1
|
Olaniran A, Garcia KT, Burke MAM, Lin H, Venniro M, Li X. Operant social seeking to a novel peer after social isolation is associated with activation of nucleus accumbens shell in rats. Psychopharmacology (Berl) 2025; 242:901-911. [PMID: 36449074 PMCID: PMC10227185 DOI: 10.1007/s00213-022-06280-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/08/2022] [Indexed: 12/03/2022]
Abstract
RATIONALE AND OBJECTIVE Deprivation of social interaction promotes social reward seeking in rodents, assessed primarily by the conditioned place preference procedure. Here, we used an operant social procedure in rats and examined the effect of the housing condition (pair-housing vs. single-housing) during or after social self-administration on social reward seeking. METHODS We first trained paired-housed or single-housed rats to gain access to an age- and sex-matched novel peer. On post-training day 1 (PTD1), we tested both groups for social seeking without the presence of the novel peer. Next, we divided each group into pair-housing or single-housing conditions and tested all four groups (pair-pair, pair-single, single-pair, and single-single) for social seeking on post-training day 12 (PTD12). Finally, we analyzed Fos expression in the striatum associated with social seeking on PTD12. RESULT Single-housed rats earned more social rewards during social self-administration than pair-housed rats. Social isolation during social self-administration also promoted social seeking on PTD1 and PTD12, regardless of their housing conditions after social self-administration training. Additionally, in pair-housed rats, social isolation during the post-training period led to a time-dependent increase of social seeking on PTD12 compared with PTD1. Finally, the Fos analyses revealed an increase of Fos expression in NAc shell of single-single rats after social seeking test on PTD12 compared with pair-pair rats. CONCLUSION Our data suggest that social isolation promotes operant social self-administration and social seeking. In addition, neuronal activation of NAc shell is associated with social seeking after social isolation.
Collapse
Affiliation(s)
- Adedayo Olaniran
- Department of Psychology, University of Maryland College Park, College Park, MD, 20742, USA
| | - Kristine T Garcia
- Department of Psychology, University of Maryland College Park, College Park, MD, 20742, USA
| | - Megan A M Burke
- Department of Psychology, University of Maryland College Park, College Park, MD, 20742, USA
| | - Hongyu Lin
- Department of Psychology, University of Maryland College Park, College Park, MD, 20742, USA
| | - Marco Venniro
- Department of Neurobiology and Anatomy, University of Maryland Baltimore, Baltimore, MD, 21201, USA.
| | - Xuan Li
- Department of Psychology, University of Maryland College Park, College Park, MD, 20742, USA.
| |
Collapse
|
2
|
Klibaite U, Li T, Aldarondo D, Akoad JF, Ölveczky BP, Dunn TW. Mapping the landscape of social behavior. Cell 2025; 188:2249-2266.e23. [PMID: 40043703 PMCID: PMC12010356 DOI: 10.1016/j.cell.2025.01.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/17/2025] [Accepted: 01/31/2025] [Indexed: 03/12/2025]
Abstract
Social interaction is integral to animal behavior. However, lacking tools to describe it in quantitative and rigorous ways has limited our understanding of its structure, underlying principles, and the neuropsychiatric disorders, like autism, that perturb it. Here, we present a technique for high-resolution 3D tracking of postural dynamics and social touch in freely interacting animals, solving the challenging subject occlusion and part-assignment problems using 3D geometric reasoning, graph neural networks, and semi-supervised learning. We collected over 110 million 3D pose samples in interacting rats and mice, including seven monogenic autism rat lines. Using a multi-scale embedding approach, we identified a rich landscape of stereotyped actions, interactions, synchrony, and body contacts. This high-resolution phenotyping revealed a spectrum of changes in autism models and in response to amphetamine not resolved by conventional measurements. Our framework and large library of interactions will facilitate studies of social behaviors and their neurobiological underpinnings.
