1
|
Lima J, Panayi MC, Sharp T, McHugh SB, Bannerman DM. More and Less Fear in Serotonin Transporter Knockout Mice. GENES, BRAIN, AND BEHAVIOR 2025; 24:e70016. [PMID: 39917838 PMCID: PMC11803413 DOI: 10.1111/gbb.70016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 12/22/2024] [Accepted: 01/14/2025] [Indexed: 02/11/2025]
Abstract
Recent theories suggest that reduced serotonin transporter (5-HTT) function, which increases serotonin (5-HT) levels at the synapse, enhances neural plasticity and affects sensitivity to environmental cues. This may promote learning about emotionally relevant events. However, the boundaries that define such emotional learning remain to be established. This was investigated using 5-HTT knockout (5-HTTKO) mice which provide a model of long-term elevated 5-HT transmission and are associated with increased anxiety. Compared to wild-type controls, 5-HTTKO mice were faster to discriminate between an auditory cue that predicted footshock (CS+) and a cue predicting no footshock (CS-). Notably, this enhanced discrimination performance was driven not by faster learning that the CS+ predicted footshock, but rather by faster learning that the CS- cue signals the absence of footshock and thus provides temporary relief from fear/anxiety. Similarly, 5-HTTKO mice were also faster to reduce their fear of the CS+ cue during subsequent extinction. These findings are consistent with facilitated inhibitory learning that predicts the absence of potential threats in 5-HTTKO mice. However, 5-HTTKO mice also exhibited increased generalisation of fear learning about ambiguous aversive cues in a novel context, different from the training context. Thus, 5-HTTKO mice can exhibit both more and less fear compared to wild-type controls. Taken together, our results support the idea that loss of 5-HTT function, and corresponding increases in synaptic 5-HT availability, may facilitate learning by priming of aversive memories. This both facilitates inhibitory learning for fear memories but also enhances generalisation of fear.
Collapse
Affiliation(s)
- João Lima
- Department of Experimental PsychologyUniversity of OxfordOxfordUK
- Danish Research Centre for Magnetic Resonance (DRCMR), Department of Radiology and Nuclear MedicineCopenhagen University Hospital—Amager and HvidovreCopenhagenDenmark
| | - Marios C. Panayi
- Department of Experimental PsychologyUniversity of OxfordOxfordUK
- School of PsychologyUniversity of New South WalesSydneyNew South WalesAustralia
| | - Trevor Sharp
- Department of PharmacologyUniversity of OxfordOxfordUK
| | - Stephen B. McHugh
- Department of Experimental PsychologyUniversity of OxfordOxfordUK
- Medical Research Council Brain Network Dynamics UnitOxfordUK
| | | |
Collapse
|
2
|
In vivo correlation of serotonin transporter and 1B receptor availability in the human brain: a PET study. Neuropsychopharmacology 2022; 47:1863-1868. [PMID: 35821068 PMCID: PMC9372190 DOI: 10.1038/s41386-022-01369-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 11/30/2022]
Abstract
Synaptic serotonin levels in the brain are regulated by active transport into the bouton by the serotonin transporter, and by autoreceptors, such as the inhibitory serotonin (5-HT) 1B receptor which, when activated, decreases serotonin release. Animal studies have shown a regulatory link between the two proteins. Evidence of such coupling could translate to an untapped therapeutic potential in augmenting the effect of selective serotonin reuptake inhibitors through pharmacological modulation of 5-HT1B receptors. Here we will for the first time in vivo examine the relationship between 5-HT1B receptors and serotonin transporters in the living human brain. Seventeen healthy individuals were examined with PET twice, using the radioligands [11C]AZ10419369 and [11C]MADAM for quantification of the 5-HT1B receptor and the 5-HT transporter, respectively. The binding potential was calculated for a set of brain regions, and the correlations between the binding estimates of the two radioligands were studied. [11C]AZ10419369 and [11C]MADAM binding was positively correlated in all examined brain regions. In most cortical regions the correlation was strong, e.g., frontal cortex, r(15) = 0.64, p = 0.01 and parietal cortex, r(15) = 0.8, p = 0.0002 while in most subcortical regions, negligible correlations was observed. Though the correlation estimates in cortex should be interpreted with caution due to poor signal to noise ratio of [11C]MADAM binding in these regions, it suggests a link between two key proteins involved in the regulation of synaptic serotonin levels. Our results indicate a need for further studies to address the functional importance of 5-HT1B receptors in treatment with drugs that inhibit serotonin reuptake.
Collapse
|
3
|
Marinho AMDN, Lobão-Soares B, Targino HAS, Vasconcellos YJF, Guarnieri R, Carlotti CG. Decreased hippocampal serotonin 5HT 1A expression in mesial temporal lobe of epilepsy patients. Epilepsy Behav 2022; 129:108574. [PMID: 35189481 DOI: 10.1016/j.yebeh.2022.108574] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 01/10/2023]
Abstract
INTRODUCTION Mesial temporal lobe epilepsy related to hippocampal sclerosis (MTLE-HS) is a surgically remediable epilepsy with a relatively high prevalence and psychiatric comorbidities. Depressive disorders may occur in up to 25% of MTLE-HS patients suggesting a common molecular mechanism underlying both conditions. OBJECTIVE To compare the gene expression comprising serotonin 5HT1A and 5HT2A, noradrenaline (NA) ADRA1A, and ADRA2A receptors in the hippocampus of MTLE-HS patients with and without major depression. METHODS A cross-sectional study allocated 31 patients in three groups: MTLE-HS without psychiatric diagnosis (MTLE-HS group), MTLE-HS with major depression (MTLE-HS-D group) and a control group consisting of healthy volunteers without any neurological or psychiatric disorders. Demographic and clinical characteristics were compared among groups. Gene expression of receptors were analyzed using general linear mixed models (GLMM), with an unstructured matrix, normal link. RESULTS The three groups showed a similar distribution regarding age, gender (p > 0.16), history of initial precipitating injury, family history of epilepsy, monthly frequency of seizures, side of hippocampal sclerosis, interictal spike distribution and anti-seizure medications did not differ between MTLE-HS and MTLE-HS-D groups (p > 0.05). We observed a greater expression of the 5HT1A receptor in the control group when compared to the MTLE-HS (P = .004) and MTLE-HS-D (P = .007). Nevertheless, we did not observe any difference when MTLE-HS and MTLE-HS-D groups were compared to the controls for the ADRA1A (P = .931; P = .931), ADRA2A (P = .120; P = .121) and 5HT2A (P = .638; P = .318, respectively) gene expression. CONCLUSION Mesial temporal lobe epilepsy related to hippocampal sclerosis and MTLE-HS-D patients showed a lowered expression of the 5HT1A receptors when compared with the controls adjusted for age and schooling. Data suggest that temporal lobe epilepsy plasticity may affect serotonin receptors, which may lead to more frequent cases of major depression in this population. More studies comprising wider samples are necessary to confirm these results; they also should investigate serotonin reuptake drugs as an adjuvant therapeutic option for MTLE-HS disorder.
