1
|
Iacino MC, Pitts EG, Bonsib AG, Sexton LL, Ferris MJ. Long-term effects of adolescent versus adult nicotine self-administration on cholinergic modulation of dopamine in the nucleus accumbens core. Drug Alcohol Depend 2025; 268:112555. [PMID: 39881470 DOI: 10.1016/j.drugalcdep.2025.112555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/19/2024] [Accepted: 01/06/2025] [Indexed: 01/31/2025]
Abstract
Adolescence is a developmental period marked by significant alterations to brain neurobiology and behavior. Adolescent nicotine use disrupts developmental trajectories and increases vulnerability to maladaptive drug-taking in adulthood. The mesolimbic dopamine (DA) system, including the nucleus accumbens core (NAc), mediates the reinforcing effects of nicotine. While dopaminergic reorganization is necessary for the transition into adulthood, how adolescent nicotine exposure affects cholinergic modulation of adult NAc DA dynamics is less understood. Here, we use 12 days of intravenous self-administration (SA) and ex vivo fast-scan cyclic voltammetry (FSCV) to explore the effects of adolescent (P31-42) versus adult (P63-75) nicotine (0.03mg/kg/infusion) intake on DA dynamics following three weeks of forced abstinence in adult male rats. This three-week abstinence period ensured that all neurochemical measurements were performed in adulthood. Consistent with the literature, we show that adolescent and adult male rats self-administer similar amounts of nicotine. While adult nicotine exposure + forced abstinence decreased NAc DA release relative to adult saline exposure, we found no difference in adult NAc DA release after adolescent nicotine or saline exposure. Investigating α6-versus non-α6-containing nicotinic acetylcholine receptors (nAChRs) revealed differential modulatory effects in adults and adolescents self-administering nicotine relative to respective saline controls. Both α6- and non-α6β2-containing nAChRs facilitation of NAc DA release was increased across frequencies only after adolescent nicotine versus saline SA. These data provide a foundation for understanding the long-term effects of nicotine in adolescence on cholinergic modulation of NAc DA dynamics in adulthood.
Collapse
Affiliation(s)
- Melody C Iacino
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Elizabeth G Pitts
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Amelia G Bonsib
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Lacey L Sexton
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Mark J Ferris
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
| |
Collapse
|
2
|
Carreño D, Facundo A, Cardenas A, Lotfipour S. Sub-chronic nicotine exposure influences methamphetamine self-administration and dopamine overflow in a sex-and genotype-dependent manner in humanized CHRNA6 3'-UTR SNP (rs2304297) adolescent rats. Front Pharmacol 2024; 15:1445303. [PMID: 39206256 PMCID: PMC11349519 DOI: 10.3389/fphar.2024.1445303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024] Open
Abstract
Introduction: The rewarding effects of drugs of abuse are associated with the dopaminergic system in the limbic circuitry. Nicotine exposure during adolescence is linked to increased use of drugs of abuse with nicotine and methamphetamine (METH) commonly used together. Nicotine acts on neuronal nicotinic acetylcholine receptor (nAChR) systems, critical for reward processing and drug reinforcement, while METH leads to a higher dopamine (DA) efflux in brain reward regions. A human single nucleotide polymorphism (SNP) in the 3'-untranslated region (UTR) of the α6 nicotinic receptor subunit gene (CHRNA6, rs2304297), has been linked with tobacco/nicotine and general substance use during adolescence. Using CRISPR-Cas9 genomic engineering, our lab recapitulated the CHRNA6 3'UTRC123G SNP, generating α6CC and α6GG allele carriers in Sprague Dawley rats. We hypothesized the CHRNA6 3'UTRC123G SNP would sex- and genotype-dependently enhance nicotine-induced METH self-administration as well as nicotine-induced DA overflow in the nucleus accumbens shell of adolescent α6GG and α6CC carriers. Methods: Adolescent male and female rats underwent a 4-day sub-chronic, low-dose (0.03 mg/kg/0.1 mL, x2) nicotine pretreatment paradigm to assess intravenous METH (0.02 mg/kg/0.1 mL) self-administration as well as nicotine- and METH (0.02 mg/kg/0.1 mL)-induced DA overflow in the nucleus accumbens shell (NAcS) using in vivo microdialysis coupled with high-performance liquid-chromatography-electrochemical detection (HPLC-ECD). Results: Nicotine pretreatment sex- and genotype-dependently enhanced subsequent METH self-administration in adolescent CHRNA6 3'UTRC123G SNP rats. Further nicotine and METH-induced DA overflow is observed in α6CC females as compared to α6GG females, with METH-induced DA overflow enhanced in α6GG males when compared to α6CC males. Conclusion: These findings demonstrate that the CHRNA6 3'-UTRC123G SNP can sex- and genotype-dependently impact adolescent nicotine-induced effects on METH self-administration and stimulant-induced DA overflow in reward regions of the brain.