Collapse
Affiliation(s)
- Ugne Klibaite
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA.
| | - Tianqing Li
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Diego Aldarondo
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Jumana F Akoad
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Bence P Ölveczky
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA.
| | - Timothy W Dunn
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
3
|
Kim M, Netser S, Wagner S, Harony-Nicolas H. Juvenile social isolation in Sprague Dawley rats does not have a lasting impact on social behavior in adulthood. Sci Rep 2025; 15:12981. [PMID: 40234569 PMCID: PMC12000401 DOI: 10.1038/s41598-025-95920-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 03/25/2025] [Indexed: 04/17/2025] Open
Abstract
Adolescent social interactions are essential for shaping adult behavior in humans. While rodent studies have highlighted the impact of social isolation on behavior, many extend isolation into adulthood, making it challenging to pinpoint the long-term consequences of juvenile isolation. To address these challenges, we examined the effects of social isolation using two independent protocols with male and female Sprague Dawley rats. In both prfotocols, rats were isolated during the juvenile stage; however, in one protocol, rats were re-socialized following isolation and tested in adulthood, while in the other, rats were tested immediately after isolation. This approach allowed us to determine whether social deficits emerged following adolescent isolation and if they could be reversed by re-socialization before adulthood. We found that juvenile isolation had no lasting effects but increased motivation for social interaction immediately after isolation. These findings underscore the need to account for housing conditions and isolation protocols when assessing the effects of social isolation.
Collapse
Affiliation(s)
- Michelle Kim
- Seaver Autism Center for Research and Treatment, New York, NY, USA
- Department of Neuroscience, New York, NY, USA
- Friedman Brain Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Shai Netser
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Shlomo Wagner
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Hala Harony-Nicolas
- Seaver Autism Center for Research and Treatment, New York, NY, USA.
- Department of Neuroscience, New York, NY, USA.
- Friedman Brain Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Psychiatry, New York, NY, USA.
- Mindich Child Health and Development Institute at the Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY, 10029, USA.
| |
Collapse
|
4
|
Nyberg H, Bogen IL, Nygaard E, Achterberg M, Andersen JM. Maternal exposure to buprenorphine, but not methadone, during pregnancy reduces social play behavior across two generations of offspring. Psychopharmacology (Berl) 2025; 242:663-680. [PMID: 39633163 PMCID: PMC11861248 DOI: 10.1007/s00213-024-06718-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 11/11/2024] [Indexed: 12/07/2024]
Abstract
RATIONALE The prevalence of newborns exposed to medications for opioid use disorder (MOUD), such as methadone or buprenorphine, during pregnancy is increasing. The opioid system plays a crucial role in regulating and shaping social behavior, and children prenatally exposed to opioids face an increased risk of developing behavioral problems. However, the impact of prenatal exposure to MOUD on offspring's social behavior during adolescence and adulthood, as well as potential intergenerational effects, remains largely unexplored. OBJECTIVES Our study employed a translationally relevant animal model to investigate how maternal (F0) exposure to MOUD during pregnancy affects social behavior in young and adult rats across the first (F1) and second (F2) generation of offspring. METHODS Female Sprague-Dawley rats were implanted with an osmotic minipump delivering methadone (10 mg/kg/day), buprenorphine (1 mg/kg/day), or sterile water, prior to mating with drug-naïve males. Adult F1 females were mated with treatment-matched F1 males to generate F2 offspring. We assessed social play behavior in juvenile offspring, and social interaction behavior in a three-chamber social interaction test in young adults of the F1 and F2 generations. RESULTS Maternal exposure to buprenorphine, but not methadone, during pregnancy reduced social play behavior in both F1 and F2 offspring, expressed by a reduced number of pounces and pins, which are the two most characteristic parameters of social play in rats. Adult social interactions were unaffected by prenatal MOUD exposure across both generations. CONCLUSIONS Maternal exposure to buprenorphine during pregnancy may have adverse effects on social play behavior across two generations of offspring.
Collapse
Affiliation(s)
- Henriette Nyberg
- Department of Forensic Sciences, Section of Forensic Research, Oslo University Hospital, PO Box 4950, Oslo, Norway.