Collapse
Affiliation(s)
| | - Bruno Lobão-Soares
- Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte (DBF - UFRN), Brazil.
| | | | | | | | - Carlos Gilberto Carlotti
- Department of Surgery, Faculty of Medicine of Ribeirão Preto, Universidade de São Paulo, (FMRP-USP), Brazil
| |
Collapse
|
4
|
Fonseca R, Madeira N, Simoes C. Resilience to fear: The role of individual factors in amygdala response to stressors. Mol Cell Neurosci 2020; 110:103582. [PMID: 33346000 DOI: 10.1016/j.mcn.2020.103582] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 11/13/2020] [Accepted: 12/02/2020] [Indexed: 10/22/2022] Open
Abstract
Resilience to stress is an adaptive process that varies individually. Resilience refers to the adaptation, or the ability to maintain or regain mental health, despite being subject to adverse situation. Resilience is a dynamic concept that reflects a combination of internal individual factors, including age and gender interacting with external factors such as social, cultural and environmental factors. In the last decade, we have witnessed an increase in the prevalence of anxiety disorders, including post-traumatic stress disorder. Given that stress in unavoidable, it is of great interest to understand the neurophysiological mechanisms of resilience, the individual factors that may contribute to susceptibility and promote efficacious approaches to improve resilience. Here, we address this complex question, attempting at defining clear and operational definitions that may allow us to improve our analysis of behavior incorporating individuality. We examine how individual perception of the stressor can alter the outcome of an adverse situation using as an example, the fear-conditioning paradigm and discuss how individual differences in the reward system can contribute to resilience. Given the central role of the endocannabinoid system in regulating fear responses and anxiety, we discuss the evidence that polymorphisms in several molecules of this signaling system contribute to different anxiety phenotypes. The endocannabinoid system is highly interconnected with the serotoninergic and dopaminergic modulatory systems, contributing to individual differences in stress perception and coping mechanisms. We review how the individual variability in these modulatory systems can be used towards a multivariable assessment of stress risk. Incorporating individuality in our research will allow us to define biomarkers of anxiety disorders as well as assess prognosis, towards a personalized clinical approach to mental health.
Collapse
Affiliation(s)
- Rosalina Fonseca
- Cellular and Systems Neurobiology, Chronic Diseases Research Center (CEDOC), NOVA Medical School, Universidade Nova de Lisboa, Campo dos Mártires da Pátria, 130 1169-056 Lisboa, Portugal.
| | - Natália Madeira
- Cellular and Systems Neurobiology, Chronic Diseases Research Center (CEDOC), NOVA Medical School, Universidade Nova de Lisboa, Campo dos Mártires da Pátria, 130 1169-056 Lisboa, Portugal
| | - Carla Simoes
- Cellular and Systems Neurobiology, Chronic Diseases Research Center (CEDOC), NOVA Medical School, Universidade Nova de Lisboa, Campo dos Mártires da Pátria, 130 1169-056 Lisboa, Portugal
| |
Collapse
|
5
|
Long H, Liu B, Wang C, Zhang X, Li J, Yu C, Jiang T. Interaction effect between 5-HTTLPR and HTR1A rs6295 polymorphisms on the frontoparietal network. Neuroscience 2017; 362:239-247. [PMID: 28793232 DOI: 10.1016/j.neuroscience.2017.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 07/31/2017] [Accepted: 08/01/2017] [Indexed: 10/19/2022]
Abstract
Previous studies have shown a close relationship between the serotonin system and working memory (WM), but the neural mechanism for the role of the serotonin system on the WM is unclear. The frontoparietal network is involved in WM and is associated with the serotonin system. Therefore, this study investigated the interaction effect of the serotonin transporter-linked polymorphic region (5-HTTLPR) and the polymorphism in the serotonin 1A receptor gene (rs6295) on the frontoparietal network obtained from the independent component analysis in a large, young Chinese sample population. The current study found a significant interaction effect of 5-HTTLPR and rs6295 on the connectivity within the right frontoparietal network, specifically in the middle frontal gyrus and inferior parietal lobule. Moreover, the mean connectivity in the right inferior parietal lobule was positively correlated with WM performance. These brain network analysis findings could provide a new perspective on the neural mechanisms of gene-gene interactions and on individual differences in cognitive functions.
Collapse
Affiliation(s)
- Haixia Long
- College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, China; Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Bing Liu
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Chao Wang
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Xiaolong Zhang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Jin Li
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Chunshui Yu
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China.
| | - Tianzi Jiang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China; Queensland Brain Institute, University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
6
|
Iscan Z, Rakesh G, Rossano S, Yang J, Zhang M, Miller J, Sullivan GM, Sharma P, McClure M, Oquendo MA, Mann JJ, Parsey RV, DeLorenzo C. A positron emission tomography study of the serotonergic system in relation to anxiety in depression. Eur Neuropsychopharmacol 2017; 27:1011-1021. [PMID: 28811068 PMCID: PMC5623123 DOI: 10.1016/j.euroneuro.2017.07.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 06/02/2017] [Accepted: 07/29/2017] [Indexed: 12/17/2022]
Abstract
Symptoms of anxiety are highly comorbid with major depressive disorder (MDD) and are known to alter the course of the disease. To help elucidate the biological underpinnings of these prevalent disorders, we previously examined the relationship between components of anxiety (somatic, psychic and motoric) and serotonin 1A receptor (5-HT1A) binding in MDD and found that higher psychic and lower somatic anxiety was associated with greater 5-HT1A binding. In this work, we sought to examine the correlation between these anxiety symptom dimensions and 5-HTT binding. Positron emission tomography with [11C]-3-amino-4-(3-dimethylamino-methylphenylsulfanyl)-benzonitrile ([11C]DASB) and a metabolite-corrected arterial input function were used to estimate regional 5-HTT binding in 55 subjects with MDD and anxiety symptoms. Somatic anxiety was negatively correlated with 5-HTT binding in the thalamus (β=-.33, p=.025), amygdala (β=-.31, p=.007) and midbrain (β=-.72, p<.001). Psychic anxiety was positively correlated with 5-HTT binding in midbrain only (β=.46, p=.0025). To relate to our previous study, correlation between 5-HT1A and 5-HTT binding was examined, and none was found. We also examined how much of the variance in anxiety symptom dimensions could be explained by both 5-HTT and 5-HT1A binding. The developed model was able to explain 68% (p<.001), 38% (p=.012) and 32% (p=.038) of the total variance in somatic, psychic, and motoric anxiety, respectively. Results indicate the tight coupling between the serotonergic system and anxiety components, which may be confounded when using aggregate anxiety measures. Uncovering serotonin's role in anxiety and depression in this way may give way to a new generation of therapeutics and treatment strategies.
