1
|
Fattore L, Amchova P, Fadda P, Ruda-Kucerova J. Olfactory Bulbectomy Model of Depression Lowers Responding for Food in Male and Female Rats: The Modulating Role of Caloric Restriction and Response Requirement. Biomedicines 2023; 11:2481. [PMID: 37760922 PMCID: PMC10525806 DOI: 10.3390/biomedicines11092481] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/25/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Depression is a psychiatric disorder characterized by a marked decrease in reward sensitivity. By using the olfactory bulbectomy (OBX) model of depression, it was shown that OBX rats display enhanced drug-taking and seeking behaviors in a self-administration paradigm than sham-operated (SHAM) controls, and sex is an important regulating factor. To reveal potential strain effects, we compared the operant behavior of male and female Sprague-Dawley and Wistar OBX and SHAM rats trained to self-administer palatable food pellets. Results showed that Sprague-Dawley OBX rats of both sexes exhibited lower operant responding rates and food intake than SHAM controls. Food restriction increased responding in both OBX and SHAM groups. Female rats responded more than males, but the OBX lesion abolished this effect. In Wistar rats, bulbectomy lowered food self-administration only during the last training days. Food self-administration was not significantly affected in Wistar rats by sex. In summary, this study showed that bulbectomy significantly reduces operant responding and food intake in male and female Sprague-Dawley rats while inducing a mild reducing effect only in the Wistar strain. Strain-dependent effects were also observed in the modulating role of sex and food restriction on operant responding and palatable food intake.
Collapse
Affiliation(s)
- Liana Fattore
- CNR Institute of Neuroscience-Cagliari, National Research Council, 09042 Monserrato, CA, Italy; (L.F.); (P.F.)
| | - Petra Amchova
- Department of Pharmacology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic;
| | - Paola Fadda
- CNR Institute of Neuroscience-Cagliari, National Research Council, 09042 Monserrato, CA, Italy; (L.F.); (P.F.)
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, 09042 Monserrato, CA, Italy
| | - Jana Ruda-Kucerova
- Department of Pharmacology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic;
| |
Collapse
|
2
|
Amchova P, Ruda-Kucerova J. Depressive-like phenotype enhances relapse of nicotine seeking after forced abstinence in rats. World J Biol Psychiatry 2023; 24:46-57. [PMID: 35473452 DOI: 10.1080/15622975.2022.2070665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Comorbidity of depression and drug addiction is common, but effective treatment is missing. A rat model combining the olfactory bulbectomy (OBX) model and IV drug self-administration has provided evidence of differential reactivity of the OBX rats towards drugs of abuse. This study evaluates nicotine taking and seeking behaviour in this model. METHODS Adult male Wistar rats were used; in one group, the OBX was performed while the other group was sham-operated. After three weeks of nicotine self-administration (fixed ratio-1 schedule), rats underwent two weeks of forced abstinence followed by a drug-free relapse-like session. Two doses of nicotine were studied: 0.019 and 0.030 mg/kg per infusion. The locomotor test took place before the self-administration protocol and on the first day of abstinence. RESULTS OBX induced characteristic hyperactive locomotor phenotype. OBX rats self-administered more nicotine in the experiment using 0.019 mg/kg per infusion, but they reached lower drug intake in the study using 0.030 mg/kg per infusion. However, relapse of nicotine seeking after forced abstinence was significantly higher in the OBX groups in both cohorts. CONCLUSION These results are in line with previous studies showing OBX-induced dissimilarities in drug-seeking and drug-taking and represent complementary information to reports on other substances.
Collapse
Affiliation(s)
- Petra Amchova
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Jana Ruda-Kucerova
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czechia
| |
Collapse
|
3
|
Flores-Burgess A, Millón C, Gago B, García-Durán L, Cantero-García N, Puigcerver A, Narváez JA, Fuxe K, Santín L, Díaz-Cabiale Z. Galanin (1-15) Enhances the Behavioral Effects of Fluoxetine in the Olfactory Bulbectomy Rat, Suggesting a New Augmentation Strategy in Depression. Int J Neuropsychopharmacol 2021; 25:307-318. [PMID: 34891163 PMCID: PMC9017770 DOI: 10.1093/ijnp/pyab089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 10/28/2021] [Accepted: 12/07/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Selective serotonergic reuptake inhibitors, including fluoxetine (FLX), are the most commonly used for the treatment of major depression. However, they are effective for remission in only 30% of patients. Recently, we observed that Galanin (1-15) [GAL(1-15)] enhanced the antidepressant effects of FLX in naïve animals, suggesting a new augmentation strategy in depression. METHODS We have analyzed in an animal model of depression, the olfactory bulbectomy (OBX) rats, the effect of GAL(1-15) on FLX-mediated responses in the forced swimming test and the sucrose preference test and the involvement of GAL receptor 2 with its antagonist, M871. We have also studied the corticosterone levels in OBX after the coadministration of GAL(1-15) with FLX. Moreover, we studied whether the effects of GAL(1-15) on FLX actions were mediated via auto- and heteroreceptor 5-HT1A (5-HT1AR), analyzing the binding characteristics, mRNA levels, and functionality of 5-HT1AR in the dorsal hippocampus. RESULTS GAL(1-15) enhances the antidepressant-like effects induced by FLX in OBX animals in the forced swimming test and the sucrose preference test. The involvement of the GALR2 was demonstrated with M871. Importantly, the mechanism underlying the GAL(1-15)/FLX interactions in the OBX animals involves the 5-HT1AR in the hippocampus at the plasma membrane (increase of affinity and density of 5HT1AR in the DG) and transcriptional (increase of 5HT1AR mRNA levels in DG and CA1) levels. Besides, the coadministration of GAL(1-15) and FLX also reduced OBX-increased corticosterone levels. CONCLUSIONS The results open the possibility to use GAL(1-15) in combination with FLX as a novel strategy for the treatment of depression.
Collapse
Affiliation(s)
- Antonio Flores-Burgess
- Faculty of Medicine, University of Málaga, Institute of Biomedical Research of Málaga, Málaga, Spain
| | - Carmelo Millón
- Faculty of Medicine, University of Málaga, Institute of Biomedical Research of Málaga, Málaga, Spain
| | - Belen Gago
- Faculty of Medicine, University of Málaga, Institute of Biomedical Research of Málaga, Málaga, Spain
| | - Laura García-Durán
- Faculty of Medicine, University of Málaga, Institute of Biomedical Research of Málaga, Málaga, Spain
| | - Noelia Cantero-García
- Faculty of Medicine, University of Málaga, Institute of Biomedical Research of Málaga, Málaga, Spain
| | - Araceli Puigcerver
- Faculty of Psychology ,University of Málaga, Institute of Biomedical Research of Málaga, Málaga, Spain
| | - José Angel Narváez
- Faculty of Medicine, University of Málaga, Institute of Biomedical Research of Málaga, Málaga, Spain
| | - Kjell Fuxe
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Luis Santín
- Faculty of Medicine, University of Málaga, Institute of Biomedical Research of Málaga, Málaga, Spain
| | - Zaida Díaz-Cabiale
- Faculty of Medicine, University of Málaga, Institute of Biomedical Research of Málaga, Málaga, Spain,Correspondence: Z. Díaz-Cabiale, PhD, Department of Physiology, Faculty of Medicine, University of Málaga, Campus de Teatinos s/n. 29080 Málaga, Spain ()
| |
Collapse
|
4
|
Wright RL, Gilmour G, Dwyer DM. Wistar Kyoto Rats Display Anhedonia In Consumption but Retain Some Sensitivity to the Anticipation of Palatable Solutions. Front Behav Neurosci 2020; 14:70. [PMID: 32581735 PMCID: PMC7283460 DOI: 10.3389/fnbeh.2020.00070] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 04/17/2020] [Indexed: 12/12/2022] Open
Abstract
The Wistar Kyoto (WKY) rat has been proposed as a model of depression-like symptoms. However, anhedonia-a reduction in the response to normatively rewarding events-as a central depression symptom has yet to be fully assessed in this model. We compared WKY rats and Wistar controls, with stress-susceptibility examined by applying mild unpredictable stress to a subset of each group. Anhedonia-like behavior was assessed using microstructural analysis of licking behavior, where mean lick cluster size reflects hedonic responses. This was combined with tests of anticipatory contrast, where the consumption of a moderately palatable solution (4% sucrose) is suppressed in anticipation of a more palatable solution (32% sucrose). WKY rats displayed greatly attenuated hedonic reactions to sucrose overall, although their reactions retained some sensitivity to differences in sucrose concentration. They displayed normal reductions in consumption in anticipatory contrast, although the effect of contrast on hedonic reactions was greatly blunted. Mild stress produced overall reductions in sucrose consumption, but this was not exacerbated in WKY rats. Moreover, mild stress did not affect hedonic reactions or the effects of contrast. These results confirm that the WKY substrain expresses a direct behavioral analog of anhedonia, which may have utility for increasing mechanistic understanding of depression symptoms.
Collapse
Affiliation(s)
- Rebecca L Wright
- School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Gary Gilmour
- Lilly Research Centre, Eli Lilly & Co. Ltd., Erl Wood Manor, United Kingdom
| | - Dominic M Dwyer
- School of Psychology, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
5
|
Neural Isolation of the Olfactory Bulbs Severely Impairs Taste-Guided Behavior to Normally Preferred, But Not Avoided, Stimuli. eNeuro 2020; 7:ENEURO.0026-20.2020. [PMID: 32152061 PMCID: PMC7142272 DOI: 10.1523/eneuro.0026-20.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/24/2020] [Accepted: 02/27/2020] [Indexed: 12/02/2022] Open
Abstract
Here we systematically tested the hypothesis that motivated behavioral responsiveness to preferred and avoided taste compounds is relatively independent of the olfactory system in mice whose olfactory bulbs (main and accessory) were surgically disconnected from the rest of the brain [bulbotomy (BULBx)]. BULBx was confirmed histologically as well as functionally with the buried food test. In brief access taste tests, animals received 10-s trials of various concentrations of a taste compound delivered quasirandomly. BULBx C57BL/6 (B6) mice displayed severely blunted concentration-dependent licking for the disaccharide sucrose, the maltodextrin Maltrin, and the fat emulsion Intralipid relative to their sham-operated controls (SHAM B6). Licking for the noncaloric sweetener saccharin was also blunted by bulbotomy, but less so. As expected, mice lacking a functional “sweet” receptor [T1R2+T1R3 knockout (KO)] displayed concentration-dependent responsiveness to Maltrin and severely attenuated licking to sucrose. Like in B6 mice, responsiveness to both stimuli was exceptionally curtailed by bulbotomy. In contrast to these deficits in taste-guided behavior for unconditionally preferred stimuli, BULBx in B6 and KO mice did not alter concentration-dependent decreases for the representative avoided stimuli quinine and citric acid. Nor did it temper the intake of and preference for high concentrations of affectively positive stimuli when presented in long-term (23-h) two-bottle tests, demonstrating that the surgery does not lead to a generalized motivational deficit. Collectively, these behavioral results demonstrate that specific aspects of taste-guided ingestive motivation are profoundly disturbed by eliminating the anatomic connections between the main/accessory olfactory bulbs and the rest of the brain.
