1
|
Chen G, Ghazal M, Rahman S, Lutfy K. The impact of adolescent nicotine exposure on alcohol use during adulthood: The role of neuropeptides. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2021; 161:53-93. [PMID: 34801174 DOI: 10.1016/bs.irn.2021.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Nicotine and alcohol abuse and co-dependence represent major public health crises. Indeed, previous research has shown that the prevalence of alcoholism is higher in smokers than in non-smokers. Adolescence is a susceptible period of life for the initiation of nicotine and alcohol use and the development of nicotine-alcohol codependence. However, there is a limited number of pharmacotherapeutic agents to treat addiction to nicotine or alcohol alone. Notably, there is no effective medication to treat this comorbid disorder. This chapter aims to review the early nicotine use and its impact on subsequent alcohol abuse during adolescence and adulthood as well as the role of neuropeptides in this comorbid disorder. The preclinical and clinical findings discussed in this chapter will advance our understanding of this comorbid disorder's neurobiology and lay a foundation for developing novel pharmacotherapies to treat nicotine and alcohol codependence.
Collapse
Affiliation(s)
- G Chen
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, United States; Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA, United States
| | - M Ghazal
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA, United States
| | - S Rahman
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, SD, United States
| | - K Lutfy
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA, United States.
| |
Collapse
|
2
|
Nguyen ATM, Quach TVB, Kotha P, Chien SY, MacDonald IJ, Lane HY, Tu CH, Lin JG, Chen YH. Electroacupuncture prevents cocaine-induced conditioned place preference reinstatement and attenuates ΔFosB and GluR2 expression. Sci Rep 2021; 11:13694. [PMID: 34211013 PMCID: PMC8249658 DOI: 10.1038/s41598-021-93014-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 06/10/2021] [Indexed: 02/06/2023] Open
Abstract
Acupuncture has been used for treating drug addiction since the 1970s, but little is known about the mechanisms by which acupuncture affects drug cue-induced relapse. The transcription factor delta-FosB (ΔFosB) plays a critical role in behavior and pathology after chronic use of cocaine. ΔFosB regulates glutamate receptor signaling and dendritic spine morphology in animal models. This experimental study compared the effects of electroacupuncture (EA) at acupoints LI4 and LI11 with those of another potentially beneficial intervention, gabapentin (GBP), alone or in combination, on reinstatement of cocaine-induced conditioned place preference (CPP) and levels of ΔFosB and glutamate receptor subunit 2 (GluR2) expression in the nucleus accumbens (NAc). EA at LI4 and LI11 significantly prevented cue-induced cocaine CPP reinstatement, whereas needle insertion without electrical stimulation at these acupoints had no such effect. EA also significantly attenuated cocaine-induced increases in ΔFosB and GluR2 expression in the NAc. Unexpectedly, these effects were reversed when GBP was combined with EA. Treatment with EA at LI4 and LI11 prevented cocaine-induced increases in dendritic spine density in the NAc core and shell. Our results suggest that EA at LI4 and LI11 may prevent cocaine relapse by modulating ΔFosB and GluR2 expression, as well as dendritic spine density.
Collapse
Affiliation(s)
- Ai T M Nguyen
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Tran V B Quach
- Graduate Institute of Acupuncture Science, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Peddanna Kotha
- Graduate Institute of Acupuncture Science, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Szu-Yu Chien
- Graduate Institute of Acupuncture Science, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Iona J MacDonald
- Graduate Institute of Acupuncture Science, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Hsien-Yuan Lane
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung, Taiwan
- Department of Psychiatry, China Medical University Hospital, Taichung, Taiwan
- Department of Psychology, College of Medical and Health Science, Asia University, Taichung, Taiwan
| | - Cheng-Hao Tu
- Graduate Institute of Acupuncture Science, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Jaung-Geng Lin
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan.
| | - Yi-Hung Chen
- Graduate Institute of Acupuncture Science, College of Chinese Medicine, China Medical University, Taichung, Taiwan.
- Chinese Medicine Research Center, China Medical University, Taichung, Taiwan.
- Department of Photonics and Communication Engineering, Asia University, Taichung, Taiwan.
| |
Collapse
|
3
|
Lo Iacono L, Catale C, Martini A, Valzania A, Viscomi MT, Chiurchiù V, Guatteo E, Bussone S, Perrone F, Di Sabato P, Aricò E, D'Argenio A, Troisi A, Mercuri NB, Maccarrone M, Puglisi-Allegra S, Casella P, Carola V. From Traumatic Childhood to Cocaine Abuse: The Critical Function of the Immune System. Biol Psychiatry 2018; 84:905-916. [PMID: 30029767 DOI: 10.1016/j.biopsych.2018.05.022] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 05/28/2018] [Accepted: 05/29/2018] [Indexed: 01/09/2023]
Abstract
BACKGROUND Experiencing traumatic childhood is a risk factor for developing substance use disorder, but the mechanisms that underlie this relationship have not been determined. Adverse childhood experiences affect the immune system, and the immune system mediates the effects of psychostimulants. However, whether this system is involved in the etiology of substance use disorder in individuals who have experienced early life stress is unknown. METHODS In this study, we performed a series of ex vivo and in vivo experiments in mice and humans to define the function of the immune system in the early life stress-induced susceptibility to the neurobehavioral effects of cocaine. RESULTS We provide evidence that exposure to social stress at an early age permanently sensitizes the peripheral (splenocytes) and brain (microglia) immune responses to cocaine in mice. In the brain, microglial activation in the ventral tegmental area of social-stress mice was associated with functional alterations in dopaminergic neurotransmission, as measured by whole-cell voltage clamp recordings in dopamine neurons. Notably, preventing immune activation during the social-stress exposure reverted the effects of dopamine in the ventral tegmental area and the cocaine-induced behavioral phenotype to control levels. In humans, cocaine modulated toll-like receptor 4-mediated innate immunity, an effect that was enhanced in those addicted to cocaine who had experienced a difficult childhood. CONCLUSIONS Collectively, our findings demonstrate that sensitization to cocaine in early life-stressed individuals involves brain and peripheral immune responses and that this mechanism is shared between mice and humans.