Collapse
Affiliation(s)
- Zafer Iscan
- Centre for Cognition and Decision Making, National Research University, Higher School of Economics, Russian Federation; Cognitive Neuroimaging Unit, CEA DRF/Joliot Institute, INSERM, Université Paris-Sud, Université Paris-Saclay, NeuroSpin Center, 91191 Gif-sur-Yvette, France.
| | | | - Samantha Rossano
- Department of Psychiatry, Stony Brook University, Stony Brook, NY, USA
| | - Jie Yang
- Family, Population and Preventive Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Mengru Zhang
- Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY, USA
| | - Jeffrey Miller
- New York State Psychiatric Institute and Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Gregory M Sullivan
- Tonix Pharmaceuticals, Inc., 509 Madison Avenue Suite 306, New York, NY, USA
| | - Priya Sharma
- Department of Psychiatry, Stony Brook University, Stony Brook, NY, USA
| | - Matthew McClure
- Department of Psychiatry, Stony Brook University, Stony Brook, NY, USA
| | - Maria A Oquendo
- New York State Psychiatric Institute and Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - J John Mann
- New York State Psychiatric Institute and Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Ramin V Parsey
- Department of Psychiatry, Stony Brook University, Stony Brook, NY, USA; Radiology, Stony Brook University, Stony Brook, NY, USA
| | - Christine DeLorenzo
- Department of Psychiatry, Stony Brook University, Stony Brook, NY, USA; New York State Psychiatric Institute and Columbia University College of Physicians and Surgeons, New York, NY, USA
| |
Collapse
|
7
|
Strupp-Levitsky M, Miller JM, Rubin-Falcone H, Zanderigo F, Milak MS, Sullivan G, Ogden RT, Oquendo MA, DeLorenzo C, Simpson N, Parsey RV, Mann JJ. Lack of association between the serotonin transporter and serotonin 1A receptor: an in vivo PET imaging study in healthy adults. Psychiatry Res 2016; 255:81-86. [PMID: 27567324 PMCID: PMC5175477 DOI: 10.1016/j.pscychresns.2016.08.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 07/11/2016] [Accepted: 08/06/2016] [Indexed: 01/12/2023]
Abstract
The serotonin neurotransmitter system is modulated in part by the uptake of synaptically released serotonin (5-HT) by the serotonin transporter (5-HTT), and by specific serotonin autoreceptors such as the somatodendritic 5-HT1A receptor, which can limit serotonin neuron depolarization. However, little is known about how 5-HTT and 5-HT1A are related in vivo. To study this question, we reanalyzed positron emission tomography (PET) data obtained earlier in 40 healthy participants (21 females) using [(11)C]WAY-100635 for quantification of 5-HT1A binding and [(11)C](+)-McN-5652 for quantification of 5-HTT binding. We hypothesized negative correlations between 5-HT1A binding in the raphe nuclei (RN) and 5-HTT binding in RN terminal field regions. Controlling for sex, no significant correlations were found (all p>0.05). Similarly, an exploratory analysis correlating whole-brain voxel-wise 5-HTT binding with 5-HT1A binding in RN identified no significant clusters meeting our a priori statistical threshold. The lack of correlation between 5-HT1A and 5-HTT binding observed in the current study may be due to the different temporal responsiveness of regulatory processes controlling the somatodendritic 5-HT1A receptor and 5-HTT in response to changing availability of intrasynaptic serotonin.
Collapse
Affiliation(s)
- Michael Strupp-Levitsky
- Department of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, 1051 Riverside Drive #42, New York, NY 10032, USA
| | - Jeffrey M Miller
- Department of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, 1051 Riverside Drive #42, New York, NY 10032, USA; Department of Psychiatry, Columbia University, 1051 Riverside Drive #42, New York, NY 10032, USA.
| | - Harry Rubin-Falcone
- Department of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, 1051 Riverside Drive #42, New York, NY 10032, USA; Department of Psychiatry, Columbia University, 1051 Riverside Drive #42, New York, NY 10032, USA
| | - Francesca Zanderigo
- Department of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, 1051 Riverside Drive #42, New York, NY 10032, USA; Department of Psychiatry, Columbia University, 1051 Riverside Drive #42, New York, NY 10032, USA
| | - Matthew S Milak
- Department of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, 1051 Riverside Drive #42, New York, NY 10032, USA; Department of Psychiatry, Columbia University, 1051 Riverside Drive #42, New York, NY 10032, USA
| | - Gregory Sullivan
- Department of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, 1051 Riverside Drive #42, New York, NY 10032, USA; Department of Psychiatry, Columbia University, 1051 Riverside Drive #42, New York, NY 10032, USA
| | - R Todd Ogden
- Department of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, 1051 Riverside Drive #42, New York, NY 10032, USA; Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Maria A Oquendo
- Department of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, 1051 Riverside Drive #42, New York, NY 10032, USA; Department of Psychiatry, Columbia University, 1051 Riverside Drive #42, New York, NY 10032, USA
| | - Christine DeLorenzo
- Now at Department of Psychiatry, Department of Radiology, Stony Brook Medicine, Stony Brook, NY, USA
| | - Norman Simpson
- Department of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, 1051 Riverside Drive #42, New York, NY 10032, USA; Department of Psychiatry, Columbia University, 1051 Riverside Drive #42, New York, NY 10032, USA
| | - Ramin V Parsey
- Now at Department of Psychiatry, Department of Radiology, Stony Brook Medicine, Stony Brook, NY, USA
| | - J John Mann
- Department of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, 1051 Riverside Drive #42, New York, NY 10032, USA; Department of Psychiatry, Columbia University, 1051 Riverside Drive #42, New York, NY 10032, USA
| |
Collapse
|
8
|
Bocchio M, Fucsina G, Oikonomidis L, McHugh SB, Bannerman DM, Sharp T, Capogna M. Increased Serotonin Transporter Expression Reduces Fear and Recruitment of Parvalbumin Interneurons of the Amygdala. Neuropsychopharmacology 2015; 40:3015-26. [PMID: 26052039 PMCID: PMC4864439 DOI: 10.1038/npp.2015.157] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 05/20/2015] [Accepted: 05/26/2015] [Indexed: 12/31/2022]
Abstract
Genetic association studies suggest that variations in the 5-hydroxytryptamine (5-HT; serotonin) transporter (5-HTT) gene are associated with susceptibility to psychiatric disorders such as anxiety or posttraumatic stress disorder. Individuals carrying high 5-HTT-expressing gene variants display low amygdala reactivity to fearful stimuli. Mice overexpressing the 5-HTT (5-HTTOE), an animal model of this human variation, show impaired fear, together with reduced fear-evoked theta oscillations in the basolateral amygdala (BLA). However, it is unclear how variation in 5-HTT gene expression impacts on the microcircuitry of the BLA to change behavior. We addressed this issue by investigating the activity of parvalbumin (PV)-expressing interneurons (PVINs), the biggest IN population in the basal amygdala (BA). We found that increased 5-HTT expression impairs the recruitment of PVINs (measured by their c-Fos immunoreactivity) during fear. Ex vivo patch-clamp recordings demonstrated that the depolarizing effect of 5-HT on PVINs was mediated by 5-HT2A receptor. In 5-HTTOE mice, 5-HT-evoked depolarization of PVINs and synaptic inhibition of principal cells, which provide the major output of the BA, were impaired. This deficit was because of reduced 5-HT2A function and not because of increased 5-HT uptake. Collectively, these findings provide novel cellular mechanisms that are likely to contribute to differences in emotional behaviors linked with genetic variations of the 5-HTT.
