functionally selective properties. Aripiprazole is effective at treating the positive symptoms of schizophrenia and has the potential to treat negative and cognitive symptoms at least as well as other atypical antipsychotics. The drug has a favorable side-effect profile and has a low propensity to result in EPS or metabolic syndromes. Animal models of schizophrenia have been used to determine the efficacy of aripiprazole in symptom management. In these instances, aripiprazole resulted in the reversal of deficits in extinction, pre-pulse inhibition, and social withdrawal. Because aripiprazole requires a greater than 90% occupancy rate at D2 receptors to be clinically active and does not produce EPS, this suggests a functionally selective effect on intracellular signaling pathways. CONCLUSION A combination of factors such as dopamine system stabilization via partial agonism, functional selectivity at D2 receptors, and serotonin-dopamine system interaction may contribute to the ability of aripiprazole to successfully manage schizophrenia symptoms. This review examines these mechanisms of action to further clarify the pharmacological actions of aripiprazole.
Collapse
Affiliation(s)
- Erin W. Tuplin
- Department of Neuroscience, Faculty of Science, Carleton University, 3414 Herzberg, 1125 Colonel By Drive, Ottawa, K1S 5B6, ON Canada
| | - Matthew R. Holahan
- Department of Neuroscience, Faculty of Science, Carleton University, 3414 Herzberg, 1125 Colonel By Drive, Ottawa, K1S 5B6, ON Canada
| |
Collapse
|
4
|
Blessing WW, Blessing EM, Mohammed M, Ootsuka Y. Clozapine, chlorpromazine and risperidone dose-dependently reduce emotional hyperthermia, a biological marker of salience. Psychopharmacology (Berl) 2017; 234:3259-3269. [PMID: 28812124 PMCID: PMC5660844 DOI: 10.1007/s00213-017-4710-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 08/02/2017] [Indexed: 10/27/2022]
Abstract
RATIONALE We recently introduced a new rat model of emotional hyperthermia in which a salient stimulus activates brown adipose tissue (BAT) thermogenesis and tail artery constriction. Antipsychotic drugs, both classical and second generation, act to reduce excessive assignment of salience to objects and events in the external environment. The close association between salient occurrences and increases in body temperature suggests that antipsychotic drugs may also reduce emotional hyperthermia. OBJECTIVES We determined whether chlorpromazine, clozapine, and risperidone dose dependently reduce emotionally elicited increases in BAT thermogenesis, cutaneous vasoconstriction, and body temperature in rats. METHODS Rats, chronically instrumented for measurement of BAT and body temperature and tail artery blood flow, singly housed, were confronted with an intruder rat (confined within a small wire-mesh cage) after systemic pre-treatment of the resident rat with vehicle or antipsychotic agent. BAT and body temperatures, tail blood flow, and behavioral activity were continuously measured. RESULTS Clozapine (30 μg-2 mg/kg), chlorpromazine (0.1-5 mg/kg), and risperidone (6.25 μg-1 mg/kg) robustly and dose-relatedly reduced intruder-elicited BAT thermogenesis and tail artery vasoconstriction, with consequent dose-related reduction in emotional hyperthermia. CONCLUSIONS Chlorpromazine, a first-generation antipsychotic, as well as clozapine and risperidone, second-generation agents, dose-dependently reduce emotional hyperthermia. Dopamine D2 receptor antagonist properties of chlorpromazine do not contribute to thermoregulatory effects. Interactions with monoamine receptors are important, and these monoamine receptor interactions may also contribute to the therapeutic effects of all three antipsychotics. Thermoregulatory actions of putative antipsychotic agents may constitute a biological marker of their therapeutic properties.