Collapse
|
6
|
Machado DG, Lara MVS, Dobler PB, Almeida RF, Porciúncula LO. Caffeine prevents neurodegeneration and behavioral alterations in a mice model of agitated depression. Prog Neuropsychopharmacol Biol Psychiatry 2020; 98:109776. [PMID: 31707092 DOI: 10.1016/j.pnpbp.2019.109776] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 09/15/2019] [Accepted: 10/02/2019] [Indexed: 12/20/2022]
Abstract
Longitudinal and some experimental studies have showed the potential of caffeine to counteract some depressive behaviors and synaptic dysfunctions. In this study, we investigated the potential of caffeine in preventing behavioral outcomes, neurodegeneration and synaptic proteins alterations in a mice model of agitated depression by bilateral olfactory bulbectomy (OB). For this purpose, bulbectomized mice received caffeine (0.3 g/L and 1.0 g/L, drinking water), during the active cycle, for seven weeks (two before the surgery and throughout five weeks after OB). Caffeine prevented OB-induced hyperactivity and recognition memory impairment and rescue self care and motivational behavior. In the frontal cortex, bulbectomized mice presented increase in the adenosine A1 receptors (A1R) and GFAP, while adenosine A2A receptors (A2AR) increased in the hippocampus and striatum and SNAP-25 was decreased in frontal cortex and striatum. Caffeine increased A1R in the striatum of bulbectomized mice and in SHAM-water group caffeine increased A2AR in the striatum and decreased SNAP-25 in the frontal cortex. Astrogliosis observed in the polymorphic layer of the dentate gyrus of OB mice was prevented by caffeine as well as the neurodegeneration in the striatum and piriform cortex. Based on these behavioral and neurochemical evidences, caffeine confirms its efficacy in preventing neurodegeneration associated with memory impairment and may be considered as a promising therapeutic tool in the prophylaxis and/or treatment of depression.
Collapse
Affiliation(s)
- Daniele Guilhermano Machado
- Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Departamento de Bioquímica, Porto Alegre, RS 90035 003, Brazil.
| | - Marcus Vinicius Soares Lara
- Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Departamento de Bioquímica, Porto Alegre, RS 90035 003, Brazil
| | - Paula Bruna Dobler
- Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Departamento de Bioquímica, Porto Alegre, RS 90035 003, Brazil
| | - Roberto Farina Almeida
- Universidade Federal de Ouro Preto, Centro de Pesquisa em Ciências Biológicas, Departamento de Ciências Biológicas, Ouro Preto, MG, Brazil
| | - Lisiane O Porciúncula
- Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Departamento de Bioquímica, Porto Alegre, RS 90035 003, Brazil.
| |
Collapse
|
7
|
Ruda-Kucerova J, Zanda MT, Amchova P, Fratta W, Fattore L. Sex and Feeding Status Differently Affect Natural Reward Seeking Behavior in Olfactory Bulbectomized Rats. Front Behav Neurosci 2018; 12:255. [PMID: 30425627 PMCID: PMC6218565 DOI: 10.3389/fnbeh.2018.00255] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 10/11/2018] [Indexed: 02/01/2023] Open
Abstract
Substance abuse and depression are common psychiatric disorders with a high rate of comorbidity. Both conditions affect differently men and women and preclinical research has showed many sex differences in drug addiction and depression. The most common approach for modeling depression-addiction comorbidity is the combination of the intravenous drug self-administration and the olfactory bulbectomy (OBX) models in rats. Such a combination has revealed enhanced drug-taking and drug-seeking behaviors in OBX rats, but no study has investigated so far potential sex differences in operant responding and motivation for natural reinforcers in OBX rats. This study investigated for the first time operant self-administration of palatable food pellets in male and female OBX rats under different feeding status, i.e., ad libitum vs. restricted food, and schedules of reinforcement, i.e., a continuous ratio schedule fixed ratio 1 (FR1) vs. a complex (FR5(x)) second order schedule of reinforcement. In the FR1 experiment, OBX rats of both sexes exhibited lower operant responding and intake of palatable food pellets than sham-operated controls, with food restriction leading to increased operant responding in both OBX and SHAM groups. Female rats showed higher responding than males but this effect was abolished by the OBX lesion. Similarly, in the (FR5(x)) second order schedule of reinforcement both male and female OBX rats showed lower responding and food intake, with SHAM and OBX females showing higher operant responding than corresponding male groups. Overall, our findings showed that: (i) responding for food was lower in OBX than in SHAM rats under both FR1 and (FR5(x)) schedules of reinforcement; (ii) sex and food restriction affect operant responding for palatable food; and (iii) the suppressing effect of OBX lesion on food intake was consistently present in both sexes and represents the most robust factor in the analysis. This may represent anhedonia which is associated with depressive-like phenotype and palatable food self-administration may serve as a robust behavioral index of anhedonia in the OBX model.
Collapse
Affiliation(s)
- Jana Ruda-Kucerova
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Mary Tresa Zanda
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Monserrato, Italy
| | - Petra Amchova
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Walter Fratta
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Monserrato, Italy.,Center of Excellence "Neurobiology of Addiction", University of Cagliari, Monserrato, Italy
| | - Liana Fattore
- Center of Excellence "Neurobiology of Addiction", University of Cagliari, Monserrato, Italy.,CNR Institute of Neuroscience-Cagliari, National Research Council, Rome, Italy
| |
Collapse
|
8
|
Ren H, Fabbri C, Uher R, Rietschel M, Mors O, Henigsberg N, Hauser J, Zobel A, Maier W, Dernovsek MZ, Souery D, Cattaneo A, Breen G, Craig IW, Farmer AE, McGuffin P, Lewis CM, Aitchison KJ. Genes associated with anhedonia: a new analysis in a large clinical trial (GENDEP). Transl Psychiatry 2018; 8:150. [PMID: 30104601 PMCID: PMC6089928 DOI: 10.1038/s41398-018-0198-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 02/17/2018] [Accepted: 03/26/2018] [Indexed: 12/14/2022] Open
Abstract
A key feature of major depressive disorder (MDD) is anhedonia, which is a predictor of response to antidepressant treatment. In order to shed light on its genetic underpinnings, we conducted a genome-wide association study (GWAS) followed by investigation of biological pathway enrichment using an anhedonia dimension for 759 patients with MDD in the GENDEP study. The GWAS identified 18 SNPs associated at genome-wide significance with the top one being an intronic SNP (rs9392549) in PRPF4B (pre-mRNA processing factor 4B) located on chromosome 6 (P = 2.07 × 10-9) while gene-set enrichment analysis returned one gene ontology term, axon cargo transport (GO: 0008088) with a nominally significant P value (1.15 × 10-5). Furthermore, our exploratory analysis yielded some interesting, albeit not statistically significant genetic correlation with Parkinson's Disease and nucleus accumbens gray matter. In addition, polygenic risk scores (PRSs) generated from our association analysis were found to be able to predict treatment efficacy of the antidepressants in this study. In conclusion, we found some markers significantly associated with anhedonia, and some suggestive findings of related pathways and biological functions, which could be further investigated in other studies.
Collapse
Affiliation(s)
- Hongyan Ren
- Psychiatry and Medical Genetics, University of Alberta, Edmonton, AB, Canada
| | - Chiara Fabbri
- MRC Social, Genetic and Developmental Psychiatry Centre, King's College London, London, UK
| | - Rudolf Uher
- Psychiatry Department, Dalhousie University, Halifax, NS, Canada
| | - Marcella Rietschel
- Division of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Mannheim, Germany
| | - Ole Mors
- Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Neven Henigsberg
- Croatian Institute for Brain Research, University of Zagreb, Zagreb, Croatia
| | - Joanna Hauser
- Psychiatry Department, University of Poznan, Poznan, Poland
| | - Astrid Zobel
- Psychiatry Department, University of Bonn, Bonn, Germany
| | - Wolfgang Maier
- Psychiatry Department, University of Bonn, Bonn, Germany
| | - Mojca Z Dernovsek
- University Psychiatric Clinic, University of Ljubliana, Ljubljana, Slovenia
| | - Daniel Souery
- Psychological Medicine, Free University of Brussels, Brussels, Belgium
| | | | - Gerome Breen
- MRC Social, Genetic and Developmental Psychiatry Centre, King's College London, London, UK
| | - Ian W Craig
- MRC Social, Genetic and Developmental Psychiatry Centre, King's College London, London, UK
| | - Anne E Farmer
- MRC Social, Genetic and Developmental Psychiatry Centre, King's College London, London, UK
| | - Peter McGuffin
- MRC Social, Genetic and Developmental Psychiatry Centre, King's College London, London, UK
| | - Cathryn M Lewis
- MRC Social, Genetic and Developmental Psychiatry Centre, King's College London, London, UK
| | - Katherine J Aitchison
- Psychiatry and Medical Genetics, University of Alberta, Edmonton, AB, Canada.