Collapse
Affiliation(s)
- Marco Bocchio
- MRC Brain Network Dynamics Unit, Department of Pharmacology, University of Oxford, Oxford, UK
| | - Giulia Fucsina
- MRC Brain Network Dynamics Unit, Department of Pharmacology, University of Oxford, Oxford, UK
| | - Lydia Oikonomidis
- MRC Brain Network Dynamics Unit, Department of Pharmacology, University of Oxford, Oxford, UK,Department of Pharmacology, University of Oxford, Oxford, UK,Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Stephen B McHugh
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - David M Bannerman
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Trevor Sharp
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Marco Capogna
- MRC Brain Network Dynamics Unit, Department of Pharmacology, University of Oxford, Oxford, UK,MRC Brain Network Dynamics Unit, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3TH, UK, Tel: +44 1865 271897, Fax: +44 1865 271647, E-mail:
| |
Collapse
|
9
|
Diurnal and seasonal variation of the brain serotonin system in healthy male subjects. Neuroimage 2015; 112:225-231. [DOI: 10.1016/j.neuroimage.2015.03.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 02/11/2015] [Accepted: 03/05/2015] [Indexed: 11/20/2022] Open
|
10
|
McHugh SB, Barkus C, Lima J, Glover LR, Sharp T, Bannerman DM. SERT and uncertainty: serotonin transporter expression influences information processing biases for ambiguous aversive cues in mice. GENES BRAIN AND BEHAVIOR 2015; 14:330-6. [PMID: 25824641 PMCID: PMC4440341 DOI: 10.1111/gbb.12215] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 03/26/2015] [Accepted: 03/26/2015] [Indexed: 12/18/2022]
Abstract
The long allele variant of the serotonin transporter (SERT, 5-HTT) gene-linked polymorphic region (5-HTTLPR) is associated with higher levels of 5-HTT expression and reduced risk of developing affective disorders. However, little is known about the mechanisms underlying this protective effect. One hypothesis is that 5-HTT expression influences aversive information processing, with reduced negative cognitive bias present in those with higher 5-HTT expression. Here we investigated this hypothesis using genetically-modified mice and a novel aversive learning paradigm. Mice with high levels of 5-HTT expression (5-HTT over-expressing, 5-HTTOE mice) and wild-type mice were trained to discriminate between three distinct auditory cues: one cue predicted footshock on all trials (CS+); a second cue predicted the absence of footshock (CS−); and a third cue predicted footshock on 20% of trials (CS20%), and was therefore ambiguous. Wild-type mice exhibited equivalently high levels of fear to the CS+ and CS20% and minimal fear to the CS−. In contrast, 5-HTTOE mice exhibited high levels of fear to the CS+ but minimal fear to the CS− and the CS20%. This selective reduction in fear to ambiguous aversive cues suggests that increased 5-HTT expression reduces negative cognitive bias for stimuli with uncertain outcomes.
Collapse
Affiliation(s)
- S B McHugh
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | | | | | | | | | | |
Collapse
|
11
|
|
12
|
Barkus C, Line SJ, Huber A, Capitao L, Lima J, Jennings K, Lowry J, Sharp T, Bannerman DM, McHugh SB. Variation in serotonin transporter expression modulates fear-evoked hemodynamic responses and theta-frequency neuronal oscillations in the amygdala. Biol Psychiatry 2014; 75:901-8. [PMID: 24120093 PMCID: PMC4032572 DOI: 10.1016/j.biopsych.2013.09.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 09/04/2013] [Accepted: 09/04/2013] [Indexed: 01/16/2023]
Abstract
BACKGROUND Gene association studies detect an influence of natural variation in the 5-hydroxytryptamine transporter (5-HTT) gene on multiple aspects of individuality in brain function, ranging from personality traits through to susceptibility to psychiatric disorders such as anxiety and depression. The neural substrates of these associations are unknown. Human neuroimaging studies suggest modulation of the amygdala by 5-HTT variation, but this hypothesis is controversial and unresolved, and difficult to investigate further in humans. METHODS We used a mouse model in which the 5-HTT is overexpressed throughout the brain and recorded hemodynamic responses (using a novel in vivo voltammetric monitoring method, analogous to blood oxygen level-dependent functional magnetic resonance imaging) and local field potentials during Pavlovian fear conditioning. RESULTS Increased 5-HTT expression impaired, but did not prevent, fear learning and significantly reduced amygdala hemodynamic responses to aversive cues. Increased 5-HTT expression was also associated with reduced theta oscillations, which were a feature of aversive cue presentation in controls. Moreover, in control mice, but not those with high 5-HTT expression, there was a strong correlation between theta power and the amplitude of the hemodynamic response. CONCLUSIONS Direct experimental manipulation of 5-HTT expression levels throughout the brain markedly altered fear learning, amygdala hemodynamic responses, and neuronal oscillations.