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway.
| | - Inger Lise Bogen
- Department of Forensic Sciences, Section of Forensic Research, Oslo University Hospital, PO Box 4950, Oslo, Norway
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Egil Nygaard
- Department of Psychology, PROMENTA, Faculty of Social Sciences, University of Oslo, Oslo, Norway
| | - Marijke Achterberg
- Department of Population Health Sciences, Behavioral Neuroscience group, Faculty of Veterinary Medicine, University of Utrecht, Utrecht, The Netherlands
| | - Jannike Mørch Andersen
- Department of Forensic Sciences, Section of Forensic Research, Oslo University Hospital, PO Box 4950, Oslo, Norway
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
5
|
Witt KM, Harper DN, Ellenbroek BA. The role of the dopamine D1 receptor in anticipatory pleasure and social play. Neuropharmacology 2025; 264:110225. [PMID: 39566573 DOI: 10.1016/j.neuropharm.2024.110225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/22/2024]
Abstract
Social play is a highly rewarding activity seen across mammalian species that is vital for neurobehavioural development. Dysfunctions in social play are seen across psychiatric and neurodevelopmental disorders positing the importance of understanding the neurobiological mechanisms underlying social play. A multitude of neurotransmitter systems have been implicated in social play, with the present study focused on the role of dopamine, specifically the dopamine D1 receptor. Pharmacological manipulations of dopamine and the D1 receptor reveal mixed findings. Given the limited selectivity of pharmacological tools, we explored the role of the dopamine D1 receptor in social play using dopamine D1 mutant (DAD1-/-) rats which have a genetic reduction in functional D1 receptors. Aligning with the rewarding properties of social play, the present study also examined anticipatory behaviour for the opportunity to engage in social play. Contrary to our predictions, DAD1-/- mutants initiated and engaged in social play similarly to wildtype controls with only subtle differences in specific elements of play behaviour. Subjects did not differ in 50 kHz vocalisations emitted during play, suggesting similar levels of consummatory pleasure. Although subjects initiated and engaged in play similarly, as predicted, DAD1-/- mutants displayed deficits in anticipatory behaviour and pleasure for the opportunity to engage in social play. These findings support a prominent role of the D1 receptor in anticipatory behaviour, with further research needed to elucidate its role in social play.
Collapse
Affiliation(s)
- Kate M Witt
- Behavioural Neurogenetics Group, Victoria University of Wellington, PO Box 600, Wellington, New Zealand.
| | - David N Harper
- Behavioural Neurogenetics Group, Victoria University of Wellington, PO Box 600, Wellington, New Zealand
| | - Bart A Ellenbroek
- Behavioural Neurogenetics Group, Victoria University of Wellington, PO Box 600, Wellington, New Zealand
| |
Collapse
|
6
|
Orsucci IC, Becker KD, Ham JR, Lee JD, Bowden SM, Veenema AH. To Play or Not to Play? Effects of Playmate Familiarity and Social Isolation on Social Play Engagement in Three Laboratory Rat Strains. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.14.623692. [PMID: 39605718 PMCID: PMC11601367 DOI: 10.1101/2024.11.14.623692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Social play is a motivating and rewarding behavior displayed by juveniles of many mammalian species, including humans and rats. Social play is vital to the development of social skills. Autistic children show less social play engagement which may contribute to their impairments in social skills. There is limited knowledge about what external conditions may positively or negatively influence social play engagement in humans or other animals. Therefore, we determined how two common external conditions, playmate familiarity and social isolation, modulate social play levels and social play defense tactics in juveniles of three common laboratory rat strains: Long-Evans, Sprague-Dawley, and Wistar. Males and females were socially isolated for either 2h or 48h prior to social play testing and were then exposed to either a familiar (cage mate) or novel playmate, creating four testing conditions: 2h-Familiar, 48h-Familiar, 2h-Novel, and 48h-Novel. Both playmate familiarity and social isolation length influenced social play behavior levels and tactics in juvenile rats, but did so differently for each of the three rat strains. Long-Evans played most with a familiar playmate, irrespective of time isolated, Sprague-Dawley played most in the 48h-Familiar condition, and Wistar played the least in the 2h-Familiar condition, but Wistar played more with a novel playmate than Long-Evans and Sprague-Dawley. Analysis of social play tactics by the playmates in response to nape attacks by the experimental rats revealed strain differences with novel playmates. Here, Sprague-Dawley and Wistar defended more nape attacks than Long-Evans. Sprague-Dawley evaded these attacks, thereby shortening body contact. In contrast, Wistar turned to face their playmate attacker and showed more complete rotations, thereby extending body contact and wrestling longer. Role reversals, which increase social play reciprocity and reflect the quality of social play, were higher in Long-Evans and Sprague-Dawley with familiar playmates. Role reversals decreased for Sprague-Dawley but increased for Wistar after 48h isolation. The effects of playmate familiarity or social isolation length on social play levels and tactics were similar across sex for all three strains. In conclusion, we showed that two common external factors (playmate familiarity and social isolation length) that largely vary across social play studies have a major impact on the level and quality of social play in the three rat strains. Strain differences indicate higher level and quality of social play with familiar playmates in Long-Evans, with familiar playmates after short isolation in Sprague-Dawley, and with novel playmates after longer isolation for Wistar. Future research could determine whether strain differences in neuronal mechanisms underlie these condition-induced variations in social play engagement. Our findings are also informative in suggesting that external conditions like playmate familiarity and social isolation length could influence social play levels and social play quality in typical and atypical children.
