1
|
Zhang G, Huang S, Wei M, Wu Y, Wang J. Excitatory Amino Acid Transporters as Therapeutic Targets in the Treatment of Neurological Disorders: Their Roles and Therapeutic Prospects. Neurochem Res 2025; 50:155. [PMID: 40299102 DOI: 10.1007/s11064-025-04400-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/01/2025] [Accepted: 04/09/2025] [Indexed: 04/30/2025]
Abstract
Excitatory amino acid transporters (EAATs) are pivotal regulators of glutamate homeostasis in the central nervous system and orchestrate synaptic glutamate clearance through transmembrane transport and the glutamine‒glutamate cycle. The five EAAT subtypes (GLAST/EAAT1, GLT-1/EAAT2, EAAC1/EAAT3, EAAT4, and EAAT5) exhibit spatiotemporal-specific expression patterns in neurons and glial cells, and their dysfunction is implicated in diverse neurological pathologies, including epilepsy, amyotrophic lateral sclerosis (ALS), schizophrenia, depression, and retinal degeneration. Mechanistic studies revealed that astrocytic GLT-1 deficiency disrupts glutamate clearance in ALS motor neurons, whereas GLAST genetic variants are linked to both epilepsy susceptibility and glaucomatous retinal ganglion cell degeneration. Three major challenges persist in ongoing research: ① subtype-specific regulatory mechanisms remain unclear; ② compensatory functions of transporters vary significantly across disease models; and ③ clinical translation lacks standardized evaluation criteria. The interaction mechanisms and dynamic roles of EAATs in neurological disorders were systematically investigated in this study, and an integrated approach combining single-cell profiling, stem cell-based disease modeling, and drug screening platforms was proposed. These findings lay the groundwork for novel therapeutic strategies targeting glutamate homeostasis.
Collapse
Affiliation(s)
- Guirui Zhang
- Department of Medicine, Guangxi University of Science and Technology, Liuzhou, 545005, China
| | - Shupeng Huang
- Department of Medicine, Guangxi University of Science and Technology, Liuzhou, 545005, China
| | - Mingzhen Wei
- Department of Medicine, Guangxi University of Science and Technology, Liuzhou, 545005, China
| | - Yongmo Wu
- Department of Medicine, Guangxi University of Science and Technology, Liuzhou, 545005, China
| | - Jin Wang
- Department of Medicine, Guangxi University of Science and Technology, Liuzhou, 545005, China.
- Department of Medical Oncology, Liuzhou Workers' Hospital, Liuzhou, 5450054, China.
- The Second Affiliated Hospital of Guangxi, University of Science and Technology, Guangxi Zhuang Autonomous Region, Liuzhou, 5450054, China.
| |
Collapse
|
2
|
Zhang Y, Xie H, Liang G, Qin Y, Wei X, Ning S, Liang Y, Liang X, Xie Y, Lin Z, Zhu D, Lin J, Xiong F, Xu X, Shang X. A novel gain-of-function PIP4K2A mutation elevates the expression of β-globin and aggravates the severity of α-thalassemia. Br J Haematol 2023; 202:1018-1023. [PMID: 37423903 DOI: 10.1111/bjh.18967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/11/2023]
Abstract
Haemoglobin H (Hb H) disease (intermediate status of α-thalassemia) shows marked phenotypic variability from asymptomatic to severe anaemia. Apart from the combined β-thalassemia allele ameliorating clinical severity, reports of genetic modifier genes affecting the phenotype of Hb H disease are scarce which bring inconvenience to precise diagnosis and genetic counselling of the patients. Here, we present a novel mutation (c.948C>A, p.S316R) in the PIP4K2A gene in a female Hb H disease patient who displayed moderate anaemia and a relatively high Hb H level. Haematological analysis in her family members revealed that individuals carrying this mutation have upregulated β-globin expression, leading to a more imbalanced β/α-globin ratio and more Hb H inclusion bodies in peripheral red blood cells. According to functional experiments, the mutant PIP4K2A protein exhibits enhanced protein stability, increased kinase activity and a stronger regulatory effect on downstream proteins, suggesting a gain-of-function mutation. Moreover, introduction of the S316R mutation into HUDEP-2 cells increased expression of β-globin, further inhibiting erythroid differentiation and terminal enucleation. Thus, the S316R mutation is a novel genetic factor associated with β-globin expression, and the PIP4K2A gene is a new potential modifier gene affecting the α-thalassemia phenotype.
Collapse
Affiliation(s)
- Yanxia Zhang
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Hongting Xie
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Guanxia Liang
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yunrong Qin
- Department of Clinical Laboratory, Yulin Women and Children Health Care Hospital, Yulin, China
| | - Xiaofeng Wei
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Sisi Ning
- Department of Clinical Laboratory, Yulin Women and Children Health Care Hospital, Yulin, China
| | - Yi Liang
- Department of Clinical Laboratory, Yulin Women and Children Health Care Hospital, Yulin, China
| | - Xiongda Liang
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yuling Xie
- Department of Clinical Laboratory, Yulin Women and Children Health Care Hospital, Yulin, China
| | - Zezhang Lin
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Dina Zhu
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jiaqiong Lin
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Fu Xiong
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xiangming Xu
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Innovation Center for Diagnostics and Treatment of Thalassemia, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xuan Shang
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Innovation Center for Diagnostics and Treatment of Thalassemia, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
3
|
Fedorenko OY, Mikhalitskaya EV, Toshchakova VA, Loonen AJM, Bokhan NA, Ivanova SA. Association of PIP4K2A Polymorphisms with Alcohol Use Disorder. Genes (Basel) 2021; 12:genes12101642. [PMID: 34681036 PMCID: PMC8535504 DOI: 10.3390/genes12101642] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/17/2021] [Accepted: 10/17/2021] [Indexed: 12/15/2022] Open
Abstract
Background: Alcohol use disorder (AUD) not only influences individuals and families but also has a lasting social impact on communities at the national level. Dopaminergic neurotransmission is involved in excessive alcohol consumption. Phosphatidylinositol-5-phosphate-4-kinase type 2 α (PIP4K2A) plays an important role in the regulation of ascending dopamine pathways. In this study; we determined possible associations between nine polymorphisms in PIP4K2A and AUD in Russian men. Methods: 279 Russian men with AUD were investigated. The control group consisted of 222 healthy men from the general Russian population. Genotyping of DNA samples for nine polymorphic variants of PIP4K2A was carried out by the Applied Biosystems™ QuantStudio™ 5 Real-Time PCR System with use of the TaqMan1 Validated SNP Genotyping Assay (Applied Biosystems; CIIIA). Results: Carriage of the PIP4K2A rs2230469*TT/T genotype/allele was a relative risk factor for developing AUD in men (p = 0.026 and p = 0.0084 accordingly). Moreover; men with AUD had a higher frequency of PIP4K2A rs746203*T allele (p = 0.023) compared to healthy men. Conclusions: For the first time; we demonstrated different PIP4K2A polymorphisms to be associated with AUD presumably due to dopamine system modulation resulting from regulation of the lateral habenula.
Collapse
Affiliation(s)
- Olga Yu. Fedorenko
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634014 Tomsk, Russia; (E.V.M.); (V.A.T.); (N.A.B.); (S.A.I.)
- Division for Control and Diagnostics, School of Non-Destructive Testing and Security, National Research Tomsk Polytechnic University, 634050 Tomsk, Russia
- Correspondence:
| | - Ekaterina V. Mikhalitskaya
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634014 Tomsk, Russia; (E.V.M.); (V.A.T.); (N.A.B.); (S.A.I.)
| | - Valentina A. Toshchakova
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634014 Tomsk, Russia; (E.V.M.); (V.A.T.); (N.A.B.); (S.A.I.)
| | - Anton J. M. Loonen
- PharmacoTherapy, Epidemiology and Economics, Groningen Research Institute of Pharmacy, University of Groningen, 9713AV Groningen, The Netherlands;
| | - Nikolay A. Bokhan
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634014 Tomsk, Russia; (E.V.M.); (V.A.T.); (N.A.B.); (S.A.I.)
- Department of Psychotherapy and Psychological Counseling, National Research Tomsk State University, 634050 Tomsk, Russia
- Department of Psychiatry, Addictology and Psychotherapy, Siberian State Medical University, 634050 Tomsk, Russia
| | - Svetlana A. Ivanova
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634014 Tomsk, Russia; (E.V.M.); (V.A.T.); (N.A.B.); (S.A.I.)
