1
|
Chen Y, Wu Y, Wang D, Yang Y, Guo Q, Qiu Q, Wan C, Li X. Delayed niacin skin flush response identifies cognitive impairment in late-life depression. J Affect Disord 2025; 379:772-781. [PMID: 40113179 DOI: 10.1016/j.jad.2025.03.095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/04/2025] [Accepted: 03/17/2025] [Indexed: 03/22/2025]
Abstract
OBJECTIVE This research aimed to inspect the discriminative and predictive utility of the niacin skin flush response (NSFR) in patients with late-life depression (LLD) with cognitive impairment (CI). METHODS This study consisted of 86 LLD patients (46 with CI and 40 without CI), along with 22 Alzheimer's disease (AD) patients and 32 healthy elderly controls (HCs) as positive and negative controls, respectively. A subset of 74 LLD patients were reassessed after six months. The Montreal Cognitive Assessment (MoCA) was administered to assess cognitive capabilities. NSFR tests were performed using a modified protocol. Group differences in NSFR and clinical parameters were examined using multivariate ANOVA analysis. Model performance was evaluated using receiver operating characteristic (ROC) curves derived from NSFR measurements. RESULTS NSFR showed a significant inverse correlation with cognitive functions in LLD patients (R = -0.456, P < .001). Moreover, the parameter logEC50, which quantifies the NSFR rate, was elevated in the LLD with CI group. LogEC50 had an AUC of 0.767 (95 % CI: 0.667-0.867) in distinguishing LLD with CI from those without CI, which increased to 0.961 (95%CI:0.925-0.998) when combined with C- reactive protein. The predictive capacity of the baseline logEC50 for cognitive prognosis (decline versus preservation) in LLD patients was statistically significant (AUC = 0.826, 95 % CI 0.731-0.921), which increased to 0.857 (95%CI:0.775-0.941) when combined with baseline MoCA. CONCLUSION A delayed NSFR represents a promising biomarker for identifying CI and predicting cognitive trajectories in patients with LLD. This study elucidates a novel methodology for the precise identification and prognostic evaluation of CI in LLD.
Collapse
Affiliation(s)
- Yan Chen
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; Alzheimer's Disease and Related Disorders Center, Shanghai Jiao Tong University, Shanghai 200030, China
| | - You Wu
- Department of Neurology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Dandan Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Yang Yang
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; Alzheimer's Disease and Related Disorders Center, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Qianqian Guo
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; Alzheimer's Disease and Related Disorders Center, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Qi Qiu
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; Alzheimer's Disease and Related Disorders Center, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Chunlin Wan
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Xia Li
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; Alzheimer's Disease and Related Disorders Center, Shanghai Jiao Tong University, Shanghai 200030, China.
| |
Collapse
|
2
|
Lei Z, Wan J, Han JJ, Zhang CY, Wang HT, Zhou DJ, Chen Y, Huang H. Spatial metabolomics reveals key features of hippocampal lipid changes in rats with postoperative cognitive dysfunction. J Cereb Blood Flow Metab 2024; 44:1501-1516. [PMID: 38886876 PMCID: PMC11572040 DOI: 10.1177/0271678x241261949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/20/2024]
Abstract
Postoperative cognitive dysfunction (POCD) is a common complication after cardiac surgery. Numerous evidence suggest that dysregulation of lipid metabolism is associated with cognitive impairment; however, its precise role in the development of POCD is still obscure. In this study, we established a cardiopulmonary bypass (CPB) model in rats and employed the Barnes maze to assess cognitive function, selecting POCD rats for subsequent experimentation. Utilizing mass spectrometry imaging, we detected plenty of lipids accumulates within the hippocampal CA1in the POCD group. Immunofluorescence staining revealed a significant reduction in the fluorescence intensity of calcium-independent phospholipases A2 (iPLA2) in the POCD group compared to the control, while serine palmitoyl transferase (SPT) was markedly increased in the POCD group. Transmission electron microscopy revealed that the number of synapses in hippocampal CA1decreased significantly and postsynaptic density became thinner in POCD group. Furthermore, after reversing the metabolic disorders of iPLA2 and SPT in the rat brain with docosahexaenoic acid and myriocin, the incidence of POCD after CPB was significantly reduced and the disrupted lipid metabolism in the hippocampus was also normalized. These findings may offer a novel perspective for exploring the etiology and prevention strategies of POCD after CPB.
Collapse
Affiliation(s)
- Zheng Lei
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jie Wan
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jing-jing Han
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chun-Yan Zhang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hao-Tian Wang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ding-jie Zhou
- Jiangsu Health Development Research Center, NHC Contraceptive Adverse Reaction Surveillance Center, Jiangsu, Jiangsu Provincial Medical Key Laboratory of Fertility Protection and Health Technology Assessment, Nanjing, Jiangsu, China
| | - Yu Chen
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - He Huang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
3
|
Liu D, Yang S, Yu S. Interactions Between Ferroptosis and Oxidative Stress in Ischemic Stroke. Antioxidants (Basel) 2024; 13:1329. [PMID: 39594471 PMCID: PMC11591163 DOI: 10.3390/antiox13111329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/10/2024] [Accepted: 10/16/2024] [Indexed: 11/28/2024] Open
Abstract
Ischemic stroke is a devastating condition that occurs due to the interruption of blood flow to the brain, resulting in a range of cellular and molecular changes. In recent years, there has been growing interest in the role of ferroptosis, a newly identified form of regulated cell death, in ischemic stroke. Ferroptosis is driven by the accumulation of lipid peroxides and is characterized by the loss of membrane integrity. Additionally, oxidative stress, which refers to an imbalance between prooxidants and antioxidants, is a hallmark of ischemic stroke and significantly contributes to the pathogenesis of the disease. In this review, we explore the interactions between ferroptosis and oxidative stress in ischemic stroke. We examine the underlying mechanisms through which oxidative stress induces ferroptosis and how ferroptosis, in turn, exacerbates oxidative stress. Furthermore, we discuss potential therapeutic strategies that target both ferroptosis and oxidative stress in the treatment of ischemic stroke. Overall, this review highlights the complex interplay between ferroptosis and oxidative stress in ischemic stroke and underscores the need for further research to identify novel therapeutic targets for this condition.
Collapse
Affiliation(s)
| | - Sha Yang
- College of Acupuncture and Massage, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China;
| | - Shuguang Yu
- College of Acupuncture and Massage, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China;
| |
Collapse
|
4
|
Colavitta MF, Barrantes FJ. Therapeutic Strategies Aimed at Improving Neuroplasticity in Alzheimer Disease. Pharmaceutics 2023; 15:2052. [PMID: 37631266 PMCID: PMC10459958 DOI: 10.3390/pharmaceutics15082052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/23/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
Alzheimer disease (AD) is the most prevalent form of dementia among elderly people. Owing to its varied and multicausal etiopathology, intervention strategies have been highly diverse. Despite ongoing advances in the field, efficient therapies to mitigate AD symptoms or delay their progression are still of limited scope. Neuroplasticity, in broad terms the ability of the brain to modify its structure in response to external stimulation or damage, has received growing attention as a possible therapeutic target, since the disruption of plastic mechanisms in the brain appear to correlate with various forms of cognitive impairment present in AD patients. Several pre-clinical and clinical studies have attempted to enhance neuroplasticity via different mechanisms, for example, regulating glucose or lipid metabolism, targeting the activity of neurotransmitter systems, or addressing neuroinflammation. In this review, we first describe several structural and functional aspects of neuroplasticity. We then focus on the current status of pharmacological approaches to AD stemming from clinical trials targeting neuroplastic mechanisms in AD patients. This is followed by an analysis of analogous pharmacological interventions in animal models, according to their mechanisms of action.
Collapse
Affiliation(s)
- María F. Colavitta
- Laboratory of Molecular Neurobiology, Biomedical Research Institute (BIOMED), Universidad Católica Argentina (UCA)—National Scientific and Technical Research Council (CONICET), Buenos Aires C1107AAZ, Argentina
- Centro de Investigaciones en Psicología y Psicopedagogía (CIPP-UCA), Facultad de Psicología, Av. Alicia Moreau de Justo, Buenos Aires C1107AAZ, Argentina;
| | - Francisco J. Barrantes
- Laboratory of Molecular Neurobiology, Biomedical Research Institute (BIOMED), Universidad Católica Argentina (UCA)—National Scientific and Technical Research Council (CONICET), Buenos Aires C1107AAZ, Argentina
| |
Collapse
|
5
|
Martínez-Iglesias O, Naidoo V, Carrera I, Corzo L, Cacabelos R. Nosustrophine: An Epinutraceutical Bioproduct with Effects on DNA Methylation, Histone Acetylation and Sirtuin Expression in Alzheimer's Disease. Pharmaceutics 2022; 14:pharmaceutics14112447. [PMID: 36432638 PMCID: PMC9698419 DOI: 10.3390/pharmaceutics14112447] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Alzheimer's disease (AD), the most common cause of dementia, causes irreversible memory loss and cognitive deficits. Current AD drugs do not significantly improve cognitive function or cure the disease. Novel bioproducts are promising options for treating a variety of diseases, including neurodegenerative disorders. Targeting the epigenetic apparatus with bioactive compounds (epidrugs) may aid AD prevention treatment. The aims of this study were to determine the composition of a porcine brain-derived extract Nosustrophine, and whether treating young and older trigenic AD mice produced targeted epigenetic and neuroprotective effects against neurodegeneration. Nosustrophine regulated AD-related APOE and PSEN2 gene expression in young and older APP/BIN1/COPS5 mice, inflammation-related (NOS3 and COX-2) gene expression in 3-4-month-old mice only, global (5mC)- and de novo DNA methylation (DNMT3a), HDAC3 expression and HDAC activity in 3-4-month-old mice; and SIRT1 expression and acetylated histone H3 protein levels in 8-9-month-old mice. Mass spectrometric analysis of Nosustrophine extracts revealed the presence of adenosylhomocysteinase, an enzyme implicated in DNA methylation, and nicotinamide phosphoribosyltransferase, which produces the NAD+ precursor, enhancing SIRT1 activity. Our findings show that Nosustrophine exerts substantial epigenetic effects against AD-related neurodegeneration and establishes Nosustrophine as a novel nutraceutical bioproduct with epigenetic properties (epinutraceutical) that may be therapeutically effective for prevention and early treatment for AD-related neurodegeneration.
Collapse
|
6
|
High Levels of Thromboxane (TX) Are Associated with the Sex-Dependent Non-Dipping Phenomenon in Ischemic Stroke Patients. J Clin Med 2022; 11:jcm11092652. [PMID: 35566778 PMCID: PMC9102581 DOI: 10.3390/jcm11092652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/02/2022] [Accepted: 05/05/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Inflammation and high blood pressure (nondipping profile) during the rest/sleep period have been associated with an effect on the incidence of cardiovascular disorders and a more severe course in the ischemic cerebrovascular event. There are no available data on the relationship between dipping status and the pro-inflammatory metabolites of arachidonic acid (AA); therefore, we undertook a study to investigate the influence of thromboxane on the incidence of nondipping among patients after stroke. METHODS Sixty-two patients with ischemic stroke (including 34 women and 28 men) were tested for the involvement of thromboxane in the nondipping phenomenon. Subjects were analyzed for the presence of the physiological phenomenon of dipping (DIP group) versus its absence-nondipping (NDIP group). Thromboxane (TX) measurements were performed using liquid chromatography, and blood pressure was measured 24 h a day in all subjects. RESULTS The analysis of the thromboxane level in the plasma of patients after ischemic stroke showed significant differences in terms of sex (p = 0.0004). Among women in both groups, the concentration of TX was high, while similar levels were observed in the group of men from the NDIP group. However, when comparing men in the DIP and NDIP groups, a lower TX level was noticeable in the DIP group. CONCLUSIONS A higher level of TX may be associated with a disturbance of the physiological phenomenon of DIP in men and women. However, in our opinion, TX is not the main determinant of the DIP phenomenon and, at the same time, other pro-inflammatory factors may also be involved in the occurrence of this singularity.