Collapse
Affiliation(s)
- Isabella C. Orsucci
- Department of Psychology, Michigan State University, East Lansing, MI 48824, USA
| | - Kira D. Becker
- Department of Psychology, Michigan State University, East Lansing, MI 48824, USA
| | - Jackson R. Ham
- Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Jessica D.A. Lee
- Department of Psychology, Michigan State University, East Lansing, MI 48824, USA
| | - Samantha M. Bowden
- Department of Psychology, Michigan State University, East Lansing, MI 48824, USA
| | - Alexa H. Veenema
- Department of Psychology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
7
|
Klibaite U, Li T, Aldarondo D, Akoad JF, Ölveczky BP, Dunn TW. Mapping the landscape of social behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.27.615451. [PMID: 39386488 PMCID: PMC11463623 DOI: 10.1101/2024.09.27.615451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Social interaction is integral to animal behavior. However, we lack tools to describe it with quantitative rigor, limiting our understanding of its principles and neuropsychiatric disorders, like autism, that perturb it. Here, we present a technique for high-resolution 3D tracking of postural dynamics and social touch in freely interacting animals, solving the challenging subject occlusion and part assignment problems using 3D geometric reasoning, graph neural networks, and semi-supervised learning. We collected over 140 million 3D postures in interacting rodents, featuring new monogenic autism rat lines lacking reports of social behavioral phenotypes. Using a novel multi-scale embedding approach, we identified a rich landscape of stereotyped actions, interactions, synchrony, and body contact. This enhanced phenotyping revealed a spectrum of changes in autism models and in response to amphetamine that were inaccessible to conventional measurements. Our framework and large library of interactions will greatly facilitate studies of social behaviors and their neurobiological underpinnings.
Collapse
Affiliation(s)
- Ugne Klibaite
- Department of Organismic and Evolutionary Biology, Harvard University
| | - Tianqing Li
- Department of Biomedical Engineering, Duke University
| | | | - Jumana F. Akoad
- Department of Organismic and Evolutionary Biology, Harvard University
| | - Bence P. Ölveczky
- Department of Organismic and Evolutionary Biology, Harvard University
| | - Timothy W. Dunn
- Department of Biomedical Engineering, Duke University
- Program in Neuroscience, Harvard University
- Lead Contact
| |
Collapse
|
8
|
Kumar J, Naina Mohamed I, Mohamed R, Ugusman A, Muzaimi M, Mohamed W, Yahaya MF, Teoh SL, Kamaluddin MR, Abdul Hamid H, Mehat MZ, Shanmugam PK. Locomotion changes in methamphetamine and amphetamine withdrawal: a systematic review. Front Pharmacol 2024; 15:1428492. [PMID: 39086393 PMCID: PMC11288965 DOI: 10.3389/fphar.2024.1428492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/26/2024] [Indexed: 08/02/2024] Open
Abstract
Despite extensive preclinical research over the years, a significant gap remains in our understanding of the specific effects of methamphetamine (METH) and amphetamine (AMPH) withdrawal. Understanding these differences could be pivotal to unveiling the unique pathophysiology underlying each stimulant. This may facilitate the development of targeted and effective treatment strategies tailored to the specific characteristics of each substance. Following PRISMA guidelines, this systematic review was conducted to examine alterations in spontaneous locomotor activity, specifically horizontal activity, in animals experiencing withdrawal from extended and repeated administration of AMPH or METH. Original articles were retrieved from four electronic databases, supplemented by a review of the references cited in the published papers. A total of thirty-one full-length articles (n = 31) were incorporated in the analysis. The results indicated that six studies documented a significant increase in horizontal activity among animals, seven studies reported decreased locomotion, and eighteen studies (8 AMPH; 10 METH) reported no significant alterations in the animals' locomotor activity. Studies reporting heightened locomotion mainly employed mice undergoing withdrawal from METH, studies reporting diminished locomotion predominantly involved rats undergoing withdrawal from AMPH, and studies reporting no significant changes in horizontal activity employed both rats and mice (12 rats; 6 mice). Drug characteristics, routes of administration, animal models, dosage regimens, duration, and assessment timing seem to influence the observed outcomes. Despite more than 50% of papers enlisted in this review indicate no significant changes in the locomotion during the stimulant withdrawal, the unique reactions of animals to withdrawal from METH and AMPH reported by some underscore the need for a more nuanced understanding of stimulant withdrawal.