Collapse
Affiliation(s)
- Christopher Barkus
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Samantha J Line
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Anna Huber
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Liliana Capitao
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Joao Lima
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Katie Jennings
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom
| | - John Lowry
- Department of Chemistry, National University of Ireland, Maynooth, Ireland
| | - Trevor Sharp
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - David M Bannerman
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Stephen B McHugh
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
13
|
Stenkrona P, Halldin C, Lundberg J. 5-HTT and 5-HT(1A) receptor occupancy of the novel substance vortioxetine (Lu AA21004). A PET study in control subjects. Eur Neuropsychopharmacol 2013; 23:1190-8. [PMID: 23428337 DOI: 10.1016/j.euroneuro.2013.01.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 10/31/2012] [Accepted: 01/05/2013] [Indexed: 01/20/2023]
Abstract
Vortioxetine (Lu AA21004) is a new potential substance for the treatment of anxiety and mood disorders. It has high affinity for the 5-HT transporter (5-HTT) and moderate affinity for the 5-HT1A receptor in vitro. Positron emission tomography (PET) has commonly been used to examine the relation between dose/plasma concentration and occupancy to predict relevant dose intervals in a clinical setting. In this study 11 control subjects were examined with PET and [¹¹C]MADAM at baseline, after a single dose and after 9 days of dosing with Lu AA21004 (2.5, 10 or 60 mg) for quantification of 5-HTT occupancy. Four subjects were examined with PET and [¹¹C]WAY 100635 at baseline, after a single dose and after 9 days of dosing of Lu AA21004 (30 mg) for quantification of 5-HT(1A) occupancy. To allow for quantification of binding in the raphe nuclei, PET data were analyzed using wavelet aided parametric imaging. 5-HTT occupancy ranged from 2 (mean, 2.5 mg day 1) to 97% (60 mg day 9). The apparent affinity of Lu AA21004 binding to 5-HTT (KD(ND)) was calculated to 16.7 nM (R=0.95), and the corresponding oral dose (KD(ND)-dose) to 8.5 mg (R=0.91). No significant occupancy of 5-HT(1A) receptors was found after dosing of 30 mg Lu AA21004. Based on the literature and the present [¹¹C]MADAM binding data, a dose of 20-30 mg Lu AA21004 is suggested to give clinically relevant occupancy of the 5-HTT.
Collapse
Affiliation(s)
- Per Stenkrona
- Department of Clinical Neuroscience, Karolinska Institutet, Karolinska University Hospital Solna, Building R5, 171 76 Stockholm, Sweden
| | | | | |
Collapse
|
14
|
Tuominen L, Nummenmaa L, Keltikangas-Järvinen L, Raitakari O, Hietala J. Mapping neurotransmitter networks with PET: an example on serotonin and opioid systems. Hum Brain Mapp 2013; 35:1875-84. [PMID: 23671038 DOI: 10.1002/hbm.22298] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2012] [Revised: 01/16/2013] [Accepted: 02/28/2013] [Indexed: 12/31/2022] Open
Abstract
All functions of the human brain are consequences of altered activity of specific neural pathways and neurotransmitter systems. Although the knowledge of "system level" connectivity in the brain is increasing rapidly, we lack "molecular level" information on brain networks and connectivity patterns. We introduce novel voxel-based positron emission tomography (PET) methods for studying internal neurotransmitter network structure and intercorrelations of different neurotransmitter systems in the human brain. We chose serotonin transporter and μ-opioid receptor for this analysis because of their functional interaction at the cellular level and similar regional distribution in the brain. Twenty-one healthy subjects underwent two consecutive PET scans using [(11)C]MADAM, a serotonin transporter tracer, and [(11)C]carfentanil, a μ-opioid receptor tracer. First, voxel-by-voxel "intracorrelations" (hub and seed analyses) were used to study the internal structure of opioid and serotonin systems. Second, voxel-level opioid-serotonin intercorrelations (between neurotransmitters) were computed. Regional μ-opioid receptor binding potentials were uniformly correlated throughout the brain. However, our analyses revealed nonuniformity in the serotonin transporter intracorrelations and identified a highly connected local network (midbrain-striatum-thalamus-amygdala). Regionally specific intercorrelations between the opioid and serotonin tracers were found in anteromedial thalamus, amygdala, anterior cingulate cortex, dorsolateral prefrontal cortex, and left parietal cortex, i.e., in areas relevant for several neuropsychiatric disorders, especially affective disorders. This methodology enables in vivo mapping of connectivity patterns within and between neurotransmitter systems. Quantification of functional neurotransmitter balances may be a useful approach in etiological studies of neuropsychiatric disorders and also in drug development as a biomarker-based rationale for targeted modulation of neurotransmitter networks.
Collapse
Affiliation(s)
- Lauri Tuominen
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland; Department of Psychiatry, University of Turku, Turku, Finland
| | | | | | | | | |
Collapse
|
15
|
Albert PR. Transcriptional regulation of the 5-HT1A receptor: implications for mental illness. Philos Trans R Soc Lond B Biol Sci 2012; 367:2402-15. [PMID: 22826341 DOI: 10.1098/rstb.2011.0376] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The serotonin-1A (5-HT(1A)) receptor is an abundant post-synaptic 5-HT receptor (heteroreceptor) implicated in regulation of mood, emotion and stress responses and is the major somatodendritic autoreceptor that negatively regulates 5-HT neuronal activity. Based on animal models, an integrated model for opposing roles of pre- and post-synaptic 5-HT(1A) receptors in anxiety and depression phenotypes and response to antidepressants is proposed. Understanding differential transcriptional regulation of pre- versus post-synaptic 5-HT(1A) receptors could provide better tools for their selective regulation. This review examines the transcription factors that regulate brain region-specific basal and stress-induced expression of the 5-HT(1A) receptor gene (Htr1a). A functional polymorphism, rs6295 in the Htr1a promoter region, blocks the function of specific repressors Hes1, Hes5 and Deaf1, resulting in increased 5-HT(1A) autoreceptor expression in animal models and humans. Its association with altered 5-HT(1A) expression, depression, anxiety and antidepressant response are related to genotype frequency in different populations, sample homogeneity, disease outcome measures and severity. Preliminary evidence from gene × environment studies suggests the potential for synergistic interaction of stress-mediated repression of 5-HT(1A) heteroreceptors, and rs6295-induced upregulation of 5-HT(1A) autoreceptors. Targeted therapeutics to inhibit 5-HT(1A) autoreceptor expression and induce 5-HT(1A) heteroreceptor expression may ameliorate treatment of anxiety and major depression.