- Division for Control and Diagnostics, School of Non-Destructive Testing and Security, National Research Tomsk Polytechnic University, 634050 Tomsk, Russia
- Department of Psychiatry, Addictology and Psychotherapy, Siberian State Medical University, 634050 Tomsk, Russia
| |
Collapse
|
4
|
Poltavskaya EG, Fedorenko OY, Vyalova NM, Kornetova EG, Bokhan NA, Loonen AJM, Ivanova SA. Genetic polymorphisms of PIP5K2A and course of schizophrenia. BMC MEDICAL GENETICS 2020; 21:171. [PMID: 33092542 PMCID: PMC7579868 DOI: 10.1186/s12881-020-01107-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 08/11/2020] [Indexed: 11/30/2022]
Abstract
Background Schizophrenia is a severe highly heritable mental disorder. The clinical heterogeneity of schizophrenia is expressed in the difference in the leading symptoms and course of the disease. Identifying the genetic variants that affect clinical heterogeneity may ultimately reveal the genetic basis of the features of schizophrenia and suggest novel treatment targets. PIP5K2A (Phosphatidylinositol-4-Phosphate 5-Kinase Type II Alpha) has been investigated as a potential susceptibility gene for schizophrenia. Methods In this work, we studied the possible association between eleven polymorphic variants of PIP5K2A and the clinical features of schizophrenia in a population of 384 white Siberian patients with schizophrenia. Genotyping was carried out on QuantStudio 5 Real-Time PCR System with a TaqMan Validate SNP Genotyping Assay (Applied Biosystems, USA). Results PIP5K2A rs8341 (χ2 = 6.559, p = 0.038) and rs946961 (χ2 = 5.976, p = 0.049) showed significant association with course of schizophrenia (continuous or episodic). The rs8341*CT (OR = 1.63, 95% CI: 1.04–2.54) and rs946961*CC (OR = 5.17, 95% CI: 1.20–22.21) genotypes were associated with a continuous type of course, while the rs8341*TT genotype (OR = 0.53, 95% CI: 0.29–0.97) was associated with an episodic type of course of schizophrenia. Therefore rs8341*TT genotype presumably has protective effect against the more severe continuous course of schizophrenia compared to the episodic one. Conclusions Our experimental data confirm that PIP5K2A is a genetic factor influencing the type of course of schizophrenia in Siberian population. Disturbances in the phosphatidylinositol pathways may be a possible reason for the transition to a more severe continuous course of schizophrenia.
Collapse
Affiliation(s)
- Evgeniya G Poltavskaya
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Aleutskaya str., 4, Tomsk, Russian Federation, 634014.
| | - Olga Yu Fedorenko
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Aleutskaya str., 4, Tomsk, Russian Federation, 634014.,National Research Tomsk Polytechnic University, Tomsk, Russian Federation
| | - Natalya M Vyalova
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Aleutskaya str., 4, Tomsk, Russian Federation, 634014
| | - Elena G Kornetova
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Aleutskaya str., 4, Tomsk, Russian Federation, 634014
| | - Nikolay A Bokhan
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Aleutskaya str., 4, Tomsk, Russian Federation, 634014.,National Research Tomsk State University, Tomsk, Russian Federation.,Siberian State Medical University Hospital, Moscowsky Trakt, 2, Tomsk, Russian Federation
| | - Anton J M Loonen
- Groningen Research Institute of Pharmacy, PharmacoTherapy, Epidemiology & Economics, University of Groningen, Antonius Deusinglaan 1, 9713, AV, Groningen, The Netherlands.,GGZ Westelijk Noord-Brabant, Hoofdlaan 8, 4661 AA, Halsteren, The Netherlands
| | - Svetlana A Ivanova
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Aleutskaya str., 4, Tomsk, Russian Federation, 634014.,National Research Tomsk Polytechnic University, Tomsk, Russian Federation.,Siberian State Medical University Hospital, Moscowsky Trakt, 2, Tomsk, Russian Federation
| |
Collapse
|
5
|
Levchenko A, Vyalova NM, Nurgaliev T, Pozhidaev IV, Simutkin GG, Bokhan NA, Ivanova SA. NRG1, PIP4K2A, and HTR2C as Potential Candidate Biomarker Genes for Several Clinical Subphenotypes of Depression and Bipolar Disorder. Front Genet 2020; 11:936. [PMID: 33193575 PMCID: PMC7478333 DOI: 10.3389/fgene.2020.00936] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 07/27/2020] [Indexed: 12/20/2022] Open
Abstract
GSK3B, BDNF, NGF, NRG1, HTR2C, and PIP4K2A play important roles in molecular mechanisms of psychiatric disorders. GSK3B occupies a central position in these molecular mechanisms and is also modulated by psychotropic drugs. BDNF regulates a number of key aspects in neurodevelopment and synaptic plasticity. NGF exerts a trophic action and is implicated in cerebral alterations associated with psychiatric disorders. NRG1 is active in neural development, synaptic plasticity, and neurotransmission. HTR2C is another important psychopharmacological target. PIP4K2A catalyzes the phosphorylation of PI5P to form PIP2, the latter being implicated in various aspects of neuronal signal transduction. In the present study, the six genes were sequenced in a cohort of 19 patients with bipolar affective disorder, 41 patients with recurrent depressive disorder, and 55 patients with depressive episode. The study revealed a number of genetic variants associated with antidepressant treatment response, time to recurrence of episodes, and depression severity. Namely, alleles of rs35641374 and rs10508649 (NRG1 and PIP4K2A) may be prognostic biomarkers of time to recurrence of depressive and manic/mixed episodes among patients with bipolar affective disorder. Alleles of NC_000008.11:g.32614509_32614510del, rs61731109, and rs10508649 (also NRG1 and PIP4K2A) seem to be predictive biomarkers of response to pharmacological antidepressant treatment on the 28th day assessed by the HDRS-17 or CGI-I scale. In particular, the allele G of rs10508649 (PIP4K2A) may increase resistance to antidepressant treatment and be at the same time protective against recurrent manic/mixed episodes. These results support previous data indicating a biological link between resistance to antidepressant treatment and mania. Bioinformatic functional annotation of associated variants revealed possible impact for transcriptional regulation of PIP4K2A. In addition, the allele A of rs2248440 (HTR2C) may be a prognostic biomarker of depression severity. This allele decreases expression of the neighboring immune system gene IL13RA2 in the putamen according to the GTEx portal. The variant rs2248440 is near rs6318 (previously associated with depression and effects of psychotropic drugs) that is an eQTL for the same gene and tissue. Finally, the study points to several protein interactions relevant in the pathogenesis of mood disorders. Functional studies using cellular or animal models are warranted to support these results.
Collapse
Affiliation(s)
- Anastasia Levchenko
- Theodosius Dobzhansky Center for Genome Bioinformatics, Saint Petersburg State University, Saint Petersburg, Russia
| | - Natalia M Vyalova
- Tomsk National Research Medical Center, Mental Health Research Institute, Russian Academy of Sciences, Tomsk, Russia
| | - Timur Nurgaliev
- Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg, Russia
| | - Ivan V Pozhidaev
- Tomsk National Research Medical Center, Mental Health Research Institute, Russian Academy of Sciences, Tomsk, Russia
| | - German G Simutkin
- Tomsk National Research Medical Center, Mental Health Research Institute, Russian Academy of Sciences, Tomsk, Russia
| | - Nikolay A Bokhan
- Tomsk National Research Medical Center, Mental Health Research Institute, Russian Academy of Sciences, Tomsk, Russia.,National Research Tomsk State University, Tomsk, Russia.,Siberian State Medical University, Tomsk, Russia
| | - Svetlana A Ivanova
- Tomsk National Research Medical Center, Mental Health Research Institute, Russian Academy of Sciences, Tomsk, Russia.,Siberian State Medical University, Tomsk, Russia.,National Research Tomsk Polytechnic University, Tomsk, Russia
| |
Collapse
|
6
|
Noch EK, Yim I, Milner TA, Cantley LC. Distribution and localization of phosphatidylinositol 5-phosphate, 4-kinase alpha and beta in the brain. J Comp Neurol 2020; 529:434-449. [PMID: 32449185 DOI: 10.1002/cne.24956] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 05/07/2020] [Accepted: 05/14/2020] [Indexed: 12/14/2022]
Abstract
Phosphatidylinositol-4,5-bisphosphate (PI-4,5-P2 ) is critical for synaptic vesicle docking and fusion and generation of the second messengers, diacylglycerol and inositol-1,4,5-trisphosphate. PI-4,5-P2 can be generated by two families of kinases: type 1 phosphatidylinositol-4-phosphate 5-kinases, encoded by PIP5K1A, PIP5K1B and PIP5K1C, and type 2 phosphatidylinositol-5-phosphate 4-kinases, encoded by PIP4K2A, PIP4K2B, and PIP4K2C. While the roles of the type 1 enzymes in brain function have been extensively studied, the roles of the type 2 enzymes are poorly understood. Using selective antibodies validated by genetic deletion of pip4k2a or pip4k2b in mouse brain, we characterized the location of the enzymes, PI5P4Kα and PI5P4Kβ, encoded by these genes. In mice, we demonstrate that PI5P4Kα is expressed in adulthood, whereas PI5P4Kβ is expressed early in development. PI5P4Kα localizes to white matter tracts, especially the corpus callosum, and at a low level in neurons, while PI5P4Kβ is expressed in neuronal populations, especially hippocampus and cortex. Dual labeling studies demonstrate that PI5P4Kα co-localizes with the oligodendrocyte marker, Olig2, whereas PI5P4Kβ co-localizes with the neuronal marker, NeuN. Ultrastructural analysis demonstrates that both kinases are contained in axon terminals and dendritic spines adjacent to the synaptic membrane, which support a potential role in synaptic transmission. Immunoperoxidase analysis of macaque and human brain tissue demonstrate a conserved pattern for PI5P4Kα and PI5P4Kβ. These results highlight the diverse cell-autonomous expression of PI5P4Kα and PI5P4Kβ and support further exploration into their role in synaptic function in the brain.