Collapse
Affiliation(s)
- Diana Carreño
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, United States
| | - Antonella Facundo
- Department of Emergency Medicine, University of California, Irvine, Irvine, CA, United States
| | - Anjelica Cardenas
- Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Shahrdad Lotfipour
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, United States
- Department of Emergency Medicine, University of California, Irvine, Irvine, CA, United States
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
3
|
Carreño D, Lotfipour S. Sex- and genotype-dependent nicotine plus cue-primed reinstatement is enhanced in adolescent Sprague Dawley rats containing the human CHRNA6 3'-UTR polymorphism (rs2304297). Front Psychiatry 2023; 13:1064211. [PMID: 36704741 PMCID: PMC9872558 DOI: 10.3389/fpsyt.2022.1064211] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/21/2022] [Indexed: 01/11/2023] Open
Abstract
Rationale Large-scale human candidate gene studies have indicated that a genetic variant (rs2304297) in the alpha(α)6 nicotinic acetylcholine receptor (nAChR) subunit, encoded by the CHRNA6 gene, may play a key role in adolescent nicotine addictive behavior. We hypothesized that the polymorphism selectively enhances nicotine + cue-primed reinstatement, but not nicotine- or cue-reinstatement in α6 GG (risk) vs. α6 CC (non-risk) allele carriers, without having baseline effects on natural rewards. Methods Using CRISPR-Cas9 genomic engineering, we developed a humanized rat line with the human gene variant of the CHRNA6 3'-UTR C 123 G polymorphism in Sprague-Dawley rats. Genetically modified adolescent male and female rats were food trained under a fixed-ratio (FR)1 schedule of reinforcement and progressively increased to FR5. Animals were implanted with catheters and began nicotine self-administration (15 μg/kg/infusion) at FR5. Upon reaching stable responding, reinforced behavior was extinguished by removal of drug and cues. Reinstatement testing began for cue only, nicotine only, and nicotine + cue in a Latin Square Design. Animals were returned to extinction conditions for 2 days minimum between testing. Results For natural food rewards, nicotine self-administration, progressive ratio, and extinction, adolescent male and female (α6 GG and α6 CC ) rats exhibited equivalent behaviors. Male α6 GG rats show enhanced nicotine + cue-primed reinstatement when compared with male α6 CC rats. This genotype effect on reinstatement was not seen in female rats. Conclusion Our findings support the in vivo functional role of the human CHRNA6 3'-UTR SNP genetic variant in sex-dependently enhancing nicotine seeking behavior in adolescent rats. Overall, the findings support clinical and preclinical data highlighting a role of α6 nAChRs mediating sex heterogeneity in substance use and related phenotypes.
Collapse
Affiliation(s)
- Diana Carreño
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, United States
| | - Shahrdad Lotfipour
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, United States
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA, United States
- Department of Emergency Medicine, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
4
|
Gellner CA, Carreño D, Belluzzi JD, Leslie FM. Impact of tobacco smoke constituents on nicotine-seeking behavior in adolescent and adult male rats. Front Psychiatry 2023; 14:1096213. [PMID: 36815196 PMCID: PMC9939699 DOI: 10.3389/fpsyt.2023.1096213] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/17/2023] [Indexed: 02/09/2023] Open
Abstract
INTRODUCTION Given the rapid increase in teen vaping over recent years it is critical to understand mechanisms underlying addiction and relapse to tobacco use at this age. To evaluate the role of non-nicotine constituents in cigarette smoke, our lab has previously established a model of intravenous self-administration of aqueous cigarette smoke extract (CSE). We now compare the sensitivity of male adolescent and adult rats who have self-administered CSE or nicotine to reinstatement with the pharmacological stressor, yohimbine, with and without cues. METHODS Adolescents and adults, aged postnatal day (P) 34 and 84, were tested for the effect of yohimbine (0-2.5 mg/kg) on plasma corticosterone levels to establish a dose that was an effective stressor at both ages. Separate groups of animals were trained to lever press for food before beginning 1-hour drug self-administration sessions for nicotine or CSE (15 μg/kg/infusion nicotine content). Once stable responding was reached, drug was removed, and behavior extinguished. Drug-seeking behavior was reinstated with yohimbine, cues, or a combination of yohimbine and cues. RESULTS Although adolescents and adults showed different dose-responses for yohimbine-induced corticosterone release, a dose of 2.5 mg/kg increased stress hormone levels at both ages. Whereas both ages displayed similar responding for CSE and nicotine, adolescents self-administered more CSE and nicotine as compared to adults. Cues and cues + stress reinstated responding to a greater extent in animals that had self-administered CSE, regardless of age. DISCUSSION These findings suggest that non-nicotine tobacco smoke constituents influence later but not earlier stages of addiction in both adolescent and adult male rats.