Collapse
Affiliation(s)
- William W Blessing
- Center for Neuroscience, Department of Human Physiology, Flinders University, Adelaide, SA, Australia.
| | - Esther M Blessing
- Department of Psychiatry, New York University School of Medicine, New York, NY, USA
| | - Mazher Mohammed
- Center for Neuroscience, Department of Human Physiology, Flinders University, Adelaide, SA, Australia
| | - Youichirou Ootsuka
- Center for Neuroscience, Department of Human Physiology, Flinders University, Adelaide, SA, Australia
| |
Collapse
|
5
|
de Bartolomeis A, Tomasetti C, Iasevoli F. Update on the Mechanism of Action of Aripiprazole: Translational Insights into Antipsychotic Strategies Beyond Dopamine Receptor Antagonism. CNS Drugs 2015; 29:773-99. [PMID: 26346901 PMCID: PMC4602118 DOI: 10.1007/s40263-015-0278-3] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Dopamine partial agonism and functional selectivity have been innovative strategies in the pharmacological treatment of schizophrenia and mood disorders and have shifted the concept of dopamine modulation beyond the established approach of dopamine D2 receptor (D2R) antagonism. Despite the fact that aripiprazole was introduced in therapy more than 12 years ago, many questions are still unresolved regarding the complexity of the effects of this agent on signal transduction and intracellular pathways, in part linked to its pleiotropic receptor profile. The complexity of the mechanism of action has progressively shifted the conceptualization of this agent from partial agonism to functional selectivity. From the induction of early genes to modulation of scaffolding proteins and activation of transcription factors, aripiprazole has been shown to affect multiple cellular pathways and several cortical and subcortical neurotransmitter circuitries. Growing evidence shows that, beyond the consequences of D2R occupancy, aripiprazole has a unique neurobiology among available antipsychotics. The effect of chronic administration of aripiprazole on D2R affinity state and number has been especially highlighted, with relevant translational implications for long-term treatment of psychosis. The hypothesized effects of aripiprazole on cell-protective mechanisms and neurite growth, as well as the differential effects on intracellular pathways [i.e. extracellular signal-regulated kinase (ERK)] compared with full D2R antagonists, suggest further exploration of these targets by novel and future biased ligand compounds. This review aims to recapitulate the main neurobiological effects of aripiprazole and discuss the potential implications for upcoming improvements in schizophrenia therapy based on dopamine modulation beyond D2R antagonism.
Collapse
Affiliation(s)
- Andrea de Bartolomeis
- Unit of Treatment Resistant Psychosis, Laboratory of Molecular and Translational Psychiatry, Department of Neuroscience, University School of Medicine of Napoli "Federico II", Via Pansini, 5, Edificio n.18, 3rd floor, 80131, Naples, Italy.
| | - Carmine Tomasetti
- Unit of Treatment Resistant Psychosis, Laboratory of Molecular and Translational Psychiatry, Department of Neuroscience, University School of Medicine of Napoli "Federico II", Via Pansini, 5, Edificio n.18, 3rd floor, 80131, Naples, Italy
| | - Felice Iasevoli
- Unit of Treatment Resistant Psychosis, Laboratory of Molecular and Translational Psychiatry, Department of Neuroscience, University School of Medicine of Napoli "Federico II", Via Pansini, 5, Edificio n.18, 3rd floor, 80131, Naples, Italy
| |
Collapse
|
6
|
Nirogi R, Kandikere V, Jayarajan P, Bhyrapuneni G, Saralaya R, Muddana N, Abraham R. Aripiprazole in an animal model of chronic alcohol consumption and dopamine D₂ receptor occupancy in rats. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2014; 39:72-9. [PMID: 23421566 DOI: 10.3109/00952990.2012.730590] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
BACKGROUND Epidemiologic studies and clinical assessment of schizophrenic population have revealed a high incidence of overlap between schizophrenia and addictive disorders. OBJECTIVE The aim of the present investigation was to study the effect of aripiprazole in a preclinical animal model of chronic alcohol self-administration (CASA) and also to evaluate the influence of CASA on plasma pharmacokinetics and dopamine D₂ receptor (D₂R) occupancy in rats. METHODS The effect of oral administration of aripiprazole (1, 3, and 10 mg/kg) on 4% alcohol intake in CASA was studied for a period of 45 min after a post-dosing interval of 60 min. Brain penetration, pharmacokinetics, and D₂R occupancy of aripiprazole were evaluated in normal and CASA rats. RESULTS Aripiprazole reduced alcohol consumption in CASA rats by 13, 28, and 86% at 1, 3, and 10 mg/kg, respectively, and the effect reached statistical significance at 10 mg/kg (p < .01). At this behavioral effective dose, a decrease (75%) in total plasma apparent clearance and an increase in oral area under the concentration-time curve (3.98-fold) and bioavailability (3.50-fold) of aripiprazole was observed in CASA rats. Striatal D₂R occupancy and brain exposure of aripiprazole were significantly higher (∼twofold) in CASA rats when compared to normal rats (p < .01). CONCLUSION Chronic alcohol intake results in a significant increase in exposure of aripiprazole in plasma and brain and striatal D₂R occupancy. SCIENTIFIC SIGNIFICANCE Chronic alcohol intake would increase aripiprazole exposure, thus aripiprazole dose might have to be decreased (assuming this same phenomenon occurs in humans).