Collapse
Key Words
- PIP4K
- RRID:AB_1,127,270
- RRID:AB_10,622,025
- RRID:AB_10,711,040
- RRID:AB_1904103
- RRID:AB_2,164,572
- RRID:AB_2,223,210
- RRID:AB_2096811
- RRID:AB_2269374
- RRID:AB_2300649
- RRID:AB_353,929
- RRID:AB_561,049
- brain
- neuron
- oligodendrocyte
- phosphatidylinositol-5-phosphate 4-kinase
- phosphoinositide
Collapse
Affiliation(s)
- Evan K Noch
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York, USA.,Department of Neurology, Weill Cornell Medicine, New York, New York, USA
| | - Isaiah Yim
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York, USA
| | - Teresa A Milner
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York, USA.,Harold and Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, New York, USA
| | - Lewis C Cantley
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
7
|
Sopjani M, Millaku L, Nebija D, Emini M, Rifati-Nixha A, Dërmaku-Sopjani M. The Glycogen Synthase Kinase-3 in the Regulation of Ion Channels and Cellular Carriers. Curr Med Chem 2020; 26:6817-6829. [PMID: 30306852 DOI: 10.2174/0929867325666181009122452] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 09/19/2018] [Accepted: 09/21/2018] [Indexed: 01/19/2023]
Abstract
Glycogen synthase kinase-3 (GSK-3) is a highly evolutionarily conserved and ubiquitously expressed serine/threonine kinase, an enzyme protein profoundly specific for glycogen synthase (GS). GSK-3 is involved in various cellular functions and physiological processes, including cell proliferation, differentiation, motility, and survival as well as glycogen metabolism, protein synthesis, and apoptosis. There are two isoforms of human GSK-3 (named GSK-3α and GSK-3β) encoded by two distinct genes. Recently, GSK-3β has been reported to function as a powerful regulator of various transport processes across the cell membrane. This kinase, GSK-3β, either directly or indirectly, may stimulate or inhibit many different types of transporter proteins, including ion channel and cellular carriers. More specifically, GSK-3β-sensitive cellular transport regulation involves various calcium, chloride, sodium, and potassium ion channels, as well as a number of Na+-coupled cellular carriers including excitatory amino acid transporters EAAT2, 3 and 4, high-affinity Na+ coupled glucose carriers SGLT1, creatine transporter 1 CreaT1, and the type II sodium/phosphate cotransporter NaPi-IIa. The GSK-3β-dependent cellular transport regulations are a part of the kinase functions in numerous physiological and pathophysiological processes. Clearly, additional studies are required to examine the role of GSK-3β in many other types of cellular transporters as well as further elucidating the underlying mechanisms of GSK-3β-mediated cellular transport regulation.
Collapse
Affiliation(s)
- Mentor Sopjani
- Faculty of Medicine, University of Prishtina, 10000 Prishtine, Kosova
| | - Lulzim Millaku
- Faculty of Natural Sciences and Mathematics, University of Prishtina, 10000 Prishtine, Kosova
| | - Dashnor Nebija
- Faculty of Medicine, University of Prishtina, 10000 Prishtine, Kosova
| | - Merita Emini
- Faculty of Medicine, University of Prishtina, 10000 Prishtine, Kosova
| | - Arleta Rifati-Nixha
- Faculty of Natural Sciences and Mathematics, University of Prishtina, 10000 Prishtine, Kosova
| | | |
Collapse
|
8
|
Fedorenko OY, Golimbet VE, Ivanova SА, Levchenko А, Gainetdinov RR, Semke AV, Simutkin GG, Gareeva АE, Glotov АS, Gryaznova A, Iourov IY, Krupitsky EM, Lebedev IN, Mazo GE, Kaleda VG, Abramova LI, Oleichik IV, Nasykhova YA, Nasyrova RF, Nikolishin AE, Kasyanov ED, Rukavishnikov GV, Timerbulatov IF, Brodyansky VM, Vorsanova SG, Yurov YB, Zhilyaeva TV, Sergeeva AV, Blokhina EA, Zvartau EE, Blagonravova AS, Aftanas LI, Bokhan NА, Kekelidze ZI, Klimenko TV, Anokhina IP, Khusnutdinova EK, Klyushnik TP, Neznanov NG, Stepanov VA, Schulze TG, Kibitov АО. Opening up new horizons for psychiatric genetics in the Russian Federation: moving toward a national consortium. Mol Psychiatry 2019; 24:1099-1111. [PMID: 30664668 PMCID: PMC6756082 DOI: 10.1038/s41380-019-0354-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 12/27/2018] [Accepted: 12/31/2018] [Indexed: 12/18/2022]
Abstract
We provide an overview of the recent achievements in psychiatric genetics research in the Russian Federation and present genotype-phenotype, population, epigenetic, cytogenetic, functional, ENIGMA, and pharmacogenetic studies, with an emphasis on genome-wide association studies. The genetic backgrounds of mental illnesses in the polyethnic and multicultural population of the Russian Federation are still understudied. Furthermore, genetic, genomic, and pharmacogenetic data from the Russian Federation are not adequately represented in the international scientific literature, are currently not available for meta-analyses and have never been compared with data from other populations. Most of these problems cannot be solved by individual centers working in isolation but warrant a truly collaborative effort that brings together all the major psychiatric genetic research centers in the Russian Federation in a national consortium. For this reason, we have established the Russian National Consortium for Psychiatric Genetics (RNCPG) with the aim to strengthen the power and rigor of psychiatric genetics research in the Russian Federation and enhance the international compatibility of this research.The consortium is set up as an open organization that will facilitate collaborations on complex biomedical research projects in human mental health in the Russian Federation and abroad. These projects will include genotyping, sequencing, transcriptome and epigenome analysis, metabolomics, and a wide array of other state-of-the-art analyses. Here, we discuss the challenges we face and the approaches we will take to unlock the huge potential that the Russian Federation holds for the worldwide psychiatric genetics community.
Collapse
Affiliation(s)
- Olga Yu Fedorenko
- Mental Health Research Institute, Tomsk National Research Medical Center of Russian Academy of Sciences, Tomsk, Russian Federation.