Collapse
Affiliation(s)
- Paul R Albert
- Ottawa Hospital Research Institute (Neuroscience), University of Ottawa, , 451 Smyth Road, Ottawa, ON, Canada , K1H 8M5.
| |
Collapse
|
16
|
Embree M, Michopoulos V, Votaw JR, Voll RJ, Mun J, Stehouwer JS, Goodman MM, Wilson ME, Sánchez MM. The relation of developmental changes in brain serotonin transporter (5HTT) and 5HT1A receptor binding to emotional behavior in female rhesus monkeys: effects of social status and 5HTT genotype. Neuroscience 2012; 228:83-100. [PMID: 23079633 DOI: 10.1016/j.neuroscience.2012.10.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 10/04/2012] [Accepted: 10/05/2012] [Indexed: 01/21/2023]
Abstract
The goal of the present study was to examine how social subordination stress and 5HTT polymorphisms affect the development of brain serotonin (5HT) systems during the pubertal transition in female rhesus monkeys. We also examined associations with developmental changes in emotional reactivity in response to a standardized behavioral test, the Human Intruder (HI). Our findings provide the first longitudinal evidence of developmental increases in 5HT1A receptor and 5HTT binding in the brain of female primates from pre- to peripuberty. The increase in 5HT1A BP(ND) in these socially housed female rhesus monkeys is a robust finding, occurring across all groups, regardless of social status or 5HTT genotype, and occurring in the left and right hemispheres of all prefrontal regions studied, as well as the amygdala, hippocampus, hypothalamus, and raphe nuclei. 5HTT BP(ND) also showed an increase with age in raphe, anterior cingulate cortex, and dorsolateral prefrontal cortex. These changes in brain 5HT systems take place as females establish more adult-like patterns of social behavior, as well as during the HI paradigm. Indeed, the main developmental changes in behavior during the HI (increase in freezing and decrease in submission/appeasement) were related to neurodevelopmental increases in 5HT1A receptors and 5HTT, because the associations between these behaviors and 5HT endpoints emerge at peripuberty. We detected an effect of social status on 5HT1A BP(ND) in the hypothalamus and on 5HTT BP(ND) in the orbitofrontal cortex, with subordinates showing higher BP(ND) than dominants in both cases during the pubertal transition. No main effects of 5HTT genotype were observed for 5HT1A or 5HTT BP(ND). Our findings indicate that adolescence in female rhesus monkeys is a period of central 5HT reorganization, partly influenced by exposure to the social stress of subordination, that likely functions to integrate adrenal and gonadal systems and shape the behavioral response to emotionally challenging social situations.
Collapse
Affiliation(s)
- M Embree
- Division of Developmental & Cognitive Neuroscience, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Chistiakov DA, Kekelidze ZI, Chekhonin VP. Endophenotypes as a measure of suicidality. J Appl Genet 2012; 53:389-413. [DOI: 10.1007/s13353-012-0113-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 08/13/2012] [Accepted: 08/15/2012] [Indexed: 01/07/2023]
|
18
|
Thompson PM, Cruz DA, Olukotun DY, Delgado PL. Serotonin receptor, SERT mRNA and correlations with symptoms in males with alcohol dependence and suicide. Acta Psychiatr Scand 2012; 126:165-74. [PMID: 22176604 DOI: 10.1111/j.1600-0447.2011.01816.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVE This study tested the hypothesis that abnormalities in components of the serotonin (5HT) system in the prefrontal cortex are associated with suicide in alcohol-dependent subjects. Second, we assessed the relationship of lifetime impulsivity and mood symptoms with prefrontal cortex 5-HT measures. METHOD Tissue was obtained from Brodmann's areas (BA) 9 and 24 in postmortem samples of individuals who were alcohol dependent with suicide (n = 5), alcohol dependent without suicide (n = 9) and normal controls (n = 5). Serotonin receptor (5HT) and serotonin reuptake transporter (SERT) mRNA were measured. Interviews with next of kin estimated lifetime impulsivity and mood symptoms in the last week of life. RESULTS Serotonin receptor 1A (5HT1A) mRNA in BA 9 was elevated in the alcohol dependence without suicide group compared with controls. In the alcohol dependence with suicide group, anxiety symptoms were associated with decreased BA 24 SERT mRNA and depressive symptoms with BA 9 5HT1A mRNA expression. In the alcohol dependent only group impulsivity is correlated with increased BA 9, and BA 24 serotonin receptor 2A mRNA. CONCLUSION Our data suggest region-specific change, rather than global serotonin blunting is involved in alcohol dependence and suicide. It also suggests that symptoms are differentially influenced by prefrontal cortex serotonin receptor mRNA levels.
Collapse
Affiliation(s)
- P M Thompson
- Department of Psychiatry, University of Texas Health Science Center San Antonio Southwest Brain Bank, USA.
| | | | | | | |
Collapse
|
19
|
Serotonin transporter occupancy with TCAs and SSRIs: a PET study in patients with major depressive disorder. Int J Neuropsychopharmacol 2012; 15:1167-72. [PMID: 22243688 PMCID: PMC3409583 DOI: 10.1017/s1461145711001945] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The aim of the present clinical positron emission tomography study was to examine if the 5-HTT is a common target, both for tricyclic antidepressants (TCAs) and selective serotonin reuptake inhibitors (SSRIs). Serotonin transporter (5-HTT) occupancy was estimated during treatment with TCA, SSRI and mirtazapine in 20 patients in remission from depression. The patients were recruited from out-patient units and deemed as responders to antidepressive treatment. The radioligand [¹¹C]MADAM was used to determine the 5-HTT binding potential. The mean 5-HTT occupancy was 67% (range 28-86%). There was no significant difference in 5-HTT occupancy between TCA (n=5) and SSRI (n=14). 5-HTT affinity correlated with the recommended clinical dose. Mirtazapine did not occupy the serotonin transporter. The results support that TCAs and SSRIs have a shared mechanism of action by inhibition of 5-HTT.