Collapse
Affiliation(s)
- Luisa Lo Iacono
- Institute for Research and Health Care, Santa Lucia Foundation, Rome, Italy; Department of Psychology, University of Rome "La Sapienza", Rome, Italy; "Daniel Bovet" Center, University of Rome "La Sapienza", Rome, Italy
| | - Clarissa Catale
- Department of Psychology, University of Rome "La Sapienza", Rome, Italy; "Daniel Bovet" Center, University of Rome "La Sapienza", Rome, Italy; Ph.D. Program in Behavioral Neuroscience, University of Rome "La Sapienza", Rome, Italy
| | - Alessandro Martini
- Institute for Research and Health Care, Santa Lucia Foundation, Rome, Italy; Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | | | | | - Valerio Chiurchiù
- Institute for Research and Health Care, Santa Lucia Foundation, Rome, Italy; Department of Medicine, Campus Bio-Medico University of Rome, Rome, Italy
| | - Ezia Guatteo
- Institute for Research and Health Care, Santa Lucia Foundation, Rome, Italy; Department of Motor Sciences and Wellness, University of Naples "Parthenope", Naples, Italy
| | - Silvia Bussone
- Department of Psychology, University of Rome "La Sapienza", Rome, Italy; "Daniel Bovet" Center, University of Rome "La Sapienza", Rome, Italy
| | - Fabiana Perrone
- Department of Biology and Biotechnologies, University of Rome "La Sapienza", Rome, Italy
| | - Paola Di Sabato
- Institute for Research and Health Care, Santa Lucia Foundation, Rome, Italy
| | - Eleonora Aricò
- Cell Factory FaBioCell, Core Facilities, Istituto Superiore di Sanità, Rome, Italy
| | | | - Alfonso Troisi
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Nicola B Mercuri
- Institute for Research and Health Care, Santa Lucia Foundation, Rome, Italy; Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Mauro Maccarrone
- Institute for Research and Health Care, Santa Lucia Foundation, Rome, Italy; Department of Medicine, Campus Bio-Medico University of Rome, Rome, Italy
| | - Stefano Puglisi-Allegra
- Institute for Research and Health Care, Santa Lucia Foundation, Rome, Italy; Department of Psychology, University of Rome "La Sapienza", Rome, Italy; "Daniel Bovet" Center, University of Rome "La Sapienza", Rome, Italy
| | | | - Valeria Carola
- Institute for Research and Health Care, Santa Lucia Foundation, Rome, Italy.
| |
Collapse
|
4
|
Blanco-Gandía MC, Aguilar MA, Miñarro J, Rodríguez-Arias M. Reinstatement of Drug-seeking in Mice Using the Conditioned Place Preference Paradigm. J Vis Exp 2018:56983. [PMID: 29939175 PMCID: PMC6101638 DOI: 10.3791/56983] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The present protocol describes the Conditioned Place Preference (CPP) as a model of relapse in drug addiction. In this model, animals are first trained to acquire a conditioned place preference in a drug-paired compartment, and after the post-conditioning test, they perform several sessions to extinguish the established preference. The CPP permits the evaluation of the conditioned rewarding effects of drugs related to environmental cues. Then, the extinguished CPP can be robustly reinstated by the non-contingent administration of a priming dose of the drug, and by exposure to stressful stimuli. Both methods will be explained here. When the animal reinitiates the behavioral response, a reinstatement of the conditioned reward is considered to have taken place. The main advantages of this protocol are that it is non-invasive, inexpensive, and simple with good validity criteria. In addition, it allows the study of different environmental manipulations, such as stress or diet, which can modulate relapse into drug seeking behaviors. However, one limitation is that if the researcher aims to explore the motivation and primary reinforcing effects of the drug, it should be complemented with self-administration procedures, as they involve operant responses of animals.
Collapse
Affiliation(s)
- M Carmen Blanco-Gandía
- Unidad de Investigación Psicobiología de las Drogodependencias, Departamento de Psicobiología, Facultad de Psicología, Universitat de València
| | - María A Aguilar
- Unidad de Investigación Psicobiología de las Drogodependencias, Departamento de Psicobiología, Facultad de Psicología, Universitat de València
| | - José Miñarro
- Unidad de Investigación Psicobiología de las Drogodependencias, Departamento de Psicobiología, Facultad de Psicología, Universitat de València
| | - Marta Rodríguez-Arias
- Unidad de Investigación Psicobiología de las Drogodependencias, Departamento de Psicobiología, Facultad de Psicología, Universitat de València;
| |
Collapse
|
5
|
Interplay of prefrontal cortex and amygdala during extinction of drug seeking. Brain Struct Funct 2017; 223:1071-1089. [PMID: 29081007 PMCID: PMC5869906 DOI: 10.1007/s00429-017-1533-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 10/03/2017] [Indexed: 01/08/2023]
Abstract
Extinction of Pavlovian conditioning is a complex process that involves brain regions such as the medial prefrontal cortex (mPFC), the amygdala and the locus coeruleus. In particular, noradrenaline (NA) coming from the locus coeruleus has been recently shown to play a different role in two subregions of the mPFC, the prelimbic (PL) and the infralimbic (IL) regions. How these regions interact in conditioning and subsequent extinction is an open issue. We studied these processes using two approaches: computational modelling and NA manipulation in a conditioned place preference paradigm (CPP) in mice. In the computational model, NA in PL and IL causes inputs arriving to these regions to be amplified, thus allowing them to modulate learning processes in amygdala. The model reproduces results from studies involving depletion of NA from PL, IL, or both in CPP. In addition, we simulated new experiments of NA manipulations in mPFC, making predictions on the possible results. We searched the parameters of the model and tested the robustness of the predictions by performing a sensitivity analysis. We also present an empirical experiment where, in accord with the model, a double depletion of NA from both PL and IL in CPP with amphetamine impairs extinction. Overall the proposed model, supported by anatomical, physiological, and behavioural data, explains the differential role of NA in PL and IL and opens up the possibility to understand extinction mechanisms more in depth and hence to aid the development of treatments for disorders such as addiction.