- MRC Social, Genetic and Developmental Psychiatry Centre, King's College London, London, UK.
| |
Collapse
|
9
|
Bansal Y, Singh R, Saroj P, Sodhi RK, Kuhad A. Naringenin protects against oxido-inflammatory aberrations and altered tryptophan metabolism in olfactory bulbectomized-mice model of depression. Toxicol Appl Pharmacol 2018; 355:257-268. [PMID: 30017640 DOI: 10.1016/j.taap.2018.07.010] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 07/08/2018] [Accepted: 07/10/2018] [Indexed: 01/01/2023]
Abstract
Oxido-inflammatory aberrations play a substantial role in the pathophysiology of depression. Oxido-inflammatory stress increases catabolism of tryptophan into kynurenine which leads to imbalance in kynurenine and serotonin levels in the brain. Naringenin a flavonoid, has been reported to possess antidepressant property by restoring serotonin and noradrenaline levels in the brain. Its effects on oxido-inflammatory aberrations in depression has not been investigated. With this background, the present study was designed to investigate the antidepressant-like potential of naringenin in olfactory bulbectomy (OBX)-induced neuroinflammation, oxidative stress, altered kynurenine pathway, and behavioural deficits in BALB/c mice. OBX-mice showed depression-like behavioural alterations characterized by hyperactivity in open field, increased immobility time in forced swim test and decreased sucrose preference. After 14 days, OBX-mice were treated by gavage with naringenin (25, 50 and 100 mg/kg) and fluoxetine (5 mg/kg) for two weeks. Naringenin significantly ameliorated depression-like behavioural alterations. Naringenin significantly restored corticosterone levels in serum and antioxidant enzymes (Catalase, SOD GSH), nitrite and MDA in cerebral cortex and hippocampus showing its anti-stress and antioxidant property. Naringenin also significantly decreased elevated pro-inflammatory cytokines like IL-1β, IL-6, TNF-α and NF-ҝβ levels. Naringenin also significantly increased neurotrophic growth factor like BDNF. Naringenin reversed altered levels of tryptophan, serotonin, 5-Hydroxyindole acetic acid and kynurenine in hippocampus and cortex. A positive correlation was found between KYN/TRP ratio and proinflammatory parameters while endogenous antioxidants were negatively correlated. In conclusion, naringenin showed potent neuroprotective effect in depression comparable to the fluoxetine by restoring alterations in kynurenine pathway via its antioxidant and anti-inflammatory potential.
Collapse
Affiliation(s)
- Yashika Bansal
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Panjab University, Chandigarh 160 014, India
| | - Raghunath Singh
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Panjab University, Chandigarh 160 014, India
| | - Priyanka Saroj
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Panjab University, Chandigarh 160 014, India
| | - Rupinder Kaur Sodhi
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Panjab University, Chandigarh 160 014, India
| | - Anurag Kuhad
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Panjab University, Chandigarh 160 014, India.
| |
Collapse
|
10
|
Wei X, Sun Y, Luo F. Impaired Spinal Glucocorticoid Receptor Signaling Contributes to the Attenuating Effect of Depression on Mechanical Allodynia and Thermal Hyperalgesia in Rats with Neuropathic Pain. Front Cell Neurosci 2017; 11:145. [PMID: 28579944 PMCID: PMC5437111 DOI: 10.3389/fncel.2017.00145] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 05/03/2017] [Indexed: 11/13/2022] Open
Abstract
Although depression-induced altered pain perception has been described in several laboratory and clinical studies, its neurobiological mechanism in the central nervous system (CNS), particularly in the spinal dorsal horn, remains unclear. Therefore, in this study, we aimed to clarify whether nociceptive sensitivity of neuropathic pain is altered in the olfactory bulbectomy (OB) model of depression and whether glucocorticoid receptor (GR), which is involved in the etio-pathologic mechanisms of both major depression and neuropathic pain, contributes to these processes in the spinal dorsal horn of male Sprague-Dawley rats. The results showed that mechanical allodynia and thermal hyperalgesia induced by spinal nerve ligation (SNL) were attenuated in OB-SNL rats with decreased spinal GR expression and nuclear translocation, whereas non-olfactory bulbectomy (NOB)-SNL rats showed increased spinal GR nuclear translocation. In addition, decreased GR nuclear translocation with normal mechanical nociception and hypoalgesia of thermal nociception were observed in OB-Sham rats. Intrathecal injection (i.t.) of GR agonist dexamethasone (Dex; 4 μg/rat/day for 1 week) eliminated the attenuating effect of depression on nociceptive hypersensitivity in OB-SNL rats and aggravated neuropathic pain in NOB-SNL rats, which was associated with the up-regulation of brain-derived neurotrophic factor (BDNF), TrkB and NR2B expression in the spinal dorsal horn. The present study shows that depression attenuates the mechanical allodynia and thermal hyperalgesia of neuropathic pain and suggests that altered spinal GR-BDNF-TrkB signaling may be one of the reasons for depression-induced hypoalgesia.
Collapse
Affiliation(s)
- Xiao Wei
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of SciencesBeijing, China
| | - Yuqi Sun
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of SciencesBeijing, China.,Department of Psychology, University of Chinese Academy of SciencesBeijing, China
| | - Fei Luo
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of SciencesBeijing, China.,Department of Psychology, University of Chinese Academy of SciencesBeijing, China
| |
Collapse
|
11
|
Chrysin promotes attenuation of depressive-like behavior and hippocampal dysfunction resulting from olfactory bulbectomy in mice. Chem Biol Interact 2016; 260:154-162. [DOI: 10.1016/j.cbi.2016.11.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 10/25/2016] [Accepted: 11/02/2016] [Indexed: 12/17/2022]
|
12
|
Antunes MS, Jesse CR, Ruff JR, de Oliveira Espinosa D, Gomes NS, Altvater EET, Donato F, Giacomeli R, Boeira SP. Hesperidin reverses cognitive and depressive disturbances induced by olfactory bulbectomy in mice by modulating hippocampal neurotrophins and cytokine levels and acetylcholinesterase activity. Eur J Pharmacol 2016; 789:411-420. [DOI: 10.1016/j.ejphar.2016.07.042] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 07/21/2016] [Accepted: 07/22/2016] [Indexed: 12/31/2022]
|
13
|
Jiménez-Sánchez L, Linge R, Campa L, Valdizán EM, Pazos Á, Díaz Á, Adell A. Behavioral, neurochemical and molecular changes after acute deep brain stimulation of the infralimbic prefrontal cortex. Neuropharmacology 2016; 108:91-102. [PMID: 27108934 DOI: 10.1016/j.neuropharm.2016.04.020] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 04/12/2016] [Accepted: 04/14/2016] [Indexed: 01/14/2023]
Abstract
Deep brain stimulation (DBS) is a treatment that has shown some efficacy in treatment-resistant depression. In particular, DBS of the subcallosal cingulate gyrus (Brodmann's area 25, Cg25) has been successfully applied to treat refractory depression. In the rat, we have demonstrated that DBS applied to infralimbic (IL) cortex elevates the levels of glutamate and monoamines in the prefrontal cortex, and requires the stimulation of cortical α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) glutamate receptors for its antidepressant-like effects. However, the molecular targets of IL DBS are not fully known. To gain insight into these pathways, we have investigated whether IL DBS is able to reverse the behavioral, biochemical and molecular changes exhibited by the olfactory bulbectomized (OBX) rat. Our results revealed that 1 h IL DBS diminished hyperlocomotion, hyperemotionality and anhedonia, and increased social interaction shown by the OBX rats. Further, IL DBS increased prefrontal efflux of glutamate and serotonin in both sham-operated and OBX rats. With regard to molecular targets, IL DBS increases the synthesis of brain-derived neurotrophic factor (BDNF) and the GluA1 AMPA receptor subunit, and stimulates the Akt/mammalian target of rapamycin (mTOR) as well as the AMPA receptor/c-AMP response element binding (CREB) pathways. Temsirolimus, a known in vivo mTOR blocker, suppressed the antidepressant-like effect of IL DBS in naïve rats in the forced swim test, thus demonstrating for the first time that mTOR signaling is required for the antidepressant-like effects of IL DBS, which is in line with the antidepressant response of other rapid-acting antidepressant drugs.
Collapse
Affiliation(s)
- Laura Jiménez-Sánchez
- Departamento de Neuroquímica y Neurofarmacología, Instituto de Investigaciones Biomédicas de Barcelona (CSIC, IDIBAPS), 08036 Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
| | - Raquel Linge
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain; Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC (CSIC, Universidad de Cantabria), 39011 Santander, Spain
| | - Leticia Campa
- Departamento de Neuroquímica y Neurofarmacología, Instituto de Investigaciones Biomédicas de Barcelona (CSIC, IDIBAPS), 08036 Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
| | - Elsa M Valdizán
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain; Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC (CSIC, Universidad de Cantabria), 39011 Santander, Spain
| | - Ángel Pazos
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain; Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC (CSIC, Universidad de Cantabria), 39011 Santander, Spain
| | - Álvaro Díaz
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain; Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC (CSIC, Universidad de Cantabria), 39011 Santander, Spain
| | - Albert Adell
- Departamento de Neuroquímica y Neurofarmacología, Instituto de Investigaciones Biomédicas de Barcelona (CSIC, IDIBAPS), 08036 Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain; Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC (CSIC, Universidad de Cantabria), 39011 Santander, Spain.
| |
Collapse
|
14
|
Kalshetti PB, Alluri R, Mohan V, Thakurdesai PA. Effects of 4-hydroxyisoleucine from Fenugreek Seeds on Depression-like Behavior in Socially Isolated Olfactory Bulbectomized Rats. Pharmacogn Mag 2016; 11:S388-96. [PMID: 26929572 PMCID: PMC4745208 DOI: 10.4103/0973-1296.168980] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Context: Antidepressant-like effects of (2S, 3R, 4S)-4-hydroxyisoleucine (4-HI), a major amino acid from fenugreek seeds, has been reported in the animal model of acute depression. Aims: To evaluate effects of subacute administration of 4-HI in animal model of stress-induced depression namely socially isolated olfactory bulbectomized rats. Materials and Methods: Bilateral olfactory bulbectomy (OBX) were induced in 30 Sprague-Dawley rats. After recovery period of 14 days, rats were randomized into five groups of 6 rats each and stressed with social isolation (individual housing). The rats were orally treated with either vehicle (OBX-Iso), positive control, fluoxetine (30 mg/kg) or 4-HI (10, 30, 100 mg/kg) once a day from day 14 onward. Separate group of rats with social isolation but without OBX (Sham-Iso) was also maintained. The behavioral depression and anxiety related parameters using open field test (OFT), sucrose intake test, novelty suppressed feeding (NSF) and forced swim test (FST), and neurochemical estimation (brain monoamines viz., serotonin and nor-adrenaline, serotonin turnover, and serum cortisol) were performed. Statistical Analysis Used: Data was analyzed by either two-way ANOVA (OFT and FST) or one-way ANOVA (sucrose intake test, NSF, and neurochemical estimation) followed by Dunnett's multiple comparisons test. Differences were considered significant at P < 0.05. Results: The significant and dose-dependent protection from behavioral and neurochemical changes were observed in 4-HI co-administrated OBX-Iso rats. Conclusion: 4-HI demonstrated the antidepressant and antianxiety effects in socially isolated stress-induced OBX rats with possible involvement of multiple stress relieving mechanisms. HIGHLIGHTS OF PAPER In this study, the subacute pretreatment of 4-HI showed strong and dose-dependent prevention of isolation stress related behavioral and neurochemical responses in olfactory bulbectomized rats. The prevention of hyperactive HPA axis in OBX-Iso stress-induced rats can be envisaged as probable mechanism of antidepressant and antianxiety effects of 4-HI. SUMMARY Effect of 4-hydroxyisoleucine (4-HI) in olfactory bulbectomized and socially isolated (Iso) rats was evaluated 4-HI showed significant and dose-dependent antidepressant effects during novelty suppressed feeding (NSF) and forced swim test (FST) 4-HI showed significant and dose-dependent antianxiety effects during OFT (open field test) and sucrose intake test 4-HI showed protection from OBX-Iso stress-induced brain monoamines, serotonin turnover, and serum cortisol level elevation.