- National Research Tomsk Polytechnic University, Tomsk, Russian Federation.
| | | | - Svetlana А Ivanova
- Mental Health Research Institute, Tomsk National Research Medical Center of Russian Academy of Sciences, Tomsk, Russian Federation
- National Research Tomsk Polytechnic University, Tomsk, Russian Federation
| | - Аnastasia Levchenko
- Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg, Russian Federation
| | - Raul R Gainetdinov
- Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg, Russian Federation
| | - Arkady V Semke
- Mental Health Research Institute, Tomsk National Research Medical Center of Russian Academy of Sciences, Tomsk, Russian Federation
| | - German G Simutkin
- Mental Health Research Institute, Tomsk National Research Medical Center of Russian Academy of Sciences, Tomsk, Russian Federation
| | - Аnna E Gareeva
- Institute of Biochemistry and Genetics, Ufa Federal Research Center, Russian Academy of Sciences, Ufa, Russian Federation
- Federal State Educational Institution of Highest Education Bashkir State Medical University of Public Health Ministry of Russian Federation, Ufa, Russian Federation
| | - Аndrey S Glotov
- Laboratory of Biobanking and Genomic Medicine of Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg, Russian Federation
| | - Anna Gryaznova
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU, Munich, Germany
| | - Ivan Y Iourov
- Mental Health Research Center, Moscow, Russian Federation
| | - Evgeny M Krupitsky
- V.M. Bekhterev National Medical Research Center for Psychiatry and Neurology, Saint Petersburg, Russian Federation
| | - Igor N Lebedev
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of Russian Academy of Sciences, Tomsk, Russian Federation
| | - Galina E Mazo
- V.M. Bekhterev National Medical Research Center for Psychiatry and Neurology, Saint Petersburg, Russian Federation
| | | | | | | | - Yulia A Nasykhova
- Laboratory of Biobanking and Genomic Medicine of Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg, Russian Federation
| | - Regina F Nasyrova
- V.M. Bekhterev National Medical Research Center for Psychiatry and Neurology, Saint Petersburg, Russian Federation
| | - Anton E Nikolishin
- Serbsky National Medical Research Center on Psychiatry and Addictions, Moscow, Russian Federation
| | - Evgeny D Kasyanov
- V.M. Bekhterev National Medical Research Center for Psychiatry and Neurology, Saint Petersburg, Russian Federation
| | - Grigory V Rukavishnikov
- V.M. Bekhterev National Medical Research Center for Psychiatry and Neurology, Saint Petersburg, Russian Federation
| | - Ilgiz F Timerbulatov
- Federal State Educational Institution of Highest Education Bashkir State Medical University of Public Health Ministry of Russian Federation, Ufa, Russian Federation
| | - Vadim M Brodyansky
- Serbsky National Medical Research Center on Psychiatry and Addictions, Moscow, Russian Federation
| | - Svetlana G Vorsanova
- Veltischev Research and Clinical Institute for Pediatrics, the Pirogov Russian National Research Medical University, Moscow, Russian Federation
| | - Yury B Yurov
- Mental Health Research Center, Moscow, Russian Federation
| | - Tatyana V Zhilyaeva
- Privolzhskiy Research Medical University, Nizhny Novgorod, Russian Federation
| | | | - Elena A Blokhina
- First Saint Petersburg Pavlov State Medical University, Saint Petersburg, Russian Federation
| | - Edwin E Zvartau
- First Saint Petersburg Pavlov State Medical University, Saint Petersburg, Russian Federation
| | - Anna S Blagonravova
- Privolzhskiy Research Medical University, Nizhny Novgorod, Russian Federation
| | - Lyubomir I Aftanas
- Federal State Scientific Budgetary Institution "Scientific Research Institute of Physiology and Basic Medicine,", Novosibirsk, Russian Federation
| | - Nikolay А Bokhan
- Mental Health Research Institute, Tomsk National Research Medical Center of Russian Academy of Sciences, Tomsk, Russian Federation
- National Research Tomsk State University, Tomsk, Russian Federation
| | - Zurab I Kekelidze
- Serbsky National Medical Research Center on Psychiatry and Addictions, Moscow, Russian Federation
| | - Tatyana V Klimenko
- Serbsky National Medical Research Center on Psychiatry and Addictions, Moscow, Russian Federation
| | - Irina P Anokhina
- Serbsky National Medical Research Center on Psychiatry and Addictions, Moscow, Russian Federation
| | - Elza K Khusnutdinova
- Institute of Biochemistry and Genetics, Ufa Federal Research Center, Russian Academy of Sciences, Ufa, Russian Federation
- Federal State Educational Institution of Highest Education Bashkir State Medical University of Public Health Ministry of Russian Federation, Ufa, Russian Federation
| | | | - Nikolay G Neznanov
- V.M. Bekhterev National Medical Research Center for Psychiatry and Neurology, Saint Petersburg, Russian Federation
| | - Vadim A Stepanov
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of Russian Academy of Sciences, Tomsk, Russian Federation
- National Research Tomsk State University, Tomsk, Russian Federation
| | - Thomas G Schulze
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU, Munich, Germany
| | - Аleksandr О Kibitov
- Serbsky National Medical Research Center on Psychiatry and Addictions, Moscow, Russian Federation
| |
Collapse
|
9
|
Zhang S, Li Z, Yan X, Bao L, Deng Y, Zeng F, Wang P, Zhu J, Yin D, Liao F, Zhou X, Zhang D, Xia X, Wang H, Yang X, Zhang W, Gao H, Zhang W, Yang L, Hou Q, Xu H, Zhang Y, Shu Y, Wang Y. Regulatory Network and Prognostic Effect Investigation of PIP4K2A in Leukemia and Solid Cancers. Front Genet 2019; 9:721. [PMID: 30697230 PMCID: PMC6341070 DOI: 10.3389/fgene.2018.00721] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 12/21/2018] [Indexed: 02/05/2023] Open
Abstract
Germline variants of PIP4K2A impact susceptibility of acute lymphoblastic leukemia (ALL) through inducing its overexpression. Although limited reports suggested the oncogenic role of PIP4K2A in cancers, regulatory network and prognostic effect of this gene remains poorly understood in tumorigenesis and leukemogenesis. In this study, we conducted genome-wide gene expression association analyses in pediatric B-ALL cohorts to discover expression associated genes and pathways, which is followed by the bioinformatics analyses to investigate the prognostic role of PIP4K2A and its related genes in multiple cancer types. 214 candidates were identified to be significantly associated with PIP4K2A expression in ALL patients, with known cancer-related genes rankings the top (e.g., RAC2, RBL2, and TFDP1). These candidates do not only tend to be clustered in the same types of leukemia, but can also separate the patients into novel molecular subtypes. PIP4K2A is noticed to be frequently overexpressed in multiple other types of leukemia and solid cancers from cancer cohorts including TCGA, and associated with its candidates in subtype-specific and cancer-specific manners. Interestingly, the association status varied in tumors compared to their matched normal tissues. Moreover, PIP4K2A and its related candidates exhibit stage-independent prognostic effects in multiple cancers, mostly with its lower expression significantly associated with longer overall survival (p < 0.05). Our findings reveal the transcriptional regulatory network of PIP4K2A in leukemia, and suggest its potentially important role on molecular subtypes of multiple cancers and subsequent treatment outcomes.
Collapse
Affiliation(s)
- Shouyue Zhang
- Department of Thoracic Oncology, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Department of Laboratory Medicine, Precision Medicine Center, State Key Laboratory of Biotherapy and Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Zhaozhi Li
- Key Laboratory of Bio-Resources and Eco-Environment, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xinyu Yan
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Li Bao
- Key Laboratory of Bio-Resources and Eco-Environment, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yun Deng
- Department of Laboratory Medicine, Precision Medicine Center, State Key Laboratory of Biotherapy and Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Feier Zeng
- Department of Laboratory Medicine, Precision Medicine Center, State Key Laboratory of Biotherapy and Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Peiqi Wang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jianhui Zhu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Dandan Yin
- Department of Laboratory Medicine, Precision Medicine Center, State Key Laboratory of Biotherapy and Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Fei Liao
- Department of Laboratory Medicine, Precision Medicine Center, State Key Laboratory of Biotherapy and Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Xueyan Zhou
- Department of Laboratory Medicine, Precision Medicine Center, State Key Laboratory of Biotherapy and Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Duyu Zhang
- Department of Laboratory Medicine, Precision Medicine Center, State Key Laboratory of Biotherapy and Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Xuyang Xia
- Department of Laboratory Medicine, Precision Medicine Center, State Key Laboratory of Biotherapy and Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Hong Wang
- Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Xue Yang
- Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Wanhua Zhang
- Department of Hematology and Hematology Research Laboratory, Sichuan University, Chengdu, China
| | - Hu Gao
- Department of Emergency, West China Second University Hospital, Sichuan University, Chengdu
| | - Wei Zhang
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Xiangya Hospital, Central South University, Changsha, China
| | - Li Yang
- Department of Laboratory Medicine, Precision Medicine Center, State Key Laboratory of Biotherapy and Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Qianqian Hou
- Department of Laboratory Medicine, Precision Medicine Center, State Key Laboratory of Biotherapy and Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Heng Xu
- Department of Laboratory Medicine, Precision Medicine Center, State Key Laboratory of Biotherapy and Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Yan Zhang
- Department of Thoracic Oncology, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yang Shu
- Department of Laboratory Medicine, Precision Medicine Center, State Key Laboratory of Biotherapy and Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Yuelan Wang
- Department of Thoracic Oncology, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Department of Laboratory Medicine, Precision Medicine Center, State Key Laboratory of Biotherapy and Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| |
Collapse
|
10
|
Intracellular signaling of the AMP-activated protein kinase. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2019; 116:171-207. [DOI: 10.1016/bs.apcsb.2018.12.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
11
|
Parshukova D, Smirnova LP, Ermakov EA, Bokhan NA, Semke AV, Ivanova SA, Buneva VN, Nevinsky GA. Autoimmunity and immune system dysregulation in schizophrenia: IgGs from sera of patients hydrolyze myelin basic protein. J Mol Recognit 2018; 32:e2759. [PMID: 30112774 DOI: 10.1002/jmr.2759] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 06/18/2018] [Accepted: 07/02/2018] [Indexed: 12/18/2022]
Abstract
Several different theories of schizophrenia (SCZ) were discussed; the causes of this disease are not yet clear. Using ELISA, it was shown that titers of autoantibodies against myelin basic protein (MBP) in SCZ patients are ~1.8-fold higher than in healthy individuals but 5.0-fold lower than in patients with multiple sclerosis. Several rigid criteria were checked to show that the MBP-hydrolyzing activity is an intrinsic property of SCZ IgGs. Approximately 82% electrophoretically homogeneous SCZ IgGs purified using several affinity sorbents including Sepharose with immobilized MBP hydrolyze specifically only MBP but not many other tested proteins. The average relative activity of IgGs from patients with negative symptoms was 2.5-fold higher than that of patients with positive symptoms of SCZ, and it increases with the duration of this pathology. It was shown that abzymes are the earliest statistically significant markers of many autoimmune pathologies. Our findings surmise that the immune systems of individual SCZ patients can generate a variety of anti-MBP abzymes with different catalytic properties, which can attack MBP of the myelin-proteolipid shell of axons. Therefore, autoimmune processes together with other mechanisms can play an important role in SCZ pathogenesis. MBP-hydrolyzing antibodies were previously detected in the blood of 80% to 90% of patients with systemic lupus erythematosus (SLE) and multiple sclerosis (MS). In addition, some similar neuropsychiatric indicators of disease common to SLE, MS, and SCZ were described in the literature. Thus, the destruction of the myelin sheath and the production of MBP-hydrolyzing antibodies can be a common phenomenon for some different diseases.