Collapse
Affiliation(s)
- Ramakrishna Nirogi
- Department of ADME, Discovery Research, Suven Life Sciences Ltd ., Hyderabad - 500055, India.
| | | | | | | | | | | | | |
Collapse
|
7
|
Michel HE, Tadros MG, Abdel-Naim AB, Khalifa AE. Prepulse inhibition (PPI) disrupting effects of Glycyrrhiza glabra extract in mice: A possible role of monoamines. Neurosci Lett 2013; 544:110-4. [DOI: 10.1016/j.neulet.2013.03.055] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2012] [Revised: 03/21/2013] [Accepted: 03/24/2013] [Indexed: 10/27/2022]
|
8
|
Comparative pharmacology of antipsychotics possessing combined dopamine D2 and serotonin 5-HT1A receptor properties. Psychopharmacology (Berl) 2011; 216:451-73. [PMID: 21394633 DOI: 10.1007/s00213-011-2247-y] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Accepted: 02/22/2011] [Indexed: 02/07/2023]
Abstract
RATIONALE There is increasing interest in antipsychotics intended to manage positive symptoms via D(2) receptor blockade and improve negative symptoms and cognitive deficits via 5-HT(1A) activation. Such a strategy reduces side-effects such as the extrapyramidal syndrome (EPS), weight gain, and autonomic disturbance liability. OBJECTIVE This study aims to review pharmacological literature on compounds interacting at both 5-HT(1A) and D(2) receptors (as well as at other receptors), including aripiprazole, perospirone, ziprasidone, bifeprunox, lurasidone and cariprazine, PF-217830, adoprazine, SSR181507, and F15063. METHODS We examine data on in vitro binding and agonism and in vivo tests related to (1) positive symptoms (e.g., psychostimulant-induced hyperactivity or prepulse inhibition deficit), (2) negative symptoms (e.g., phencyclidine-induced social interaction deficits and cortical dopamine release), and (3) cognitive deficits (e.g., phencyclidine or scopolamine-induced memory deficits). EPS liability is assessed by measuring catalepsy and neuroendocrine impact by determining plasma prolactin, glucose, and corticosterone levels. RESULTS Compounds possessing "balanced" 5-HT(1A) receptor agonism and D(2) antagonism (or weak partial agonism) and, in some cases, combined with other beneficial properties, such as 5-HT(2A) receptor antagonism, are efficacious in a broad range of rodent pharmacological models yet have a lower propensity to elicit EPS or metabolic dysfunction. CONCLUSIONS Recent compounds exhibiting combined 5-HT(1A)/D(2) properties may be effective in treating a broader range of symptoms of schizophrenia and be better tolerated than existing antipsychotics. Nevertheless, further investigations are necessary to evaluate recent compounds, notably in view of their differing levels of 5-HT(1A) affinity and efficacy, which can markedly influence activity and side-effect profiles.