Collapse
Affiliation(s)
- Candice A Gellner
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, United States
| | - Diana Carreño
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, United States
| | - James D Belluzzi
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, United States
| | - Frances M Leslie
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
5
|
Chen G, Ghazal M, Rahman S, Lutfy K. The impact of adolescent nicotine exposure on alcohol use during adulthood: The role of neuropeptides. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2021; 161:53-93. [PMID: 34801174 DOI: 10.1016/bs.irn.2021.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Nicotine and alcohol abuse and co-dependence represent major public health crises. Indeed, previous research has shown that the prevalence of alcoholism is higher in smokers than in non-smokers. Adolescence is a susceptible period of life for the initiation of nicotine and alcohol use and the development of nicotine-alcohol codependence. However, there is a limited number of pharmacotherapeutic agents to treat addiction to nicotine or alcohol alone. Notably, there is no effective medication to treat this comorbid disorder. This chapter aims to review the early nicotine use and its impact on subsequent alcohol abuse during adolescence and adulthood as well as the role of neuropeptides in this comorbid disorder. The preclinical and clinical findings discussed in this chapter will advance our understanding of this comorbid disorder's neurobiology and lay a foundation for developing novel pharmacotherapies to treat nicotine and alcohol codependence.
Collapse
Affiliation(s)
- G Chen
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, United States; Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA, United States
| | - M Ghazal
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA, United States
| | - S Rahman
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, SD, United States
| | - K Lutfy
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA, United States.
| |
Collapse
|
6
|
Cardenas A, Martinez M, Saenz Mejia A, Lotfipour S. Early adolescent subchronic low-dose nicotine exposure increases subsequent cocaine and fentanyl self-administration in Sprague-Dawley rats. Behav Pharmacol 2021; 32:86-91. [PMID: 32960853 PMCID: PMC7790845 DOI: 10.1097/fbp.0000000000000593] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
An exponential rise in nicotine-containing electronic-cigarette use has been observed during the period of adolescence. Preclinical studies have shown that nicotine exposure during early adolescence, but not adulthood, increases subsequent drug intake and reward. Although growing clinical trends highlight that stimulant use disorders are associated with the opioid epidemic, very few studies have assessed the effects of adolescent nicotine exposure on opioid intake. The objective of our current study is to develop a new animal model to assess the causal relationship of adolescent nicotine exposure on subsequent opioid intake. In this effort, we first replicate previous studies using a well-established 4-day nicotine paradigm. Rats are pretreated with a low dose of nicotine (2 × , 30 μg/kg/0.1 mL, intravenous) or saline during early adolescence (postnatal days 28-31) or adulthood (postnatal days 86-89). Following nicotine pretreatment on postnatal day 32 or postnatal day 90, animals underwent operant intravenous self-administration for the psychostimulant, cocaine [500 μg/kg/infusion (inf)] or the opioid, fentanyl (2.5 μg/kg/inf). We successfully show that adolescent but not adult, nicotine exposure enhances cocaine self-administration in male rats. Furthermore, we illustrate early adolescent but not adult nicotine exposure enhances fentanyl self-administration, independent of sex. Overall, our findings highlight that adolescence is a unique period of development that is vulnerable to nicotine-induced enhancement for cocaine and fentanyl self-administration in rats.