Collapse
|
6
|
Latagliata EC, Lo Iacono L, Chiacchierini G, Sancandi M, Rava A, Oliva V, Puglisi-Allegra S. Single Prazosin Infusion in Prelimbic Cortex Fosters Extinction of Amphetamine-Induced Conditioned Place Preference. Front Pharmacol 2017; 8:530. [PMID: 28848444 PMCID: PMC5554357 DOI: 10.3389/fphar.2017.00530] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 07/28/2017] [Indexed: 12/22/2022] Open
Abstract
Exposure to drug-associated cues to induce extinction is a useful strategy to contrast cue-induced drug seeking. Norepinephrine (NE) transmission in medial prefrontal cortex has a role in the acquisition and extinction of conditioned place preference induced by amphetamine. We have reported recently that NE in prelimbic cortex delays extinction of amphetamine-induced conditioned place preference (CPP). A potential involvement of α1-adrenergic receptors in the extinction of appetitive conditioned response has been also suggested, although their role in prelimbic cortex has not been yet fully investigated. Here, we investigated the effects of the α1-adrenergic receptor antagonist prazosin infusion in the prelimbic cortex of C57BL/6J mice on expression and extinction of amphetamine-induced CPP. Acute prelimbic prazosin did not affect expression of amphetamine-induced CPP on the day of infusion, while in subsequent days it produced a clear-cut advance of extinction of preference for the compartment previously paired with amphetamine (Conditioned stimulus, CS). Moreover, prazosin-treated mice that had extinguished CS preference showed increased mRNA expression of brain-derived neurotrophic factor (BDNF) and post-synaptic density 95 (PSD-95) in the nucleus accumbens shell or core, respectively, thus suggesting that prelimbic α1-adrenergic receptor blockade triggers neural adaptations in subcortical areas that could contribute to the extinction of cue-induced drug-seeking behavior. These results show that the pharmacological blockade of α1-adrenergic receptors in prelimbic cortex by a single infusion is able to induce extinction of amphetamine-induced CPP long before control (vehicle) animals, an effect depending on contingent exposure to retrieval, since if infused far from or after reactivation it did not affect preference. Moreover, they suggest strongly that the behavioral effects depend on post-treatment neuroplasticity changes in corticolimbic network, triggered by a possible "priming" effect of prazosin, and point to a potential therapeutic power of the antagonist for maladaptive memories.
Collapse
Affiliation(s)
| | - Luisa Lo Iacono
- Fondazione Santa Lucia IRCCSRome, Italy.,Dipartimento di Psicologia, Sapienza Università di RomaRome, Italy
| | | | - Marco Sancandi
- Dipartimento di Psicologia, Sapienza Università di RomaRome, Italy
| | - Alessandro Rava
- Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Università di RomaRome, Italy
| | - Valeria Oliva
- Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Università di RomaRome, Italy
| | - Stefano Puglisi-Allegra
- Fondazione Santa Lucia IRCCSRome, Italy.,Dipartimento di Psicologia, Sapienza Università di RomaRome, Italy
| |
Collapse
|
7
|
Singh PK, Lutfy K. Nicotine pretreatment reduced cocaine-induced CPP and its reinstatement in a sex- and dose-related manner in adult C57BL/6J mice. Pharmacol Biochem Behav 2017; 159:84-89. [PMID: 28735686 DOI: 10.1016/j.pbb.2017.07.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 07/18/2017] [Accepted: 07/19/2017] [Indexed: 11/15/2022]
Abstract
Previous preclinical studies have shown that nicotine pretreatment during adolescence increases the reinforcing actions of cocaine. However, little is known about the effect of prior nicotine administration on cocaine-induced conditioned place preference (CPP) and its reinstatement in adult mice. Besides, little information is available regarding the role of sex in this cross-talk between nicotine and cocaine. Thus, we examined if nicotine administration during adulthood would differentially alter cocaine-induced CPP, its extinction and reinstatement in male versus female mice and if the dose of nicotine was important in this regard. To this end, mice were pretreated with saline or nicotine (0.25 or 1mg/kg; twice daily for seven days) and then tested for place preference before and after single and repeated conditioning with cocaine (15mg/kg). Mice were then exposed to extinction training and tested for reinstatement of CPP. Our results showed that male and female mice pretreated with saline and conditioned with cocaine each exhibited a robust CPP after a single cocaine conditioning. However, this response was blunted in mice pretreated with the lower but not higher dose of nicotine. Female mice pretreated with the lower dose nicotine also failed to show CPP after repeated conditioning. Reinstatement of cocaine-induced CPP was also blunted in these mice compared to their respective controls. Together, these results suggest that nicotine administration during adulthood exerts differential effects on cocaine-induced CPP and its reinstatement in male and female mice and the dose of nicotine is important in this regard.
Collapse
Affiliation(s)
- Prableen K Singh
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, 309 East 2nd Street, Pomona, CA 91766, United States
| | - Kabirullah Lutfy
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, 309 East 2nd Street, Pomona, CA 91766, United States.
| |
Collapse
|
8
|
Differential Expression of Munc13-2 Produces Unique Synaptic Phenotypes in the Basolateral Amygdala of C57BL/6J and DBA/2J Mice. J Neurosci 2017; 36:10964-10977. [PMID: 27798178 DOI: 10.1523/jneurosci.1785-16.2016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 08/28/2016] [Indexed: 11/21/2022] Open
Abstract
C57BL/6J (B6) and DBA/2J (D2) mice are well known to differentially express a number of behavioral phenotypes, including anxiety-like behavior, fear conditioning, and drug self-administration. However, the cellular mechanisms contributing to these differences remain unclear. Given the basolateral amygdala (BLA) contributes to these behaviors, we characterized strain-dependent differences in presynaptic and postsynaptic function in BLA neurons by integrating electrophysiological, biochemical, and genetic approaches to identify specific molecular mechanisms. We found that D2 glutamatergic synapses expressed enhanced release probability and lower sensitivity to both the inhibitory effects of low extracellular calcium and facilitation by phorbol esters. Furthermore, repetitive stimulation of BLA afferents at low (2 Hz) or high (40 Hz) frequencies revealed that B6 terminals, relative to D2 terminals, were more sensitive to synaptic fatigue principally because of reduced vesicle recycling rates. Additionally, B6 synapses exhibited more robust augmentation of spontaneous release after repetitive stimulation relative to the D2 strain. In silico analysis of the inheritance of synaptic physiology from an array of BXD recombinant inbred strains (Jansen et al., 2011) identified a segment on chromosome 4 containing the gene encoding Munc13-2, which has calcium-/phorbol ester-binding domains and controls presynaptic function. We subsequently found that B6 mice express substantially higher levels of Munc13-2 compared with the D2 strain whereas expression of several release-related proteins, including Munc13-1, was equivalent. We then knocked down the expression of Munc13-2 in B6 mice using a short hairpin RNA and found this recapitulated the presynaptic phenotype of D2 BLA synapses. SIGNIFICANCE STATEMENT DBA/2J and C57BL/6J mice have been used to understand the genetic mechanisms controlling behaviors related to a number of psychiatric illnesses. However, the fundamental neurobiological mechanisms producing these behavioral characteristics remain unresolved. Here we identify a critical family of presynaptic proteins differentially expressed by these strains that control strain-dependent synaptic physiology. This family of proteins regulates excitation/secretion coupling, vesicle recycling, and short-term plasticity throughout the CNS. Thus, differential inheritance of proteins like Munc13-2 has broad implications for genetic control over a wide variety of pathological behaviors. Importantly, these proteins also contain a large number of modulatory sites, making them attractive potential targets for the development of novel neuropharmaceutical treatments.