Collapse
|
9
|
Depoortère R, Auclair AL, Bardin L, Colpaert FC, Vacher B, Newman-Tancredi A. F15599, a preferential post-synaptic 5-HT1A receptor agonist: activity in models of cognition in comparison with reference 5-HT1A receptor agonists. Eur Neuropsychopharmacol 2010; 20:641-54. [PMID: 20488670 DOI: 10.1016/j.euroneuro.2010.04.005] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Revised: 04/06/2010] [Accepted: 04/16/2010] [Indexed: 11/18/2022]
Abstract
We assessed the activity of F15599, a selective and high efficacy 5-HT(1A) agonist that preferentially activates post- versus pre-synaptic receptors, in rat cognition/memory models. F15599 (0.16 mg/kg i.p.) partially alleviated detrimental effects of phencyclidine on working and reference memory deficit in a hole-board model. It also attenuated phencyclidine-induced deficit of cognitive flexibility in a reversal learning task, without effects of its own. F13714 (0.04 mg/kg) a chemical congener of F15599, and 8-OH-DPAT (0.01 or 0.16), were inactive against these phencyclidine-induced deficits, and/or even worsened basal performances. F15599 (0.04-2.5) was less disruptive than F13714 (0.005-0.16) or 8-OH-DPAT (0.01-0.63), on basal performance in models of attention (5-choice serial reaction time task) and working memory (delayed non-matching to position). Finally, unlike either comparator, F15599 reduced PPI with modest potency and only partially. To conclude, F15599, in models of memory/cognition, has a more favourable profile than F13714 and 8-OH-DPAT. This suggests that preferential activation of post-synaptic 5-HT(1A) receptors could prove useful in pathologies characterized by cognitive/memory deficiencies, such as schizophrenia and depression.
Collapse
Affiliation(s)
- Ronan Depoortère
- Neurobiology 2 Division, Centre de Recherche Pierre Fabre, 17, avenue Jean Moulin, 81106 Castres, France.
| | | | | | | | | | | |
Collapse
|
10
|
Prepulse inhibition of the startle reflex in schizophrenia remains stable with short-term quetiapine. Eur Psychiatry 2010; 26:271-5. [PMID: 20542668 DOI: 10.1016/j.eurpsy.2010.03.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 02/18/2010] [Accepted: 03/04/2010] [Indexed: 11/22/2022] Open
Abstract
PURPOSE To study the short-term effect of treatment with quetiapine on prepulse inhibition (PPI) deficits of the startle reflex in schizophrenia patients. SUBJECTS AND METHODS Using PPI, we studied a group of 21 schizophrenia patients and 16 controls. Seventeen of the patients were re-tested with PPI after 21 days of treatment with quetiapine. RESULTS At baseline, an almost significant decrease in PPI was found in the patients as compared to the controls. PPI measurements did not change in the patients after 21 days of treatment with quetiapine, despite their clinical improvement. CONCLUSION Our results suggest that short-term quetiapine treatment may not modify PPI measures in schizophrenia patients.
Collapse
|
11
|
Tadros MG, Mohamed MR, Youssef AM, Sabry GM, Sabry NA, Khalifa AE. Proapoptotic and prepulse inhibition (PPI) disrupting effects of Hypericum perforatum in rats. JOURNAL OF ETHNOPHARMACOLOGY 2009; 122:561-566. [PMID: 19171186 DOI: 10.1016/j.jep.2009.01.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Revised: 12/01/2008] [Accepted: 01/02/2009] [Indexed: 05/27/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE St. John's wort extract is commonly used as a wound healing, anti-inflammatory, anxiolytic, diuretic, antibiotic, antiviral and cancer chemoprotective agent. It also has nootropic and/or antiamnestic effects. AIM OF THE STUDY Prepulse inhibition (PPI) of startle response is a valuable paradigm for sensorimotor gating processes. A previous study indicated that single administration of St. John's wort extract (500 mg/kg) caused PPI disruption in rats. The effect of antiamnestic doses of the extract on PPI has not been investigated despite the coexistence of impaired memory and PPI deficit in some neurological disorders. MATERIALS AND METHODS The effects of acute (500 mg/kg) and chronic (200mg/kg for 3 days) administration of St. John's wort extract were investigated for its antiamnestic activity. The effects of administration of the antiamnestic dose of the extract and hyperforin, its main active component, were tested on PPI of an acoustic startle response in rats. This study also investigated the proapoptotic effect of hyperforin in animals, demonstrating PPI deficit, by electrophoresis of DNA isolated from selected brain areas. RESULTS Disruption of PPI resulted after treatment of rats with an antiamnestic dose of the extract (200mg/kg for 3 days) and with hyperforin. Gel electrophoresis showed DNA fragmentation of the cortices of hyperforin-treated animals exhibiting PPI deficit. CONCLUSIONS The exacerbating effect of St. John's wort extract on PPI deficit may provide a limitation for using the extract to manage cognitive disturbance in psychotic and Huntington's disease patients manifesting PPI deficit.
