1
|
Kostrzewa RM, Wydra K, Filip M, Crawford CA, McDougall SA, Brown RW, Borroto-Escuela DO, Fuxe K, Gainetdinov RR. Dopamine D 2 Receptor Supersensitivity as a Spectrum of Neurotoxicity and Status in Psychiatric Disorders. J Pharmacol Exp Ther 2018; 366:519-526. [PMID: 29921706 PMCID: PMC6094354 DOI: 10.1124/jpet.118.247981] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 05/23/2018] [Indexed: 12/13/2022] Open
Abstract
Abnormality of dopamine D2 receptor (D2R) function, often observed as D2R supersensitivity (D2RSS), is a commonality of schizophrenia and related psychiatric disorders in humans. Moreover, virtually all psychotherapeutic agents for schizophrenia target D2R in brain. Permanent D2RSS as a feature of a new animal model of schizophrenia was first reported in 1991, and then behaviorally and biochemically characterized over the next 15-20 years. In this model of schizophrenia characterized by production of D2RSS in ontogeny, there are demonstrated alterations of signaling processes, as well as functional links between the biologic template of the animal model and ability of pharmacotherapeutics to modulate or reverse biologic and behavioral modalities toward normality. Another such animal model, featuring knockout of trace amine-associated receptor 1 (TAAR1), demonstrates D2RSS with an increase in the proportion of D2R in the high-affinity state. Currently, TAAR1 agonists are being explored as a therapeutic option for schizophrenia. There is likewise an overlay of D2RSS with substance use disorder. The aspect of adenosine A2A-D2 heteroreceptor complexes in substance use disorder is highlighted, and the association of adenosine A2A receptor antagonists in discriminative and rewarding effects of psychostimulants is outlined. In summary, these new animal models of schizophrenia have face, construct, and predictive validity, and distinct advantages over earlier models. While the review summarizes elements of D2RSS in schizophrenia per se, and its interplay with substance use disorder, a major focus is on presumed new molecular targets attending D2RSS in schizophrenia and related clinical entities.
Collapse
Affiliation(s)
- Richard M Kostrzewa
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee (R.M.K., R.W.B.); Institute of Pharmacology, Polish Academy of Sciences, Department of Drug Addiction Pharmacology, Krakow, Poland (K.W., M.F.); Department of Psychology, California State University, San Bernardino, California (C.A.C., S.A.M.); Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (D.O.B.-E., K.F.); Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia (R.R.G.); and Skolkovo Institute of Science and Technology, Skolkovo, Moscow, Russia (R.R.G.)
| | - Karolina Wydra
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee (R.M.K., R.W.B.); Institute of Pharmacology, Polish Academy of Sciences, Department of Drug Addiction Pharmacology, Krakow, Poland (K.W., M.F.); Department of Psychology, California State University, San Bernardino, California (C.A.C., S.A.M.); Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (D.O.B.-E., K.F.); Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia (R.R.G.); and Skolkovo Institute of Science and Technology, Skolkovo, Moscow, Russia (R.R.G.)
| | - Malgorzata Filip
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee (R.M.K., R.W.B.); Institute of Pharmacology, Polish Academy of Sciences, Department of Drug Addiction Pharmacology, Krakow, Poland (K.W., M.F.); Department of Psychology, California State University, San Bernardino, California (C.A.C., S.A.M.); Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (D.O.B.-E., K.F.); Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia (R.R.G.); and Skolkovo Institute of Science and Technology, Skolkovo, Moscow, Russia (R.R.G.)
| | - Cynthia A Crawford
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee (R.M.K., R.W.B.); Institute of Pharmacology, Polish Academy of Sciences, Department of Drug Addiction Pharmacology, Krakow, Poland (K.W., M.F.); Department of Psychology, California State University, San Bernardino, California (C.A.C., S.A.M.); Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (D.O.B.-E., K.F.); Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia (R.R.G.); and Skolkovo Institute of Science and Technology, Skolkovo, Moscow, Russia (R.R.G.)
| | - Sanders A McDougall
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee (R.M.K., R.W.B.); Institute of Pharmacology, Polish Academy of Sciences, Department of Drug Addiction Pharmacology, Krakow, Poland (K.W., M.F.); Department of Psychology, California State University, San Bernardino, California (C.A.C., S.A.M.); Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (D.O.B.-E., K.F.); Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia (R.R.G.); and Skolkovo Institute of Science and Technology, Skolkovo, Moscow, Russia (R.R.G.)