Collapse
Affiliation(s)
- Daria Parshukova
- Tomsk National Research Medical Center of the Russian Academy of Sciences, Mental Health Research Institute, Tomsk, Russia
| | - Liudmila P Smirnova
- Tomsk National Research Medical Center of the Russian Academy of Sciences, Mental Health Research Institute, Tomsk, Russia
| | - Evgeny A Ermakov
- Siberian Division of Russian Academy of Sciences, Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| | - Nikolay A Bokhan
- Tomsk National Research Medical Center of the Russian Academy of Sciences, Mental Health Research Institute, Tomsk, Russia
| | - Arkadiy V Semke
- Tomsk National Research Medical Center of the Russian Academy of Sciences, Mental Health Research Institute, Tomsk, Russia
| | - Svetlana A Ivanova
- Tomsk National Research Medical Center of the Russian Academy of Sciences, Mental Health Research Institute, Tomsk, Russia
| | - Valentina N Buneva
- Siberian Division of Russian Academy of Sciences, Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| | - Georgy A Nevinsky
- Siberian Division of Russian Academy of Sciences, Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
12
|
Ermakov EA, Smirnova LP, Bokhan NA, Semke AV, Ivanova SA, Buneva VN, Nevinsky GA. Catalase activity of IgG antibodies from the sera of healthy donors and patients with schizophrenia. PLoS One 2017; 12:e0183867. [PMID: 28945759 PMCID: PMC5612456 DOI: 10.1371/journal.pone.0183867] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 08/11/2017] [Indexed: 12/18/2022] Open
Abstract
We present first evidence showing that some electrophoretically homogeneous IgGs from the sera of patients with schizophrenia (36.4%) and their Fab and F(ab)2 fragments as well as from healthy donors (33.3%) possess catalase activity. The relative catalase activity of IgGs from the sera of individual schizophrenia patients (and healthy donors) significantly varied from patient to patient, but the activity of IgGs from healthy donors is on average 15.8-fold lower than that for schizophrenia patients. After extensive dialysis of purified IgGs against EDTA chelating metal ions, the relative catalase activity of IgGs decreases on average approximately 2.5-3.7-fold; all IgGs possess metal-dependent and independent catalase activity. The addition of external Me2+ ions to dialyzed and non-dialyzed IgGs leads to a significant increase in their activity. The best activator of dialyzed and non-dialyzed IgGs is Co2+, the activation by Cu2+, Mn2+, and Ni2+ ions were rare and always lower than by Co2+. Every IgG preparation demonstrates several individual sets of very well expressed pH optima in the pH range from 4.0 to 9.5. These data speak for the individual repertoire of catalase IgGs in every person and an extreme diversity of abzymes in their pH optima and activation by different metal ions. It is known that antioxidant enzymes such as superoxide dismutases, catalases, and glutathione peroxidases represent critical defense mechanisms preventing oxidative modifications of DNA, proteins, and lipids. Catalase activity of human IgGs could probably also play a major role in the protection of organisms from oxidative stress and toxic compounds.
Collapse
Affiliation(s)
- Evgeny A. Ermakov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Ludmila P. Smirnova
- Mental Health Research Institute, Russian Academy of Sciences, Tomsk, Russia
| | - Nikolay A. Bokhan
- Mental Health Research Institute, Russian Academy of Sciences, Tomsk, Russia
| | - Arkadiy V. Semke
- Mental Health Research Institute, Russian Academy of Sciences, Tomsk, Russia
| | - Svetlana A. Ivanova
- Mental Health Research Institute, Russian Academy of Sciences, Tomsk, Russia
| | - Valentina N. Buneva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Georgy A. Nevinsky
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
13
|
Bjørn-Yoshimoto WE, Underhill SM. The importance of the excitatory amino acid transporter 3 (EAAT3). Neurochem Int 2016; 98:4-18. [PMID: 27233497 DOI: 10.1016/j.neuint.2016.05.007] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 05/09/2016] [Accepted: 05/17/2016] [Indexed: 12/21/2022]
Abstract
The neuronal excitatory amino acid transporter 3 (EAAT3) is fairly ubiquitously expressed in the brain, though it does not necessarily maintain the same function everywhere. It is important in maintaining low local concentrations of glutamate, where its predominant post-synaptic localization can buffer nearby glutamate receptors and modulate excitatory neurotransmission and synaptic plasticity. It is also the main neuronal cysteine uptake system acting as the rate-limiting factor for the synthesis of glutathione, a potent antioxidant, in EAAT3 expressing neurons, while on GABAergic neurons, it is important in supplying glutamate as a precursor for GABA synthesis. Several diseases implicate EAAT3, and modulation of this transporter could prove a useful therapeutic approach. Regulation of EAAT3 could be targeted at several points for functional modulation, including the level of transcription, trafficking and direct pharmacological modulation, and indeed, compounds and experimental treatments have been identified that regulate EAAT3 function at different stages, which together with observations of EAAT3 regulation in patients is giving us insight into the endogenous function of this transporter, as well as the consequences of altered function. This review summarizes work done on elucidating the role and regulation of EAAT3.
Collapse
Affiliation(s)
- Walden E Bjørn-Yoshimoto
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 København Ø, Denmark
| | - Suzanne M Underhill
- National Institute of Mental Health, National Institutes of Health, 35 Convent Drive Room 3A: 210 MSC3742, Bethesda, MD 20892-3742, USA.
| |
Collapse
|
14
|
Fedorenko OY, Loonen AJM, Lang F, Toshchakova VA, Boyarko EG, Semke AV, Bokhan NA, Govorin NV, Aftanas LI, Ivanova SA. Association study indicates a protective role of phosphatidylinositol-4-phosphate-5-kinase against tardive dyskinesia. Int J Neuropsychopharmacol 2015; 18:pyu098. [PMID: 25548108 PMCID: PMC4438543 DOI: 10.1093/ijnp/pyu098] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 11/17/2014] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Tardive dyskinesia is a disorder characterized by involuntary muscle movements that occur as a complication of long-term treatment with antipsychotic drugs. It has been suggested to be related to a malfunctioning of the indirect pathway of the motor part of the cortical-striatal-thalamic-cortical circuit, which may be caused by oxidative stress-induced neurotoxicity. METHODS The purpose of our study was to investigate the possible association between phosphatidylinositol-4-phosphate-5-kinase type IIa (PIP5K2A) function and tardive dyskinesia in 491 Caucasian patients with schizophrenia from 3 different psychiatric institutes in West Siberia. The Abnormal Involuntary Movement Scale was used to assess tardive dyskinesia. Individuals were genotyped for 3 single nucleotide polymorphisms in PIP5K2A gene: rs10828317, rs746203, and rs8341. RESULTS A significant association was established between the functional mutation N251S-polymorphism of the PIP5K2A gene (rs10828317) and tardive dyskinesia, while the other 2 examined nonfunctional single nucleotide polymorphisms were not related. CONCLUSIONS We conclude from this association that PIP5K2A is possibly involved in a mechanism protecting against tardive dyskinesia-inducing neurotoxicity. This corresponds to our hypothesis that tardive dyskinesia is related to neurotoxicity at striatal indirect pathway medium-sized spiny neurons.