Abbreviations used: SSRI: Selective Serotonin Reuptake Inhibitor; 4-HI: (2S, 3R, 4S)-4-hydroxyisoleucine; OBX: Olfactory bulbectomy; CPCSEA: Committee for the Purpose of Control and Supervision of Experiments on Animals; OFT: Open Field Test; NSF: Novelty Suppressed Feeding; FST: Forced Swimming Test; 5HT: 5-Hydroxytryptamine; 5-HIAA: 5-Hydroxyindoleacetic Acid; NA: Nor-adrenaline; and HPA: Hypothalamic-Pituitary Adrenal.
Collapse
Affiliation(s)
- Padmaja B Kalshetti
- Department of Pharmacology, MAEER'S Maharashtra Institute of Pharmacy, Pune, Maharashtra, India
| | - Ramesh Alluri
- Department of Pharmacology, Vishnu Institute of Pharmaceutical Education and Research, Medak, Andhra Pradesh, India
| | - Vishwaraman Mohan
- Department of Scientific Affairs, Indus Biotech Private Limited, Pune, Maharashtra, India
| | | |
Collapse
|
15
|
Ruda-Kucerova J, Amchova P, Havlickova T, Jerabek P, Babinska Z, Kacer P, Syslova K, Sulcova A, Sustkova-Fiserova M. Reward related neurotransmitter changes in a model of depression: An in vivo microdialysis study. World J Biol Psychiatry 2015; 16:521-35. [PMID: 26444572 DOI: 10.3109/15622975.2015.1077991] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
OBJECTIVES The self-medication hypothesis assumes that symptoms related to potential monoaminergic deficits in depression may be relieved by drug abuse. The aim of this study was to elucidate the neurotransmitter changes in a rat model of depression by measuring their levels in the nucleus accumbens shell, which is typically involved in the drug of abuse acquisition mechanism. METHODS Depression was modelled by the olfactory bulbectomy (OBX) in Wistar male rats. In vivo microdialysis was performed, starting from the baseline and following after a single methamphetamine injection and behaviour was monitored. The determination of neurotransmitters and their metabolites was performed by high-performance liquid chromatography combined with mass spectrometry. RESULTS OBX animals had lower basal levels of dopamine and serotonin and their metabolites. However, γ-aminobutyric acid (GABA) and glutamate levels were increased. The methamphetamine injection induced stronger dopamine and serotonin release in the OBX rats and lower release of glutamate in comparison with sham-operated rats; GABA levels did not differ significantly. CONCLUSIONS This study provides an evidence of mesolimbic neurotransmitter changes in the rat model of depression which may elucidate mechanisms underlying intravenous self-administration studies in which OBX rats were demonstrated to have higher drug intake in comparison to intact controls.
Collapse
Affiliation(s)
- Jana Ruda-Kucerova
- a Experimental and Applied Neuropsychopharmacology Research Group , CEITEC - Central European Institute of Technology, Masaryk University , Brno , Czech Republic .,b Department of Pharmacology , Faculty of Medicine, Masaryk University , Brno , Czech Republic
| | - Petra Amchova
- a Experimental and Applied Neuropsychopharmacology Research Group , CEITEC - Central European Institute of Technology, Masaryk University , Brno , Czech Republic .,b Department of Pharmacology , Faculty of Medicine, Masaryk University , Brno , Czech Republic
| | - Tereza Havlickova
- c Department of Pharmacology , Third Faculty of Medicine, Charles University , Prague , Czech Republic , and
| | - Pavel Jerabek
- c Department of Pharmacology , Third Faculty of Medicine, Charles University , Prague , Czech Republic , and
| | - Zuzana Babinska
- a Experimental and Applied Neuropsychopharmacology Research Group , CEITEC - Central European Institute of Technology, Masaryk University , Brno , Czech Republic .,b Department of Pharmacology , Faculty of Medicine, Masaryk University , Brno , Czech Republic
| | - Petr Kacer
- d Laboratory of Medicinal Diagnostics, Department of Organic Technology ICT , Prague , Czech Republic
| | - Kamila Syslova
- d Laboratory of Medicinal Diagnostics, Department of Organic Technology ICT , Prague , Czech Republic
| | - Alexandra Sulcova
- a Experimental and Applied Neuropsychopharmacology Research Group , CEITEC - Central European Institute of Technology, Masaryk University , Brno , Czech Republic
| | - Magdalena Sustkova-Fiserova
- c Department of Pharmacology , Third Faculty of Medicine, Charles University , Prague , Czech Republic , and
| |
Collapse
|
16
|
Behavior and the cholinergic parameters in olfactory bulbectomized female rodents: Difference between rats and mice. Behav Brain Res 2015; 297:5-14. [PMID: 26431763 DOI: 10.1016/j.bbr.2015.09.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 09/24/2015] [Accepted: 09/25/2015] [Indexed: 12/20/2022]
Abstract
Olfactory bulbectomy (OBX) in rodents induces a wide spectrum of functional disturbances, including behavioral, neurochemical, and neuromorphological alterations. We have examined the effects of OBX on behavior and the parameters of the cholinergic system in female rats and mice. In rats, OBX resulted in the appearance of some depressive-like behavioral marks, such as the decreased sucrose consumption, hyperactivity, impaired short-term memory and anxiety-like behavioral features, such as shortened presence in the center of the open field arena or open arms of the elevated plus-maze and an enhancement of avoidance behavior. These behavioral abnormalities could be associated with disturbances in hippocampal function, this suggestion being supported by the presence of cellular changes in this brain structure. No effect of OBX on the number of cholinergic neurons in the medial septum-diagonal band as well as on the acetylcholine content and acetylcholinesterase activity in the septum, hippocampus, and neocortex could be detected. In contrast, in mice, OBX impaired spontaneous alternation behavior and decreased the number of cholinergic neurons in the medial septum-diagonal band. These data demonstrate that rats and mice differently respond to OBX, in particular, OBX does not significantly affect the cholinergic system in rats.
Collapse
|
17
|
Jiang Y, Pun RYK, Peariso K, Holland KD, Lian Q, Danzer SC. Olfactory Bulbectomy Leads to the Development of Epilepsy in Mice. PLoS One 2015; 10:e0138178. [PMID: 26368332 PMCID: PMC4569065 DOI: 10.1371/journal.pone.0138178] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 08/26/2015] [Indexed: 12/12/2022] Open
Abstract
There is a clear link between epilepsy and depression. Clinical data demonstrate a 30-35% lifetime prevalence of depression in patients with epilepsy, and patients diagnosed with depression have a three to sevenfold higher risk of developing epilepsy. Traditional epilepsy models partially replicate the clinical observations, with the demonstration of depressive traits in epileptic animals. Studies assessing pro-epileptogenic changes in models of depression, however, are more limited. Here, we examined whether a traditional rodent depression model--bilateral olfactory bulbectomy--predisposes the animals towards the development of epilepsy. Past studies have demonstrated increased neuronal excitability after bulbectomy, but continuous seizure monitoring had not been conducted. For the present study, we monitored control and bulbectomized animals by video-EEG 24/7 for approximately two weeks following the surgery to determine whether they develop spontaneous seizures. All seven bulbectomized mice exhibited seizures during the monitoring period. Seizures began about one week after surgery, and occurred in clusters with severity increasing over the monitoring period. These results suggest that olfactory bulbectomy could be a useful model of TBI-induced epilepsy, with advantages of relatively rapid seizure onset and a high number of individuals developing the disease. The model may also be useful for investigating the mechanisms underlying the bidirectional relationship between epilepsy and depression.
Collapse
Affiliation(s)
- Yifei Jiang
- Department of Anesthesia, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Anesthesia, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
| | - Raymund Y. K. Pun
- Department of Anesthesia, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
| | - Katrina Peariso
- Division of Neurocritical Care, University of Cincinnati Medical Center, Cincinnati, OH, United States of America
| | - Katherine D. Holland
- Department of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
| | - Qingquan Lian
- Department of Anesthesia, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Steve C. Danzer
- Department of Anesthesia, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
- Departments of Anesthesia and Pediatrics, University of Cincinnati, Cincinnati, OH, United States of America
| |
Collapse
|
18
|
Antidepressant-like effect of quercetin in bulbectomized mice and involvement of the antioxidant defenses, and the glutamatergic and oxidonitrergic pathways. Pharmacol Biochem Behav 2015. [DOI: 10.1016/j.pbb.2015.07.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
19
|
Alterations of reward mechanisms in bulbectomised rats. Behav Brain Res 2015; 286:271-7. [DOI: 10.1016/j.bbr.2015.03.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 03/02/2015] [Accepted: 03/06/2015] [Indexed: 01/17/2023]
|
20
|
Abstract
The wide spectrum of disruptions that characterizes major depressive disorder (MDD) and bipolar disorder (BD) highlights the difficulties researchers are posed with as they try to mimic these disorders in the laboratory. Nonetheless, numerous attempts have been made to create rodent models of mood disorders or at least models of the symptoms of MDD and BD. Present antidepressants are all descendants of the serendipitous findings in the 1950s that the monoamine oxidase inhibitor iproniazid and the tricyclic antidepressant imipramine were effective antidepressants. Thus, the need for improved animal models to provide insights into the neuropathology underlying the disease is critical. Such information is in turn crucial for identifying new antidepressants and mood stabilisers. Currently, there is a shift away from traditional animal models to more focused research dealing with an endophenotype-style approach, genetic models, and incorporation of new findings from human neuroimaging and genetic studies. Such approaches are opening up more tractable avenues for understanding the neurobiological and genetic bases of these disorders. Further, such models promise to yield better translational animal models and hence more fruitful therapeutic targets. This overview focuses on such animal models and tests and how they can be used to assess MDD and BD in rodents.