Collapse
Affiliation(s)
- Jaya Kumar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Isa Naina Mohamed
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Rashidi Mohamed
- Department of Family Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Azizah Ugusman
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Mustapha Muzaimi
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Wael Mohamed
- Basic Medical Science Department, Kulliyyah of Medicine, International Islamic University Malaysia, Kuantan, Malaysia
- Department of Clinical Pharmacology, Faculty of Medicine, Menoufia University, Shebin El Kom, Egypt
| | - Mohamad Fairuz Yahaya
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Malaysia
| | - Seong Lin Teoh
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Malaysia
| | - Mohammad Rahim Kamaluddin
- The Centre for Research in Psychology and Human Well-Being, Faculty of Social Sciences and Humanities, The National University of Malaysia, Bangi, Malaysia
| | - Hafizah Abdul Hamid
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Muhammad Zulfadli Mehat
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | | |
Collapse
|
9
|
Fattore L, Amchova P, Fadda P, Ruda-Kucerova J. Olfactory Bulbectomy Model of Depression Lowers Responding for Food in Male and Female Rats: The Modulating Role of Caloric Restriction and Response Requirement. Biomedicines 2023; 11:2481. [PMID: 37760922 PMCID: PMC10525806 DOI: 10.3390/biomedicines11092481] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/25/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Depression is a psychiatric disorder characterized by a marked decrease in reward sensitivity. By using the olfactory bulbectomy (OBX) model of depression, it was shown that OBX rats display enhanced drug-taking and seeking behaviors in a self-administration paradigm than sham-operated (SHAM) controls, and sex is an important regulating factor. To reveal potential strain effects, we compared the operant behavior of male and female Sprague-Dawley and Wistar OBX and SHAM rats trained to self-administer palatable food pellets. Results showed that Sprague-Dawley OBX rats of both sexes exhibited lower operant responding rates and food intake than SHAM controls. Food restriction increased responding in both OBX and SHAM groups. Female rats responded more than males, but the OBX lesion abolished this effect. In Wistar rats, bulbectomy lowered food self-administration only during the last training days. Food self-administration was not significantly affected in Wistar rats by sex. In summary, this study showed that bulbectomy significantly reduces operant responding and food intake in male and female Sprague-Dawley rats while inducing a mild reducing effect only in the Wistar strain. Strain-dependent effects were also observed in the modulating role of sex and food restriction on operant responding and palatable food intake.
Collapse
Affiliation(s)
- Liana Fattore
- CNR Institute of Neuroscience-Cagliari, National Research Council, 09042 Monserrato, CA, Italy; (L.F.); (P.F.)
| | - Petra Amchova
- Department of Pharmacology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic;
| | - Paola Fadda
- CNR Institute of Neuroscience-Cagliari, National Research Council, 09042 Monserrato, CA, Italy; (L.F.); (P.F.)