Collapse
Affiliation(s)
| | | | | | - Shahrdad Lotfipour
- Department of Pharmaceutical Sciences
- Department of Emergency Medicine, University of California Irvine, Irvine, California, USA
| |
Collapse
|
7
|
Leslie FM. Unique, long-term effects of nicotine on adolescent brain. Pharmacol Biochem Behav 2020; 197:173010. [PMID: 32738256 DOI: 10.1016/j.pbb.2020.173010] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/23/2020] [Accepted: 07/28/2020] [Indexed: 01/20/2023]
Abstract
Adolescence is a time of major plasticity of brain systems that regulate motivated behavior and cognition, and is also the age of peak onset of nicotine use. Although there has been a decline in teen use of cigarettes in recent years, there has been a huge increase in nicotine vaping. It is therefore critically important to understand the impact of nicotine on this critical phase of brain development. Animal studies have shown that nicotine has unique effects on adolescent brain. The goal of this review is therefore to systematically evaluate age- and sex-differences in the effects of nicotine on brain and behavior. Both acute and chronic effects of nicotine on brain biochemistry and behavior, particularly drug reward, aversion, cognition and emotion, are evaluated. Gaps in our current knowledge that need to be addressed are also highlighted. This review compares and integrates human and animals findings. Although there can be no experimental studies in humans to confirm similar behavioral effects of teen nicotine exposure, an emerging observational literature suggests similarities across species. Given the substantial evidence for long-term negative impact of adolescent nicotine exposure on brain and behavior, further longitudinal assessment of health outcomes in teen and young adult e-cigarette users is warranted.
Collapse
Affiliation(s)
- Frances M Leslie
- University of California, Irvine, Department of Pharmaceutical Sciences, 367 Med Surge II, Irvine, CA 92697, United States of America.
| |
Collapse
|
8
|
Ren M, Lotfipour S. Nicotine Gateway Effects on Adolescent Substance Use. West J Emerg Med 2019; 20:696-709. [PMID: 31539325 PMCID: PMC6754186 DOI: 10.5811/westjem.2019.7.41661] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 04/15/2019] [Accepted: 07/01/2019] [Indexed: 11/11/2022] Open
Abstract
Given the rise in teenage use of electronic nicotine delivery systems ("vaping") in congruence with the increasing numbers of drug-related emergencies, it is critical to expand the knowledge of the physical and behavioral risks associated with developmental nicotine exposure. A further understanding of the molecular and neurochemical underpinnings of nicotine's gateway effects allows emergency clinicians to advise patients and families and adjust treatment accordingly, which may minimize the use of tobacco, nicotine, and future substances. Currently, the growing use of tobacco products and electronic cigarettes among teenagers represents a major public health concern. Adolescent exposure to tobacco or nicotine can lead to subsequent abuse of nicotine and other substances, which is known as the gateway hypothesis. Adolescence is a developmentally sensitive time period when risk-taking behaviors, such as sensation seeking and drug experimentation, often begin. These hallmark behaviors of adolescence are largely due to maturational changes in the brain. The developing brain is particularly vulnerable to the harmful effects of drugs of abuse, including tobacco and nicotine products, which activate nicotinic acetylcholine receptors (nAChRs). Disruption of nAChR development with early nicotine use may influence the function and pharmacology of the receptor subunits and alter the release of reward-related neurotransmitters, including acetylcholine, dopamine, GABA, serotonin, and glutamate. In this review, we emphasize that the effects of nicotine are highly dependent on timing of exposure, with a dynamic interaction of nAChRs with dopaminergic, endocannabinoid, and opioidergic systems to enhance general drug reward and reinforcement. We analyzed available literature regarding adolescent substance use and nicotine's impact on the developing brain and behavior using the electronic databases of PubMed and Google Scholar for articles published in English between January 1968 and November 2018. We present a large collection of clinical and preclinical evidence that adolescent nicotine exposure influences long-term molecular, biochemical, and functional changes in the brain that encourage subsequent drug abuse.