Collapse
|
21
|
Revisiting the Serotonin Hypothesis: Implications for Major Depressive Disorders. Mol Neurobiol 2015; 53:2778-2786. [PMID: 25823514 DOI: 10.1007/s12035-015-9152-z] [Citation(s) in RCA: 148] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 03/19/2015] [Indexed: 02/06/2023]
Abstract
Major depressive disorder (MDD) is a heritable neuropsychiatric disease associated with severe changes at cellular and molecular levels. Its diagnosis mainly relies on the characterization of a wide range of symptoms including changes in mood and behavior. Despite the availability of antidepressant drugs, 10 to 30 % of patients fail to respond after a single or multiple treatments, and the recurrence of depression among responsive patients is very high. Evidence from the past decades suggests that the brain neurotransmitter serotonin (5-HT) is incriminated in MDD, and that a dysfunction of 5-HT receptors may play a role in the genesis of this disease. The 5-HT membrane transporter protein (SERT), which helps regulate the serotonergic transmission, is also implicated in MDD and is one of the main targets of antidepressant therapy. Although a number of behavioral tests and animal models have been developed to study depression, little is known about the neurobiological bases of MDD. Understanding the role of the serotonergic pathway will significantly help improve our knowledge of the pathophysiology of depression and may open up avenues for the development of new antidepressant drugs. The overarching goal of this review is to present recent findings from studies examining the serotonergic pathway in MDD, with a focus on SERT and the serotonin 1A (5-HT1A), serotonin 1B (5-HT1B), and serotonin 2A (5-HT2A) receptors. This paper also describes some of the main molecules involved in the internalization of 5-HT receptors and illustrates the changes in 5-HT neurotransmission in knockout mice and animal model of depression.
Collapse
|
22
|
Fakhoury M. New insights into the neurobiological mechanisms of major depressive disorders. Gen Hosp Psychiatry 2015; 37:172-7. [PMID: 25772946 DOI: 10.1016/j.genhosppsych.2015.01.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Revised: 01/12/2015] [Accepted: 01/12/2015] [Indexed: 12/16/2022]
Abstract
OBJECTIVE To review the current evidence about the neurobiological mechanisms in major depressive disorders (MDD) and the key findings from studies using neuroimaging tools and animal models. METHOD This paper gives an overview of the role of genetic and environmental factors in the pathophysiology of MDD and describes the structural changes in brain structures of depressed individuals. A closer look is given at the molecular processes and neurotransmitters implicated in this mental disorder. Moreover, this paper discusses key findings from recent research using animal models and their relevance for clinical applications. RESULTS Although the exact cause of MDD is not known, there is enough evidence showing that genetic, psychological and environmental factors significantly increase the risk of developing this disease. Individuals affected by MDD exhibit a reduced volume of structures such as the amygdala, hippocampus and basal ganglia, as well as altered level of neurotransmitters in the brain. CONCLUSION The studies presented in this review show promising results that could shed light on the molecular mechanisms of MDD. However, more work needs to be done to better understand this psychiatric disorder and promote the development of new treatment strategies.
Collapse
Affiliation(s)
- Marc Fakhoury
- Department of Neuroscience, Faculty of Medicine, University of Montreal, Montreal, Quebec, H3C 3J7, Canada.
| |
Collapse
|
23
|
Bouwknecht JA. Behavioral studies on anxiety and depression in a drug discovery environment: keys to a successful future. Eur J Pharmacol 2014; 753:158-76. [PMID: 25460021 DOI: 10.1016/j.ejphar.2014.09.051] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 08/25/2014] [Accepted: 09/11/2014] [Indexed: 11/18/2022]
Abstract
The review describes a personal journey through 25 years of animal research with a focus on the contribution of rodent models for anxiety and depression to the development of new medicines in a drug discovery environment. Several classic acute models for mood disorders are briefly described as well as chronic stress and disease-induction models. The paper highlights a variety of factors that influence the quality and consistency of behavioral data in a laboratory setting. The importance of meta-analysis techniques for study validation (tolerance interval) and assay sensitivity (Monte Carlo modeling) are demonstrated by examples that use historic data. It is essential for successful discovery of new potential drugs to maintain a high level of control in animal research and to bridge knowledge across in silico modeling, and in vitro and in vivo assays. Today, drug discovery is a highly dynamic environment in search of new types of treatments and new animal models which should be guided by enhanced two-way translation between bench and bed. Although productivity has been disappointing in the search of new and better medicines in psychiatry over the past decades, there has been and will always be an important role for in vivo models in-between preclinical discovery and clinical development. The right balance between good science and proper judgment versus a decent level of innovation, assay development and two-way translation will open the doors to a very bright future.
Collapse
|
24
|
The effects of N-acetylcysteine on cocaine reward and seeking behaviors in a rat model of depression. Behav Brain Res 2014; 266:108-18. [DOI: 10.1016/j.bbr.2014.02.044] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 02/19/2014] [Accepted: 02/23/2014] [Indexed: 12/20/2022]
|
25
|
Gupta D, Radhakrishnan M, Thangaraj D, Kurhe Y. Antidepressant and anti-anxiety like effects of 4i (N-(3-chloro-2-methylphenyl) quinoxalin-2-carboxamide), a novel 5-HT3 receptor antagonist in acute and chronic neurobehavioral rodent models. Eur J Pharmacol 2014; 735:59-67. [PMID: 24747753 DOI: 10.1016/j.ejphar.2014.04.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 01/11/2014] [Accepted: 04/08/2014] [Indexed: 11/16/2022]
Abstract
Depression and anxiety are the most debilitating mood disorders with poor therapeutic recovery rates. In the last decades, 5-HT3 receptor antagonists have been identified as potential agents for mood disorders. The current investigation focuses on evaluating the, antidepressant and anti-anxiety like effects of a novel 5-HT3 antagonist, 4i (N-(3-chloro-2-methylphenyl) quinoxalin-2-carboxamide). Preliminary, in vitro 5-HT3 receptor binding affinity was performed in isolated longitudinal muscle-myenteric plexus from the guinea pig ileum. Consequently, neurobehavioral effects of 4i in acute and chronic rodent models were evaluated. In addition, involvement of serotonergic system in the postulated effects of the compound was analyzed by in vivo assay. in vitro, 4i demonstrated high 5-HT3 receptor antagonistic activity (pA2, 7.6). in vivo acute study, 4i exhibited decreased duration of immobility in forced swim and tail suspension tests, and increased exploratory parameters as number and duration of nose-poking in hole board test and latency and time spent in aversive brightly illuminated light chamber in light-dark model. Moreover, in chronic model of depression, i.e., olfactory bulbectomy with behavioral deficits, 4i reversed depressive anhedonia in sucrose preference test and anxious hyperactive behavior in open field test in rats. Furthermore, synergistic effect of 4i with fluoxetine (a selective serotonin reuptake inhibitor) and inhibitory effect of 1-(m-chlorophenyl)-biguanide (a 5-HT3 receptor agonist) revealed serotonergic modulation by 4i mediated 5-HT3 receptor antagonism, which was further confirmed by potentiation of 5-hydroxytryptophan (a serotonin synthesis precursor) induced head twitch response. These findings suggest the potential antidepressant and anti-anxiety like effects of 4i, which may be related to the modulation of serotonergic system.
Collapse
Affiliation(s)
- Deepali Gupta
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Rajasthan 333031, India.
| | - Mahesh Radhakrishnan
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Rajasthan 333031, India.
| | - Devadoss Thangaraj
- KVSR Siddhartha College of Pharmaceutical Sciences, Vijaywada, Andhra Pradesh 520001, India.
| | - Yeshwant Kurhe
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Rajasthan 333031, India.
| |
Collapse
|
26
|
Amchova P, Kucerova J, Giugliano V, Babinska Z, Zanda MT, Scherma M, Dusek L, Fadda P, Micale V, Sulcova A, Fratta W, Fattore L. Enhanced self-administration of the CB1 receptor agonist WIN55,212-2 in olfactory bulbectomized rats: evaluation of possible serotonergic and dopaminergic underlying mechanisms. Front Pharmacol 2014; 5:44. [PMID: 24688470 PMCID: PMC3960502 DOI: 10.3389/fphar.2014.00044] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 02/25/2014] [Indexed: 11/13/2022] Open
Abstract
Depression has been associated with drug consumption, including heavy or problematic cannabis use. According to an animal model of depression and substance use disorder comorbidity, we combined the olfactory bulbectomy (OBX) model of depression with intravenous drug self-administration procedure to verify whether depressive-like rats displayed altered voluntary intake of the CB1 receptor agonist WIN55,212-2 (WIN, 12.5 μg/kg/infusion). To this aim, olfactory-bulbectomized (OBX) and sham-operated (SHAM) Lister Hooded rats were allowed to self-administer WIN by lever-pressing under a continuous [fixed ratio 1 (FR-1)] schedule of reinforcement in 2 h daily sessions. Data showed that both OBX and SHAM rats developed stable WIN intake; yet, responses in OBX were constantly higher than in SHAM rats soon after the first week of training. In addition, OBX rats took significantly longer to extinguish the drug-seeking behavior after vehicle substitution. Acute pre-treatment with serotonin 5HT1B receptor agonist, CGS-12066B (2.5-10 mg/kg), did not significantly modify WIN intake in OBX and SHAM Lister Hooded rats. Furthermore, acute pre-treatment with CGS-12066B (10 and 15 mg/kg) did not alter responses in parallel groups of OBX and SHAM Sprague Dawley rats self-administering methamphetamine under higher (FR-2) reinforcement schedule with nose-poking as operandum. Finally, dopamine levels in the nucleus accumbens (NAc) of OBX rats did not increase in response to a WIN challenge, as in SHAM rats, indicating a dopaminergic dysfunction in bulbectomized rats. Altogether, our findings suggest that a depressive-like state may alter cannabinoid CB1 receptor agonist-induced brain reward function and that a dopaminergic rather than a 5-HT1B mechanism is likely to underlie enhanced WIN self-administration in OBX rats.