| | - Russell W Brown
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee (R.M.K., R.W.B.); Institute of Pharmacology, Polish Academy of Sciences, Department of Drug Addiction Pharmacology, Krakow, Poland (K.W., M.F.); Department of Psychology, California State University, San Bernardino, California (C.A.C., S.A.M.); Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (D.O.B.-E., K.F.); Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia (R.R.G.); and Skolkovo Institute of Science and Technology, Skolkovo, Moscow, Russia (R.R.G.)
| | - Dasiel O Borroto-Escuela
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee (R.M.K., R.W.B.); Institute of Pharmacology, Polish Academy of Sciences, Department of Drug Addiction Pharmacology, Krakow, Poland (K.W., M.F.); Department of Psychology, California State University, San Bernardino, California (C.A.C., S.A.M.); Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (D.O.B.-E., K.F.); Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia (R.R.G.); and Skolkovo Institute of Science and Technology, Skolkovo, Moscow, Russia (R.R.G.)
| | - Kjell Fuxe
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee (R.M.K., R.W.B.); Institute of Pharmacology, Polish Academy of Sciences, Department of Drug Addiction Pharmacology, Krakow, Poland (K.W., M.F.); Department of Psychology, California State University, San Bernardino, California (C.A.C., S.A.M.); Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (D.O.B.-E., K.F.); Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia (R.R.G.); and Skolkovo Institute of Science and Technology, Skolkovo, Moscow, Russia (R.R.G.)
| | - Raul R Gainetdinov
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee (R.M.K., R.W.B.); Institute of Pharmacology, Polish Academy of Sciences, Department of Drug Addiction Pharmacology, Krakow, Poland (K.W., M.F.); Department of Psychology, California State University, San Bernardino, California (C.A.C., S.A.M.); Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (D.O.B.-E., K.F.); Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia (R.R.G.); and Skolkovo Institute of Science and Technology, Skolkovo, Moscow, Russia (R.R.G.)
| |
Collapse
|
2
|
Peterson DJ, Gill WD, Dose JM, Hoover DB, Pauly JR, Cummins ED, Burgess KC, Brown RW. The effects of nicotine in the neonatal quinpirole rodent model of psychosis: Neural plasticity mechanisms and nicotinic receptor changes. Behav Brain Res 2017; 325:17-24. [PMID: 28235586 DOI: 10.1016/j.bbr.2017.02.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/16/2017] [Accepted: 02/18/2017] [Indexed: 01/06/2023]
Abstract
Neonatal quinpirole (NQ) treatment to rats increases dopamine D2 receptor sensitivity persistent throughout the animal's lifetime. In Experiment 1, we analyzed the role of α7 and α4β2 nicotinic receptors (nAChRs) in nicotine behavioral sensitization and on the brain-derived neurotrophic factor (BDNF) response to nicotine in NQ- and neonatally saline (NS)-treated rats. In Experiment 2, we analyzed changes in α7 and α4β2 nAChR density in the nucleus accumbens (NAcc) and dorsal striatum in NQ and NS animals sensitized to nicotine. Male and female Sprague-Dawley rats were neonatally treated with quinpirole (1mg/kg) or saline from postnatal days (P)1-21. Animals were given ip injections of either saline or nicotine (0.5mg/kg free base) every second day from P33 to P49 and tested on behavioral sensitization. Before each injection, animals were ip administered the α7 nAChR antagonist methyllycaconitine (MLA; 2 or 4mg/kg) or the α4β2 nAChR antagonist dihydro beta erythroidine (DhβE; 1 or 3mg/kg). Results revealed NQ enhanced nicotine sensitization that was blocked by DhβE. MLA blocked the enhanced nicotine sensitization in NQ animals, but did not block nicotine sensitization. NQ enhanced the NAcc BDNF response to nicotine which was blocked by both antagonists. In Experiment 2, NQ enhanced nicotine sensitization and enhanced α4β2, but not α7, nAChR upregulation in the NAcc. These results suggest a relationship between accumbal BDNF and α4β2 nAChRs and their role in the behavioral response to nicotine in the NQ model which has relevance to schizophrenia, a behavioral disorder with high rates of tobacco smoking.
Collapse
Affiliation(s)
- Daniel J Peterson
- Department of Psychology, East Tennessee State University, Johnson City, TN 37614, United States
| | - W Drew Gill
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, United States
| | - John M Dose
- Department of Psychology, St. Norbert College, De Pere, WI, 54115,United States
| | - Donald B Hoover
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, United States
| | - James R Pauly
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, United States
| | - Elizabeth D Cummins
- Department of Psychology, East Tennessee State University, Johnson City, TN 37614, United States
| | - Katherine C Burgess
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, United States
| | - Russell W Brown
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, United States.
| |
Collapse
|