Collapse
|
9
|
Lo Iacono L, Valzania A, Visco-Comandini F, Aricò E, Viscomi MT, Castiello L, Oddi D, D'Amato FR, Bisicchia E, Ermakova O, Puglisi-Allegra S, Carola V. Social threat exposure in juvenile mice promotes cocaine-seeking by altering blood clotting and brain vasculature. Addict Biol 2017; 22:911-922. [PMID: 26870906 PMCID: PMC5573927 DOI: 10.1111/adb.12373] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 12/22/2015] [Accepted: 01/12/2016] [Indexed: 01/12/2023]
Abstract
Childhood maltreatment is associated with increased severity of substance use disorder and frequent relapse to drug use following abstinence. However, the molecular and neurobiological substrates that are engaged during early traumatic events and mediate the greater risk of relapse are poorly understood and knowledge of risk factors is to date extremely limited. In this study, we modeled childhood maltreatment by exposing juvenile mice to a threatening social experience (social stressed, S‐S). We showed that S‐S experience influenced the propensity to reinstate cocaine‐seeking after periods of withdrawal in adulthood. By exploring global gene expression in blood leukocytes we found that this behavioral phenotype was associated with greater blood coagulation. In parallel, impairments in brain microvasculature were observed in S‐S mice. Furthermore, treatment with an anticoagulant agent during withdrawal abolished the susceptibility to reinstate cocaine‐seeking in S‐S mice. These findings provide novel insights into a possible molecular mechanism by which childhood maltreatment heightens the risk for relapse in cocaine‐dependent individuals.
Collapse
Affiliation(s)
| | | | | | - Eleonora Aricò
- Department of Hematology, Oncology and Molecular Medicine; Istituto Superiore di Sanità, Rome; Italy
| | | | - Luciano Castiello
- Department of Hematology, Oncology and Molecular Medicine; Istituto Superiore di Sanità, Rome; Italy
| | - Diego Oddi
- Institute of Cellular Biology and Neurobiology; CNR; Rome Italy
| | | | | | - Olga Ermakova
- Institute of Cellular Biology and Neurobiology; CNR; Rome Italy
| | - Stefano Puglisi-Allegra
- IRCSS Fondazione Santa Lucia Rome; Italy
- Department of Psychology and ‘Daniel Bovet’ Center; University ‘La Sapienza,’ Rome; Italy
| | | |
Collapse
|
10
|
Latagliata EC, Saccoccio P, Milia C, Puglisi-Allegra S. Norepinephrine in prelimbic cortex delays extinction of amphetamine-induced conditioned place preference. Psychopharmacology (Berl) 2016; 233:973-82. [PMID: 26660648 DOI: 10.1007/s00213-015-4177-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 11/30/2015] [Indexed: 01/11/2023]
Abstract
RATIONALE Drug-associated cues exposure to induce extinction is a useful strategy to contrast cue-induced drug seeking. Treatments aimed at reducing motivational properties of cues are considered highly promising since they could decrease their ability to induce drug-conditioned behaviors. Norepinephrine (NE) in the medial prefrontal cortex (mPFC) is critical for attribution of motivational salience to highly salient stimuli, suggesting a major role in prelimbic (PL) mpFC to modulate the motivational properties of drug-related cues, invigorating them, and consequently, delaying extinction. OBJECTIVES To investigate if NE in PL fosters the maintenance of drug-seeking behavior, we assessed its role on amphetamine-induced conditioned place preference (CPP). Moreover, to affirm the specificity of NE in PL, we also assessed the role of NE in the infralimbic (IL) mPFC. METHODS The effects of selective NE depletion in the PL or in the IL of C57BL/6J mice were assessed on the expression of amphetamine-induced CPP before and after extinction procedure. RESULTS NE-depleted mice in PL extinguished preference for Amph-paired chamber long before sham animals. By contrast, IL-depleted animals maintained place preference for more than 4 weeks after the procedure of extinction, having at that moment interrupted the test. CONCLUSIONS Inactivation of NE in PL cortex blunts amphetamine-induced CPP, thus fostering extinction and showing to be critical for the maintenance of conditioned Amph-seeking behavior. Opposite effects of NE depletion in IL, seemingly in agreement with literature on extinction, are discussed in terms of balance of activity between PL and IL in extinction.
Collapse
Affiliation(s)
| | - Pamela Saccoccio
- Dipartimento di Psicologia e Centro "Daniel Bovet", Sapienza University, via dei Marsi 78, 00185, Rome, Italy
| | - Chiara Milia
- Dipartimento di Psicologia e Centro "Daniel Bovet", Sapienza University, via dei Marsi 78, 00185, Rome, Italy
| | - Stefano Puglisi-Allegra
- Dipartimento di Psicologia e Centro "Daniel Bovet", Sapienza University, via dei Marsi 78, 00185, Rome, Italy.,Fondazione Santa Lucia, IRCCS, via del Fosso di Fiorano 64, 00143, Rome, Italy
| |
Collapse
|
11
|
Lo Iacono L, Valzania A, Visco-Comandini F, Viscomi MT, Felsani A, Puglisi-Allegra S, Carola V. Regulation of nucleus accumbens transcript levels in mice by early-life social stress and cocaine. Neuropharmacology 2015; 103:183-94. [PMID: 26706499 DOI: 10.1016/j.neuropharm.2015.12.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 12/10/2015] [Accepted: 12/12/2015] [Indexed: 12/12/2022]
Abstract
Much interest has been piqued regarding the quality of one's environment at early ages in modulating the susceptibility to drug addiction in adulthood. However, the molecular mechanisms that are engaged during early trauma and mediate the risk for drug addiction are poorly understood. In rodents, exposure to early-life stress alters the rewarding effects of cocaine, amphetamine, and morphine in adulthood. Recently, we demonstrated that the exposure of juvenile mice to social threat (Social Stress, S-S) promoted cocaine-seeking behavior and relapse of cocaine-seeking after periods of withdrawal, compared with unhandled controls (UN) and with juvenile mice that experienced only daily isolation in a novel environment (no social stress, NS-S). Interestingly, while the exposure to NS-S slightly increased cocaine-seeking behavior compared with UN, the same was not sufficient to promote cocaine reinstatement. In this study, we examined the long-term transcriptional changes that are induced by S-S compared to NS-S and linked the increased susceptibility of S-S mice to cocaine reinstatement. To this end, we performed genome-wide RNA sequencing analysis in the nucleus accumbens (NAC), which revealed that 89 transcripts were differentially expressed between S-S and NS-S mice. By Gene Ontology classification, these hits were enriched in genes that mediate cell proliferation, neuronal differentiation, and neuron/forebrain development. Eleven of these genes have been reported to be involved in substance use disorders, and the remaining genes are novel candidates in this area. We characterized 4 candidates with regard to their significant neurobiological relevance (ZIC1, ZIC2, FABP7, and PRDM12) and measured their expression in the NAC by immunohistochemistry. These findings provide insights into novel molecular mechanisms in NAC that might be associated with the risk of relapse in cocaine-dependent individuals.