Collapse
Affiliation(s)
- Petra Amchova
- Central European Institute of Technology, Masaryk University Brno, Czech Republic ; Department of Pharmacology, Faculty of Medicine, Masaryk University Brno, Czech Republic
| | - Jana Kucerova
- Central European Institute of Technology, Masaryk University Brno, Czech Republic ; Department of Pharmacology, Faculty of Medicine, Masaryk University Brno, Czech Republic
| | - Valentina Giugliano
- Section of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari Monserrato, Italy
| | - Zuzana Babinska
- Central European Institute of Technology, Masaryk University Brno, Czech Republic ; Department of Pharmacology, Faculty of Medicine, Masaryk University Brno, Czech Republic
| | - Mary T Zanda
- Section of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari Monserrato, Italy
| | - Maria Scherma
- Section of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari Monserrato, Italy
| | - Ladislav Dusek
- Institute of Biostatistics and Analyses of Faculty of Medicine, Masaryk University Brno, Czech Republic
| | - Paola Fadda
- Section of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari Monserrato, Italy ; Center of Excellence "Neurobiology of Addiction," University of Cagliari Monserrato, Italy ; National Institute of Neuroscience (INN), University of Cagliari Monserrato, Italy
| | - Vincenzo Micale
- Central European Institute of Technology, Masaryk University Brno, Czech Republic
| | - Alexandra Sulcova
- Central European Institute of Technology, Masaryk University Brno, Czech Republic
| | - Walter Fratta
- Section of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari Monserrato, Italy ; Center of Excellence "Neurobiology of Addiction," University of Cagliari Monserrato, Italy ; National Institute of Neuroscience (INN), University of Cagliari Monserrato, Italy
| | - Liana Fattore
- Center of Excellence "Neurobiology of Addiction," University of Cagliari Monserrato, Italy ; CNR Institute of Neuroscience-Cagliari, National Research Council-Italy Monserrato, Italy
| |
Collapse
|
27
|
Linge R, Pazos Á, Díaz Á. Social isolation differentially affects anxiety and depressive-like responses of bulbectomized mice. Behav Brain Res 2013; 245:1-6. [PMID: 23416113 DOI: 10.1016/j.bbr.2013.01.041] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 12/21/2012] [Accepted: 01/15/2013] [Indexed: 10/27/2022]
Abstract
Social isolation in rodents may interfere in their behavioural responses on paradigms used to test anxiety- and depressive-like states. Herein we study the influence of social isolation upon the behavioural responses of olfactory bulbectomized mice (OBX). In the open-field test (OFT), social isolation enhanced OBX-induced hyperactivity and exploratory behaviour. However, OBX-induced anxiety in the OFT (central activity) was less apparent after isolation, due to the increased level of anxiety showed by the sham-isolated counterparts. In the novelty-suppressed feeding (NSF), isolation derived in an increased latency to feeding of both OBX and sham mice. The isolation did not affect the response of OBX mice and sham mice in the forced-swimming test (FST). Interestingly, OBX animals exhibited an increased immobility time during the FST, though a dramatic decrease in the climbing scores. Finally, OBX-induced anhedonia in the sucrose intake test was not affected by housing conditions. Our findings demonstrate that social isolation influences the performance of OBX mice in some behavioural paradigms, thus facilitating the characterization of depressive-like states, and by contrast, hindering anxiety-related behaviours. This fact should be taken into account in order to minimize economical and time-consuming efforts when assessing potential antidepressant and anxiolytic drugs.
Collapse
Affiliation(s)
- Raquel Linge
- Universidad de Cantabria, Departamento de Fisiología y Farmacología, 39011 Santander, Cantabria, Spain
| | | | | |
Collapse
|
28
|
Sasso EM, Vieira JL, Dantas G, de Souza CM, Levandovski RM, Hidalgo MPL. Impact of the time in an animal model of mood disorder. J Neurosci Methods 2012; 211:84-7. [DOI: 10.1016/j.jneumeth.2012.08.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2012] [Revised: 08/10/2012] [Accepted: 08/13/2012] [Indexed: 10/28/2022]
|
29
|
Freitas AE, Machado DG, Budni J, Neis VB, Balen GO, Lopes MW, de Souza LF, Dafre AL, Leal RB, Rodrigues ALS. Fluoxetine modulates hippocampal cell signaling pathways implicated in neuroplasticity in olfactory bulbectomized mice. Behav Brain Res 2012; 237:176-84. [PMID: 23018126 DOI: 10.1016/j.bbr.2012.09.035] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 09/11/2012] [Accepted: 09/17/2012] [Indexed: 12/21/2022]
Abstract
The olfactory bulbectomy (OB) animal model of depression is a well-established model that is capable of detecting antidepressant activity following chronic drug therapy, and the surgery results in behavioral and biochemical changes that are reminiscent of various symptoms of depression. In the present study, we investigated the degree to which 14 days of p.o. administration of the classic antidepressant fluoxetine (10mg/kg) were able to reverse OB-induced changes in behavior (namely, hyperactivity in the open-field test and reduced motivational and self-care behaviors in the splash test) and in the activation of hippocampal cell signaling pathways that are thought to be involved in synaptic plasticity. OB caused significant increases in ERK1 and CREB (Ser(133)) phosphorylation and in the expression of BDNF immunocontent, all of which were prevented by fluoxetine administration. Moreover, fluoxetine administration also caused a significant decrease in ERK2 phosphorylation in mice that had undergone OB. Neither Akt nor GSK-3β phosphorylation was altered in any experimental condition. In conclusion, the present study shows that OB can induce significant behavioral changes that are accompanied by the activation of hippocampal signaling pathways, namely the ERK1/CREB/BDNF pathway, which is involved in the synaptic plasticity. Conversely, fluoxetine prevented these OB-induced behavioral changes and avoided the activation of ERK1/CREB/BDNF in the hippocampus. Taken together, our results extend the data from the existing literature regarding OB-induced behavioral and neurochemical changes, and suggest a possible underlying mechanism that can account for the antidepressant effect of fluoxetine in this model.
Collapse
Affiliation(s)
- Andiara E Freitas
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Campus Universitário, Trindade 88040-900, Florianópolis, SC, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Machado DG, Cunha MP, Neis VB, Balen GO, Colla A, Grando J, Brocardo PS, Bettio LEB, Capra JC, Rodrigues ALS. Fluoxetine reverses depressive-like behaviors and increases hippocampal acetylcholinesterase activity induced by olfactory bulbectomy. Pharmacol Biochem Behav 2012; 103:220-9. [PMID: 22960127 DOI: 10.1016/j.pbb.2012.08.024] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Revised: 08/21/2012] [Accepted: 08/25/2012] [Indexed: 11/25/2022]
Abstract
The olfactory bulbectomy (OB) is an animal model of depression that results in behavioral, neurochemical and neuroendocrinological changes, features comparable to those seen in depressive patients. This study investigated OB-induced alterations in locomotor activity and exploratory behavior in the open-field test, self-care and motivational behavior in the splash test, hyperactivity in the novel object test and novel cage test, and the influence of chronic treatment with fluoxetine (10mg/kg, p.o., once daily for 14days) on these parameters. Fluoxetine reversed OB-induced hyperactivity in the open-field test, locomotor hyperactivity and the increase in exploratory behavior induced by novelty in the novel object and novel cage tests, and the loss of self-care and motivational behavior in the splash test. Moreover, OB decreased the number of grooming and fecal boli in the open-field and novel cage tests, alterations that were not reversed by fluoxetine. OB caused an increase in hippocampal, but not in prefrontal acetylcholinesterase (AChE) activity. Fluoxetine was able to reverse the increase in hippocampal AChE activity induced by OB. Serum corticosterone was increased in SHAM and bulbectomized mice treated with fluoxetine. In conclusion, OB mice exhibited depressive-like behaviors associated with an increase in hippocampal AChE activity, effects that were reversed by chronic treatment with fluoxetine.
Collapse
Affiliation(s)
- Daniele G Machado
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário-Trindade - 88040-900, Florianópolis-SC, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Machado DG, Cunha MP, Neis VB, Balen GO, Colla AR, Grando J, Brocardo PS, Bettio LEB, Dalmarco JB, Rial D, Prediger RD, Pizzolatti MG, Rodrigues ALS. Rosmarinus officinalis L. hydroalcoholic extract, similar to fluoxetine, reverses depressive-like behavior without altering learning deficit in olfactory bulbectomized mice. JOURNAL OF ETHNOPHARMACOLOGY 2012; 143:158-169. [PMID: 22721880 DOI: 10.1016/j.jep.2012.06.017] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 05/28/2012] [Accepted: 06/11/2012] [Indexed: 06/01/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Rosemary, Rosmarinus officinalis L., has several therapeutic applications in folk medicine for the treatment of a wide range of diseases, including depression. AIM OF THE STUDY To evaluate the ability of Rosmarinus officinalis hydroalcoholic extract (ROHE), as compared to the positive control fluoxetine, to reverse behavioral (hyperactivity, anhedonic behavior and learning deficit in water maze) and biochemical alterations (serum glucose level and acetylcholinesterase, AChE, activity) induced by an animal model of depression, the olfactory bulbectomy (OB) in mice. MATERIALS AND METHODS Locomotor and exploratory behavior was assessed in the open-field, novel object and novel cage tests, anhedonic behavior was assessed in the splash test; cognitive deficits were evaluated in the water maze task. For the first set of experiments, ROHE (10-300 mg/kg) or fluoxetine (10mg/kg) was administered once daily (p.o.) for 14 days after OB and the behavioral tests were performed. For the second set of experiments, serum glucose and hippocampal and cerebrocortical AChE activity were determined in OB and SHAM-operated mice treated orally with ROHE (10mg/kg), fluoxetine (10mg/kg) or vehicle. RESULTS ROHE (10-300 mg/kg), similar to fluoxetine, reversed OB-induced hyperactivity, increased exploratory and anhedonic behavior. OB needed significantly more trials in the training session to acquire the spatial information, but they displayed a similar profile to that of SHAM mice in the test session (24h later), demonstrating a selective deficit in spatial learning, which was not reversed by ROHE or fluoxetine. A reduced serum glucose level and an increased hippocampal AChE activity were observed in bulbectomized mice; only the latter effect was reversed by fluoxetine, while both effects were reversed by ROHE. CONCLUSIONS ROHE exerted an antidepressant-like effect in bulbectomized mice and was able to abolish AchE alterations and hypoglycemia, but not spatial learning deficit induced by OB. Overall, results suggest the potential of Rosmarinus officinalis for the treatment of depression, validating the traditional use of this plant.