Collapse
|
7
|
Saeedi M, Mehranfar F. Challenges and approaches of drugs such as Memantine, Donepezil, Rivastigmine and Aducanumab in the treatment, control and management of Alzheimer's disease. Recent Pat Biotechnol 2022; 16:102-121. [PMID: 35236274 DOI: 10.2174/1872208316666220302115901] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/20/2021] [Accepted: 12/28/2021] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease (AD) is a kinds of neuropsychiatric illnesses that affect the central nervous system. In this disease, the accumulation of amyloid-beta increases, and phosphorylated tau (P-tau) protein, one of the ways to treat this disease is to reduce the accumulation of amyloid-beta. Various studies have demonstrated that pharmacological approaches have considerable effects in the treatment of AD, despite the side effects and challenges. Cholinesterase inhibitors and the NMDA receptor antagonist memantine are presently authorized therapies for AD. Memantine and Donepezil are the most common drugs for the prevention and therapy of AD with mechanisms such as lessened β-amyloid plaque, effect on N-Methyl-D-aspartate (NMDA) receptors. Diminution glutamate and elevated acetylcholine are some of the influences of medications administrated to treat AD, and drugs can also play a role in slowing the progression of cognitive and memory impairment. A new pharmacological approach and strategy is required to control the future of AD. This review appraises the effects of memantine, donepezil, rivastigmine, and aducanumab in clinical trials, in vitro and animal model studies that have explored how these drugs versus AD development and also discuss possible mechanisms of influence on the brain. Research in clinical trials has substantial findings that support the role of these medications in AD treatment and ameliorate the safety and efficacy of AD therapy, although more clinical trials are required to prove their effectiveness.
Collapse
Affiliation(s)
- Mohammad Saeedi
- Department of Laboratory Science, Faculty of medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Fatemeh Mehranfar
- Department of Laboratory Science, Faculty of medicine, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
8
|
Dynamic Role of Phospholipases A2 in Health and Diseases in the Central Nervous System. Cells 2021; 10:cells10112963. [PMID: 34831185 PMCID: PMC8616333 DOI: 10.3390/cells10112963] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/19/2021] [Accepted: 10/27/2021] [Indexed: 12/20/2022] Open
Abstract
Phospholipids are major components in the lipid bilayer of cell membranes. These molecules are comprised of two acyl or alkyl groups and different phospho-base groups linked to the glycerol backbone. Over the years, substantial interest has focused on metabolism of phospholipids by phospholipases and the role of their metabolic products in mediating cell functions. The high levels of polyunsaturated fatty acids (PUFA) in the central nervous system (CNS) have led to studies centered on phospholipases A2 (PLA2s), enzymes responsible for cleaving the acyl groups at the sn-2 position of the phospholipids and resulting in production of PUFA and lysophospholipids. Among the many subtypes of PLA2s, studies have centered on three major types of PLA2s, namely, the calcium-dependent cytosolic cPLA2, the calcium-independent iPLA2 and the secretory sPLA2. These PLA2s are different in their molecular structures, cellular localization and, thus, production of lipid mediators with diverse functions. In the past, studies on specific role of PLA2 on cells in the CNS are limited, partly because of the complex cellular make-up of the nervous tissue. However, understanding of the molecular actions of these PLA2s have improved with recent advances in techniques for separation and isolation of specific cell types in the brain tissue as well as development of sensitive molecular tools for analyses of proteins and lipids. A major goal here is to summarize recent studies on the characteristics and dynamic roles of the three major types of PLA2s and their oxidative products towards brain health and neurological disorders.
Collapse
|
9
|
Devyatkin VA, Redina OE, Kolosova NG, Muraleva NA. Single-Nucleotide Polymorphisms Associated with the Senescence-Accelerated Phenotype of OXYS Rats: A Focus on Alzheimer's Disease-Like and Age-Related-Macular-Degeneration-Like Pathologies. J Alzheimers Dis 2021; 73:1167-1183. [PMID: 31929160 DOI: 10.3233/jad-190956] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Alzheimer's disease (AD) and age-related macular degeneration (AMD) are two complex incurable neurodegenerative disorders the common pathogenesis of which is actively discussed. There are overlapping risk factors and molecular mechanisms of the two diseases; at the same time, there are arguments in favor of the notion that susceptibility to each of these diseases is associated with a distinct genetic background. Here we identified single-nucleotide polymorphisms (SNPs) that are specific for senescence-accelerated OXYS rats, which simulate key characteristics of both sporadic AD and AMD. Transcriptomes of the hippocampus, prefrontal cortex, and retina (data of RNA-Seq) were analyzed. We detected SNPs in genes Rims2, AABR07072639.2, Lemd2, and AABR07045405.1, which thus can express significantly truncated proteins lacking functionally important domains. Additionally, 33 mutations in genes-which are related to various metabolic and signaling pathways-cause nonsynonymous amino acid substitutions presumably leading to disturbances in protein structure or functions. Some of the genes carrying these SNPs are associated with aging, neurodegenerative, and mental diseases. Thus, we revealed the SNPs can lead to abnormalities in protein structure or functions and affect the development of the senescence-accelerated phenotype of OXYS rats. Our data are consistent with the latest results of genome-wide association studies that highlight the importance of multiple pathways for the pathogenesis of AD and AMD. Identified SNPs can serve as promising research objects for further studies on the molecular mechanisms underlying this particular rat model as well as for the prediction of potential biomarkers of AD and AMD.
Collapse
Affiliation(s)
- Vasiliy A Devyatkin
- Institute of Cytology and Genetics, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| | - Olga E Redina
- Institute of Cytology and Genetics, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| | | | | |
Collapse
|
10
|
Naik B, Maurya VK, Kumar V, Kumar V, Upadhyay S, Gupta S. Phytochemical Analysis of Diplazium esculentum Reveals the Presence of Medically Important Components. CURRENT NUTRITION & FOOD SCIENCE 2021. [DOI: 10.2174/1573401316999200614162834] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background:
Diplazium esculentum is found throughout Asia growing along with water
channels and is used for many purposes. In India, the rhizomes are used to control insects and pests
while the young fronds are used as a vegetable and salad. But very few reports on phytochemicals of
young fronds and its anti-oxidant activity is available.
Objective:
The present study was undertaken to assess the antioxidant, antimicrobial and phytochemical
analysis of D. esculentum.
Methods:
Proximate analysis was done according to the standard protocol while antioxodant and antimicrobial
activity was performed by DDPH. and well diffusion method respectivity. Phytochemical
analysis was performed by GC-MS.
Results:
The present study revealed that the young fronds of D. esculentum contain high amount of
carbohydrate followed by protein, crude fibre, and fat. The free radical scavenging activity of methanolic
extract was 87.93 ± 0.3% reduction, which shows it have potential antioxidant activity. The antioxidant
property may be contributed by the presence of phytochemicals such as Phosphoric acid,
phytol, 2,6,10-Trimethyl,14 ethylene-14-pentadecene, Hexadecanoic acid methyl ester, Pentadecanoic
acid, Stigmasta-5,22-dien-3-ol, acetate, (3.beta.). It showed promising antimicrobial activity against
S. aureus and B. subtilis. The antimicrobial activity may be due to the presence of Phytochemicals
such as beta-Ocimene, 2,6,10-Trimethyl,14 ethylene-14-pentadecene, 1,2-Benzenedicarboxylic acid,
BIS(2-Methylpropyl)ester, Hexadecanoic acid, methyl ester, 1-Heneicosanol, Phytol, 5,8,11,14-
Eicosatetraenoic acid, methyl ester(all Z), 1,2-benzenedicarboxylic acid, Ergost-5-en-3-ol, (3.beta),
Stigmasta-5,22-dien-3-ol, acetate, (3.beta.), stigmast-5-EN-3-OL, (3.beta).
Conclusion:
From the present study, it can be deduced that D. Esculentum is a rich source of
medically important phytochemicals. Further work is required, so that these phytochemicals can be
explored in the management of various chronic diseases.
Collapse
Affiliation(s)
- Bindu Naik
- Department of Food Technology, UCALS, Uttaranchal University, Dehradun, Uttarakhand-248001, India
| | - Vinay K. Maurya
- Department of Food Technology, Doon (P.G.) College of Agriculture Science and Technology, Selaqui, Uttarakhand- 248011, India
| | - Vijay Kumar
- Department of Biosciences, Swami Rama Himalayan University, Jollygrant, Uttarakhand-248014, India
| | - Vivek Kumar
- Department of Biosciences, Swami Rama Himalayan University, Jollygrant, Uttarakhand-248014, India
| | - Sweta Upadhyay
- Department of Biosciences, Swami Rama Himalayan University, Jollygrant, Uttarakhand-248014, India
| | - Sanjay Gupta
- Department of Biosciences, Swami Rama Himalayan University, Jollygrant, Uttarakhand-248014, India
| |
Collapse
|
11
|
Breen PW, Krishnan V. Recent Preclinical Insights Into the Treatment of Chronic Traumatic Encephalopathy. Front Neurosci 2020; 14:616. [PMID: 32774238 PMCID: PMC7381336 DOI: 10.3389/fnins.2020.00616] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 05/18/2020] [Indexed: 12/29/2022] Open
Abstract
Chronic traumatic encephalopathy (CTE) is a neurodegenerative condition associated with significant mortality and morbidity. The central pathophysiological mechanisms by which repetitive cranial injury results in the neurodegeneration of CTE are poorly understood. Current well-established working models emphasize a central role for trauma-induced excessive phosphorylation and accumulation of insoluble tangles of Tau protein. In this review, we summarize recent data from preclinical animal models of CTE where a series of candidate treatments have been carefully evaluated, including kinase inhibitors, antibody therapy, and anti-inflammatory therapies. We discuss the overall translational potential of these approaches and provide recommendations for future bench-to-bedside treatment strategies.
Collapse
Affiliation(s)
- Patrick W Breen
- Department of BioSciences, Rice University, Houston, TX, United States
| | - Vaishnav Krishnan
- Department of Neurology, Baylor College of Medicine, Houston, TX United States
| |
Collapse
|
12
|
Huang J, Wang X, Xie L, Wu M, Zhao W, Zhang Y, Wang Q, Yao L, Li W. Extract of Danggui-Shaoyao-San ameliorates cognition deficits by regulating DHA metabolism in APP/PS1 mice. JOURNAL OF ETHNOPHARMACOLOGY 2020; 253:112673. [PMID: 32084555 DOI: 10.1016/j.jep.2020.112673] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 02/08/2020] [Accepted: 02/13/2020] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The traditional Chinese medicine formula Danggui-Shaoyao-San (DSS) has been reported to show therapeutic effect on alleviating the symptoms of Alzheimer's disease (AD). AIM OF THE STUDY The present study aims to investigate the relation between DSS treatment of AD and DHA metabolism and evaluates its neuroprotective effect on cognitive in APP/PS1 mice. MATERIAL AND METHODS DSS (1.6, 3.2, 6.4 g/kg/day) or Aricept (3 mg/kg/day) was orally administered (i.g.) to APP/PS1 mice, and saline was orally administered to Wild-type (WT) male mice as control group. Then, the Morris water maze (MWM) test, Y-maze spontaneous alternation test, open filed test and fear conditioning test were conducted for evaluation of learning and memory abilities. The DHA content was assessed by HPLC-MS/MS. Physiological indices were determined, including triglyceride (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), ROS level, activity of superoxide dismutase (SOD), glutathione (GSH), malondialdehyde (MDA), PEG2, TXB2 and LTB4. The expressions of COX-1, COX-2, cPLA2, iPLA2, 15-LOX, and were assessed by Western blot. RESULTS APP/PS1 mice showed serious cognitive impairment in behavioral tests. However, treatment of DSS extract significantly ameliorated the cognitive deficits of APP/PS1 mice. Biochemical measurements showed the increases in TG, TC, LDL-c and the decrease in HDL-c in APP/PS1 mice compared with WT mice, and DSS extract significantly retarded these changes. Low content of DHA, low expression of iPLA2 and 15-LOX were observed both in hippocampus and cortex of APP/PS1 mice, while DSS extract significantly restored these changes. Additionally, the abnormal activity of SOD and ROS level, the decreased levels of MDA and GSH were observed in APP/PS1 mice, while DSS extract prominently lessened these changes. Moreover, DSS extract decreased the level of PEG2, TXB2 and LTB4 and also attenuated the expression of cPLA2, COX-1 and COX-2 in hippocampus as well as cortex of APP/PS1 mice. CONCLUSIONS Based on these results, we suggest that DSS play a positive effective role in increasing DHA content by up-regulating iPLA2 and 15-LOX, resulting in ameliorating oxidative stress and inflammation and finally ameliorating cognition deficits in APP/PS1 mice.