Collapse
Affiliation(s)
| | | | - Federica Visco-Comandini
- Sobell Department of Motor Neuroscience and Movement Disorders, University College of London, Great Britain, UK
| | | | - Armando Felsani
- Institute of Cellular Biology and Neurobiology, CNR, Rome, Italy
| | - Stefano Puglisi-Allegra
- IRCSS Fondazione Santa Lucia, Rome, Italy; Department of Psychology and "Daniel Bovet" Center, University of Rome "La Sapienza", Italy
| | | |
Collapse
|
12
|
Patrono E, Di Segni M, Patella L, Andolina D, Valzania A, Latagliata EC, Felsani A, Pompili A, Gasbarri A, Puglisi-Allegra S, Ventura R. When chocolate seeking becomes compulsion: gene-environment interplay. PLoS One 2015; 10:e0120191. [PMID: 25781028 PMCID: PMC4363151 DOI: 10.1371/journal.pone.0120191] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 02/04/2015] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Eating disorders appear to be caused by a complex interaction between environmental and genetic factors, and compulsive eating in response to adverse circumstances characterizes many eating disorders. MATERIALS AND METHODS We compared compulsion-like eating in the form of conditioned suppression of palatable food-seeking in adverse situations in stressed C57BL/6J and DBA/2J mice, two well-characterized inbred strains, to determine the influence of gene-environment interplay on this behavioral phenotype. Moreover, we tested the hypothesis that low accumbal D2 receptor (R) availability is a genetic risk factor of food compulsion-like behavior and that environmental conditions that induce compulsive eating alter D2R expression in the striatum. To this end, we measured D1R and D2R expression in the striatum and D1R, D2R and α1R levels in the medial prefrontal cortex, respectively, by western blot. RESULTS Exposure to environmental conditions induces compulsion-like eating behavior, depending on genetic background. This behavioral pattern is linked to decreased availability of accumbal D2R. Moreover, exposure to certain environmental conditions upregulates D2R and downregulates α1R in the striatum and medial prefrontal cortex, respectively, of compulsive animals. These findings confirm the function of gene-environment interplay in the manifestation of compulsive eating and support the hypothesis that low accumbal D2R availability is a "constitutive" genetic risk factor for compulsion-like eating behavior. Finally, D2R upregulation and α1R downregulation in the striatum and medial prefrontal cortex, respectively, are potential neuroadaptive responses that parallel the shift from motivated to compulsive eating.
Collapse
Affiliation(s)
- Enrico Patrono
- Department of Applied Clinical Science and Biotechnology, University of L'Aquila, Coppito, Italy
| | - Matteo Di Segni
- Santa Lucia Foundation, Rome, Italy
- Department of Psychology and Center “Daniel Bovet,” Sapienza University, Rome, Italy
| | - Loris Patella
- Department of Applied Clinical Science and Biotechnology, University of L'Aquila, Coppito, Italy
| | - Diego Andolina
- Santa Lucia Foundation, Rome, Italy
- Department of Applied Clinical Science and Biotechnology, University of L'Aquila, Coppito, Italy
| | - Alessandro Valzania
- Santa Lucia Foundation, Rome, Italy
- Department of Psychology and Center “Daniel Bovet,” Sapienza University, Rome, Italy
| | - Emanuele Claudio Latagliata
- Santa Lucia Foundation, Rome, Italy
- Department of Psychology and Center “Daniel Bovet,” Sapienza University, Rome, Italy
| | - Armando Felsani
- CNR, Institute of Cellular Biology and Neurobiology, Rome, Italy
| | - Assunta Pompili
- Department of Applied Clinical Science and Biotechnology, University of L'Aquila, Coppito, Italy
| | - Antonella Gasbarri
- Department of Applied Clinical Science and Biotechnology, University of L'Aquila, Coppito, Italy
| | - Stefano Puglisi-Allegra
- Santa Lucia Foundation, Rome, Italy
- Department of Psychology and Center “Daniel Bovet,” Sapienza University, Rome, Italy
| | - Rossella Ventura
- Santa Lucia Foundation, Rome, Italy
- Department of Psychology and Center “Daniel Bovet,” Sapienza University, Rome, Italy
- * E-mail:
| |
Collapse
|
13
|
Prenatal stress and adult drug-seeking behavior: interactions with genes and relation to nondrug-related behavior. ADVANCES IN NEUROBIOLOGY 2015; 10:75-100. [PMID: 25287537 DOI: 10.1007/978-1-4939-1372-5_5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Addiction inflicts large personal, social, and economic burdens, yet its etiology is poorly defined and effective treatments are lacking. As with other neuropsychiatric disorders, addiction is characterized by a core set of symptoms and behaviors that are believed to be influenced by complex gene-environment interactions. Our group focuses on the interaction between early stress and genetic background in determining addiction vulnerability. Prior work by our group and others has indicated that a history of prenatal stress (PNS) in rodents elevates adult drug seeking in a number of behavioral paradigms. The focus of the present chapter is to summarize work in the area of PNS and addiction models as well as our recent studies of PNS on drug seeking in different strains of mice as a strategy to dissect gene-environment interactions underlying cocaine addiction vulnerability. These studies indicate that ability of PNS to elevate adult cocaine seeking is strain dependent. Further, PNS also alters other nondrug behaviors in a fashion that is dependent on different strains and independent from the strain dependence of drug seeking. Thus, it appears that the ability of PNS to alter behavior related to different psychiatric conditions is orthogonal, with similar nonspecific susceptibility to prenatal stress across genetic backgrounds but with the genetic background determining the specific nature of the PNS effects. Finally, the advent of recombinant inbred mouse strains is allowing us to determine the genetic bases of these gene-environment interactions. Understanding these effects will have broad implications to determining the nature of vulnerability to addiction and perhaps other disorders.