Collapse
Affiliation(s)
- Michelle Ren
- University of California, Irvine, Department of Pharmaceutical Sciences, Irvine, California
| | - Shahrdad Lotfipour
- University of California, Irvine, Department of Emergency Medicine and Pharmaceutical Sciences, Irvine, California
| |
Collapse
|
9
|
Singh PK, Lutfy K. Nicotine pretreatment reduced cocaine-induced CPP and its reinstatement in a sex- and dose-related manner in adult C57BL/6J mice. Pharmacol Biochem Behav 2017; 159:84-89. [PMID: 28735686 DOI: 10.1016/j.pbb.2017.07.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 07/18/2017] [Accepted: 07/19/2017] [Indexed: 11/15/2022]
Abstract
Previous preclinical studies have shown that nicotine pretreatment during adolescence increases the reinforcing actions of cocaine. However, little is known about the effect of prior nicotine administration on cocaine-induced conditioned place preference (CPP) and its reinstatement in adult mice. Besides, little information is available regarding the role of sex in this cross-talk between nicotine and cocaine. Thus, we examined if nicotine administration during adulthood would differentially alter cocaine-induced CPP, its extinction and reinstatement in male versus female mice and if the dose of nicotine was important in this regard. To this end, mice were pretreated with saline or nicotine (0.25 or 1mg/kg; twice daily for seven days) and then tested for place preference before and after single and repeated conditioning with cocaine (15mg/kg). Mice were then exposed to extinction training and tested for reinstatement of CPP. Our results showed that male and female mice pretreated with saline and conditioned with cocaine each exhibited a robust CPP after a single cocaine conditioning. However, this response was blunted in mice pretreated with the lower but not higher dose of nicotine. Female mice pretreated with the lower dose nicotine also failed to show CPP after repeated conditioning. Reinstatement of cocaine-induced CPP was also blunted in these mice compared to their respective controls. Together, these results suggest that nicotine administration during adulthood exerts differential effects on cocaine-induced CPP and its reinstatement in male and female mice and the dose of nicotine is important in this regard.
Collapse
Affiliation(s)
- Prableen K Singh
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, 309 East 2nd Street, Pomona, CA 91766, United States
| | - Kabirullah Lutfy
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, 309 East 2nd Street, Pomona, CA 91766, United States.
| |
Collapse
|
10
|
England LJ, Aagaard K, Bloch M, Conway K, Cosgrove K, Grana R, Gould TJ, Hatsukami D, Jensen F, Kandel D, Lanphear B, Leslie F, Pauly JR, Neiderhiser J, Rubinstein M, Slotkin TA, Spindel E, Stroud L, Wakschlag L. Developmental toxicity of nicotine: A transdisciplinary synthesis and implications for emerging tobacco products. Neurosci Biobehav Rev 2017; 72:176-189. [PMID: 27890689 PMCID: PMC5965681 DOI: 10.1016/j.neubiorev.2016.11.013] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 11/18/2016] [Accepted: 11/19/2016] [Indexed: 12/24/2022]
Abstract
While the health risks associated with adult cigarette smoking have been well described, effects of nicotine exposure during periods of developmental vulnerability are often overlooked. Using MEDLINE and PubMed literature searches, books, reports and expert opinion, a transdisciplinary group of scientists reviewed human and animal research on the health effects of exposure to nicotine during pregnancy and adolescence. A synthesis of this research supports that nicotine contributes critically to adverse effects of gestational tobacco exposure, including reduced pulmonary function, auditory processing defects, impaired infant cardiorespiratory function, and may contribute to cognitive and behavioral deficits in later life. Nicotine exposure during adolescence is associated with deficits in working memory, attention, and auditory processing, as well as increased impulsivity and anxiety. Finally, recent animal studies suggest that nicotine has a priming effect that increases addiction liability for other drugs. The evidence that nicotine adversely affects fetal and adolescent development is sufficient to warrant public health measures to protect pregnant women, children, and adolescents from nicotine exposure.