Collapse
Affiliation(s)
- Jiawen Huang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun District, Guangzhou, 510405, China.
| | - Xiangyu Wang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun District, Guangzhou, 510405, China.
| | - Liyuan Xie
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun District, Guangzhou, 510405, China.
| | - Mingan Wu
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun District, Guangzhou, 510405, China.
| | - Wei Zhao
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun District, Guangzhou, 510405, China.
| | - Yongbin Zhang
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun District, Guangzhou, 510405, China.
| | - Qi Wang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun District, Guangzhou, 510405, China.
| | - Limei Yao
- School of Traditional Chinese Medicine Healthcare, Guangdong Food and Drug Vocational College, 321 Longdong North Road, Tianhe District, Guangzhou, 510520, China
| | - Weirong Li
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun District, Guangzhou, 510405, China.
| |
Collapse
|
13
|
Kim H, Kim B, Kim HS, Cho JY. Nicotinamide attenuates the decrease in dendritic spine density in hippocampal primary neurons from 5xFAD mice, an Alzheimer's disease animal model. Mol Brain 2020; 13:17. [PMID: 32033569 PMCID: PMC7006216 DOI: 10.1186/s13041-020-0565-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/04/2020] [Indexed: 12/25/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common neurodegenerative disease characterized by memory loss and the presence of amyloid plaques and neurofibrillary tangles in the patients’ brains. In this study, we investigated the alterations in metabolite profiles of the hippocampal tissues from 6, 8, and 12 month-old wild-type (WT) and 5xfamiliar AD (5xFAD) mice, an AD mouse model harboring 5 early-onset familiar AD mutations, which shows memory loss from approximately 5 months of age, by exploiting the untargeted metabolomics profiling. We found that nicotinamide and adenosine monophosphate levels have been significantly decreased while lysophosphatidylcholine (LysoPC) (16:0), LysoPC (18:0), and lysophosphatidylethanolamine (LysoPE) (16:0) levels have been significantly increased in the hippocampi from 5xFAD mice at 8 months or 12 months of age, compared to those from age-matched wild-type mice. In the present study, we focused on the role of nicotinamide and examined if replenishment of nicotinamide exerts attenuating effects on the reduction in dendritic spine density in hippocampal primary neurons from 5xFAD mice. Treatment with nicotinamide attenuated the deficits in spine density in the hippocampal primary neurons derived from 5xFAD mice, indicating a potential role of nicotinamide in the pathogenesis of AD. Taken together, these findings suggest that the decreased hippocampal nicotinamide level could be linked with AD pathogenesis and be a useful therapeutic target for AD.
Collapse
Affiliation(s)
- Hyunju Kim
- Department of Pharmacology, College of Medicine, Seoul National University, 103 Daehakro, Jongro-gu, Seoul, Republic of Korea.,Department of Biomedical Sciences, College of Medicine, Seoul National University, 103 Daehakro, Jongro-gu, Seoul, Republic of Korea
| | - Bora Kim
- Department of Clinical Pharmacology and Therapeutics, College of Medicine, Seoul National University, 103 Daehakro, Jongro-gu, Seoul, Republic of Korea.,Kidney Research Institute, College of Medicine, Seoul National University, 103 Daehakro, Jongro-gu, Seoul, Republic of Korea
| | - Hye-Sun Kim
- Department of Pharmacology, College of Medicine, Seoul National University, 103 Daehakro, Jongro-gu, Seoul, Republic of Korea. .,Department of Biomedical Sciences, College of Medicine, Seoul National University, 103 Daehakro, Jongro-gu, Seoul, Republic of Korea. .,Seoul National University College of Medicine, Bundang Hospital, Bundang-Gu, Sungnam, Republic of Korea. .,Department of Pharmacology and Biomedical Sciences, Neuroscience Research Institute, College of Medicine, Seoul National University, 103 Daehakro, Jongro-gu, Seoul, Republic of Korea.
| | - Joo-Youn Cho
- Department of Clinical Pharmacology and Therapeutics, College of Medicine, Seoul National University, 103 Daehakro, Jongro-gu, Seoul, Republic of Korea. .,Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
| |
Collapse
|
14
|
Iglesias González PA, Conde MA, González-Pardo V, Uranga RM, Salvador GA. In vitro 6-hydroxydopamine-induced neurotoxicity: New insights on NFκB modulation. Toxicol In Vitro 2019; 60:400-411. [DOI: 10.1016/j.tiv.2019.06.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/21/2019] [Accepted: 06/23/2019] [Indexed: 10/26/2022]
|
15
|
Costa AC, Joaquim HPG, Forlenza O, Talib LL, Gattaz WF. Plasma lipids metabolism in mild cognitive impairment and Alzheimer's disease. World J Biol Psychiatry 2019; 20:190-196. [PMID: 28922966 DOI: 10.1080/15622975.2017.1369566] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVES Expression of phospholipids and related molecules could provide panels of multiple biomarkers searching for the signature of Alzheimer's disease (AD). The aim of the present study was to quantify ten phospholipids and simultaneously determine phospholipase A2 (PLA2) activity in blood of mild cognitive impairment (MCI) and AD patients. METHODS Thirty-four AD, 20 MCI and 25 controls were enrolled. The phospholipids where analysed using the AbsoluteIDQ® p180 Kit. PLA2 activities were accessed in platelets by a radio-enzymatic assay. RESULTS The study failed to fix the ten phospholipids as a panel to predict AD; the levels of PCaaC36:6, PCaaC40:6 and C16:1-OH were lower in MCI than in controls (P = 0.041, P = 0.012, P = 0.044 respectively). PCaaC40:2 levels were lower in MCI than in AD (P = 0.041). The converters MCI-AD showed at baseline lower levels of PCaaC40:2 (P = 0.050) and PCaaC40:6 (P = 0.037) than controls. iPLA2 activity was reduced in AD and MCI than in controls (P < 0.001). We found positive correlation in the control group between PCaaC38:6 and tPLA2 (r = 0.680; P = 0.001) and sPLA2 (r = 0.601; P = 0.004); PCaaC40:1 and iPLA2 (r = 0.503; P = 0.020); PCaaC40:6 and tPLA2 (r = 0.532; P = 0.013) and sPLA2 (r = 0.523; P = 0.015). CONCLUSIONS Lipids metabolites in plasma might indirectly indicate changes in neuronal membrane and this deregulation can outline the transition between healthy and diseased brains.
Collapse
Affiliation(s)
- Alana C Costa
- a Department and Institute of Psychiatry , Laboratory of Neurosciences (LIM 27), University of São Paulo (USP) , São Paulo , Brazil
| | - Helena P G Joaquim
- a Department and Institute of Psychiatry , Laboratory of Neurosciences (LIM 27), University of São Paulo (USP) , São Paulo , Brazil
| | - Orestes Forlenza
- a Department and Institute of Psychiatry , Laboratory of Neurosciences (LIM 27), University of São Paulo (USP) , São Paulo , Brazil
| | - Leda L Talib
- a Department and Institute of Psychiatry , Laboratory of Neurosciences (LIM 27), University of São Paulo (USP) , São Paulo , Brazil
| | - Wagner F Gattaz
- a Department and Institute of Psychiatry , Laboratory of Neurosciences (LIM 27), University of São Paulo (USP) , São Paulo , Brazil
| |
Collapse
|
16
|
Sun GY, Simonyi A, Fritsche KL, Chuang DY, Hannink M, Gu Z, Greenlief CM, Yao JK, Lee JC, Beversdorf DQ. Docosahexaenoic acid (DHA): An essential nutrient and a nutraceutical for brain health and diseases. Prostaglandins Leukot Essent Fatty Acids 2018; 136:3-13. [PMID: 28314621 PMCID: PMC9087135 DOI: 10.1016/j.plefa.2017.03.006] [Citation(s) in RCA: 182] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 03/06/2017] [Accepted: 03/09/2017] [Indexed: 01/01/2023]
Abstract
Docosahexaenoic acid (DHA), a polyunsaturated fatty acid (PUFA) enriched in phospholipids in the brain and retina, is known to play multi-functional roles in brain health and diseases. While arachidonic acid (AA) is released from membrane phospholipids by cytosolic phospholipase A2 (cPLA2), DHA is linked to action of the Ca2+-independent iPLA2. DHA undergoes enzymatic conversion by 15-lipoxygenase (Alox 15) to form oxylipins including resolvins and neuroprotectins, which are powerful lipid mediators. DHA can also undergo non-enzymatic conversion by reacting with oxygen free radicals (ROS), which cause the production of 4-hydoxyhexenal (4-HHE), an aldehyde derivative which can form adducts with DNA, proteins and lipids. In studies with both animal models and humans, there is evidence that inadequate intake of maternal n-3 PUFA may lead to aberrant development and function of the central nervous system (CNS). What is less certain is whether consumption of n-3 PUFA is important in maintaining brain health throughout one's life span. Evidence mostly from non-human studies suggests that DHA intake above normal nutritional requirements might modify the risk/course of a number of diseases of the brain. This concept has fueled much of the present interest in DHA research, in particular, in attempts to delineate mechanisms whereby DHA may serve as a nutraceutical and confer neuroprotective effects. Current studies have revealed ability for the oxylipins to regulation of cell redox homeostasis through the Nuclear factor (erythroid-derived 2)-like 2/Antioxidant response element (Nrf2/ARE) anti-oxidant pathway, and impact signaling pathways associated with neurotransmitters, and modulation of neuronal functions involving brain-derived neurotropic factor (BDNF). This review is aimed at describing recent studies elaborating these mechanisms with special regard to aging and Alzheimer's disease, autism spectrum disorder, schizophrenia, traumatic brain injury, and stroke.