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, 09042 Monserrato, CA, Italy
| | - Jana Ruda-Kucerova
- Department of Pharmacology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic;
| |
Collapse
|
10
|
Harder HJ, Searles CT, Vogt ME, Murphy AZ. Perinatal opioid exposure leads to decreased social play in adolescent male and female rats: Potential role of oxytocin signaling in brain regions associated with social reward. Horm Behav 2023; 153:105384. [PMID: 37295323 PMCID: PMC10330883 DOI: 10.1016/j.yhbeh.2023.105384] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/26/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023]
Abstract
Over the last two decades, the number of infants exposed to opioids in utero has quadrupled in the United States, with some states reporting rates as high as 55 infants per 1000 births. Clinical studies report that children previously exposed to opioids during gestation show significant deficits in social behavior, including an inability to form friendships or other social relationships. To date, the neural mechanisms whereby developmental opioid exposure disrupts social behavior remain unknown. Using a novel paradigm of perinatal opioid administration, we tested the hypothesis that chronic opioid exposure during critical developmental periods would disrupt juvenile play. As oxytocin is a major regulator of sociability, the impact of perinatal morphine exposure on oxytocin peptide expression was also examined. Juvenile play was assessed in vehicle- or morphine-exposed male and female rats at P25, P35, and P45. Classical features of juvenile play were measured, including time spent engaged in social play, time not in contact, number of pins, and number of nape attacks. We report that morphine-exposed males and females spend less time engaged in play behavior than control males and females, with a corresponding increase in time spent alone. Morphine-exposed males and females also initiated fewer pins and nape attacks. Together, these data suggest that male and female rats exposed to morphine during critical developmental periods are less motivated to participate in social play, potentially due to alterations in oxytocin-mediated reward signaling.
Collapse
Affiliation(s)
- Hannah J Harder
- Neuroscience Institute, Georgia State University, 100 Piedmont Ave., Atlanta, GA 30303, United States of America
| | - Christopher T Searles
- Neuroscience Institute, Georgia State University, 100 Piedmont Ave., Atlanta, GA 30303, United States of America
| | - Meghan E Vogt
- Neuroscience Institute, Georgia State University, 100 Piedmont Ave., Atlanta, GA 30303, United States of America
| | - Anne Z Murphy
- Neuroscience Institute, Georgia State University, 100 Piedmont Ave., Atlanta, GA 30303, United States of America.
| |
Collapse
|
11
|
Cooper MA, Grizzell JA, Whitten CJ, Burghardt GM. Comparing the ontogeny, neurobiology, and function of social play in hamsters and rats. Neurosci Biobehav Rev 2023; 147:105102. [PMID: 36804399 PMCID: PMC10023430 DOI: 10.1016/j.neubiorev.2023.105102] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/26/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023]
Abstract
Syrian hamsters show complex social play behavior and provide a valuable animal model for delineating the neurobiological mechanisms and functions of social play. In this review, we compare social play behavior of hamsters and rats and underlying neurobiological mechanisms. Juvenile rats play by competing for opportunities to pin one another and attack their partner's neck. A broad set of cortical, limbic, and striatal regions regulate the display of social play in rats. In hamsters, social play is characterized by attacks to the head in early puberty, which gradually transitions to the flanks in late puberty. The transition from juvenile social play to adult hamster aggression corresponds with engagement of neural ensembles controlling aggression. Play deprivation in rats and hamsters alters dendritic morphology in mPFC neurons and impairs flexible, context-dependent behavior in adulthood, which suggests these animals may have converged on a similar function for social play. Overall, dissecting the neurobiology of social play in hamsters and rats can provide a valuable comparative approach for evaluating the function of social play.
Collapse
Affiliation(s)
- Matthew A Cooper
- Department of Psychology, University of Tennessee Knoxville, Knoxville, TN, USA.
| | - J Alex Grizzell
- Neuroscience and Behavioral Biology, Emory University, Atlanta, GA, USA; Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Conner J Whitten
- Department of Psychology, University of Tennessee Knoxville, Knoxville, TN, USA
| | - Gordon M Burghardt
- Department of Psychology, University of Tennessee Knoxville, Knoxville, TN, USA; Department of Ecology & Evolutionary Biology, University of Tennessee Knoxville, Knoxville, TN, USA
| |
Collapse
|
12
|
Harder HJ, Searles CT, Vogt ME, Murphy AZ. Perinatal Opioid Exposure Leads to Decreased Social Play in Adolescent Male and Female Rats: Potential Role of Oxytocin Signaling in Brain Regions Associated with Social Reward. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.10.532122. [PMID: 36945450 PMCID: PMC10028981 DOI: 10.1101/2023.03.10.532122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
Abstract
Over the last two decades, the number of infants exposed to opioids in utero has quadrupled in the United States, with some states reporting rates as high as 55 infants per 1000 births. Clinical studies report that children previously exposed to opioids during gestation show significant deficits in social behavior, including an inability to form friendships or other social relationships. To date, the neural mechanisms whereby developmental opioid exposure disrupts social behavior remain unknown. Using a novel paradigm of perinatal opioid administration, we tested the hypothesis that chronic opioid exposure during critical developmental periods would disrupt juvenile play. As oxytocin is a major regulator of sociability, the impact of perinatal morphine exposure on oxytocin peptide and receptor expression was also examined. Juvenile play was assessed in vehicle- or morphine-exposed male and female rats at P25, P35, and P45. Classical features of juvenile play were measured, including time spent engaged in social play, time not in contact, number of pins, and number of nape attacks. We report that morphine-exposed females spend less time engaged in play behavior than control males and females, with a corresponding increase in time spent alone. Morphine-exposed females also initiated fewer pins and nape attacks. Oxytocin receptor binding was reduced in morphine-exposed females in the nucleus accumbens, a brain region critical for social reward. Together, these data suggest that females exposed to morphine during critical developmental periods are less motivated to participate in social play, potentially due to alterations in oxytocin-mediated reward signaling.