Collapse
Affiliation(s)
- Mariane G Tadros
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| | | | | | | | | | | |
Collapse
|
12
|
Makinodan M, Yamauchi T, Tatsumi K, Okuda H, Noriyama Y, Sadamatsu M, Kishimoto T, Wanaka A. Yi-gan san restores behavioral alterations and a decrease of brain glutathione level in a mouse model of schizophrenia. J Brain Dis 2009; 1:1-6. [PMID: 23818802 PMCID: PMC3676319 DOI: 10.4137/jcnsd.s2255] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The traditional Chinese herbal medicine yi-gan san has been used to cure neuropsychological disorders. Schizophrenia can be one of the target diseases of yi-gan san. We aimed at evaluating the possible use of yi-gan san in improving the schizophrenic symptoms of an animal model. Yi-gan san or distilled water was administered to mice born from pregnant mice injected with polyinosinic-polycytidilic acid or phosphate buffered saline. The former is a model of schizophrenia based on the epidemiological data that maternal infection leads to psychotic disorders including schizophrenia in the offspring. Prepulse inhibition and sensitivity to methamphetamine in open field tests were analyzed and the total glutathione content of whole brains was measured. Yi-gan san reversed the decrease in prepulse inhibition, hypersensitivity to methamphetamine and cognitive deficits found in the model mice to the level of control mice. Total glutathione content in whole brains was reduced in the model mice but was restored to normal levels by yi-gan san treatment. These results suggest that yi-gan san may have ameliorating effects on the pathological symptoms of schizophrenia.
Collapse
Affiliation(s)
- Manabu Makinodan
- Department of Psychiatry, Nara Medical University Faculty of Medicine
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Tadros MG, Mohamed MR, Youssef AM, Sabry GM, Sabry NA, Khalifa AE. Involvement of serotoninergic 5-HT1A/2A, alpha-adrenergic and dopaminergic D1 receptors in St. John's wort-induced prepulse inhibition deficit: a possible role of hyperforin. Behav Brain Res 2008; 199:334-9. [PMID: 19136030 DOI: 10.1016/j.bbr.2008.12.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Revised: 12/08/2008] [Accepted: 12/11/2008] [Indexed: 10/21/2022]
Abstract
Prepulse inhibition (PPI) of acoustic startle response is a valuable paradigm for sensorimotor gating processes. Previous research showed that acute administration of St. John's wort extract (500 mg/kg, p.o.) to rats caused significant disruption of PPI while elevating monoamines levels in some brain areas. The cause-effect relationship between extract-induced PPI disruption and augmented monoaminergic transmission was studied using different serotoninergic, adrenergic and dopaminergic antagonists. The effects of hypericin and hyperforin, as the main active constituents of the extract, on PPI response were also tested. PPI disruption was prevented after blocking the serotoninergic 5-HT1A and 5-HT2A, alpha-adrenergic and dopaminergic D1 receptors. Results also demonstrated a significant PPI deficit after acute treatment of rats with hyperforin, and not hypericin. In some conditions manifesting disrupted PPI response, apoptosis coexists. Electrophoresis of DNA isolated from brains of hyperforin-treated animals revealed absence of any abnormal DNA fragmentation patterns. It is concluded that serotoninergic 5-HT1A and 5-HT2A, alpha-adrenergic and dopaminergic D1 receptors are involved in the disruptive effect of St. John's wort extract on PPI response in rats. We can also conclude that hyperforin, and not hypericin, is one of the active ingredients responsible for St. John's wort-induced PPI disruption with no relation to apoptotic processes.