Collapse
Affiliation(s)
- Grace Y Sun
- Biochemistry Department, University of Missouri, Columbia, MO, United States
| | - Agnes Simonyi
- Biochemistry Department, University of Missouri, Columbia, MO, United States
| | - Kevin L Fritsche
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
| | - Dennis Y Chuang
- Department of Neurology, University Hospitals Cleveland Medical Center and Case Western Reserve University, Cleveland, OH, United States
| | - Mark Hannink
- Biochemistry Department, University of Missouri, Columbia, MO, United States
| | - Zezong Gu
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO, United States
| | | | - Jeffrey K Yao
- Medical Research Service, VA Pittsburgh Healthcare System, and Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - James C Lee
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, United States
| | - David Q Beversdorf
- Department of Radiology, Neurology, and Psychological Sciences, and the Thompson Center, William and Nancy Thompson Endowed Chair in Radiology, University of Missouri School of Medicine, Columbia, MO, United States
| |
Collapse
|
17
|
Donepezil effects on cholesterol and oxysterol plasma levels of Alzheimer's disease patients. Eur Arch Psychiatry Clin Neurosci 2018; 268:501-507. [PMID: 28861608 DOI: 10.1007/s00406-017-0838-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 08/22/2017] [Indexed: 12/15/2022]
Abstract
Cholesterol is an essential component in the structure and function of cell membranes and has been associated with the major pathological signatures of Alzheimer's disease (AD). To maintain brain cholesterol homeostasis, it is converted into 24(S)-hydroxycholesterol (24OHC) which can be driven through the blood-brain barrier. Several studies have already described a decrease in 24OHC and an increase of 27(S)-hydroxycholesterol (27OHC) in AD, as a reflection of disease burden, the loss of metabolically active neurons and the degree of structural atrophy. It is also well known that peripheral cholesterol is altered in AD patients. However, there are no data regarding effects of AD treatment in this cholesterol pathway. Since a study from our group indicated a significant increase in membrane phospholipid metabolism by donepezil, the aim of this study was to evaluate the effect of short- and long-term donepezil treatment on cholesterol and metabolites 24OHC and 27OHC in plasma of AD patients and in healthy volunteers. At baseline, we found a decrease of 24OHC (p = 0.003) in AD patients. Cholesterol levels increased with donepezil treatment (p = 0.04) but no differences were observed regarding 24OHC and 27OHC. However, these results confirm and extend previous studies demonstrating disturbed cholesterol turnover in Alzheimer's disease.
Collapse
|
18
|
Neuroprotective Effects of Macrovipera lebetina Snake Venom in the Model of Alzheimer’s Disease. NEUROPHYSIOLOGY+ 2018. [DOI: 10.1007/s11062-018-9704-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
19
|
Mohibbullah M, Choi JS, Bhuiyan MMH, Haque MN, Rahman MK, Moon IS, Hong YK. The Red Alga Gracilariopsis chorda and Its Active Constituent Arachidonic Acid Promote Spine Dynamics via Dendritic Filopodia and Potentiate Functional Synaptic Plasticity in Hippocampal Neurons. J Med Food 2018; 21:481-488. [PMID: 29498567 DOI: 10.1089/jmf.2017.4026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Exogenous neurotrophins can induce neuronal differentiation, outgrowth, survival, and synaptic function in the central nervous system. In primary cultures of rat hippocampal neurons, an ethanol extract of the red alga Gracilariopsis chorda (GCE) and its active compound arachidonic acid (AA) significantly increased the densities of dendritic filopodia and spines, promoted the expression of presynaptic vesicle protein 2 (SV2) and postsynaptic density protein 95 (PSD-95), induced robust synaptogenesis, and increased the expression of cell division control protein 42 (CDC42) and actin-related protein 2 (ARP2), which are important for actin organization in dendritic protrusions, and facilitated presynaptic plasticity by increasing the size of the synaptic vesicle pool at presynaptic nerve terminals. In addition, oral administration of GCE and AA for 10 days, at concentrations of 1 mg/g and 2.2 μg/g body weight, respectively, significantly protected against scopolamine-induced memory impairment in mice by increasing the latency time in the passive avoidance test. These results provide strong scientific evidence that these natural products can be used as neurotrophic substances and/or dietary supplements for the prevention and treatment of memory-related neurological disorders via the reconstruction of axo-dendrites and its synapses.
Collapse
Affiliation(s)
- Md Mohibbullah
- 1 Department of Biotechnology, Pukyong National University , Busan, Korea
| | - Jae-Suk Choi
- 2 Division of Bioindustry, Silla University , Busan, Korea
| | | | - Md Nazmul Haque
- 3 Department of Anatomy, College of Medicine, Dongguk University , Gyeongju, Gyeongbuk, Korea
| | - Md Khalilur Rahman
- 4 Department of Pharmacology, School of Medicine, The University of Sydney , Sydney, Australia
| | - Il Soo Moon
- 3 Department of Anatomy, College of Medicine, Dongguk University , Gyeongju, Gyeongbuk, Korea
| | - Yong-Ki Hong
- 1 Department of Biotechnology, Pukyong National University , Busan, Korea
| |
Collapse
|
20
|
Aliev AM, Abdulagatov IM. The study of microalgae Nannochloropsis salina fatty acid composition of the extracts using different techniques. SCF vs conventional extraction. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2016.08.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
21
|
Goozee K, Chatterjee P, James I, Shen K, Sohrabi HR, Asih PR, Dave P, Ball B, ManYan C, Taddei K, Chung R, Garg ML, Martins RN. Alterations in erythrocyte fatty acid composition in preclinical Alzheimer's disease. Sci Rep 2017; 7:676. [PMID: 28386119 PMCID: PMC5429676 DOI: 10.1038/s41598-017-00751-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 03/09/2017] [Indexed: 02/07/2023] Open
Abstract
Brain and blood fatty acids (FA) are altered in Alzheimer's disease and cognitively impaired individuals, however, FA alterations in the preclinical phase, prior to cognitive impairment have not been investigated previously. The current study therefore evaluated erythrocyte FA in cognitively normal elderly participants aged 65-90 years via trans-methylation followed by gas chromatography. The neocortical beta-amyloid load (NAL) measured via positron emission tomography (PET) using ligand 18F-Florbetaben, was employed to categorise participants as low NAL (standard uptake value ratio; SUVR < 1.35, N = 65) and high NAL or preclinical AD (SUVR ≥ 1.35, N = 35) wherein, linear models were employed to compare FA compositions between the two groups. Increased arachidonic acid (AA, p < 0.05) and decreased docosapentaenoic acid (DPA, p < 0.05) were observed in high NAL. To differentiate low from high NAL, the area under the curve (AUC) generated from a 'base model' comprising age, gender, APOEε4 and education (AUC = 0.794) was outperformed by base model + AA:DPA (AUC = 0.836). Our findings suggest that specific alterations in erythrocyte FA composition occur very early in the disease pathogenic trajectory, prior to cognitive impairment. As erythrocyte FA levels are reflective of tissue FA, these alterations may provide insight into the pathogenic mechanism(s) of the disease and may highlight potential early diagnostic markers and therapeutic targets.
Collapse
Affiliation(s)
- Kathryn Goozee
- Anglicare, Sydney, NSW, Australia.,School of Psychiatry and Clinical Neurosciences, University of Western Australia, Crawley, WA, Australia.,School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.,Department of Biomedical Sciences, Macquarie University, North Ryde, NSW, Australia.,KaRa Institute of Neurological Diseases, Macquarie Park, NSW, Australia.,McCusker Alzheimer Research Foundation, Nedlands, WA, Australia.,The Cooperative Research Centre for Mental Health, Carlton, VIC, Australia
| | - Pratishtha Chatterjee
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.,Department of Biomedical Sciences, Macquarie University, North Ryde, NSW, Australia.,KaRa Institute of Neurological Diseases, Macquarie Park, NSW, Australia
| | - Ian James
- Institute for Immunology & Infectious Diseases, Murdoch University, Murdoch, WA, Australia
| | - Kaikai Shen
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.,McCusker Alzheimer Research Foundation, Nedlands, WA, Australia.,Australian eHealth Research Centre, CSIRO, Australia
| | - Hamid R Sohrabi
- School of Psychiatry and Clinical Neurosciences, University of Western Australia, Crawley, WA, Australia.,School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.,Department of Biomedical Sciences, Macquarie University, North Ryde, NSW, Australia.,McCusker Alzheimer Research Foundation, Nedlands, WA, Australia.,The Cooperative Research Centre for Mental Health, Carlton, VIC, Australia
| | - Prita R Asih
- KaRa Institute of Neurological Diseases, Macquarie Park, NSW, Australia.,School of Medical Sciences, University of New South Wales, Kensington, NSW, Australia
| | | | - Bethany Ball
- KaRa Institute of Neurological Diseases, Macquarie Park, NSW, Australia
| | | | - Kevin Taddei
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.,McCusker Alzheimer Research Foundation, Nedlands, WA, Australia.,The Cooperative Research Centre for Mental Health, Carlton, VIC, Australia
| | - Roger Chung
- Department of Biomedical Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Manohar L Garg
- Nutraceuticals Research Program, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
| | - Ralph N Martins
- School of Psychiatry and Clinical Neurosciences, University of Western Australia, Crawley, WA, Australia. .,School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia. .,Department of Biomedical Sciences, Macquarie University, North Ryde, NSW, Australia. .,KaRa Institute of Neurological Diseases, Macquarie Park, NSW, Australia. .,McCusker Alzheimer Research Foundation, Nedlands, WA, Australia. .,The Cooperative Research Centre for Mental Health, Carlton, VIC, Australia.
| |
Collapse
|
22
|
Chew WS, Shalini SM, Torta F, Wenk MR, Stohler C, Yeo JF, Herr DR, Ong WY. Role of prefrontal cortical calcium-independent phospholipase A 2 in antinociceptive effect of the norepinephrine reuptake inhibitor antidepresssant maprotiline. Neuroscience 2016; 340:91-100. [PMID: 27789386 DOI: 10.1016/j.neuroscience.2016.10.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 10/12/2016] [Accepted: 10/14/2016] [Indexed: 12/21/2022]
Abstract
The prefrontal cortex is essential for executive functions such as decision-making and planning. There is also accumulating evidence that it is important for the modulation of pain. In this study, we investigated a possible role of prefrontal cortical calcium-independent phospholipase A2 (iPLA2) in antinociception induced by the norepinephrine reuptake inhibitor (NRI) and tetracyclic (tricyclic) antidepressant, maprotiline. Intraperitoneal injections of maprotiline increased iPLA2 mRNA and protein expression in the prefrontal cortex. This treatment also reduced grooming responses to von-Frey hair stimulation of the face after facial carrageenan injection, indicating decreased sensitivity to pain. The antinociceptive effect of maprotiline was abrogated by iPLA2 antisense oligonucleotide injection to the prefrontal cortex, indicating a role of this enzyme in antinociception. In contrast, injection of iPLA2 antisense oligonucleotide to the somatosensory cortex did not reduce the antinociceptive effect of maprotiline. Lipidomic analysis of the prefrontal cortex showed decrease in phosphatidylcholine species, but increase in lysophosphatidylcholine species, indicating increased PLA2 activity, and release of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) after maprotiline treatment. Differences in sphingomyelin/ceramide were also detected. These changes were not observed in maprotiline-treated mice that received iPLA2 antisense oligonucleotide to the prefrontal cortex. Metabolites of DHA and EPA may help to strengthen a known supraspinal antinociceptive pathway from the prefrontal cortex to the periaqueductal gray. Together, results indicate a role of prefrontal cortical iPLA2 and its enzymatic products in the antinociceptive effect of maprotiline.