Collapse
Affiliation(s)
- Olga Yu Fedorenko
- Mental Health Research Institute, SiberianBranch of RAMSc, Tomsk, Siberia, Russian Federation (Drs Fedorenko, Toshchakova, Boyarko, Semke, Bokhan, and Ivanova); National Research Tomsk Polytechnic University, Tomsk, Siberia, Russian Federation (Drs Fedorenko and Ivanova); Department of Pharmacy, University of Groningen, Groningen, The Netherlands (Dr Loonen); Mental Health Institute Westelijk Noord-Brabant, Halsteren, The Netherlands (Dr Loonen); Department of Physiology, University of Tuebingen, Tuebingen, Germany (Dr Lang); Chita State Medical Academy, Chita, Siberia, Russian Federation (Dr Govorin); National Research Tomsk State University, Tomsk, Siberia, Russian Federation (Dr Bokhan); Scientific Research Institute of Physiology and Basic Medicine, Siberian Branch of RAMSc, Novosibirsk, Siberia, Russian Federation (Dr Aftanas)
| | - Anton J M Loonen
- Mental Health Research Institute, SiberianBranch of RAMSc, Tomsk, Siberia, Russian Federation (Drs Fedorenko, Toshchakova, Boyarko, Semke, Bokhan, and Ivanova); National Research Tomsk Polytechnic University, Tomsk, Siberia, Russian Federation (Drs Fedorenko and Ivanova); Department of Pharmacy, University of Groningen, Groningen, The Netherlands (Dr Loonen); Mental Health Institute Westelijk Noord-Brabant, Halsteren, The Netherlands (Dr Loonen); Department of Physiology, University of Tuebingen, Tuebingen, Germany (Dr Lang); Chita State Medical Academy, Chita, Siberia, Russian Federation (Dr Govorin); National Research Tomsk State University, Tomsk, Siberia, Russian Federation (Dr Bokhan); Scientific Research Institute of Physiology and Basic Medicine, Siberian Branch of RAMSc, Novosibirsk, Siberia, Russian Federation (Dr Aftanas).
| | - Florian Lang
- Mental Health Research Institute, SiberianBranch of RAMSc, Tomsk, Siberia, Russian Federation (Drs Fedorenko, Toshchakova, Boyarko, Semke, Bokhan, and Ivanova); National Research Tomsk Polytechnic University, Tomsk, Siberia, Russian Federation (Drs Fedorenko and Ivanova); Department of Pharmacy, University of Groningen, Groningen, The Netherlands (Dr Loonen); Mental Health Institute Westelijk Noord-Brabant, Halsteren, The Netherlands (Dr Loonen); Department of Physiology, University of Tuebingen, Tuebingen, Germany (Dr Lang); Chita State Medical Academy, Chita, Siberia, Russian Federation (Dr Govorin); National Research Tomsk State University, Tomsk, Siberia, Russian Federation (Dr Bokhan); Scientific Research Institute of Physiology and Basic Medicine, Siberian Branch of RAMSc, Novosibirsk, Siberia, Russian Federation (Dr Aftanas)
| | - Valentina A Toshchakova
- Mental Health Research Institute, SiberianBranch of RAMSc, Tomsk, Siberia, Russian Federation (Drs Fedorenko, Toshchakova, Boyarko, Semke, Bokhan, and Ivanova); National Research Tomsk Polytechnic University, Tomsk, Siberia, Russian Federation (Drs Fedorenko and Ivanova); Department of Pharmacy, University of Groningen, Groningen, The Netherlands (Dr Loonen); Mental Health Institute Westelijk Noord-Brabant, Halsteren, The Netherlands (Dr Loonen); Department of Physiology, University of Tuebingen, Tuebingen, Germany (Dr Lang); Chita State Medical Academy, Chita, Siberia, Russian Federation (Dr Govorin); National Research Tomsk State University, Tomsk, Siberia, Russian Federation (Dr Bokhan); Scientific Research Institute of Physiology and Basic Medicine, Siberian Branch of RAMSc, Novosibirsk, Siberia, Russian Federation (Dr Aftanas)
| | - Evgenia G Boyarko
- Mental Health Research Institute, SiberianBranch of RAMSc, Tomsk, Siberia, Russian Federation (Drs Fedorenko, Toshchakova, Boyarko, Semke, Bokhan, and Ivanova); National Research Tomsk Polytechnic University, Tomsk, Siberia, Russian Federation (Drs Fedorenko and Ivanova); Department of Pharmacy, University of Groningen, Groningen, The Netherlands (Dr Loonen); Mental Health Institute Westelijk Noord-Brabant, Halsteren, The Netherlands (Dr Loonen); Department of Physiology, University of Tuebingen, Tuebingen, Germany (Dr Lang); Chita State Medical Academy, Chita, Siberia, Russian Federation (Dr Govorin); National Research Tomsk State University, Tomsk, Siberia, Russian Federation (Dr Bokhan); Scientific Research Institute of Physiology and Basic Medicine, Siberian Branch of RAMSc, Novosibirsk, Siberia, Russian Federation (Dr Aftanas)
| | - Arkadiy V Semke
- Mental Health Research Institute, SiberianBranch of RAMSc, Tomsk, Siberia, Russian Federation (Drs Fedorenko, Toshchakova, Boyarko, Semke, Bokhan, and Ivanova); National Research Tomsk Polytechnic University, Tomsk, Siberia, Russian Federation (Drs Fedorenko and Ivanova); Department of Pharmacy, University of Groningen, Groningen, The Netherlands (Dr Loonen); Mental Health Institute Westelijk Noord-Brabant, Halsteren, The Netherlands (Dr Loonen); Department of Physiology, University of Tuebingen, Tuebingen, Germany (Dr Lang); Chita State Medical Academy, Chita, Siberia, Russian Federation (Dr Govorin); National Research Tomsk State University, Tomsk, Siberia, Russian Federation (Dr Bokhan); Scientific Research Institute of Physiology and Basic Medicine, Siberian Branch of RAMSc, Novosibirsk, Siberia, Russian Federation (Dr Aftanas)
| | - Nikolay A Bokhan
- Mental Health Research Institute, SiberianBranch of RAMSc, Tomsk, Siberia, Russian Federation (Drs Fedorenko, Toshchakova, Boyarko, Semke, Bokhan, and Ivanova); National Research Tomsk Polytechnic University, Tomsk, Siberia, Russian Federation (Drs Fedorenko and Ivanova); Department of Pharmacy, University of Groningen, Groningen, The Netherlands (Dr Loonen); Mental Health Institute Westelijk Noord-Brabant, Halsteren, The Netherlands (Dr Loonen); Department of Physiology, University of Tuebingen, Tuebingen, Germany (Dr Lang); Chita State Medical Academy, Chita, Siberia, Russian Federation (Dr Govorin); National Research Tomsk State University, Tomsk, Siberia, Russian Federation (Dr Bokhan); Scientific Research Institute of Physiology and Basic Medicine, Siberian Branch of RAMSc, Novosibirsk, Siberia, Russian Federation (Dr Aftanas)
| | - Nikolay V Govorin
- Mental Health Research Institute, SiberianBranch of RAMSc, Tomsk, Siberia, Russian Federation (Drs Fedorenko, Toshchakova, Boyarko, Semke, Bokhan, and Ivanova); National Research Tomsk Polytechnic University, Tomsk, Siberia, Russian Federation (Drs Fedorenko and Ivanova); Department of Pharmacy, University of Groningen, Groningen, The Netherlands (Dr Loonen); Mental Health Institute Westelijk Noord-Brabant, Halsteren, The Netherlands (Dr Loonen); Department of Physiology, University of Tuebingen, Tuebingen, Germany (Dr Lang); Chita State Medical Academy, Chita, Siberia, Russian Federation (Dr Govorin); National Research Tomsk State University, Tomsk, Siberia, Russian Federation (Dr Bokhan); Scientific Research Institute of Physiology and Basic Medicine, Siberian Branch of RAMSc, Novosibirsk, Siberia, Russian Federation (Dr Aftanas)
| | - Lyubomir I Aftanas