Collapse
|
14
|
Karimi S, Attarzadeh-Yazdi G, Yazdi-Ravandi S, Hesam S, Azizi P, Razavi Y, Haghparast A. Forced swim stress but not exogenous corticosterone could induce the reinstatement of extinguished morphine conditioned place preference in rats: Involvement of glucocorticoid receptors in the basolateral amygdala. Behav Brain Res 2014; 264:43-50. [DOI: 10.1016/j.bbr.2014.01.045] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 01/21/2014] [Accepted: 01/28/2014] [Indexed: 11/29/2022]
|
15
|
Sørensen G, Husum H, Brennum LT, Bundgaard C, Montezinho LCP, Mørk A, Wörtwein G, Woldbye DPD. Addiction-Related Effects of DOV 216,303 and Cocaine: A Comparative Study in the Mouse. Basic Clin Pharmacol Toxicol 2014; 114:451-9. [DOI: 10.1111/bcpt.12182] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 11/27/2013] [Indexed: 12/01/2022]
Affiliation(s)
- Gunnar Sørensen
- Laboratory of Neuropsychiatry; Department of Neuroscience and Pharmacology; Rigshospitalet University Hospital; University of Copenhagen; Copenhagen Denmark
| | | | | | | | | | - Arne Mørk
- Synaptic Transmission; H. Lundbeck A/S; Copenhagen Denmark
| | - Gitta Wörtwein
- Laboratory of Neuropsychiatry; Department of Neuroscience and Pharmacology; Rigshospitalet University Hospital; University of Copenhagen; Copenhagen Denmark
| | - David P. D. Woldbye
- Laboratory of Neural Plasticity; Department of Neuroscience and Pharmacology; University of Copenhagen; Copenhagen Denmark
| |
Collapse
|
16
|
Partial extinction of a conditioned context enhances preference for elements previously associated with cocaine but not with chocolate. Physiol Behav 2013; 120:1-10. [PMID: 23831243 DOI: 10.1016/j.physbeh.2013.06.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 05/20/2013] [Accepted: 06/26/2013] [Indexed: 11/23/2022]
Abstract
Drug-associated stimuli are crucial to reinstatement of drug-seeking after periods of abstinence, representing a central problem in treatment of addiction. The present study investigated the influence of partial extinction of the conditioned context on the expression of conditioned place preference (CPP). Mice of the inbred DBA/2J strain were conditioned with cocaine or chocolate in a context identified by multiple elements (A+B) and subsequently CPP expression was evaluated in a context containing only one element (A or B) or both (A+B). Cocaine- and chocolate-conditioned mice showed CPP in presence of the original compound stimulus. However, cocaine-conditioned mice did not show CPP when tested in A or B context, while chocolate-conditioned mice did show CPP to single element context. After conditioning mice were exposed to extinction training of the context A or B and then tested for CPP 1 and 9 days after the end of the extinction (days 9 and 18). Cocaine-conditioned mice showed CPP 9 days after extinction while chocolate-conditioned mice were relatively insensitive to the extinction procedure on day 1 after extinction, but they did not show CPP for the partial or the original compound 9 days after extinction. Cocaine-conditioned mice not submitted to the extinction training (simple passage of time) or submitted to a Sham-extinction procedure (saline injections and confinement in a new environment) did not show CPP on day 9 or 18. Cocaine-conditioned mice exposed to extinction training showed increased c-Fos expression in several brain areas in comparison to mice exposed to Sham-extinction. The extinction procedure did not specifically reduce behavioral sensitization. The results suggest that extinction training involving only elements of a drug-associated context can result in increased associative strength of those elements.
Collapse
|
17
|
Modulatory effects of two novel agonists for serotonin receptor 7 on emotion, motivation and circadian rhythm profiles in mice. Neuropharmacology 2012; 62:833-42. [DOI: 10.1016/j.neuropharm.2011.09.012] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 09/07/2011] [Accepted: 09/10/2011] [Indexed: 11/20/2022]
|
18
|
Abstract
Relative to intravenous drug self-administration, locomotor activity is easier to measure with high throughput, particularly in mice. Therefore its potential to predict differences in self-administration between genotypes (e.g., targeted mutations, recombinant inbred strains) is appealing, but such predictive value is unverified. The main goal of this study was to evaluate the utility of the locomotor assay for accurately predicting differences in cocaine self-administration. A second goal was to evaluate any correlation between activity in a novel environment, and cocaine-induced hyperactivity, between strains. We evaluated locomotor activity in male and female Sprague-Dawley rats and 15 mouse strains (129S1/SvImJ, 129S6/SvEvTac, 129X1/SvJ, A/J, BALB/cByJ, BALB/cJ, C3H/HeJ, C57BL/6J, CAST/EiJ, DBA/2J, FVB/NJ, SJL/J, SPRET/EiJ, and outbred Swiss Webster and CD-1/ICR), as well as cocaine self-administration in BALB substrains. All but BALB/cJ mice showed locomotor habituation and significant cocaine-induced hyperactivity. BALB/cJ mice also failed to self-administer cocaine. BALB/cByJ mice showed modest locomotor habituation, cocaine-induced locomotion, and cocaine self-administration. As previously reported, female rats showed greater cocaine-induced locomotion than males, but this was only observed in one of 15 mouse strains (FVB/NJ), and the reverse was observed in two strains (129X1/SvJ, BALB/cByJ). The intriguing phenotype of the BALB/cJ strain may indicate some correlation between all-or-none locomotion in a novel environment, and stimulant and reinforcing effects of cocaine. However, neither novelty- nor cocaine-induced activity offered a clear prediction of relative reinforcing effects among strains. Additionally, these results should aid in selecting mouse strains for future studies in which relative locomotor responsiveness to psychostimulants is a necessary consideration.