Collapse
Affiliation(s)
- Daniele G Machado
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, 88040-900 Florianópolis, SC, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Inostroza M, Cid E, Menendez de la Prida L, Sandi C. Different emotional disturbances in two experimental models of temporal lobe epilepsy in rats. PLoS One 2012; 7:e38959. [PMID: 22720001 PMCID: PMC3376131 DOI: 10.1371/journal.pone.0038959] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 05/16/2012] [Indexed: 11/24/2022] Open
Abstract
Affective symptoms such as anxiety and depression are frequently observed in patients with epilepsy. The mechanisms of comorbidity of epilepsy and affective disorders, however, remain unclear. Diverse models are traditionally used in epilepsy research, including the status epilepticus (SE) model in rats, which are aimed at generating chronic epileptic animals; however, the implications of different SE models and rat strains in emotional behaviors has not been reported. To address this issue, we examined the emotional sequelae of two SE models of temporal lobe epilepsy (TLE)--the lithium-pilocarpine (LIP) model and the kainic acid (KA) model--in two different rat strains (Wistar and Sprague-Dawley), which differ significantly in the pattern and extent of TLE-associated brain lesions. We found differences between LIP- and KA-treated animals in tests for depression-like and anxiety-like behaviors, as well as differences in plasma corticosterone levels. Whereas only LIP-treated rats displayed increased motivation to consume saccharin, both SE models led to reduced motivation for social contact, with LIP-treated animals being particularly affected. Evaluation of behavior in the open field test indicated very low levels of anxiety in LIP-treated rats and a mild decrease in KA-treated rats compared to controls. After exposure to a battery of behavioral tests, plasma corticosterone levels were increased only in LIP-treated animals. This hyperactivity in the hypothalamus-pituitary-adrenocortical (HPA) axis was highly correlated with performance in the open field test and the social interaction test, suggesting that comorbidity of epilepsy and emotional behaviors might also be related to other factors such as HPA axis function. Our results indicate that altered emotional behaviors are not inherent to the epileptic condition in experimental TLE; instead, they likely reflect alterations in anxiety levels related to model-dependent dysregulation of the HPA axis.
Collapse
Affiliation(s)
- Marion Inostroza
- Instituto Cajal, Spanish National Research Council (CSIC), Madrid, Spain
- Departamento de Psicología, Universidad de Chile, Santiago, Chile
| | - Elena Cid
- Instituto Cajal, Spanish National Research Council (CSIC), Madrid, Spain
| | | | - Carmen Sandi
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Federal de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
33
|
Elbatsh MM, Moklas MAA, Marsden CA, Kendall DA. Antidepressant-like effects of Δ⁹-tetrahydrocannabinol and rimonabant in the olfactory bulbectomised rat model of depression. Pharmacol Biochem Behav 2012; 102:357-65. [PMID: 22634064 DOI: 10.1016/j.pbb.2012.05.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Revised: 05/08/2012] [Accepted: 05/19/2012] [Indexed: 11/30/2022]
Abstract
The endocannabinoid signalling system is widely accepted to play a role in controlling the affective state. Plant cannabinoids are well known to have behavioural effects in animals and humans and the cannabinoid CB(1) receptor antagonist rimonabant has recently been shown to precipitate depression-like symptoms in clinical trial subjects. The aim of the present study was to investigate the behavioural and neurochemical effects of chronic administration of Δ⁹-tetrahydrocannabinol (THC) and rimonabant on intact and olfactory bulbectomised (OB) rats used as a model of depression. As expected, OB rats were hyperactive in the open field. Repeated THC (2 mg/kg, i.p. once every 48 h for 21 days) and rimonabant (5 mg/kg, i.p. once every 48 h for 21 days) reduced this hyperactivity, which is typical of clinically effective antidepressant drugs. In intact animals, chronic THC increased brain derived neurotrophic factor (BDNF) expression levels in the hippocampus and frontal cortex but rimonabant had no effect. Rimonabant increased the levels of phosphorylated extracellular signal regulated kinases (p-ERKs(1/2)) in the hippocampus and prefrontal cortex and THC also increased expression in frontal cortex. OB did not affect BDNF or p-ERK(1/2) expression in the hippocampus or frontal cortex and in, contrast to the intact animals, neither THC nor rimonabant altered expression in the OB rats. These findings indicate antidepressant-like behavioural properties of both THC and rimonabant in OB rats although additional studies are required to clarify the relationship between the chronic effects of cannabinoids in other pre-clinical models and in human depression.
Collapse
Affiliation(s)
- Maha M Elbatsh
- School of Biomedical Sciences, University of Nottingham Medical School, Queen's Medical Centre, Nottingham NG7 2UH, UK.
| | | | | | | |
Collapse
|
34
|
Subchronic treatment with aldosterone induces depression-like behaviours and gene expression changes relevant to major depressive disorder. Int J Neuropsychopharmacol 2012; 15:247-65. [PMID: 21375792 DOI: 10.1017/s1461145711000368] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The potential role of aldosterone in the pathophysiology of depression is unclear. The aim of this study was to test the hypothesis that prolonged elevation of circulating aldosterone induces depression-like behaviour accompanied by disease-relevant changes in gene expression in the hippocampus. Subchronic (2-wk) treatment with aldosterone (2 μg/100 g body weight per day) or vehicle via subcutaneous osmotic minipumps was used to induce hyperaldosteronism in male rats. All rats (n = 20/treatment group) underwent a modified sucrose preference test. Half of the animals from each treatment group were exposed to the forced swim test (FST), which served both as a tool to assess depression-like behaviour and as a stress stimulus. Affymetrix microarray analysis was used to screen the entire rat genome for gene expression changes in the hippocampus. Aldosterone treatment induced an anhedonic state manifested by decreased sucrose preference. In the FST, depressogenic action of aldosterone was manifested by decreased latency to immobility and increased time spent immobile. Aldosterone treatment resulted in transcriptional changes of genes in the hippocampus involved in inflammation, glutamatergic activity, and synaptic and neuritic remodelling. Furthermore, aldosterone-regulated genes substantially overlapped with genes affected by stress in the FST. This study demonstrates the existence of a causal relationship between the hyperaldosteronism and depressive behaviour. In addition, aldosterone treatment induced changes in gene expression that may be relevant to the aetiology of major depressive disorder. Subchronic treatment with aldosterone represents a new animal model of depression, which may contribute to the development of novel targets for the treatment of depression.
Collapse
|
35
|
Drug withdrawal-induced depression: Serotonergic and plasticity changes in animal models. Neurosci Biobehav Rev 2012; 36:696-726. [DOI: 10.1016/j.neubiorev.2011.10.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Revised: 10/06/2011] [Accepted: 10/15/2011] [Indexed: 12/17/2022]
|
36
|
Matrov D, Vonk A, Herm L, Rinken A, Harro J. Activating effects of chronic variable stress in rats with different exploratory activity: association with dopamine d(1) receptor function in nucleus accumbens. Neuropsychobiology 2011; 64:110-22. [PMID: 21701229 DOI: 10.1159/000325224] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Accepted: 01/23/2011] [Indexed: 01/11/2023]
Abstract
BACKGROUND/AIMS Rats display persistent behavioural phenotypes of low (LE) versus high (HE) exploratory activity in the exploration box paradigm. LE rats that prefer passive coping strategies show differential dopaminergic activity in the striatum. The main hypothesis of this study was that chronic variable stress (CVS) would have a higher impact on LE rats. METHODS Animals were submitted to a CVS regimen lasting 32 days that was followed by a behavioural test battery. The functional states of their dopamine D(1) and D(2) receptors were measured in the striatum and nucleus accumbens (NAcc). Cerebral oxidative metabolism was assessed via cytochrome c oxidase histochemistry in 65 brain regions. RESULTS CVS decreased weight gain, to a higher extent in LE rats, and lowered the sucrose preference after the first week, but habituation to the anhedonic effect had developed by the end of the experiment. CVS did not change the behavioural phenotypes initially assigned. No effect of stress on D(2) receptor function was found. Chronically stressed animals exhibited higher levels of social interaction and D(1) receptor-mediated cAMP accumulation in the NAcc, but not in the striatum. CVS was associated with higher oxidative metabolism levels in the anteroventral thalamus, median raphe nuclei and central periaqueductal grey matter. These changes after stress did not depend upon the exploratory phenotype. CONCLUSION This study revealed changes in brain biochemistry after habituation to CVS that might be implicated in successful adaptation to chronic stress.
Collapse
Affiliation(s)
- Denis Matrov
- Department of Psychology, Centre of Behavioural and Health Sciences, University of Tartu, Tartu, Estonia
| | | | | | | | | |
Collapse
|
37
|
Abstract
Current antidepressants still display unsatisfactory efficacy and a delayed onset of therapeutic action. Here we show that the pharmacological blockade of serotonin 7 (5-HT(7)) receptors produced a faster antidepressant-like response than the commonly prescribed antidepressant fluoxetine. In the rat, the selective 5-HT(7) receptor antagonist SB-269970 counteracted the anxiogenic-like effect of fluoxetine in the open field and exerted an antidepressant-like effect in the forced swim test. In vivo, 5-HT(7) receptors negatively regulate the firing activity of dorsal raphe 5-HT neurons and become desensitized after long-term administration of fluoxetine. In contrast with fluoxetine, a 1-week treatment with SB-269970 did not alter 5-HT firing activity but desensitized cell body 5-HT autoreceptors, enhanced the hippocampal cell proliferation, and counteracted the depressive-like behavior in olfactory bulbectomized rats. Finally, unlike fluoxetine, early-life administration of SB-269970, did not induce anxious/depressive-like behaviors in adulthood. Together, these findings indicate that the 5-HT(7) receptor antagonists may represent a new class of antidepressants with faster therapeutic action.