Collapse
Affiliation(s)
- Mariane G Tadros
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| | | | | | | | | | | |
Collapse
|
14
|
Serotonergic approaches in the development of novel antipsychotics. Neuropharmacology 2008; 55:1056-65. [DOI: 10.1016/j.neuropharm.2008.05.025] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2008] [Revised: 05/24/2008] [Accepted: 05/27/2008] [Indexed: 01/23/2023]
|
15
|
de Almeida J, Mengod G. Serotonin 1A receptors in human and monkey prefrontal cortex are mainly expressed in pyramidal neurons and in a GABAergic interneuron subpopulation: implications for schizophrenia and its treatment. J Neurochem 2008; 107:488-96. [PMID: 18761712 DOI: 10.1111/j.1471-4159.2008.05649.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Serotonin 1A (5-HT(1A)) receptors are found in high densities in prefrontal cortex. However, their distribution within cortical cell populations is unknown in both humans and primates. We used double in situ hybridization histochemistry to quantify the percentage of glutamatergic and GABAergic neurons expressing 5-HT(1A) receptors in human and monkey prefrontal cortex. Moreover, in the case of the monkey, we also quantified the parvalbumin and calbindin GABAergic subpopulations expressing this receptor. 5-HT(1A) receptor mRNAs were expressed in about 80% of glutamatergic neurons in external layers II and upper III, and in around 50% in layer VI; they were also present in approximately 20% of GABAergic neurons in both species. Although they were found in up to 43% of the calbindin cell subpopulation they were rarely present in parvalbumin cells in monkey prefrontal cortex. The knowledge of the phenotype of the prefrontal cortex (PFC) cells expressing 5-HT(1A) will help understanding serotonin actions in PFC.
Collapse
Affiliation(s)
- Julián de Almeida
- Departament de Neuroquimica i Neurofarmacologia, Institut d'Investigacions Biomèdiques de Barcelona (CSIC), IDIBAPS, Barcelona, Spain
| | | |
Collapse
|
16
|
Swerdlow NR, Weber M, Qu Y, Light GA, Braff DL. Realistic expectations of prepulse inhibition in translational models for schizophrenia research. Psychopharmacology (Berl) 2008; 199:331-88. [PMID: 18568339 PMCID: PMC2771731 DOI: 10.1007/s00213-008-1072-4] [Citation(s) in RCA: 431] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2007] [Accepted: 01/03/2008] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Under specific conditions, a weak lead stimulus, or "prepulse", can inhibit the startling effects of a subsequent intense abrupt stimulus. This startle-inhibiting effect of the prepulse, termed "prepulse inhibition" (PPI), is widely used in translational models to understand the biology of brainbased inhibitory mechanisms and their deficiency in neuropsychiatric disorders. In 1981, four published reports with "prepulse inhibition" as an index term were listed on Medline; over the past 5 years, new published Medline reports with "prepulse inhibition" as an index term have appeared at a rate exceeding once every 2.7 days (n=678). Most of these reports focus on the use of PPI in translational models of impaired sensorimotor gating in schizophrenia. This rapid expansion and broad application of PPI as a tool for understanding schizophrenia has, at times, outpaced critical thinking and falsifiable hypotheses about the relative strengths vs. limitations of this measure. OBJECTIVES This review enumerates the realistic expectations for PPI in translational models for schizophrenia research, and provides cautionary notes for the future applications of this important research tool. CONCLUSION In humans, PPI is not "diagnostic"; levels of PPI do not predict clinical course, specific symptoms, or individual medication responses. In preclinical studies, PPI is valuable for evaluating models or model organisms relevant to schizophrenia, "mapping" neural substrates of deficient PPI in schizophrenia, and advancing the discovery and development of novel therapeutics. Across species, PPI is a reliable, robust quantitative phenotype that is useful for probing the neurobiology and genetics of gating deficits in schizophrenia.