Collapse
MESH Headings
- Animals
- Central Nervous System Stimulants/metabolism
- Central Nervous System Stimulants/pharmacology
- Cocaine/metabolism
- Cocaine/pharmacology
- Conditioning, Operant
- Dose-Response Relationship, Drug
- Female
- Hyperkinesis/chemically induced
- Locomotion/drug effects
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C3H
- Mice, Inbred C57BL
- Mice, Inbred DBA
- Mice, Inbred Strains
- Models, Animal
- Motor Activity/drug effects
- Phenotype
- Predictive Value of Tests
- Rats
- Rats, Sprague-Dawley
- Reinforcement, Psychology
- Self Administration
- Sex Factors
- Substance-Related Disorders
Collapse
Affiliation(s)
- Morgane Thomsen
- Alcohol and Drug Abuse Research Center, Harvard Medical School and McLean Hospital, Mail Stop 214,115 Mill Street, Belmont, MA 02478, USA.
| | | |
Collapse
|
19
|
Cannabinoid receptor involvement in stress-induced cocaine reinstatement: potential interaction with noradrenergic pathways. Neuroscience 2011; 204:117-24. [PMID: 21871539 DOI: 10.1016/j.neuroscience.2011.08.021] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2011] [Revised: 08/04/2011] [Accepted: 08/10/2011] [Indexed: 11/24/2022]
Abstract
This study examined the role of endocannabinoid signaling in stress-induced reinstatement of cocaine seeking and explored the interaction between noradrenergic and endocannabinergic systems in the process. A well-validated preclinical model for human relapse, the rodent conditioned place preference assay, was used. Cocaine-induced place preference was established in C57BL/6 mice using injections of 15 mg/kg cocaine. Following extinction of preference for the cocaine-paired environment, reinstatement of place preference was determined following 6 min of swim stress or cocaine injection (15 mg/kg, i.p.). The role of endocannabinoid signaling was studied using the cannabinoid antagonist AM-251 (3 mg/kg, i.p.). Another cohort of mice was tested for reinstatement following administration of the cannabinoid agonist CP 55,940 (10, 20, or 40 μg/kg, i.p.). The alpha-2 adrenergic antagonist BRL-44408 (5 mg/kg, i.p.) with or without CP 55,940 (20 μg/kg) was administered to a third group of mice. We found that: (1) AM-251 blocked forced swim-induced, but not cocaine-induced, reinstatement of cocaine-seeking behavior; (2) the cannabinoid agonist CP 55,940 did not reinstate cocaine-seeking behavior when administered alone but did synergize with a non-reinstating dose of the alpha-2 adrenergic antagonist BRL-44408 to cause reinstatement. These results are consistent with the hypothesis that stress exposure triggers the endogenous activation of CB1 receptors and that activation of the endocannabinoid system is required for the stress-induced relapse of the mice to cocaine seeking. Further, the data suggest that the endocannabinoid system interacts with noradrenergic mechanisms to influence stress-induced reinstatement of cocaine-seeking behavior.
Collapse
|
20
|
Towards mouse models of perseveration: a heritable component in extinction of operant behavior in fourteen standard and recombinant inbred mouse lines. Neurobiol Learn Mem 2011; 96:280-7. [PMID: 21624482 DOI: 10.1016/j.nlm.2011.05.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 05/06/2011] [Accepted: 05/13/2011] [Indexed: 11/22/2022]
Abstract
Extinction of instrumental responses is an essential skill for adaptive behavior such as foraging. So far, only few studies have focused on extinction following appetitive conditioning in mice. We studied extinction of appetitive operant lever-press behavior in six standard inbred mouse strains (A/J, C3H/HeJ, C57BL/6J, DBA/2J, BALB/cByJ and NOD/Ltj) and eight recombinant inbred mouse lines. From the response rates at the end of operant and extinction training we computed an extinction index, with higher values indicating better capability to omit behavioral responding in absence of reward. This index varied highly across the mouse lines tested, and the variability was partially due to a significant heritable component of 12.6%. To further characterize the relationship between operant learning and extinction, we calculated the slope of the time course of extinction across sessions. While many strains showed a considerable capacity to omit responding when lever pressing was no longer rewarded, we found a few lines showing an abnormally high perseveration in lever press behavior, showing no decay in response scores over extinction sessions. No correlation was found between operant and extinction response scores, suggesting that appetitive operant learning and extinction learning are dissociable, a finding in line with previous studies indicating that these forms of learning are dependent on different brain areas. These data shed light on the heritable basis of extinction learning and may help develop animal models of addictive habits and other perseverative disorders, such as compulsive food seeking and eating.
Collapse
|
21
|
Liu S, Zheng D, Peng XX, Cabeza de Vaca S, Carr KD. Enhanced cocaine-conditioned place preference and associated brain regional levels of BDNF, p-ERK1/2 and p-Ser845-GluA1 in food-restricted rats. Brain Res 2011; 1400:31-41. [PMID: 21640333 DOI: 10.1016/j.brainres.2011.05.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 04/11/2011] [Accepted: 05/13/2011] [Indexed: 12/18/2022]
Abstract
Previously, a learning-free measure was used to demonstrate that chronic food restriction (FR) increases the reward magnitude of a wide range of abused drugs. Moreover, a variety of striatal neuroadaptations were detected in FR subjects, some of which are known to be involved in synaptic plasticity but have been ruled out as modulators of acute drug reward magnitude. Little is known about effects of FR on drug-conditioned place preference (CPP) and brain regional mechanisms that may enhance CPP in FR subjects. The purpose of the present study was to compare the expression and persistence of a conditioned place preference (CPP) induced by a relatively low dose of cocaine (7.0mg/kg, i.p.) in ad libitum fed (AL) and FR rats and take several brain regional biochemical measures following the first CPP conditioning session to probe candidate mechanisms that may underlie the more robust CPP observed in FR subjects. Behaviorally, AL subjects displayed a CPP upon initial testing which extinguished rapidly over the course of subsequent test sessions while CPP in FR subjects persisted. Despite previous reports of elevated BDNF protein in forebrain regions of FR rats, the FR protocol used in the present study did not alter BDNF levels in dorsal hippocampus, nucleus accumbens or medial prefrontal cortex. On the other hand, FR rats, whether injected with cocaine or vehicle, displayed elevated p-ERK1/2 and p-Ser845-GluA1 in dorsal hippocampus. FR rats also displayed elevated p-ERK1/2 in medial prefrontal cortex and elevated p-ERK1 in nucleus accumbens, with further increases produced by cocaine. The one effect observed exclusively in cocaine-treated FR rats was increased p-Ser845-GluA1 in nucleus accumbens. These findings suggest a number of avenues for continuing investigation with potential translational significance.