Collapse
Affiliation(s)
- Wee-Siong Chew
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119260, Singapore
| | - Suku-Maran Shalini
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119260, Singapore; Neurobiology and Ageing Research Programme, National University of Singapore, Singapore 119260, Singapore
| | - Federico Torta
- Neurobiology and Ageing Research Programme, National University of Singapore, Singapore 119260, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119260, Singapore
| | - Markus R Wenk
- Neurobiology and Ageing Research Programme, National University of Singapore, Singapore 119260, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119260, Singapore; Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 119260, Singapore
| | | | - Jin-Fei Yeo
- Division of Oral and Maxillofacial Surgery, Faculty of Dentistry, National University of Singapore, Singapore 119260, Singapore
| | - Deron R Herr
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119260, Singapore
| | - Wei-Yi Ong
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119260, Singapore; Neurobiology and Ageing Research Programme, National University of Singapore, Singapore 119260, Singapore.
| |
Collapse
|
23
|
Mury FB, da Silva WC, Barbosa NR, Mendes CT, Bonini JS, Sarkis JES, Cammarota M, Izquierdo I, Gattaz WF, Dias-Neto E. Lithium activates brain phospholipase A2 and improves memory in rats: implications for Alzheimer's disease. Eur Arch Psychiatry Clin Neurosci 2016; 266:607-18. [PMID: 26661385 DOI: 10.1007/s00406-015-0665-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 11/30/2015] [Indexed: 02/07/2023]
Abstract
Phospholipase A2 (Pla2) is required for memory retrieval, and its inhibition in the hippocampus has been reported to impair memory acquisition in rats. Moreover, cognitive decline and memory deficits showed to be reduced in animal models after lithium treatment, prompting us to evaluate possible links between Pla2, lithium and memory. Here, we evaluated the possible modulation of Pla2 activity by a long-term treatment of rats with low doses of lithium and its impact in memory. Wistar rats were trained for the inhibitory avoidance task, treated with lithium for 100 days and tested for perdurability of long-term memory. Hippocampal samples were used for quantifying the expression of 19 brain-expressed Pla2 genes and for evaluating the enzymatic activity of Pla2 using group-specific radio-enzymatic assays. Our data pointed to a significant perdurability of long-term memory, which correlated with increased transcriptional and enzymatic activities of certain members of the Pla2 family (iPla2 and sPla2) after the chronic lithium treatment. Our data suggest new possible targets of lithium, add more information on its pharmacological activity and reinforce the possible use of low doses of lithium for the treatment of neurodegenerative conditions such as the Alzheimer's disease.
Collapse
Affiliation(s)
- Fábio B Mury
- Laboratório de Neurociências (LIM27), Instituto de Psiquiatria, Faculdade de Medicina da Universidade de São Paulo, Rua Ovídio Pires de Campos, 785, 05403-010, São Paulo, SP, Brazil
- Pós-Graduação Interunidades em Biotecnologia, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Weber C da Silva
- Centro de Memória, Instituto de Pesquisas Biomédicas, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Departamento de Farmácia, Universidade Estadual do Centro-Oeste, Guarapuava, PR, Brazil
| | - Nádia R Barbosa
- Laboratório de Neurociências (LIM27), Instituto de Psiquiatria, Faculdade de Medicina da Universidade de São Paulo, Rua Ovídio Pires de Campos, 785, 05403-010, São Paulo, SP, Brazil
| | - Camila T Mendes
- Laboratório de Neurociências (LIM27), Instituto de Psiquiatria, Faculdade de Medicina da Universidade de São Paulo, Rua Ovídio Pires de Campos, 785, 05403-010, São Paulo, SP, Brazil
- Pós-Graduação Interunidades em Biotecnologia, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Juliana S Bonini
- Centro de Memória, Instituto de Pesquisas Biomédicas, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Departamento de Farmácia, Universidade Estadual do Centro-Oeste, Guarapuava, PR, Brazil
| | - Jorge Eduardo Souza Sarkis
- Instituto de Pesquisas Energéticas e Nucleares-IPEN-CNEN/SP, Grupo de Caracterização Química e Isotópica, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Martin Cammarota
- Laboratório de Pesquisa de Memória, Instituto do Cérebro, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | - Ivan Izquierdo
- Centro de Memória, Instituto de Pesquisas Biomédicas, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Wagner F Gattaz
- Laboratório de Neurociências (LIM27), Instituto de Psiquiatria, Faculdade de Medicina da Universidade de São Paulo, Rua Ovídio Pires de Campos, 785, 05403-010, São Paulo, SP, Brazil.
| | - Emmanuel Dias-Neto
- Laboratório de Neurociências (LIM27), Instituto de Psiquiatria, Faculdade de Medicina da Universidade de São Paulo, Rua Ovídio Pires de Campos, 785, 05403-010, São Paulo, SP, Brazil.
- Laboratório de Genômica Médica, Centro Internacional de Pesquisas, AC Camargo Cancer Center, São Paulo, SP, Brazil.
| |
Collapse
|
24
|
The Edible Red Seaweed Gracilariopsis chorda Promotes Axodendritic Architectural Complexity in Hippocampal Neurons. J Med Food 2016; 19:638-44. [DOI: 10.1089/jmf.2016.3694] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
25
|
Kline AE, Leary JB, Radabaugh HL, Cheng JP, Bondi CO. Combination therapies for neurobehavioral and cognitive recovery after experimental traumatic brain injury: Is more better? Prog Neurobiol 2016; 142:45-67. [PMID: 27166858 DOI: 10.1016/j.pneurobio.2016.05.002] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 04/26/2016] [Accepted: 05/01/2016] [Indexed: 12/18/2022]
Abstract
Traumatic brain injury (TBI) is a significant health care crisis that affects two million individuals in the United Sates alone and over ten million worldwide each year. While numerous monotherapies have been evaluated and shown to be beneficial at the bench, similar results have not translated to the clinic. One reason for the lack of successful translation may be due to the fact that TBI is a heterogeneous disease that affects multiple mechanisms, thus requiring a therapeutic approach that can act on complementary, rather than single, targets. Hence, the use of combination therapies (i.e., polytherapy) has emerged as a viable approach. Stringent criteria, such as verification of each individual treatment plus the combination, a focus on behavioral outcome, and post-injury vs. pre-injury treatments, were employed to determine which studies were appropriate for review. The selection process resulted in 37 papers that fit the specifications. The review, which is the first to comprehensively assess the effects of combination therapies on behavioral outcomes after TBI, encompasses five broad categories (inflammation, oxidative stress, neurotransmitter dysregulation, neurotrophins, and stem cells, with and without rehabilitative therapies). Overall, the findings suggest that combination therapies can be more beneficial than monotherapies as indicated by 46% of the studies exhibiting an additive or synergistic positive effect versus on 19% reporting a negative interaction. These encouraging findings serve as an impetus for continued combination studies after TBI and ultimately for the development of successful clinically relevant therapies.
Collapse
Affiliation(s)
- Anthony E Kline
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15213, United States; Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15213, United States, United States; Psychology, University of Pittsburgh, Pittsburgh, PA 15213, United States; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15213, United States; Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA 15213, United States.
| | - Jacob B Leary
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15213, United States
| | - Hannah L Radabaugh
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15213, United States
| | - Jeffrey P Cheng
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15213, United States
| | - Corina O Bondi
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15213, United States; Neurobiology, University of Pittsburgh, Pittsburgh, PA 15213, United States
| |
Collapse
|
26
|
Balietti M, Giuli C, Fattoretti P, Fabbietti P, Postacchini D, Conti F. Cognitive Stimulation Modulates Platelet Total Phospholipases A2 Activity in Subjects with Mild Cognitive Impairment. J Alzheimers Dis 2016; 50:957-62. [PMID: 26836161 PMCID: PMC4927922 DOI: 10.3233/jad-150714] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2015] [Indexed: 12/13/2022]
Abstract
We evaluated the effect of cognitive stimulation (CS) on platelet total phospholipases A2 activity (tPLA2A) in patients with mild cognitive impairment (MCI_P). At baseline, tPLA2A negatively correlated with Mini-Mental State Examination score (MMSE_s): patients with MMSE_s <26 (Subgroup 1) had significantly higher activity than those with MMSE_s ≥26 (Subgroup 2), who had values similar to the healthy elderly. Regarding CS effect, Subgroup 1 had a significant tPLA2A reduction, whereas Subgroup 2 did not significantly changes after training. Our results showed for the first time that tPLA2A correlates with the cognitive conditions of MCI_P, and that CS acts selectively on subjects with a dysregulated tPLA2A.
Collapse
Affiliation(s)
| | | | | | | | | | - Fiorenzo Conti
- Center for Neurobiology of Aging, INRCA, Ancona, Italy
- Department of Experimental and Clinical Medicine, Section of Neuroscience and Cell Biology, Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
27
|
Talib LL, Hototian SR, Joaquim HPG, Forlenza OV, Gattaz WF. Increased iPLA2 activity and levels of phosphorylated GSK3B in platelets are associated with donepezil treatment in Alzheimer's disease patients. Eur Arch Psychiatry Clin Neurosci 2015; 265:701-6. [PMID: 25920742 DOI: 10.1007/s00406-015-0600-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 04/15/2015] [Indexed: 11/30/2022]
Abstract
Reduced phospholipase A2 (PLA2) activity and increased phosphorylation of glycogen synthase kinase 3B (GSK3B) participate in the production of beta-amyloid plaques and of neurofibrillary tangles, which are two neuropathological hallmarks of Alzheimer's disease (AD). Experimental evidences suggest a neuroprotective effect of the cholinesterase inhibitor donepezil in the treatment the disease. The aims of the present study were to evaluate in AD patients the effects of treatment with donepezil on PLA2 activity and GSK3B level. Thirty patients with AD were treated during 6 months with 10 mg daily of donepezil. Radio-enzymatic assays were used to measure PLA2 activity and Elisa assays for GSK3B level, both in platelets. Before treatment and after 3 and 6 months on donepezil, AD patients underwent a cognitive assessment and platelet samples were collected. Values were compared to a healthy control group of 42 sex- and age-matched elderly individuals. Before treatment, iPLA2 activity was lower in patients with AD as compared to controls (p < 0.001). At baseline, no differences were found in GSK3B level between both groups. After 3 and 6 months of treatment, we found a significant increase in iPLA2 activity (p = 0.015 and p < 0.001, respectively). iPLA2 increment was related to the cognitive improvement during treatment (p = 0.037). After 6 months, we found an increase in phosphorylated GSK3B (p = 0.02). The present findings suggest two possible mechanisms by which donepezil delays the progression of AD. The increment of iPLA2 activity may reduce the production of beta-amyloid plaques, whereas the phosphorylation of GSK3B inactivates the enzyme, reducing thus the phosphorylation of tau protein.
Collapse
Affiliation(s)
- L L Talib
- Laboratory of Neuroscience (LIM-27), Department and Institute of Psychiatry, Faculty of Medicine, University of São Paulo, São Paulo, Brazil.
| | - S R Hototian
- Laboratory of Neuroscience (LIM-27), Department and Institute of Psychiatry, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - H P G Joaquim
- Laboratory of Neuroscience (LIM-27), Department and Institute of Psychiatry, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - O V Forlenza
- Laboratory of Neuroscience (LIM-27), Department and Institute of Psychiatry, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - W F Gattaz
- Laboratory of Neuroscience (LIM-27), Department and Institute of Psychiatry, Faculty of Medicine, University of São Paulo, São Paulo, Brazil. .,Instituto de Psiquiatria, Hospital das Clínicas da Faculdade de Medicina da USP, Rua Dr. Ovídio Pires de Campos 785, São Paulo, SP, 05403-010, Brazil.
| |
Collapse
|
28
|
Pan X, Nasaruddin MB, Elliott CT, McGuinness B, Passmore AP, Kehoe PG, Hölscher C, McClean PL, Graham SF, Green BD. Alzheimer's disease-like pathology has transient effects on the brain and blood metabolome. Neurobiol Aging 2015; 38:151-163. [PMID: 26827653 DOI: 10.1016/j.neurobiolaging.2015.11.014] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 11/09/2015] [Accepted: 11/23/2015] [Indexed: 12/18/2022]
Abstract
The pathogenesis of Alzheimer's disease (AD) is complex involving multiple contributing factors. The extent to which AD pathology affects the metabolome is still not understood nor is it known how disturbances change as the disease progresses. For the first time, we have profiled longitudinally (6, 8, 10, 12, and 18 months) both the brain and plasma metabolome of APPswe/PS1deltaE9 double transgenic and wild-type mice. A total of 187 metabolites were quantified using a targeted metabolomic methodology. Multivariate statistical analysis produced models that distinguished APPswe/PS1deltaE9 from wild-type mice at 8, 10, and 12 months. Metabolic pathway analysis found perturbed polyamine metabolism in both brain and blood plasma. There were other disturbances in essential amino acids, branched-chain amino acids, and also in the neurotransmitter serotonin. Pronounced imbalances in phospholipid and acylcarnitine homeostasis were evident in 2 age groups. AD-like pathology, therefore, affects greatly on both the brain and blood metabolomes, although there appears to be a clear temporal sequence whereby changes to brain metabolites precede those in blood.