Collapse
Affiliation(s)
- Neal R Swerdlow
- Department of Psychiatry, UCSD School of Medicine, La Jolla, CA, 92093-0804, USA,
| | | | | | | | | |
Collapse
|
17
|
Albers LJ, Musenga A, Raggi MA. Iloperidone: a new benzisoxazole atypical antipsychotic drug. Is it novel enough to impact the crowded atypical antipsychotic market? Expert Opin Investig Drugs 2008; 17:61-75. [PMID: 18095919 DOI: 10.1517/13543784.17.1.61] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Iloperidone is a new-generation atypical antipsychotic agent, acting as a serotonin/dopamine (5-HT(2A)/D(2)) antagonist, under development by Vanda Pharmaceuticals for the treatment of schizophrenia, bipolar disorder and other psychiatric conditions. Chemically, iloperidone is a benzisoxazole, like risperidone, and shows a multiple receptor binding profile, sharing this feature with the other atypical antipsychotic agents. Administered orally, the drug is highly bound to plasma proteins and extensively metabolised. Several clinical trials have been carried out, to check efficacy, safety and side effects. In order to introduce iloperidone as an agent for the treatment of schizophrenia, a short overview of the disease and of the most important antipsychotic drugs available or under development will be reported. Iloperidone pharmacokinetics and pharmacodynamics are presented herein, together with an evaluation of clinical safety and efficacy results.
Collapse
Affiliation(s)
- Lawrence James Albers
- University of California at Irvine, Department of Psychiatry, Long Beach VA Healthcare System, 5901 East Seventh Street, Long Beach, CA 90822, USA
| | | | | |
Collapse
|
18
|
Effects of aripiprazole/OPC-14597 on motor activity, pharmacological models of psychosis, and brain activity in rats. Neuropharmacology 2008; 54:405-16. [DOI: 10.1016/j.neuropharm.2007.10.010] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2007] [Revised: 05/29/2007] [Accepted: 10/18/2007] [Indexed: 11/18/2022]
|
19
|
Rauly-Lestienne I, Boutet-Robinet E, Ailhaud MC, Newman-Tancredi A, Cussac D. Differential profile of typical, atypical and third generation antipsychotics at human 5-HT7a receptors coupled to adenylyl cyclase: detection of agonist and inverse agonist properties. Naunyn Schmiedebergs Arch Pharmacol 2007; 376:93-105. [PMID: 17786406 DOI: 10.1007/s00210-007-0182-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2007] [Accepted: 07/29/2007] [Indexed: 11/24/2022]
Abstract
5-HT(7) receptors are present in thalamus and limbic structures, and a possible role of these receptors in the pathology of schizophrenia has been evoked. In this study, we examined binding affinity and agonist/antagonist/inverse agonist properties at these receptors of a large series of antipsychotics, i.e., typical, atypical, and third generation compounds preferentially targeting D(2) and 5-HT(1A) sites. Adenylyl cyclase (AC) activity was measured in HEK293 cells stably expressing the human (h) 5-HT(7a) receptor isoform. 5-HT and 5-CT increased cyclic adenosine monophosphate level by about 20-fold whereas (+)-8-OH-DPAT, the antidyskinetic agent sarizotan, and the novel antipsychotic compound bifeprunox exhibited partial agonist properties at h5-HT(7a) receptors stimulating AC. Other compounds antagonized 5-HT-induced AC activity with pK (B) values which correlated with their pK (i) as determined by competition binding vs [(3)H]5-CT. The selective 5-HT(7) receptor ligand, SB269970, was the most potent antagonist. For antipsychotic compounds, the following rank order of antagonism potency (pK (B)) was ziprasidone > tiospirone > SSR181507 > or = clozapine > or = olanzapine > SLV-314 > SLV-313 > or = aripiprazole > or = chlorpromazine > nemonapride > haloperidol. Interestingly, pretreatment of HEK293-h5-HT(7a) cells with forskolin enhanced basal AC activity and revealed inverse agonist properties for both typical and atypical antipsychotics as well as for aripiprazole. In contrast, other novel antipsychotics exhibited diverse 5-HT(7a) properties; SLV-313 and SLV-314 behaved as quasi-neutral antagonists, SSR181507 acted as an inverse agonist, and bifeprunox as a partial agonist, as mentioned above. In conclusion, the differential properties of third generation antipsychotics at 5-HT(7) receptors may influence their antipsychotic profile.
Collapse
Affiliation(s)
- Isabelle Rauly-Lestienne
- Department of Cellular and Molecular Biology, Centre de Recherche Pierre Fabre, 17 avenue Jean Moulin, 81106 Castres Cedex, France
| | | | | | | | | |
Collapse
|