- Mental Health Research Institute, SiberianBranch of RAMSc, Tomsk, Siberia, Russian Federation (Drs Fedorenko, Toshchakova, Boyarko, Semke, Bokhan, and Ivanova); National Research Tomsk Polytechnic University, Tomsk, Siberia, Russian Federation (Drs Fedorenko and Ivanova); Department of Pharmacy, University of Groningen, Groningen, The Netherlands (Dr Loonen); Mental Health Institute Westelijk Noord-Brabant, Halsteren, The Netherlands (Dr Loonen); Department of Physiology, University of Tuebingen, Tuebingen, Germany (Dr Lang); Chita State Medical Academy, Chita, Siberia, Russian Federation (Dr Govorin); National Research Tomsk State University, Tomsk, Siberia, Russian Federation (Dr Bokhan); Scientific Research Institute of Physiology and Basic Medicine, Siberian Branch of RAMSc, Novosibirsk, Siberia, Russian Federation (Dr Aftanas)
| | - Svetlana A Ivanova
- Mental Health Research Institute, SiberianBranch of RAMSc, Tomsk, Siberia, Russian Federation (Drs Fedorenko, Toshchakova, Boyarko, Semke, Bokhan, and Ivanova); National Research Tomsk Polytechnic University, Tomsk, Siberia, Russian Federation (Drs Fedorenko and Ivanova); Department of Pharmacy, University of Groningen, Groningen, The Netherlands (Dr Loonen); Mental Health Institute Westelijk Noord-Brabant, Halsteren, The Netherlands (Dr Loonen); Department of Physiology, University of Tuebingen, Tuebingen, Germany (Dr Lang); Chita State Medical Academy, Chita, Siberia, Russian Federation (Dr Govorin); National Research Tomsk State University, Tomsk, Siberia, Russian Federation (Dr Bokhan); Scientific Research Institute of Physiology and Basic Medicine, Siberian Branch of RAMSc, Novosibirsk, Siberia, Russian Federation (Dr Aftanas)
| |
Collapse
|
15
|
Kaur H, Jajodia A, Grover S, Baghel R, Jain S, Kukreti R. Synergistic association of PI4KA and GRM3 genetic polymorphisms with poor antipsychotic response in south Indian schizophrenia patients with low severity of illness. Am J Med Genet B Neuropsychiatr Genet 2014; 165B:635-46. [PMID: 25209194 DOI: 10.1002/ajmg.b.32268] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 08/07/2014] [Indexed: 12/11/2022]
Abstract
Literature indicates key role of glutamatergic pathway genes in antipsychotic response among schizophrenia patients. However, molecular basis of their underlying role in antipsychotic response remained unexplained. Thus, to unravel their molecular underpinnings, we sought to investigate interactions amongst GRM3, SLC1A1, SLC1A2, SLC1A3, SLC1A4 gene polymorphisms with drug response in south Indian schizophrenia patients. We genotyped 48 SNPs from these genes in 423 schizophrenia patients stratified into low and high severity of illness groups. The SNPs and haplotypic combinations of associated SNPs were examined for their association with antipsychotic response. Multifactor-dimensionality-reduction was further used to explore gene-gene interaction among these SNPs and 53 SNPs from previously studied genes (BDNF, RGS4, SLC6A3, PI4KA, and PIP4K2A). Single SNP and haplotype analyses revealed no significant association with drug response irrespective of severity of illness. Gene-gene interaction analyses yielded promising leads, including an observed synergistic effect between PI4KA_rs165854 and GRM3_rs1468412 polymorphisms and incomplete antipsychotic response in schizophrenia patients with low severity of illness (OR = 12.4; 95%CI = 3.69-41.69). Further, this interaction was also observed in atypical monotherapy (n = 355) and risperidone (n = 260) treatment subgroups (OR = 11.21; 95%CI = 3.30-38.12 and OR = 13.5; 95%CI = 3.03-121.61 respectively). PI4KA is known to be involved in the biosynthesis of phosphatidylinositol-4, 5-bisphosphate which regulates exocytotic fusion of synaptic vesicles (glutamate, dopamine) with the plasma membrane and regulates duration of signal transduction of GPCRs. Whereas GRM3 regulates glutamate and dopamine transmission. Present findings indicate that PI4KA and GRM3 polymorphisms have potential to jointly modulate antipsychotic response. These results warrant additional replication studies to shed further light on these interactions.
Collapse
Affiliation(s)
- Harpreet Kaur
- Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology, Delhi, India
| | | | | | | | | | | |
Collapse
|
16
|
Losenkov IS, Ivanova SA, Vyalova NA, Simutkin GG, Bokhan NA. Proteins of the Akt1/GSK-3β signaling pathway in peripheral blood mononuclear cells of patients with affective disorders. NEUROCHEM J+ 2014. [DOI: 10.1134/s1819712414030106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
17
|
Kaur H, Jajodia A, Grover S, Baghel R, Gupta M, Jain S, Kukreti R. Genetic variations of PIP4K2A confer vulnerability to poor antipsychotic response in severely ill schizophrenia patients. PLoS One 2014; 9:e102556. [PMID: 25025909 PMCID: PMC4099378 DOI: 10.1371/journal.pone.0102556] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 06/19/2014] [Indexed: 11/20/2022] Open
Abstract
Literature suggests that disease severity and neurotransmitter signaling pathway genes can accurately identify antipsychotic response in schizophrenia patients. However, putative role of signaling molecules has not been tested in schizophrenia patients based on severity of illness, despite its biological plausibility. In the present study we investigated the possible association of polymorphisms from five candidate genes RGS4, SLC6A3, PIP4K2A, BDNF, PI4KA with response to antipsychotic in variably ill schizophrenia patients. Thus in present study, a total 53 SNPs on the basis of previous reports and functional grounds were examined for their association with antipsychotic response in 423 schizophrenia patients segregated into low and high severity groups. Additionally, haplotype, diplotype, multivariate logistic regression and multifactor-dimensionality reduction (MDR) analyses were performed. Furthermore, observed associations were investigated in atypical monotherapy (n = 355) and risperidone (n = 260) treated subgroups. All associations were estimated as odds ratio (OR) and 95% confidence interval (CI) and test for multiple corrections was applied. Single locus analysis showed significant association of nine variants from SLC6A3, PIP4K2A and BDNF genes with incomplete antipsychotic response in schizophrenia patients with high severity. We identified significant association of six marker diplotype ATTGCT/ATTGCT (rs746203-rs10828317-rs7094131-rs2296624-rs11013052-rs1409396) of PIP4K2A gene in incomplete responders (corrected p-value = 0.001; adjusted-OR = 3.19, 95%-CI = 1.46–6.98) with high severity. These associations were further observed in atypical monotherapy and risperidone sub-groups. MDR approach identified gene-gene interaction among BDNF_rs7103411-BDNF_rs1491851-SLC6A3_rs40184 in severely ill incomplete responders (OR = 7.91, 95%-CI = 4.08–15.36). While RGS4_rs2842026-SLC6A3_rs2975226 interacted synergistically in incomplete responders with low severity (OR = 4.09, 95%-CI = 2.09–8.02). Our findings provide strong evidence that diplotype ATTGCT/ATTGCT of PIP4K2A gene conferred approximately three-times higher incomplete responsiveness towards antipsychotics in severely ill patients. These results are consistent with the known role of phosphatidyl-inositol-signaling elements in antipsychotic action and outcome. Findings have implication for future molecular genetic studies as well as personalized medicine. However more work is warranted to elucidate underlying causal biological pathway.