Collapse
Affiliation(s)
- Xiaobei Pan
- Advanced Asset Technology Centre, Institute for Global Food Security, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Muhammad Bin Nasaruddin
- Advanced Asset Technology Centre, Institute for Global Food Security, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Christopher T Elliott
- Advanced Asset Technology Centre, Institute for Global Food Security, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Bernadette McGuinness
- Centre for Public Health, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Anthony P Passmore
- Centre for Public Health, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Patrick G Kehoe
- Dementia Research Group, Institute of Clinical Neurosciences, School of Clinical Sciences, University of Bristol, Bristol, UK
| | - Christian Hölscher
- Division of Biomedical and Life Sciences, Lancaster University, Lancaster, UK
| | - Paula L McClean
- School of Biomedical Sciences, University of Ulster, Coleraine, UK
| | | | - Brian D Green
- Advanced Asset Technology Centre, Institute for Global Food Security, Queen's University Belfast, Belfast, Northern Ireland, UK.
| |
Collapse
|
29
|
Ramanadham S, Ali T, Ashley JW, Bone RN, Hancock WD, Lei X. Calcium-independent phospholipases A2 and their roles in biological processes and diseases. J Lipid Res 2015; 56:1643-68. [PMID: 26023050 DOI: 10.1194/jlr.r058701] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Indexed: 12/24/2022] Open
Abstract
Among the family of phospholipases A2 (PLA2s) are the Ca(2+)-independent PLA2s (iPLA2s) and they are designated group VI iPLA2s. In relation to secretory and cytosolic PLA2s, the iPLA2s are more recently described and details of their expression and roles in biological functions are rapidly emerging. The iPLA2s or patatin-like phospholipases (PNPLAs) are intracellular enzymes that do not require Ca(2+) for activity, and contain lipase (GXSXG) and nucleotide-binding (GXGXXG) consensus sequences. Though nine PNPLAs have been recognized, PNPLA8 (membrane-associated iPLA2γ) and PNPLA9 (cytosol-associated iPLA2β) are the most widely studied and understood. The iPLA2s manifest a variety of activities in addition to phospholipase, are ubiquitously expressed, and participate in a multitude of biological processes, including fat catabolism, cell differentiation, maintenance of mitochondrial integrity, phospholipid remodeling, cell proliferation, signal transduction, and cell death. As might be expected, increased or decreased expression of iPLA2s can have profound effects on the metabolic state, CNS function, cardiovascular performance, and cell survival; therefore, dysregulation of iPLA2s can be a critical factor in the development of many diseases. This review is aimed at providing a general framework of the current understanding of the iPLA2s and discussion of the potential mechanisms of action of the iPLA2s and related involved lipid mediators.
Collapse
Affiliation(s)
- Sasanka Ramanadham
- Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294 Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Tomader Ali
- Undergraduate Research Office, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Jason W Ashley
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA 19104
| | - Robert N Bone
- Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294 Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL 35294
| | - William D Hancock
- Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294 Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Xiaoyong Lei
- Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294 Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL 35294
| |
Collapse
|
30
|
Lysophosphatidylcholine increases the neurotoxicity of Alzheimer's amyloid β1-42 peptide: role of oligomer formation. Neuroscience 2015; 292:159-69. [PMID: 25727637 DOI: 10.1016/j.neuroscience.2015.02.034] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 02/16/2015] [Accepted: 02/19/2015] [Indexed: 11/24/2022]
Abstract
Oligomer formation is considered as a critical process for the neurotoxic effects of Alzheimer's amyloid β (Aβ) peptide. Previously we have demonstrated that lysophosphatidylcholine (LPC) increases the oligomer formation of Aβ1-42, the major Aβ peptide found Alzheimer's disease (AD) lesions. In this study, we have investigated whether LPC affects the neurotoxic effects of Aβ1-42 in a neuronal cell line (A1) culture. Dimethyl thiazolyl diphenyl tetrazolium (MTT) assay revealed that up to 10μM concentration, LPC did not affect A1 cell viability. Aβ1-42 decreased the cell viability, and such effect was dose dependently enhanced by LPC. However, neither LPC nor Aβ1-42, alone or in combination increased lactate dehydrogenase (LDH) release from A1 cells after 24-h treatment. Terminal deoxynucleotidyl transferase dUTP-biotin nick-end-labeling (TUNEL) assay showed that LPC increased Aβ1-42-induced apoptotic cell number. To determine the underlying mechanisms, the proteins implicated in apoptosis pathways including Bcl-2- and caspase-family were analyzed by Western blotting. The results demonstrated that Aβ1-42 decreased Bcl-2 in A1 cells at 24h, whereas LPC had no effect at any time point. Both LPC and Aβ1-42 increased Bax level at 24h, and their combined stimulation showed a synergistic effect. Similar synergistic effect of LPC and Aβ1-42 on caspase9 activation was observed. Dot blot immunoassay and Western blotting showed that LPC augmented Aβ1-42 oligomer formation in cell culture medium. Removing LPC-induced early-formed Aβ1-42 oligomer from the culture medium by immunoprecipitation decreased active caspase9 level and neurotoxicity, as revealed by Western blotting and MTT assay. Furthermore, dihydroethidium (DHE) assay showed that Aβ1-42 increased reactive oxygen species level in A1 cells, such effect was further enhanced by LPC. Thus, our results demonstrated that LPC increased the oligomer formation process of Aβ1-42 peptide in culture condition, and consequently increased apoptotic neuronal death. Such process might be important for the pathogenesis of AD, and inhibition of LPC generation could be a therapeutic target for the disease.
Collapse
|
31
|
Chew WS, Ong WY. Regulation of Calcium-Independent Phospholipase A2 Expression by Adrenoceptors and Sterol Regulatory Element Binding Protein-Potential Crosstalk Between Sterol and Glycerophospholipid Mediators. Mol Neurobiol 2014; 53:500-517. [PMID: 25482049 DOI: 10.1007/s12035-014-9026-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 11/21/2014] [Indexed: 01/02/2023]
Abstract
Calcium-independent phospholipase A2 (iPLA2) is an 85-kDa enzyme that releases docosahexaenoic acid (DHA) from glycerophospholipids. DHA can be metabolized to resolvins and neuroprotectins that have anti-inflammatory properties and effects on neural plasticity. Recent studies show an important role of prefrontal cortical iPLA2 in hippocampo-prefrontal cortical LTP and antidepressant-like effect of the norepinephrine reuptake inhibitor (NRI) antidepressant, maprotiline. In this study, we elucidated the cellular mechanisms through which stimulation of adrenergic receptors could lead to increased iPLA2 expression. Treatment of SH-SY5Y neuroblastoma cells with maprotiline, another tricyclic antidepressant with noradrenaline reuptake inhibiting properties, nortriptyline, and the adrenergic receptor agonist, phenylephrine, resulted in increased iPLA2β mRNA expression. This increase was blocked by inhibitors to alpha-1 adrenergic receptor, mitogen-activated protein (MAP) kinase or extracellular signal-regulated kinase (ERK) 1/2, and sterol regulatory element-binding protein (SREBP). Maprotiline and phenylephrine induced binding of SREBP-2 to sterol regulatory element (SRE) region on the iPLA2 promoter, as determined by electrophoretic mobility shift assay (EMSA). Together, results indicate that stimulation of adrenoreceptors causes increased iPLA2 expression via MAP kinase/ERK 1/2 and SREBP, and suggest a possible mechanism for effect of CNS noradrenaline on neural plasticity and crosstalk between sterol and glycerophospholipid mediators, that may play a role in physiological or pathophysiological processes in the brain and other organs.
Collapse
Affiliation(s)
- Wee-Siong Chew
- Department of Anatomy, National University of Singapore, Singapore, 119260, Singapore
| | - Wei-Yi Ong
- Department of Anatomy, National University of Singapore, Singapore, 119260, Singapore. .,Neurobiology and Ageing Research Programme, National University of Singapore, Singapore, 119260, Singapore.
| |
Collapse
|
32
|
Hermann PM, Watson SN, Wildering WC. Phospholipase A2 - nexus of aging, oxidative stress, neuronal excitability, and functional decline of the aging nervous system? Insights from a snail model system of neuronal aging and age-associated memory impairment. Front Genet 2014; 5:419. [PMID: 25538730 PMCID: PMC4255604 DOI: 10.3389/fgene.2014.00419] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Accepted: 11/13/2014] [Indexed: 02/02/2023] Open
Abstract
The aging brain undergoes a range of changes varying from subtle structural and physiological changes causing only minor functional decline under healthy normal aging conditions, to severe cognitive or neurological impairment associated with extensive loss of neurons and circuits due to age-associated neurodegenerative disease conditions. Understanding how biological aging processes affect the brain and how they contribute to the onset and progress of age-associated neurodegenerative diseases is a core research goal in contemporary neuroscience. This review focuses on the idea that changes in intrinsic neuronal electrical excitability associated with (per)oxidation of membrane lipids and activation of phospholipase A2 (PLA2) enzymes are an important mechanism of learning and memory failure under normal aging conditions. Specifically, in the context of this special issue on the biology of cognitive aging we portray the opportunities offered by the identifiable neurons and behaviorally characterized neural circuits of the freshwater snail Lymnaea stagnalis in neuronal aging research and recapitulate recent insights indicating a key role of lipid peroxidation-induced PLA2 as instruments of aging, oxidative stress and inflammation in age-associated neuronal and memory impairment in this model system. The findings are discussed in view of accumulating evidence suggesting involvement of analogous mechanisms in the etiology of age-associated dysfunction and disease of the human and mammalian brain.
Collapse
Affiliation(s)
- Petra M Hermann
- Department of Biological Sciences, University of Calgary Calgary, AB, Canada ; Department of Physiology and Pharmacology, University of Calgary Calgary, AB, Canada
| | - Shawn N Watson
- Department of Biological Sciences, University of Calgary Calgary, AB, Canada
| | - Willem C Wildering
- Department of Biological Sciences, University of Calgary Calgary, AB, Canada ; Department of Physiology and Pharmacology, University of Calgary Calgary, AB, Canada ; Hotchkiss Brain Institute, University of Calgary Calgary, AB, Canada
| |
Collapse
|
33
|
A subchronic toxicity study, preceded by an in utero exposure phase, with refined arachidonic acid-rich oil (RAO) derived from Mortierella alpina XM027 in rats. Regul Toxicol Pharmacol 2014; 70:696-703. [DOI: 10.1016/j.yrtph.2014.10.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 10/15/2014] [Accepted: 10/19/2014] [Indexed: 11/18/2022]
|
34
|
Sun GY, Chuang DY, Zong Y, Jiang J, Lee JCM, Gu Z, Simonyi A. Role of cytosolic phospholipase A2 in oxidative and inflammatory signaling pathways in different cell types in the central nervous system. Mol Neurobiol 2014; 50:6-14. [PMID: 24573693 DOI: 10.1007/s12035-014-8662-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 02/11/2014] [Indexed: 12/30/2022]
Abstract
Phospholipases A(2) (PLA(2)s) are important enzymes for the metabolism of fatty acids in membrane phospholipids. Among the three major classes of PLA(2)s in the mammalian system, the group IV calcium-dependent cytosolic PLA(2) alpha (cPLA(2)α) has received the most attention because it is widely expressed in nearly all mammalian cells and its active participation in cell metabolism. Besides Ca(2+) binding to its C2 domain, this enzyme can undergo a number of cell-specific post-translational modifications, including phosphorylation by protein kinases, S-nitrosylation through interaction with nitric oxide (NO), as well as interaction with other proteins and lipid molecules. Hydrolysis of phospholipids by cPLA(2) yields two important lipid mediators, arachidonic acid (AA) and lysophospholipids. While AA is known to serve as a substrate for cyclooxygenases and lipoxygenases, which are enzymes for the synthesis of eicosanoids and leukotrienes, lysophospholipids are known to possess detergent-like properties capable of altering microdomains of cell membranes. An important feature of cPLA(2) is its link to cell surface receptors that stimulate signaling pathways associated with activation of protein kinases and production of reactive oxygen species (ROS). In the central nervous system (CNS), cPLA(2) activation has been implicated in neuronal excitation, synaptic secretion, apoptosis, cell-cell interaction, cognitive and behavioral function, oxidative-nitrosative stress, and inflammatory responses that underline the pathogenesis of a number of neurodegenerative diseases. However, the types of extracellular agonists that target intracellular signaling pathways leading to cPLA(2) activation among different cell types and under different physiological and pathological conditions have not been investigated in detail. In this review, special emphasis is given to metabolic events linking cPLA(2) to activation in neurons, astrocytes, microglial cells, and cerebrovascular cells. Understanding the molecular mechanism(s) for regulation of this enzyme is deemed important in the development of new therapeutic targets for the treatment and prevention of neurodegenerative diseases.