Collapse
|
20
|
Activation of GABAA or 5HT1A receptors in the raphé pallidus abolish the cardiovascular responses to exogenous stress in conscious rats. Brain Res Bull 2011; 86:360-6. [DOI: 10.1016/j.brainresbull.2011.09.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2011] [Revised: 09/19/2011] [Accepted: 09/21/2011] [Indexed: 12/25/2022]
|
21
|
Abstract
5-Hydroxytryptamine (5-HT or serotonin) is an important neurotransmitter for a number of brain functions and widely distributed throughout the brain. Physiological and pharmacological relationship between 5-HT1A receptors and serotonin transporter (5-HTT) in the regulation of 5-HT neurotransmission has now been documented. A relationship between 5-HT1A receptors and 5-HTT is also suggested by the pathophysiology of depression and the mechanism of action of antidepressants. We have scanned 42 healthy adults with both [11C] WAY-100635 and [11C] DASB to investigate the anatomical co-distribution of multiple serotonergic markers. We hypothesized that lower 5-HTT densities in the dorsal raphe nucleus (DRN) and limbic regions will be accompanied by lower 5-HT1A receptor density in the same regions, contributing to the 5-HT1A receptor desensitization. In addition, variations in DRN 5-HT1A receptor density can theoretically influence the density and/or function of other serotonin receptor subtypes and the 5-HTT consequent to changes in serotonergic tone. In a comparatively large sample of volunteers, we have shown that the relationship between 5-HT1A and 5-HTT PET indices was complex. We were unable to demonstrate robust, intra-regional relationships between 5-HT1A and 5-HTT densities. Inter-regionally, DRN 5-HT1A receptors were related to cortical (temporal and frontal regions) and paralimbic (insula), but not limbic 5-HTT. This latter finding may reflect differences in 5-HT tone between individuals, and highlights probable substrates sensitive to variations in DRN 5-HT function.
Collapse
|
22
|
Paterson LM, Kornum BR, Nutt DJ, Pike VW, Knudsen GM. 5-HT radioligands for human brain imaging with PET and SPECT. Med Res Rev 2011; 33:54-111. [PMID: 21674551 DOI: 10.1002/med.20245] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The serotonergic system plays a key modulatory role in the brain and is the target for many drug treatments for brain disorders either through reuptake blockade or via interactions at the 14 subtypes of 5-HT receptors. This review provides the history and current status of radioligands used for positron emission tomography (PET) and single photon emission computerized tomography (SPECT) imaging of human brain serotonin (5-HT) receptors, the 5-HT transporter (SERT), and 5-HT synthesis rate. Currently available radioligands for in vivo brain imaging of the 5-HT system in humans include antagonists for the 5-HT(1A), 5-HT(1B), 5-HT(2A), and 5-HT(4) receptors, and for SERT. Here we describe the evolution of these radioligands, along with the attempts made to develop radioligands for additional serotonergic targets. We describe the properties needed for a radioligand to become successful and the main caveats. The success of a PET or SPECT radioligand can ultimately be assessed by its frequency of use, its utility in humans, and the number of research sites using it relative to its invention date, and so these aspects are also covered. In conclusion, the development of PET and SPECT radioligands to image serotonergic targets is of high interest, and successful evaluation in humans is leading to invaluable insight into normal and abnormal brain function, emphasizing the need for continued development of both SPECT and PET radioligands for human brain imaging.
Collapse
Affiliation(s)
- Louise M Paterson
- Neuropsychopharmacology Unit, Division of Experimental Medicine, Imperial College London, Burlington Danes Building, Du Cane Road, London, United Kingdom
| | | | | | | | | |
Collapse
|
23
|
Takano H, Ito H, Takahashi H, Arakawa R, Okumura M, Kodaka F, Otsuka T, Kato M, Suhara T. Serotonergic neurotransmission in the living human brain: A positron emission tomography study using [11C]dasb and [11C]WAY100635 in young healthy men. Synapse 2011; 65:624-33. [DOI: 10.1002/syn.20883] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Accepted: 11/10/2010] [Indexed: 12/21/2022]
|
24
|
Yeung LY, Kung HF, Yew DT. Localization of 5-HT1A and 5-HT2A positive cells in the brainstems of control age-matched and Alzheimer individuals. AGE (DORDRECHT, NETHERLANDS) 2010; 32:483-95. [PMID: 20508993 PMCID: PMC2980600 DOI: 10.1007/s11357-010-9152-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Accepted: 05/11/2010] [Indexed: 04/17/2023]
Abstract
Serotonin receptor 1A and 2A positive cells in postmortem brainstems were demonstrated via immunohistochemistry in eight control age-matched elderly individuals and eight Alzheimer patients. The 5-HT1A positive cells were found in substantia nigra, pontile nucleus, and vagal as well as dorsal raphe nucleus, while 5-HT2A receptor positive cells were found in motor, sensory and spinal trigeminal nuclei, pontile nucleus, substantia nigra, and nucleus solitarius. A comparison in density of positive cells per unit area was made between control age-matched and Alzheimer individuals. Statistically significant differences (p ≤ 0.01) in density were observed in 5-HT1A cells in pontile, dorsal raphe, and vagal nuclei between control age-matched and Alzheimer, and in 5-HT2A positive cells in the sensory trigeminal nucleus, between control and Alzheimer. This de novo study indicated the presence of 5-HT1A and 5-HT2A receptor positive cells in the above nuclei of human brainstem and revealed differences in density between control age-matched and Alzheimer, indicating possible functional derangements in Alzheimer patients in these areas. In addition, colocalization studies indicated that 5-HT1A receptors were in cholinergic cells and gamma-aminobutyric acid positive fibers were linked to 5-HT2A receptor positive cells. It is hoped that understanding these two important 5-HT receptors and their localization might lead to advances in future therapeutic development.
Collapse
Affiliation(s)
- L. Y. Yeung
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong S.A.R. China
| | - H. F. Kung
- Stanley Ho Centre for Emerging Infectious Diseases, School of Public Health, Faculty of Medicine, Chinese University of Hong Kong, Shatin, New Territories, Hong Kong S.A.R. Hong Kong
| | - David T. Yew
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong S.A.R. China
| |
Collapse
|
25
|
Central serotonin 1A receptor binding in temporal lobe epilepsy: a [carbonyl-(11)C]WAY-100635 PET study. Epilepsy Behav 2010; 19:467-73. [PMID: 20850389 DOI: 10.1016/j.yebeh.2010.07.030] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Revised: 07/16/2010] [Accepted: 07/28/2010] [Indexed: 01/03/2023]
Abstract
We performed positron emission tomography using [carbonyl-(11)C]WAY-100635, a serotonin 1A (5-HT(1A)) receptor antagonist, in 13 patients with temporal lobe epilepsy (TLE) and in 13 controls. 5-HT(1A) receptor distribution mapping allowed correct lateralization of the epileptogenic temporal lobe in all patients. 5-HT(1A) receptor binding potential (BP(ND)) was significantly reduced in almost all temporal regions of the epileptogenic lobe. Compared with controls, the patients had significantly decreased BP(ND) values in the hippocampus, parahippocampal gyrus, and amygdala. The asymmetry index (AI), which characterizes the interhemispheric asymmetry in BP(ND), was significantly higher in patients than in controls in most regions. Depression scores were not significantly correlated with BP(ND) or AI values. Our data provide further evidence of functional changes in the serotonergic system in TLE. Molecular imaging of the 5-HT(1A) receptor may help to define the in vivo neurochemistry of TLE, and may provide a valuable tool in the noninvasive presurgical assessment of patients with medically refractory TLE.