Collapse
Affiliation(s)
- Hannah J Harder
- Neuroscience Institute, Georgia State University, 100 Piedmont Ave., Atlanta, GA, 30303
| | - Christopher T Searles
- Neuroscience Institute, Georgia State University, 100 Piedmont Ave., Atlanta, GA, 30303
| | - Meghan E Vogt
- Neuroscience Institute, Georgia State University, 100 Piedmont Ave., Atlanta, GA, 30303
| | - Anne Z Murphy
- Neuroscience Institute, Georgia State University, 100 Piedmont Ave., Atlanta, GA, 30303
| |
Collapse
|
13
|
Pellis SM, Pellis VC, Ham JR, Stark RA. Play fighting and the development of the social brain: The rat's tale. Neurosci Biobehav Rev 2023; 145:105037. [PMID: 36621585 DOI: 10.1016/j.neubiorev.2023.105037] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/29/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023]
Abstract
The benefits gained by young animals engaging in play fighting have been a subject of conjecture for over a hundred years. Progress in understanding the behavioral development of play fighting and the underlying neurobiology of laboratory rats has produced a coherent model that sheds light on this matter. Depriving rats of typical peer-peer play experience during the juvenile period leads to adults with socio-cognitive deficiencies and these are correlated with physiological and anatomical changes to the neurons of the prefrontal cortex, especially the medial prefrontal cortex. Detailed analysis of juvenile peer play has shown that using the abilities needed to ensure that play fighting is reciprocal is critical for attaining these benefits. Therefore, unlike that which was posited by many earlier hypotheses, play fighting does not train specific motor actions, but rather, improves a skill set that can be applied in many different social and non-social contexts. There are still gaps in the rat model that need to be understood, but the model is well-enough developed to provide a framework for broader comparative studies of mammals from diverse lineages that engage in play fighting.
Collapse
Affiliation(s)
- Sergio M Pellis
- Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta T1K3M4, Canada.
| | - Vivien C Pellis
- Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta T1K3M4, Canada
| | - Jackson R Ham
- Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta T1K3M4, Canada
| | - Rachel A Stark
- Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta T1K3M4, Canada
| |
Collapse
|
14
|
Henning JSL, Fernandez EJ, Nielsen T, Hazel S. Play and welfare in domestic cats: Current knowledge and future directions. Anim Welf 2022. [DOI: 10.7120/09627286.31.4.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Play and welfare have long been linked within animal research literature, with play considered as both a potential indicator and promoter of welfare. An indicator due to observations that play is exhibited most frequently in times when an animal's fitness is not under threat and when
immediate needs such as food, water and adequate space are met. And a promoter, because of observations that animals who play more also have better welfare outcomes. However, limited research has been undertaken to investigate this link, especially in companion animals. The domestic cat (
Felis catus) is one of the most popular companion animals in the world, yet little is known about the impact of play behaviour on cat welfare. We review the current literature on play and welfare in cats. This includes examining the role of cat play in mitigating negative welfare outcomes,
such as reducing problem behaviours, one of the leading reasons for guardian dissatisfaction and cat relinquishment to shelters. Play is also discussed as a potential tool to provide environmental enrichment and to improve cat-human relationships. Future areas for research are suggested. We
find that further research is needed that uses a multifaceted approach to assess how quantity, type and quality of play impact subsequent cat behaviour and welfare. Future research could also assess cat play needs and preferences as well as investigate the role of play in mitigating threats
to cat welfare such as reducing problem behaviour and improving human-cat relationships. If play is an indicator and promoter of welfare, studies into the impact of play may offer an accessible approach for monitoring and improving domestic cat welfare.