Collapse
Affiliation(s)
- Grace Y Sun
- Biochemistry Department, University of Missouri, 117 Schweitzer Hall, Columbia, MO, 65211, USA,
| | | | | | | | | | | | | |
Collapse
|
35
|
Gattaz WF, Talib LL, Schaeffer EL, Diniz BS, Forlenza OV. Low platelet iPLA2 activity predicts conversion from mild cognitive impairment to Alzheimer’s disease: a 4-year follow-up study. J Neural Transm (Vienna) 2013; 121:193-200. [DOI: 10.1007/s00702-013-1088-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 08/27/2013] [Indexed: 12/12/2022]
|
36
|
Anand R, Gill KD, Mahdi AA. Therapeutics of Alzheimer's disease: Past, present and future. Neuropharmacology 2013; 76 Pt A:27-50. [PMID: 23891641 DOI: 10.1016/j.neuropharm.2013.07.004] [Citation(s) in RCA: 531] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Revised: 06/26/2013] [Accepted: 07/02/2013] [Indexed: 12/15/2022]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia worldwide. The etiology is multifactorial, and pathophysiology of the disease is complex. Data indicate an exponential rise in the number of cases of AD, emphasizing the need for developing an effective treatment. AD also imposes tremendous emotional and financial burden to the patient's family and community. The disease has been studied over a century, but acetylcholinesterase inhibitors and memantine are the only drugs currently approved for its management. These drugs provide symptomatic improvement alone but do less to modify the disease process. The extensive insight into the molecular and cellular pathomechanism in AD over the past few decades has provided us significant progress in the understanding of the disease. A number of novel strategies that seek to modify the disease process have been developed. The major developments in this direction are the amyloid and tau based therapeutics, which could hold the key to treatment of AD in the near future. Several putative drugs have been thoroughly investigated in preclinical studies, but many of them have failed to produce results in the clinical scenario; therefore it is only prudent that lessons be learnt from the past mistakes. The current rationales and targets evaluated for therapeutic benefit in AD are reviewed in this article. This article is part of the Special Issue entitled 'The Synaptic Basis of Neurodegenerative Disorders'.
Collapse
Affiliation(s)
- R Anand
- Department of Biochemistry, Christian Medical College, Vellore 632002, Tamilnadu, India.
| | | | | |
Collapse
|
37
|
Exercise facilitates the action of dietary DHA on functional recovery after brain trauma. Neuroscience 2013; 248:655-63. [PMID: 23811071 DOI: 10.1016/j.neuroscience.2013.06.041] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 06/11/2013] [Accepted: 06/19/2013] [Indexed: 12/29/2022]
Abstract
The abilities of docosahexaenoic acid (DHA) and exercise to counteract cognitive decay after traumatic brain injury (TBI) is getting increasing recognition; however, the possibility that these actions can be complementary remains just as an intriguing possibility. Here we have examined the likelihood that the combination of diet and exercise has the added potential to facilitate functional recovery following TBI. Rats received mild fluid percussion injury (mFPI) or sham injury and then were maintained on a diet high in DHA (1.2% DHA) with or without voluntary exercise for 12days. We found that FPI reduced DHA content in the brain, which was accompanied by increased levels of lipid peroxidation assessed using 4-hydroxy-2-hexenal (4-HHE). FPI reduced the enzymes acyl-CoA oxidase 1 (Acox1) and 17β-hydroxysteroid dehydrogenase type 4 (17β-HSD4), and the calcium-independent phospholipases A2 (iPLA2), which are involved in metabolism of membrane phospholipids. FPI reduced levels of syntaxin-3 (STX-3), involved in the action of membrane DHA on synaptic membrane expansion, and also reduced brain-derived neurotrophic factor (BDNF) signaling through its tyrosine kinase B (TrkB) receptor. These effects of FPI were optimally counteracted by the combination of DHA and exercise. Our results support the possibility that the complementary action of exercise is exerted on restoring membrane homeostasis after TBI, which is necessary for supporting synaptic plasticity and cognition. It is our contention that strategies that take advantage of the combined applications of diet and exercise may have additional effects to the injured brain.
Collapse
|
38
|
Disturbance in uniformly 13C-labelled DHA metabolism in elderly human subjects carrying the apoE ε4 allele. Br J Nutr 2013; 110:1751-9. [PMID: 23631810 DOI: 10.1017/s0007114513001268] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Carrying the apoE ε4 allele (E4+ ) is the most important genetic risk for Alzheimer’s disease. Unlike non-carriers (E4- ), E4+ seem not to be protected against Alzheimer's disease when consuming fish. We hypothesised that this may be linked to a disturbance in n-3 DHA metabolism in E4+. The aim of the present study was to evaluate [13C]DHA metabolism over 28 d in E4+ v. E4-. A total of forty participants (twenty-six women and fourteen men) received a single oral dose of 40 mg [13C]DHA, and its metabolism was monitored in blood and breath over 28 d. Of the participants, six were E4+ and thirty-four were E4-. In E4+, mean plasma [13C]DHA was 31% lower than that in E4-, and cumulative b-oxidation of [13C]DHA was higher than that in E4- 1–28 d post-dose (P ≤0·05). A genotype x time interaction was detected for cumulative b-oxidation of [13C]DHA (P ≤ 0·01). The whole-body half-life of [13C]DHA was 77% lower in E4+ compared with E4- (P ≤0·01). In E4+ and E4-, the percentage dose of [13C]DHA recovered/h as 13CO2 correlated with [13C]DHA concentration in plasma, but the slope of linear regression was 117% steeper in E4+ compared with E4- (P ≤ 0·05). These results indicate that DHA metabolism is disturbed in E4+, and may help explain why there is no association between DHA levels in plasma and cognition in E4+. However, whether E4+ disturbs the metabolism of 13C-labelled fatty acids other than DHA cannot be deduced from the present study.
Collapse
|
39
|
Cunnane SC, Chouinard-Watkins R, Castellano CA, Barberger-Gateau P. Docosahexaenoic acid homeostasis, brain aging and Alzheimer's disease: Can we reconcile the evidence? Prostaglandins Leukot Essent Fatty Acids 2013; 88:61-70. [PMID: 22575581 DOI: 10.1016/j.plefa.2012.04.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 04/09/2012] [Accepted: 04/11/2012] [Indexed: 12/27/2022]
Abstract
A crossroads has been reached on research into docosahexaenoic acid (DHA) and Alzheimer's disease (AD). On the one hand, several prospective observational studies now clearly indicate a protective effect of higher fish and DHA intake against risk of AD. On the other hand, once AD is clinically evident, supplementation trials demonstrate essentially no benefit of DHA in AD. Despite apparently low DHA intake in AD, brain DHA levels are frequently the same as in controls, suggesting that low DHA intake results in low plasma DHA but does not necessarily reduce brain DHA in humans. Animal models involving dietary omega-3 fatty acid deficiency to deplete brain DHA may therefore not be appropriate in AD research. Studies in the healthy elderly suggest that DHA homeostasis changes during aging. Tracer methodology now permits estimation of DHA half-life in the human brain and whole body. Apolipoprotein E alleles have an important impact not only on AD but also on DHA homeostasis in humans. We therefore encourage further development of innovative approaches to the study of DHA metabolism and its role in human brain function. A better understanding of DHA metabolism in humans will hopefully help explain how higher habitual DHA intake protects against the risk of deteriorating cognition during aging and may eventually give rise to a breakthrough in the treatment of AD.
Collapse
Affiliation(s)
- Stephen C Cunnane
- Research Center on Aging and Department of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada.
| | | | | | | |
Collapse
|
40
|
Colucci L, Bosco M, Rosario Ziello A, Rea R, Amenta F, Fasanaro AM. Effectiveness of nootropic drugs with cholinergic activity in treatment of cognitive deficit: a review. J Exp Pharmacol 2012; 4:163-72. [PMID: 27186129 PMCID: PMC4863555 DOI: 10.2147/jep.s35326] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Nootropics represent probably the first “smart drugs” used for the treatment of cognitive deficits. The aim of this paper is to verify, by a systematic analysis of the literature, the effectiveness of nootropics in this indication. The analysis was limited to nootropics with cholinergic activity, in view of the role played by acetylcholine in learning and memory. Acetylcholine was the first neurotransmitter identified in the history of neuroscience and is the main neurotransmitter of the peripheral, autonomic, and enteric nervous systems. We conducted a systematic review of the literature for the 5-year period 2006–2011. From the data reported in the literature, it emerges that nootropics may be an effective alternative for strengthening and enhancing cognitive performance in patients with a range of pathologies. Although nootropics, and specifically the cholinergic precursors, already have a long history behind them, according to recent renewal of interest, they still seem to have a significant therapeutic role. Drugs with regulatory indications for symptomatic treatment of Alzheimer’s disease, such as cholinesterase inhibitors and memantine, often have transient effects in dementia disorders. Nootropics with a cholinergic profile and documented clinical effectiveness in combination with cognate drugs such as cholinesterase inhibitors or alone in patients who are not suitable for these inhibitors should be taken into account and evaluated further.
Collapse
Affiliation(s)
- Luisa Colucci
- Centro di Ricerche Cliniche, Telemedicina e Telefarmacia, Università di Camerino, Camerino, Italy; Unità Valutazione Alzheimer, Naples, Italy
| | | | - Antonio Rosario Ziello
- Centro di Ricerche Cliniche, Telemedicina e Telefarmacia, Università di Camerino, Camerino, Italy; Unità Valutazione Alzheimer, Naples, Italy
| | - Raffaele Rea
- Centro di Ricerche Cliniche, Telemedicina e Telefarmacia, Università di Camerino, Camerino, Italy; Unità Valutazione Alzheimer, Naples, Italy
| | - Francesco Amenta
- Centro di Ricerche Cliniche, Telemedicina e Telefarmacia, Università di Camerino, Camerino, Italy
| | | |
Collapse
|
41
|
Nagata T, Shinagawa S, Nukariya K, Nakayama R, Nakayama K, Yamada H. Association between nerve growth factor gene polymorphism and executive dysfunction in Japanese patients with early-stage Alzheimer's disease and amnestic mild cognitive impairment. Dement Geriatr Cogn Disord 2012; 32:379-86. [PMID: 22301435 DOI: 10.1159/000335355] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/15/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS To address the clinical neurocognitive roles of nerve growth factor (NGF) genetic polymorphism in early-stage Alzheimer's disease (AD) and amnestic mild cognitive impairment (A-MCI), we investigated the association between this single-nucleotide polymorphism (SNP) and executive dysfunction as a nonmemory cognitive impairment. METHODS Among 200 outpatients with dementia and MCI whose NGF SNP rs6330 genotype was identified, those with A-MCI (n = 35) and early-stage AD (n = 67) were recruited and divided into three groups according to genotype (C/C: n = 58, C/T: n = 39, T/T: n = 5). Then, the Frontal Assessment Battery (FAB) scores were compared among the three (C/C, C/T, T/T) or two (C/C, T carrier) genotype groups. RESULTS Among the subtests, a significant difference was only noted for the go/no-go scores (p < 0.01) between C/C and T carriers. However, no significant differences in the demographic variables and other neuropsychological subtest scores reflecting attentional and memory function were observed among the genotypes. CONCLUSION Regarding the functional roles of neurotrophin polymorphisms as they relate to executive dysfunction, the NGF gene rs6330 might influence the inhibition task in Japanese patients with early-stage AD or A-MCI.