Collapse
Affiliation(s)
- Lucinda J England
- Office on Smoking and Health, National Center for Chronic Disease Prevention and Health Promotion, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | - Kjersti Aagaard
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX, USA
| | - Michele Bloch
- Division of Cancer Control and Population Science, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Kevin Conway
- Division of Epidemiology, Services and Prevention Research, National Institute on Drug Abuse, National Institutes of Health, Rockville, MD, USA
| | - Kelly Cosgrove
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Rachel Grana
- Division of Cancer Control and Population Science, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Thomas J Gould
- Department of Biobehavioral Health, Pennsylvania State University, PA, USA
| | | | - Frances Jensen
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Denise Kandel
- Department of Psychiatry and Mailman School of Public Health, Columbia University, New York State Psychiatric Institute, New York, NY, USA
| | | | - Frances Leslie
- Department of Pharmacology, School of Medicine, University of California, Irvine, CA, USA
| | - James R Pauly
- College of Pharmacy, University of Kentucky, Lexington, KY, USA
| | - Jenae Neiderhiser
- Department of Psychology, Pennsylvania State University, University Park, PA, USA
| | - Mark Rubinstein
- Department of Pediatrics, School of Medicine, University of California, San Francisco, CA, USA
| | - Theodore A Slotkin
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA
| | - Eliot Spindel
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, USA
| | - Laura Stroud
- Department of Psychiatry and Human Behavior, Alpert Medical School, Brown University, Providence, RI, USA
| | - Lauren Wakschlag
- Department of Medical Social Sciences Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
11
|
Cummins ED, Leedy KK, Dose JM, Peterson DJ, Kirby SL, Hernandez LJ, Brown RW. The effects of adolescent methylphenidate exposure on the behavioral and brain-derived neurotrophic factor response to nicotine. J Psychopharmacol 2017; 31:75-85. [PMID: 27940499 DOI: 10.1177/0269881116681458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This study analyzed the interaction of adolescent methylphenidate on the behavioral response to nicotine and the effects of these drug treatments on brain-derived neurotrophic factor in the nucleus accumbens and hippocampus in male and female Sprague-Dawley rats. Animals were intraperitoneal administered 1 mg/kg methylphenidate or saline using a "school day" regimen (five days on, two days off) beginning on postnatal day (P)28 and throughout behavioral testing. In Experiment 1, animals were intraperitoneal administered 0.5 mg/kg (free base) nicotine or saline every second day for 10 days from P45-P63 and tested after a three-day drug washout on the forced swim stress task on P67-P68. Results revealed that adolescent methylphenidate blunted nicotine behavioral sensitization. However, methylphenidate-treated rats given saline during sensitization demonstrated decreased latency to immobility and increased immobility time on the forced swim stress task in males that was reduced by nicotine. In Experiment 2, a different set of animals were conditioned to nicotine (0.6 mg/kg free base) or saline using the conditioned place preference behavioral paradigm from P44-P51, and given a preference test on P52. On P53, the nucleus accumbens and hippocampus were analyzed for brain-derived neurotrophic factor. Methylphenidate enhanced nicotine-conditioned place preference in females and nicotine produced conditioned place preference in males and females pre-exposed to saline in adolescence. In addition, methylphenidate and nicotine increased nucleus accumbens brain-derived neurotrophic factor in females and methylphenidate enhanced hippocampus brain-derived neurotrophic factor in males and females. Methylphenidate adolescent exposure using a clinically relevant dose and regimen results in changes in the behavioral and brain-derived neurotrophic factor responses to nicotine in adolescence that are sex-dependent.
Collapse
Affiliation(s)
- Elizabeth D Cummins
- 1 Department of Psychology, East Tennessee State University, Johnson City, TN, USA
| | - Kristen K Leedy
- 1 Department of Psychology, East Tennessee State University, Johnson City, TN, USA
| | - John M Dose
- 3 Department of Psychology, St Norbert College, De Pere, WI, USA
| | - Daniel J Peterson
- 1 Department of Psychology, East Tennessee State University, Johnson City, TN, USA
| | - Seth L Kirby
- 1 Department of Psychology, East Tennessee State University, Johnson City, TN, USA
| | - Liza J Hernandez
- 1 Department of Psychology, East Tennessee State University, Johnson City, TN, USA
| | - Russell W Brown
- 2 Department of Biomedical Sciences, East Tennessee State University, Johnson City, TN, USA
| |
Collapse
|
12
|
Cross SJ, Lotfipour S, Leslie FM. Mechanisms and genetic factors underlying co-use of nicotine and alcohol or other drugs of abuse. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2016; 43:171-185. [PMID: 27532746 DOI: 10.1080/00952990.2016.1209512] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Concurrent use of tobacco and alcohol or psychostimulants represents a major public health concern, with use of one substance influencing consumption of the other. Co-abuse of these drugs leads to substantial negative health outcomes, reduced cessation, and high economic costs, but the underlying mechanisms are poorly understood. Epidemiological data suggest that tobacco use during adolescence plays a particularly significant role. Adolescence is a sensitive period of development marked by major neurobiological maturation of brain regions critical for reward processing, learning and memory, and executive function. Nicotine exposure during this time produces a unique and long-lasting vulnerability to subsequent substance use, likely via actions at cholinergic, dopaminergic, and serotonergic systems. In this review, we discuss recent clinical and preclinical data examining the genetic factors and mechanisms underlying co-use of nicotine and alcohol or cocaine and amphetamines. We evaluate the critical role of nicotinic acetylcholine receptors throughout, and emphasize the dearth of preclinical studies assessing concurrent drug exposure. We stress important age and sex differences in drug responses, and highlight a brief, low-dose nicotine exposure paradigm that may better model early use of tobacco products. The escalating use of e-cigarettes among youth necessitates a closer look at the consequences of early adolescent nicotine exposure on subsequent alcohol and drug abuse.