Collapse
Affiliation(s)
- Shan Liu
- Department of Psychiatry, New York University School of Medicine, USA
| | | | | | | | | |
Collapse
|
22
|
Mantsch JR, Weyer A, Vranjkovic O, Beyer CE, Baker DA, Caretta H. Involvement of noradrenergic neurotransmission in the stress- but not cocaine-induced reinstatement of extinguished cocaine-induced conditioned place preference in mice: role for β-2 adrenergic receptors. Neuropsychopharmacology 2010; 35:2165-78. [PMID: 20613718 PMCID: PMC2939933 DOI: 10.1038/npp.2010.86] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The responsiveness of central noradrenergic systems to stressors and cocaine poses norepinephrine as a potential common mechanism through which drug re-exposure and stressful stimuli promote relapse. This study investigated the role of noradrenergic systems in the reinstatement of extinguished cocaine-induced conditioned place preference by cocaine and stress in male C57BL/6 mice. Cocaine- (15 mg/kg, i.p.) induced conditioned place preference was extinguished by repeated exposure to the apparatus in the absence of drug and reestablished by a cocaine challenge (15 mg/kg), exposure to a stressor (6-min forced swim (FS); 20-25°C water), or administration of the α-2 adrenergic receptor (AR) antagonists yohimbine (2 mg/kg, i.p.) or BRL44408 (5, 10 mg/kg, i.p.). To investigate the role of ARs, mice were administered the nonselective β-AR antagonist, propranolol (5, 10 mg/kg, i.p.), the α-1 AR antagonist, prazosin (1, 2 mg/kg, i.p.), or the α-2 AR agonist, clonidine (0.03, 0.3 mg/kg, i.p.) before reinstatement testing. Clonidine, prazosin, and propranolol failed to block cocaine-induced reinstatement. The low (0.03 mg/kg) but not high (0.3 mg/kg) clonidine dose fully blocked FS-induced reinstatement but not reinstatement by yohimbine. Propranolol, but not prazosin, blocked reinstatement by both yohimbine and FS, suggesting the involvement of β-ARs. The β-2 AR antagonist ICI-118551 (1 mg/kg, i.p.), but not the β-1 AR antagonist betaxolol (10 mg/kg, i.p.), also blocked FS-induced reinstatement. These findings suggest that stress-induced reinstatement requires noradrenergic signaling through β-2 ARs and that cocaine-induced reinstatement does not require AR activation, even though stimulation of central noradrenergic neurotransmission is sufficient to reinstate.
Collapse
Affiliation(s)
- John R Mantsch
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI 53201, USA.
| | - Andy Weyer
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, USA
| | - Oliver Vranjkovic
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, USA
| | - Chad E Beyer
- Department of Pharmacology, University of Colorado, Aurora, CO, USA
| | - David A Baker
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, USA
| | - Holly Caretta
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, USA
| |
Collapse
|
23
|
Colelli V, Fiorenza MT, Conversi D, Orsini C, Cabib S. Strain-specific proportion of the two isoforms of the dopamine D2 receptor in the mouse striatum: associated neural and behavioral phenotypes. GENES BRAIN AND BEHAVIOR 2010; 9:703-11. [PMID: 20546314 DOI: 10.1111/j.1601-183x.2010.00604.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Genetic variability in the proportion of the two alternative dopamine D2 receptor (D2R) mRNA splice variants, D2R-long (D2L) and D2R-short (D2S), influence corticostriatal functioning and could be implicated in liability to psychopathology. This study compared mesostriatal D2L/D2S ratios and associated neural and behavioral phenotypes in mice of the DBA/2J and C57BL/6J-inbred strains, which differ for schizophrenia- and addiction-like phenotypes. Results showed that DBA/2J mice lack the striatal predominance of D2L that has been reported in the rat and in C57BL/6J mice and confirmed in the latter strain by this study. Only C57BL/6J mice showed enhanced striatal c-Fos expression under D1R and D2/3R co-stimulation, indicating synergistic interaction between the subtypes of DA receptors. Instead, DBA/2J mice were characterized by opposing effects of D2/3R and D1R stimulation on striatal c-Fos expression, in line with a more pronounced influence of D2S isoform, and did not express stereotyped climbing under D1R and D2/3R co-stimulation, as reported for D2L-/- mice. Finally, strain-specific modulation of c-Fos expression by D1R and D2/3R co-stimulation was selectively observed in striatal compartments receiving inputs from the prefrontal cortex and involved in the control of motivated behaviors. These results show differences in tissue-specific D2R splicing in mice with intact genotypes and support a role for this phenotype in individual variability of corticostriatal functioning and in liability to psychopathology.
Collapse
Affiliation(s)
- V Colelli
- Department of Psychology, Centro D. Bovet, University Sapienza, Rome, Italy
| | | | | | | | | |
Collapse
|
24
|
Aguilar MA, Rodríguez-Arias M, Miñarro J. Neurobiological mechanisms of the reinstatement of drug-conditioned place preference. ACTA ACUST UNITED AC 2008; 59:253-77. [PMID: 18762212 DOI: 10.1016/j.brainresrev.2008.08.002] [Citation(s) in RCA: 206] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2008] [Revised: 07/29/2008] [Accepted: 08/13/2008] [Indexed: 12/15/2022]
Abstract
Drug addiction is a chronic disorder characterized by a high rate of relapse following detoxification. There are two main versions of the reinstatement model that are employed to study relapse to drug abuse; one based on the operant self-administration procedure, and the other on the classical conditioned place preference procedure. In the last seven years, the use of the latter version has become more widespread, and the results obtained complement those obtained in self-administration studies. It has been observed that the conditioned place preference induced by opioids, psychostimulants, nicotine, ethanol and other drugs of abuse can be extinguished and reinstated by drug priming or exposure to stressful events. Herein, the neuroanatomical and neurochemical basis of drug priming- and stress-induced reinstatement of morphine and cocaine, together with the molecular correlates of reinstatement behavior, are reviewed. Differences between the conditioned place preference and self-administration studies are also discussed. Evidence suggests that data of reinstatement with the CPP are to be viewed with caution until more extensive analysis of operant procedures has been performed, and that further research will undoubtedly improve our understanding of the neurobiological mechanisms of relapse to drug seeking.
Collapse
Affiliation(s)
- Maria A Aguilar
- Unidad de Investigación Psicobiologia de las Drogodependencias, Departamento de Psicobiología, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez, 21, 46010 Valencia, Spain
| | | | | |
Collapse
|