Collapse
Affiliation(s)
- Tomoyuki Nagata
- Division of Molecular Genetics, Institute of DNA Medicine, Jikei University School of Medicine, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
42
|
Maintenance of synaptic stability requires calcium-independent phospholipase A₂ activity. Neural Plast 2012; 2012:569149. [PMID: 22685677 PMCID: PMC3364014 DOI: 10.1155/2012/569149] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 02/03/2012] [Accepted: 02/07/2012] [Indexed: 12/31/2022] Open
Abstract
Phospholipases A₂ (PLA₂s) represent one of the largest groups of lipid-modifying enzymes. Over the years, significant advances have been made in understanding their potential physiological and pathological functions. Depending on their calcium requirement for activation, PLA₂s are classified into calcium dependent and independent. This paper mainly focuses on brain calcium-independent PLA₂ (iPLA₂) and on the mechanisms by which they influence neuronal function and regulate synaptic plasticity. Particular attention will be given to the iPLA₂γ isoform and its role in the regulation of synaptic glutamate receptors. In particular, the paper discusses the possibility that brain iPLA₂γ deficiencies could destabilise normal synaptic operation and might contribute to the aetiology of some brain disorders. In this line, the paper presents new data indicating that iPLA₂γ deficiencies accentuate AMPA receptor destabilization and tau phosphorylation, which suggests that this iPLA₂ isoform should be considered as a potential target for the treatment of Tau-related disorders.
Collapse
|
43
|
Integrating cytosolic phospholipase A₂ with oxidative/nitrosative signaling pathways in neurons: a novel therapeutic strategy for AD. Mol Neurobiol 2012; 46:85-95. [PMID: 22476944 DOI: 10.1007/s12035-012-8261-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 03/19/2012] [Indexed: 12/31/2022]
Abstract
The pathophysiology of Alzheimer's disease (AD) is comprised of complex metabolic abnormalities in different cell types in the brain. To date, there are not yet effective drugs that can completely inhibit the pathophysiological event, and efforts have been devoted to prevent or minimize the progression of this disease. Much attention has focused on studies to understand aberrant functions of the ionotropic glutamate receptors, perturbation of calcium homeostasis, and toxic effects of oligomeric amyloid beta peptides (Aβ) which results in production of reactive oxygen and nitrogen species and signaling pathways, leading to mitochondrial dysfunction and synaptic impairments. Aberrant phospholipase A(2) (PLA(2)) activity has been implicated to play a role in the pathogenesis of many neurodegenerative diseases, including AD. However, mechanisms for their modes of action and their roles in the oxidative and nitrosative signaling pathways have not been firmly established. In this article, we review recent studies providing a metabolic link between cytosolic PLA(2) (cPLA(2)) and neuronal excitation due to stimulation of ionotropic glutamate receptors and toxic Aβ peptides. The requirements for Ca(2+) binding together with its posttranslational modifications by protein kinases and possible by the redox-based S-nitrosylation, provide strong support for a dynamic role of cPLA(2) in serving multiple functions to neurons and glial cells under abnormal physiological and pathological conditions. Therefore, understanding mechanisms for cPLA(2) in the oxidative and nitrosative pathways in neurons will allow the development of novel therapeutic targets to mitigate the detrimental effects of AD.
Collapse
|
44
|
Ferreira ST, Klein WL. The Aβ oligomer hypothesis for synapse failure and memory loss in Alzheimer's disease. Neurobiol Learn Mem 2011; 96:529-43. [PMID: 21914486 PMCID: PMC4390395 DOI: 10.1016/j.nlm.2011.08.003] [Citation(s) in RCA: 355] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 07/15/2011] [Accepted: 08/17/2011] [Indexed: 01/08/2023]
Abstract
Alzheimer's disease (AD) is the 3rd most costly disease and the leading cause of dementia. It can linger for many years, but ultimately is fatal, the 6th leading cause of death. Alzheimer's disease (AD) is fatal and affected individuals can sometimes linger many years. Current treatments are palliative and transient, not disease modifying. This article reviews progress in the search to identify the primary AD-causing toxins. We summarize the shift from an initial focus on amyloid plaques to the contemporary concept that AD memory failure is caused by small soluble oligomers of the Aβ peptide, toxins that target and disrupt particular synapses. Evidence is presented that links Aβ oligomers to pathogenesis in animal models and humans, with reference to seminal discoveries from cell biology and new ideas concerning pathogenic mechanisms, including relationships to diabetes and Fragile X. These findings have established the oligomer hypothesis as a new molecular basis for the cause, diagnosis, and treatment of AD.
Collapse
Affiliation(s)
- Sergio T Ferreira
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-590, Brazil,
| | - William L Klein
- Department of Neurobiology, Cognitive Neurology and Alzheimer’s Disease Center, Northwestern University, Evanston, IL 60208,
| |
Collapse
|
45
|
Dennis EA, Cao J, Hsu YH, Magrioti V, Kokotos G. Phospholipase A2 enzymes: physical structure, biological function, disease implication, chemical inhibition, and therapeutic intervention. Chem Rev 2011; 111:6130-85. [PMID: 21910409 PMCID: PMC3196595 DOI: 10.1021/cr200085w] [Citation(s) in RCA: 861] [Impact Index Per Article: 61.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Edward A. Dennis
- Department of Chemistry and Biochemistry and Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California 92093-0601
| | - Jian Cao
- Department of Chemistry and Biochemistry and Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California 92093-0601
| | - Yuan-Hao Hsu
- Department of Chemistry and Biochemistry and Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California 92093-0601
| | - Victoria Magrioti
- Laboratory of Organic Chemistry, Department of Chemistry, University of Athens, Panepistimiopolis, Athens 15771, Greece
| | - George Kokotos
- Laboratory of Organic Chemistry, Department of Chemistry, University of Athens, Panepistimiopolis, Athens 15771, Greece
| |
Collapse
|
46
|
A comparative study of the effects of venoms from five rear-fanged snake species on the growth of Leishmania major: Identification of a protein with inhibitory activity against the parasite. Toxicon 2011; 58:28-34. [DOI: 10.1016/j.toxicon.2011.04.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Revised: 04/24/2011] [Accepted: 04/27/2011] [Indexed: 11/24/2022]
|
47
|
Microarray analysis on human neuroblastoma cells exposed to aluminum, β(1-42)-amyloid or the β(1-42)-amyloid aluminum complex. PLoS One 2011; 6:e15965. [PMID: 21298039 PMCID: PMC3029275 DOI: 10.1371/journal.pone.0015965] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Accepted: 12/01/2010] [Indexed: 12/22/2022] Open
Abstract
Background A typical pathological feature of Alzheimer's disease (AD) is the appearance in the brain of senile plaques made up of β-amyloid (Aβ) and neurofibrillary tangles. AD is also associated with an abnormal accumulation of some metal ions, and we have recently shown that one of these, aluminum (Al), plays a relevant role in affecting Aβ aggregation and neurotoxicity. Methodology In this study, employing a microarray analysis of 35,129 genes, we investigated the effects induced by the exposure to the Aβ1–42-Al (Aβ-Al) complex on the gene expression profile of the neuronal-like cell line, SH-SY5Y. Principal Findings The microarray assay indicated that, compared to Aβ or Al alone, exposure to Aβ-Al complex produced selective changes in gene expression. Some of the genes selectively over or underexpressed are directly related to AD. A further evaluation performed with Ingenuity Pathway analysis revealed that these genes are nodes of networks and pathways that are involved in the modulation of Ca2+ homeostasis as well as in the regulation of glutamatergic transmission and synaptic plasticity. Conclusions and Significance Aβ-Al appears to be largely involved in the molecular machinery that regulates neuronal as well as synaptic dysfunction and loss. Aβ-Al seems critical in modulating key AD-related pathways such as glutamatergic transmission, Ca2+ homeostasis, oxidative stress, inflammation, and neuronal apoptosis.
Collapse
|
48
|
Ma MT, Yeo JF, Farooqui AA, Ong WY. Role of Calcium Independent Phospholipase A2 in Maintaining Mitochondrial Membrane Potential and Preventing Excessive Exocytosis in PC12 Cells. Neurochem Res 2010; 36:347-54. [DOI: 10.1007/s11064-010-0340-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2010] [Indexed: 10/18/2022]
|
49
|
Jicha GA, Markesbery WR. Omega-3 fatty acids: potential role in the management of early Alzheimer's disease. Clin Interv Aging 2010; 5:45-61. [PMID: 20396634 PMCID: PMC2854051 DOI: 10.2147/cia.s5231] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Indexed: 01/08/2023] Open
Abstract
Omega-3 fatty acids are essential for brain growth and development. They play an important role throughout life, as critical modulators of neuronal function and regulation of oxidative stress mechanisms, in brain health and disease. Docosahexanoic acid (DHA), the major omega-3 fatty acid found in neurons, has taken on a central role as a target for therapeutic intervention in Alzheimer’s disease (AD). A plethora of in vitro, animal model, and human data, gathered over the past decade, highlight the important role DHA may play in the development of a variety of neurological and psychiatric disorders, including AD. Cross sectional and prospective cohort data have demonstrated that reduced dietary intake or low brain levels of DHA are associated with accelerated cognitive decline or the development of incipient dementia, including AD. Several clinical trials investigating the effects of omega-3 fatty acid supplementation in AD have been completed and all failed to demonstrate its efficacy in the treatment of AD. However, these trials produced intriguing data suggesting that the beneficial effects of omega-3 fatty acid supplementation may depend on the stage of disease, other dietary mediators, and apolipoprotein E status.
Collapse
Affiliation(s)
- Gregory A Jicha
- University of Kentucky, Alzheimer's Disease Center and the Sanders-Brown Center on Aging University of Kentucky College of Medicine, Lexington, KY 40536-0230, USA.
| | | |
Collapse
|
50
|
Abstract
BACKGROUND Advances in health sciences during the last century have increased the average age in industrialized nations. Despite this progress, neurodegenerative diseases that affect higher order thinking and memory continue to increase in prevalence as they take a devastating toll on human productivity in the later years. There is an acute need for new drugs and therapeutic approaches for treating these severe diseases, and also for improving the quality of cognitive function associated with normal aging and in many other disorders and syndromes that present with cognitive dysfunction. OBJECTIVE The purpose of this review is to ascertain the pharmacological approaches being exploited to improve cognition and memory and to determine the most relevant and effective directions taken for new drug discovery. Limitations and difficulties encountered in this effort also are discussed. METHODS This review focuses primarily on compounds already undergoing clinical trials for improving cognition and memory with some discussion of rising new drug targets. RESULTS/CONCLUSION Compounds that act on allosteric sites on neurotransmitter receptors are expected to lead the field with new levels of specificity and reduced side effects. New multi-functional compounds can be designed that can both improve cognition and slow the process of disease.
Collapse
Affiliation(s)
- Jerry J Buccafusco
- Regents' Professor of Pharmacology and Toxicology, Alzheimer's Research Center, Medical College of Georgia, Department of Pharmacology and Toxicology, Augusta, Georgia 30912-2300, USA.
| |
Collapse
|