Collapse
|
38
|
Katsidoni V, Apazoglou K, Panagis G. Role of serotonin 5-HT2A and 5-HT2C receptors on brain stimulation reward and the reward-facilitating effect of cocaine. Psychopharmacology (Berl) 2011; 213:337-54. [PMID: 20577718 DOI: 10.1007/s00213-010-1887-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Accepted: 03/27/2010] [Indexed: 01/20/2023]
Abstract
RATIONALE The serotonin 5-HT(2A) and 5-HT(2C) receptors, which are found in abundance in the mesolimbocortical dopaminergic system, appear to modulate the behavioral effects of cocaine. OBJECTIVES The present series of studies set out to investigate the role of 5-HT(2A) and 5-HT(2C) receptors on brain reward and on the reward-facilitating effect of cocaine and localize the neural substrates within the mesolimbocortical dopaminergic system that are responsible for these effects. METHODS Male Sprague-Dawley rats were implanted with stimulating electrodes and bilateral cannulae for the experiments involving microinjections and were trained to respond to electrical stimulation. In the first study, we examined the effects of systemic administration of selective 5-HT(2A) and 5-HT(2C) receptor agonists (TCB-2 and WAY-161503) and antagonists (R-96544 and SB-242084) on intracranial self-stimulation (ICSS). In the second study, we examined the effectiveness of TCB-2, WAY-161503, R-96544, and SB-242084 in blocking the reward-facilitating effect of cocaine. In the third study, we examined the effects of intra-medial prefrontal cortex (mPFC), intra-nucleus accumbens (NAC), and intra-ventral tegmental area (VTA) injection of WAY-161503 on the reward-facilitating effect of cocaine. RESULTS Acute systemic administration of TCB-2 and WAY-161503 increased ICSS threshold. Systemic WAY-161503 attenuated the reward-facilitating effect of cocaine. This effect was reversed by pretreatment with SB-242084. Intracranial microinjections of WAY-161503 into the mPFC and the NAC shell/core, but not the VTA, attenuated the reward-facilitating effect of cocaine. CONCLUSION These data indicate that 5-HT(2C) receptors within the mPFC and the NAC modulate the reinforcing effects of cocaine and provide evidence that 5-HT(2C) receptor agonists could be a possible drug discovery target for the treatment of psychostimulant addiction.
Collapse
Affiliation(s)
- Vicky Katsidoni
- Department of Psychology, School of Social Sciences, University of Crete, Rethymno, Crete, Greece
| | | | | |
Collapse
|
39
|
Burke N, Hayes E, Calpin P, Kerr D, Moriarty O, Finn D, Roche M. Enhanced nociceptive responding in two rat models of depression is associated with alterations in monoamine levels in discrete brain regions. Neuroscience 2010; 171:1300-13. [DOI: 10.1016/j.neuroscience.2010.10.030] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Revised: 10/07/2010] [Accepted: 10/11/2010] [Indexed: 12/29/2022]
|
40
|
Prins J, Westphal KGC, Korte-Bouws GAH, Quinton MS, Schreiber R, Olivier B, Korte SM. The potential and limitations of DOV 216,303 as a triple reuptake inhibitor for the treatment of major depression: a microdialysis study in olfactory bulbectomized rats. Pharmacol Biochem Behav 2010; 97:444-52. [PMID: 20934452 DOI: 10.1016/j.pbb.2010.10.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Revised: 09/29/2010] [Accepted: 10/03/2010] [Indexed: 01/11/2023]
Abstract
DOV 216,303 belongs to a new class of antidepressants, the triple reuptake inhibitors (TRIs), that blocks serotonin, norepinephrine and dopamine transporters and thereby increases extracellular brain monoamine concentrations. The aim of the present study was to measure extracellular monoamine concentrations both in the prefrontal cortex (PFC) and dorsal hippocampus (DH) after chronic administration of DOV 216,303 in the OBX animal model of depression and to compare the effects with acute drug treatment. OBX animals showed lower dopamine levels in PFC upon acute administration of DOV 216,303 than sham animals for up to five weeks after surgery. No such changes were observed in the DH. Unexpectedly, a DOV 216,303 challenge in chronic DOV 216,303 treated sham animals resulted in a blunted dopamine response in the PFC compared to the same challenge in vehicle treated animals. This blunted response probably reflects pharmacokinetic adaptations and/or pharmacodynamic changes, since brain and plasma concentrations of DOV 216,303 were significantly lower after chronic administration compared to acute administration. Surprisingly, and in contrast what we have reported earlier, chronic DOV 216,303 treatment was unable to normalize the hyperactivity of the OBX animals. Interestingly, by measuring the drug plasma and brain levels, it was demonstrated that at the time of behavioral testing (24 h after last drug treatment) DOV 216,303 was not present anymore in either plasma or brain. This seems to indicate that this putative antidepressant drug has no lasting antidepressant-like behavioral effects in the absence of the drug in the brain.
Collapse
Affiliation(s)
- J Prins
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Rudolf Magnus Institute of Neuroscience (RMI), Utrecht University, Sorbonnelaan 16, 3584 CA, Utrecht, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
41
|
Wesson DW, Wilson DA. Sniffing out the contributions of the olfactory tubercle to the sense of smell: hedonics, sensory integration, and more? Neurosci Biobehav Rev 2010; 35:655-68. [PMID: 20800615 DOI: 10.1016/j.neubiorev.2010.08.004] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Revised: 08/17/2010] [Accepted: 08/18/2010] [Indexed: 11/28/2022]
Abstract
Since its designation in 1896 as a putative olfactory structure, the olfactory tubercle has received little attention in terms of elucidating its role in the processing and perception of odors. Instead, research on the olfactory tubercle has mostly focused on its relationship with the reward system. Here we provide a comprehensive review of research on the olfactory tubercle-with an emphasis on the likely role of this region in olfactory processing and its contributions to perception. Further, we propose several testable hypotheses regarding the likely involvement of the olfactory tubercle in both basic (odor detection, discrimination, parallel processing of olfactory information) and higher-order (social odor processing, hedonics, multi-modal integration) functions. Together, the information within this review highlights an understudied yet potentially critical component in central odor processing.
Collapse
Affiliation(s)
- Daniel W Wesson
- Emotional Brain Institute, Nathan S. Kline Institute for Psychiatric Research, 140 Old Orangeburg Road, Orangeburg, NY 10962, USA.
| | | |
Collapse
|
42
|
Influence of olfactory bulbectomy on maternal behavior and dopaminergic function in nucleus accumbens in mice. Behav Brain Res 2010; 215:141-5. [PMID: 20638419 DOI: 10.1016/j.bbr.2010.07.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Revised: 07/09/2010] [Accepted: 07/10/2010] [Indexed: 11/24/2022]
Abstract
Olfactory bulbectomy (OBX) induces behavioral, physiological, and neurochemical alterations resembling clinical depression and is widely used as an animal model of depression. It has been reported that depression is a critical cause of child abuse and neglect and that maternal behavior involves dopaminergic neurons of the mesolimbic pathway. In a previous study we found that OBX mice show maternal behavior deficits which are improved by administration of apomorphine, a non-selective dopamine agonist. Therefore, in this study, we investigated the effect of l-3,4-dihydroxyphenylalanine (l-DOPA) on maternal behavior deficits to examine the influence of pre-synaptic dopaminergic function in OBX mice. Furthermore, we measured tyrosine hydroxylase (TH) levels using microphotometry and quantified dopamine D1- and D2-like receptors using autoradiography in the nucleus accumbens (NAc). As a result, 25mg/kg l-DOPA with 12.5mg/kg benserazide improved disrupted maternal behavior in OBX mice and there are no changes in TH levels or number of D1- and D2-like receptors between sham and OBX mothers. The behavioral data support the hypothesis that changed dopaminergic function may contribute to maternal behavior deficits in OBX mice. However, our findings concerning dopaminergic function suggest that the deficits in OBX mice are not simply due to changes in TH levels or dopamine receptor number in the NAc.
Collapse
|
43
|
Sato A, Nakagawasai O, Tan-No K, Onogi H, Niijima F, Tadano T. Effect of non-selective dopaminergic receptor agonist on disrupted maternal behavior in olfactory bulbectomized mice. Behav Brain Res 2010; 210:251-6. [DOI: 10.1016/j.bbr.2010.02.042] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2009] [Revised: 02/16/2010] [Accepted: 02/20/2010] [Indexed: 11/29/2022]
|
44
|
Pollak DD, Rey CE, Monje FJ. Rodent models in depression research: classical strategies and new directions. Ann Med 2010; 42:252-64. [PMID: 20367120 DOI: 10.3109/07853891003769957] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Depression, among other mood disorders, represents one of the most common health problems worldwide, with steadily increasing incidence and major socio-economic consequences. However, since the knowledge about the underlying pathophysiological principles is still very scanty, depression and other mood disorders are currently diagnosed solely on clinical grounds. Currently used treatment modalities would therefore benefit enormously from the development of alternative therapeutic interventions. The implementation of proper animal models is a prerequisite for increasing the understanding of the neurobiological basis of mood disorders and is paving the way for the discovery of novel therapeutic targets. In the past thirty years, since the seminal description of the Forced Swim Test as a system to probe antidepressant activity in rodents, the use of animals to model depression and antidepressant activity has come a long way. In this review we describe some of the most commonly used strategies, ranging from screening procedures, such as the Forced Swim Test and the Tail Suspension Test and animal models, such as those based upon chronic stress procedures, to genetic approaches. Finally we also discuss some of the inherent limitations and caveats that need to be considered when using animals as models for mental disorders in basic research.
Collapse
Affiliation(s)
- Daniela D Pollak
- Department of Physiology, Center for Physiology and Pharmacology, Medical University of Vienna, Austria.
| | | | | |
Collapse
|