Collapse
Affiliation(s)
- Sarah J Cross
- a Department of Anatomy & Neurobiology , School of Medicine, University of California , Irvine , CA , USA
| | - Shahrdad Lotfipour
- b Department of Emergency Medicine , School of Medicine, University of California , Irvine , CA , USA.,c Department of Pharmacology , School of Medicine, University of California , Irvine , CA , USA
| | - Frances M Leslie
- a Department of Anatomy & Neurobiology , School of Medicine, University of California , Irvine , CA , USA.,c Department of Pharmacology , School of Medicine, University of California , Irvine , CA , USA
| |
Collapse
|
13
|
Nicotine, adolescence, and stress: A review of how stress can modulate the negative consequences of adolescent nicotine abuse. Neurosci Biobehav Rev 2016; 65:173-84. [PMID: 27068856 DOI: 10.1016/j.neubiorev.2016.04.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 04/05/2016] [Accepted: 04/05/2016] [Indexed: 01/13/2023]
Abstract
In order to continue the decline of smoking prevalence, it is imperative to identify factors that contribute to the development of nicotine and tobacco addiction, such as adolescent initiation of nicotine use, adolescent stress, and their interaction. This review highlights the biological differences between adolescent and adults in nicotine use and resulting effects, and examines the enduring consequences of adolescent nicotine administration. A review of both clinical and preclinical literature indicates that adolescent, but not adult, nicotine administration leads to increased susceptibility for development of long-lasting impairments in learning and affect. Finally, the role stress plays in normal adolescent development, the deleterious effects stress has on learning and memory, and the negative consequences resulting from the interaction of stress and nicotine during adolescence is reviewed. The review concludes with ways in which future policies could benefit by addressing adolescent stress as a means of reducing adolescent nicotine abuse.
Collapse
|
14
|
Adermark L, Morud J, Lotfi A, Jonsson S, Söderpalm B, Ericson M. Age-contingent influence over accumbal neurotransmission and the locomotor stimulatory response to acute and repeated administration of nicotine in Wistar rats. Neuropharmacology 2015; 97:104-12. [PMID: 26079444 DOI: 10.1016/j.neuropharm.2015.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 05/28/2015] [Accepted: 06/01/2015] [Indexed: 10/23/2022]
Abstract
Nicotine addiction is one of the leading contributors to the global burden of disease, and early onset smokers report a more severe addiction with lower chance of cessation than those with a late onset. Preclinical research supports an age-dependent component to the rewarding and reinforcing properties of nicotine, and the aim of this study was to define behavioral adaptations and changes in accumbal neurotransmission that arise over 15 days of intermittent nicotine treatment (0.36 mg/kg/day) in rats of three different ages (5 weeks, 10 weeks, 36 weeks old). Repeated treatment increased the locomotor stimulatory response to nicotine in all age groups, but significantly faster in the two younger groups. In addition, nicotine decreased rearing activity in a way that sustained even after repeated administration in aged rats but not in the younger age groups. Electrophysiological field potential recordings revealed a decline in input/output function in the nucleus accumbens (NAc) of animals intermittently treated with nicotine starting at 5 weeks of age, but not in older animals. In drug naïve rats, acute administration of nicotine modulated both accumbal dopamine output and excitatory transmission in a partially age-dependent manner. Fifteen days of intermittent nicotine treatment did not alter the acute effect displayed by nicotine on dopamine levels or evoked field potentials. The data presented here show that both acute and repeated nicotine administration modulates accumbal neurotransmission and behavior in an age-contingent manner and that these age-dependent differences could reflect important neurobiological underpinnings associated with the increased vulnerability for nicotine-addiction in adolescents.
Collapse
Affiliation(s)
- L Adermark
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.
| | - J Morud
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - A Lotfi
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - S Jonsson
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - B Söderpalm
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden; Beroendekliniken, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - M Ericson
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|