Collapse
Affiliation(s)
- Harpreet Kaur
- Genomics and Molecular Medicine, CSIR- Institute of Genomics and Integrative Biology, Delhi, India
| | - Ajay Jajodia
- Genomics and Molecular Medicine, CSIR- Institute of Genomics and Integrative Biology, Delhi, India
| | - Sandeep Grover
- Genomics and Molecular Medicine, CSIR- Institute of Genomics and Integrative Biology, Delhi, India
| | - Ruchi Baghel
- Genomics and Molecular Medicine, CSIR- Institute of Genomics and Integrative Biology, Delhi, India
| | - Meenal Gupta
- Genomics and Molecular Medicine, CSIR- Institute of Genomics and Integrative Biology, Delhi, India
| | - Sanjeev Jain
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India
| | - Ritushree Kukreti
- Genomics and Molecular Medicine, CSIR- Institute of Genomics and Integrative Biology, Delhi, India
- * E-mail:
| |
Collapse
|
18
|
Bianchi MG, Bardelli D, Chiu M, Bussolati O. Changes in the expression of the glutamate transporter EAAT3/EAAC1 in health and disease. Cell Mol Life Sci 2014; 71:2001-15. [PMID: 24162932 PMCID: PMC11113519 DOI: 10.1007/s00018-013-1484-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 09/17/2013] [Accepted: 09/19/2013] [Indexed: 12/14/2022]
Abstract
Excitatory amino acid transporters (EAATs) are high-affinity Na(+)-dependent carriers of major importance in maintaining glutamate homeostasis in the central nervous system. EAAT3, the human counterpart of the rodent excitatory amino acid carrier 1 (EAAC1), is encoded by the SLC1A1 gene. EAAT3/EAAC1 is ubiquitously expressed in the brain, mostly in neurons but also in other cell types, such as oligodendrocyte precursors. While most of the glutamate released in the synapses is taken up by the "glial-type" EAATs, EAAT2 (GLT-1 in rodents) and EAAT1 (GLAST), the functional role of EAAT3/EAAC1 is related to the subtle regulation of glutamatergic transmission. Moreover, because it can also transport cysteine, EAAT3/EAAC1 is believed to be important for the synthesis of intracellular glutathione and subsequent protection from oxidative stress. In contrast to other EAATs, EAAT3/EAAC1 is mostly intracellular, and several mechanisms have been described for the rapid regulation of the membrane trafficking of the transporter. Moreover, the carrier interacts with several proteins, and this interaction modulates transport activity. Much less is known about the slow regulatory mechanisms acting on the expression of the transporter, although several recent reports have identified changes in EAAT3/EAAC1 protein level and activity related to modulation of its expression at the gene level. Moreover, EAAT3/EAAC1 expression is altered in pathological conditions, such as hypoxia/ischemia, multiple sclerosis, schizophrenia, and epilepsy. This review summarizes these results and provides an overall picture of changes in EAAT3/EAAC1 expression in health and disease.
Collapse
Affiliation(s)
- Massimiliano G. Bianchi
- Unit of General Pathology, Department of Biomedical, Biotechnological and Translational Sciences (SBiBiT), University of Parma, Via Volturno 39, 43125 Parma, Italy
- Unit of Occupational Medicine, Department of Clinical and Experimental Medicine, University of Parma, Parma, Italy
| | - Donatella Bardelli
- Unit of General Pathology, Department of Biomedical, Biotechnological and Translational Sciences (SBiBiT), University of Parma, Via Volturno 39, 43125 Parma, Italy
| | - Martina Chiu
- Unit of General Pathology, Department of Biomedical, Biotechnological and Translational Sciences (SBiBiT), University of Parma, Via Volturno 39, 43125 Parma, Italy
| | - Ovidio Bussolati
- Unit of General Pathology, Department of Biomedical, Biotechnological and Translational Sciences (SBiBiT), University of Parma, Via Volturno 39, 43125 Parma, Italy
| |
Collapse
|
19
|
Ivanova S, Boyko A, Fedorenko O, Krotenko N, Semke A, Bokhan N. Glutamate Concentration in the Serum of Patients with Schizophrenia. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.proche.2014.10.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
20
|
Lu W, Wu H, Cai J, Wang Z, Yi Z, Yu S, Fang Y, Zhang C. Lack of association of SLC1A1 variants with schizophrenia in Chinese Han population. Psychiatry Res 2013; 210:669-71. [PMID: 23931931 DOI: 10.1016/j.psychres.2013.07.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2013] [Revised: 07/04/2013] [Accepted: 07/08/2013] [Indexed: 12/27/2022]
Abstract
In this study, we analyzed four single nucleotide polymorphisms (SNPs) (rs10491734, rs2228622, rs301430 and rs301443) of the solute carrier family 1 gene (SLC1A1) in a set of 616 schizophrenia patients and 638 matched healthy controls of Han Chinese descent. No significant differences of genotype or allele distribution were identified between the patients and controls. Our data suggest that SLC1A1 is unlikely to be a major susceptibility gene for schizophrenia in Han Chinese.
Collapse
Affiliation(s)
- Weihong Lu
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Wu Q, Xia S, Lin J, Cao D, Chen W, Liu L, Fu Y, Liang J, Cao M. Effects of the altered activity of δ-opioid receptor on the expression of glutamate transporter type 3 induced by chronic exposure to morphine. J Neurol Sci 2013; 335:174-81. [PMID: 24120272 DOI: 10.1016/j.jns.2013.09.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Revised: 09/17/2013] [Accepted: 09/18/2013] [Indexed: 11/29/2022]
Abstract
Altered δ-opioid receptor (DOR) activity can affect the activity and function of excitatory amino acid transporter 3 (EAAT3), but the effects of DOR on EAAT3 expression in morphine relapse remain unknown. In this study, a C6δ cell line and SD rats in a conditioned place preference (CPP) reinstatement model were used. Here, we show that EAAT3 protein levels in C6δ cells decreased significantly after chronic exposure to morphine (10 μM) for 48 h and returned to normal 12 h after drug withdrawal. When C6δ cells were re-exposed to 5 μM morphine for 4 h, EAAT3 protein levels again decreased significantly. The selective μ opioid receptor (MOR) specific agonist DAMGO had a similar effect as morphine, and CTOP, a specific MOR blocker, reversed the declined expression of EAAT3 protein triggered by morphine exposure. The selective DOR agonist [d-pen2, 5] enkephalin (DPDPE) significantly increased EAAT3 expression in C6δ cells and even reversed the decreased EAAT3 expression caused by chronic morphine exposure. The non specific antagonist naloxone, but not the DOR inhibitor Naltrindole (NTI), reversed the decreased EAAT3 expression in C6δ cells caused by chronic morphine exposure. In vivo, EAAT3 levels in the prefrontal cortex of rats with morphine-induced CPP reinstatement significantly decreased. Naloxone completely suppressed reinstatement and reversed the decrease in EAAT3 expression induced by morphine re-exposure. In contrast, NTI only weakened CPP reinstatement and exerted no influence on EAAT3 expression. These findings suggest that DOR can affect the expression of EAAT3. However, the morphine-induced down-regulation of EAAT3 in C6δ cells and in the prefrontal cortex of rats may not be mediated by DOR.
Collapse
Affiliation(s)
- Qiang Wu
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, Guangdong, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Clarke JH, Irvine RF. Enzyme activity of the PIP4K2A gene product polymorphism that is implicated in schizophrenia. Psychopharmacology (Berl) 2013; 230:329-31. [PMID: 24081551 PMCID: PMC3825611 DOI: 10.1007/s00213-013-3299-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 09/14/2013] [Indexed: 01/05/2023]
Affiliation(s)
- Jonathan H. Clarke
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD UK
| | - Robin F. Irvine
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD UK
| |
Collapse
|
23
|
Keune WJ, Jones DR, Bultsma Y, Sommer L, Zhou XZ, Lu KP, Divecha N. Regulation of phosphatidylinositol-5-phosphate signaling by Pin1 determines sensitivity to oxidative stress. Sci Signal 2012. [PMID: 23193159 DOI: 10.1126/scisignal.2003223] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Oxidative signaling and oxidative stress contribute to aging, cancer, and diseases resulting from neurodegeneration. Pin1 is a proline isomerase that recognizes phosphorylated substrates and regulates the localization and conformation of its targets. Pin1(-/-) mice show phenotypes associated with premature aging, yet mouse embryonic fibroblasts (MEFs) from these mice are resistant to hydrogen peroxide (H(2)O(2))-induced cell death. We found that the abundance of phosphatidylinositol-5-phosphate (PtdIns5P) was increased in response to H(2)O(2), an effect that was enhanced in Pin1(-/-) MEFs. Reduction of H(2)O(2)-induced PtdIns5P compromised cell viability in response to oxidative stress, suggesting that PtdIns5P contributed to the enhanced cell viability of Pin1(-/-) MEFs exposed to oxidative stress. The increased PtdIns5P in the Pin1(-/-) MEFs stimulated the expression of genes involved in defense against oxidative stress and reduced the accumulation of reactive oxygen species. Pin1 and PtdIns5P 4-kinases (PIP4Ks), enzymes that phosphorylate and thereby reduce the amount of PtdIns5P, interacted in a manner dependent on the phosphorylation of PIP4K. Although reintroduction of Pin1 into the Pin1(-/-) MEFs reduced the amount of PtdIns5P produced in response to H(2)O(2), in vitro assays indicated that the isomerase activity of Pin1 inhibited PIP4K activity. Whether this isomerise-mediated inhibition of PIP4K occurs in cells remains an open question, but the data suggest that the regulation of PIP4K by Pin1 may be complex.
Collapse
Affiliation(s)
- Willem-Jan Keune
- CRUK Inositide Laboratory, Paterson Institute for Cancer Research, The University of Manchester, Manchester M20 4BX, UK
| | | | | | | | | | | | | |
Collapse
|