Collapse
|
26
|
A nonlinear relationship between cerebral serotonin transporter and 5-HT(2A) receptor binding: an in vivo molecular imaging study in humans. J Neurosci 2010; 30:3391-7. [PMID: 20203198 DOI: 10.1523/jneurosci.2852-09.2010] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Serotonergic neurotransmission is involved in the regulation of physiological functions such as mood, sleep, memory, and appetite. Within the serotonin transmitter system, both the postsynaptically located serotonin 2A (5-HT(2A)) receptor and the presynaptic serotonin transporter (SERT) are sensitive to chronic changes in cerebral 5-HT levels. Additionally, experimental studies suggest that alterations in either the 5-HT(2A) receptor or SERT level can affect the protein level of the counterpart. The aim of this study was to explore the covariation between cerebral 5-HT(2A) receptor and SERT in vivo in the same healthy human subjects. Fifty-six healthy human subjects with a mean age of 36 +/- 19 years were investigated. The SERT binding was imaged with [(11)C]3-amino-4-(2-dimethylaminomethyl-phenylsulfanyl)-benzonitrile (DASB) and 5-HT(2A) receptor binding with [(18)F]altanserin using positron emission tomography. Within each individual, a regional intercorrelation for the various brain regions was seen with both markers, most notably for 5-HT(2A) receptor binding. An inverted U-shaped relationship between the 5-HT(2A) receptor and the SERT binding was identified. The observed regional intercorrelation for both the 5-HT(2A) receptor and the SERT cerebral binding suggests that, within the single individual, each marker has a set point adjusted through a common regulator. A quadratic relationship between the two markers is consistent with data from experimental studies of the effect on SERT and 5-HT(2A) receptor binding of chronic changes in 5-HT levels. That is, the observed association between the 5-HT(2A) receptor and SERT binding could be driven by the projection output from the raphe nuclei, but other explanations are also at hand.
Collapse
|
27
|
Simple and rapid preparation of [11C]DASB with high quality and reliability for routine applications. Appl Radiat Isot 2009; 67:1654-60. [DOI: 10.1016/j.apradiso.2009.03.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Revised: 02/12/2009] [Accepted: 03/10/2009] [Indexed: 01/26/2023]
|
28
|
Gender and the use of hormonal contraception in women are not associated with cerebral cortical 5-HT 2A receptor binding. Neuroscience 2009; 163:640-5. [PMID: 19559762 DOI: 10.1016/j.neuroscience.2009.06.052] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Revised: 05/12/2009] [Accepted: 06/22/2009] [Indexed: 12/20/2022]
Abstract
Gender influences brain function including serotonergic neurotransmission, which may play a role in the well-known gender variations in vulnerability to mood and anxiety disorders. Even though hormonal replacement therapy in menopause is associated with globally increased cerebral 5-HT(2A) receptor binding it is not clear if gender or use of hormonal contraception exhibits associations with 5-HT(2A) receptor binding. We found no significant effect of gender on cortical 5-HT(2A) receptor binding (P=0.15, n=132). When adjusting for the personality trait neuroticism, known to be positively correlated to frontolimbic 5-HT(2A) receptor binding and to be more pronounced in women, again, the effect of gender was not significant (P=0.42, n=127). Also, the use of hormonal contraception (n=14) within the group of pre-menopausal women (total n=29) was not associated with cortical 5-HT(2A) receptor binding (P=0.31). In conclusion, neither gender, nor the use of hormonal contraception in premenopausal women was associated with cortical 5-HT(2A) receptor binding.
Collapse
|
29
|
Lothe A, Boni C, Costes N, Gorwood P, Bouvard S, Le Bars D, Lavenne F, Ryvlin P. Association between triallelic polymorphism of the serotonin transporter and [18F]MPPF binding potential at 5-HT1A receptors in healthy subjects. Neuroimage 2009; 47:482-92. [PMID: 19409499 DOI: 10.1016/j.neuroimage.2009.04.067] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Revised: 04/11/2009] [Accepted: 04/15/2009] [Indexed: 12/30/2022] Open
Abstract
Previous [(11)C]WAY100-635 PET studies have demonstrated that the short (S) and long (L) alleles of the serotonin transporter gene-linked polymorphic region (5-HTTLPR) were associated with distinct patterns of 5-HT(1A) receptor distribution in human. However, these studies reported discordant findings and did not take into account the recent description of two functional variants of the L allele (L(A)/L(G)). To further explore this issue, we investigated the triallelic functional polymorphism of the 5-HTTLPR in 38 healthy volunteers who underwent a [(18)F]MPPF PET study of 5-HT1A receptors. We used a simplified reference tissue model to generate parametric images of [(18)F]MPPF binding potential (BP(ND)), and compared these data among the different genotypes using statistical parametric mapping and region of interest of the raphe nuclei. Homozygote carriers of the S allele demonstrated greater [(18)F]MPPF BP(ND) than carriers of the L(A) allele, but this association was only found in women. Differences in [(18)F]MPPF BP(ND) between women with and without L(A) allele were observed over large clusters encompassing the right and left temporal lobes, cingulate and perisylvian regions, as well as the right precuneus and frontal dorso-lateral cortex, and the left orbitofrontal cortex. In contrast, no difference was found between groups in the raphe nuclei. The greater [(18)F]MPPF BP(ND) observed in women homozygote carriers of the S allele could either reflect a greater 5-HT1A receptor density or a lower extracellular concentration of 5-HT. Our data suggest that any future PET studies of 5-HT1A receptors should incorporate the 5-HTTLPR polymorphism status of the population studied.
Collapse
|
30
|
Becherer A. The molecular background of sex difference in depressive disorders: still an enigma. Eur J Nucl Med Mol Imaging 2009; 35:2156-8. [PMID: 18773207 DOI: 10.1007/s00259-008-0928-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
31
|
Takano A, Varrone A, Gulyás B, Karlsson P, Tauscher J, Halldin C. Mapping of the norepinephrine transporter in the human brain using PET with (S,S)-[18F]FMeNER-D2. Neuroimage 2008; 42:474-82. [DOI: 10.1016/j.neuroimage.2008.05.040] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Revised: 05/12/2008] [Accepted: 05/15/2008] [Indexed: 12/15/2022] Open
|