Collapse
Affiliation(s)
- JSL Henning
- University of Adelaide, School of Animal and Veterinary Sciences, South Australia, Australia
| | - EJ Fernandez
- University of Adelaide, School of Animal and Veterinary Sciences, South Australia, Australia
| | - T Nielsen
- University of Adelaide, School of Animal and Veterinary Sciences, South Australia, Australia
| | - S Hazel
- University of Adelaide, School of Animal and Veterinary Sciences, South Australia, Australia
| |
Collapse
|
15
|
Geva N, Hermoni N, Levy-Tzedek S. Interaction Matters: The Effect of Touching the Social Robot PARO on Pain and Stress is Stronger When Turned ON vs. OFF. Front Robot AI 2022; 9:926185. [PMID: 35875704 PMCID: PMC9305613 DOI: 10.3389/frobt.2022.926185] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
Social touch between humans, as well as between humans and animals, was previously found to reduce pain and stress. We previously reported that touching a social robot can also induce a reduction in pain ratings. However, it is unclear if the effect that touching a robot has on pain perception is due to its appearance and its pleasant touch, or due to its ability to socially interact with humans. In the current experiment, we aimed to assess the contribution of the interactive quality to pain perception. We assessed the effect of touching the social robot PARO on mild and strong pain ratings and on stress perception, on a total of 60 healthy young participants. The robot either interacted with participants (ON group, n = 30) or was turned off (OFF group, n = 30). Touching the robot induced a decrease in mild pain ratings (compared to baseline) only in the ON group while strong pain ratings decreased similarly in both the ON and the OFF groups. The decrease in mild pain ratings in the ON group was significantly greater in participants with a higher positive perception of the interaction with PARO. We conclude that part of the effect that touching the robot has on pain stems from its interactive features.
Collapse
Affiliation(s)
- Nirit Geva
- Recanati School for Community Health Professions, Department of Physical Therapy, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Netta Hermoni
- Department of Biomedical Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Shelly Levy-Tzedek
- Recanati School for Community Health Professions, Department of Physical Therapy, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, Freiburg, Germany
- *Correspondence: Shelly Levy-Tzedek,
| |
Collapse
|
16
|
Social anhedonia as a Disrupted-in-Schizophrenia 1-dependent phenotype. Sci Rep 2022; 12:10182. [PMID: 35715502 PMCID: PMC9205858 DOI: 10.1038/s41598-022-14102-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 06/01/2022] [Indexed: 11/09/2022] Open
Abstract
Deficits in social interaction or social cognition are key phenotypes in a variety of chronic mental diseases, yet, their modeling and molecular dissection are only in their infancy. The Disrupted-in-Schizophrenia 1 (DISC1) signaling pathway is considered to play a role in different psychiatric disorders such as schizophrenia, depression, and biopolar disorders. DISC1 is involved in regulating the dopaminergic neurotransmission in, among others, the mesolimbic reward system. A transgenic rat line tgDISC1 has been introduced as a model system to study behavioral phenotypes associated with abnormal DISC1 signaling pathways. Here, we evaluated the impact of impaired DISC1 signaling on social (social interaction) and non-social (sucrose) reward preferences in the tgDISC1 animal model. In a plus-maze setting, rats chose between the opportunity for social interaction with an unfamiliar juvenile conspecific (social reward) or drinking sweet solutions with variable sucrose concentrations (non-social reward). tgDISC1 rats differed from wild-type rats in their social, but not in their non-social reward preferences. Specifically, DISC1 rats showed a lower interest in interaction with the juvenile conspecific, but did not differ from wild-type rats in their preference for higher sucrose concentrations. These results suggest that disruptions of the DISC1 signaling pathway that is associated with altered dopamine transmission in the brain result in selective deficits in social motivation reminiscent of phenotypes seen in neuropsychiatric illness.
Collapse
|
17
|
Berz AC, Wöhr M, Schwarting RKW. Response Calls Evoked by Playback of Natural 50-kHz Ultrasonic Vocalizations in Rats. Front Behav Neurosci 2022; 15:812142. [PMID: 35095442 PMCID: PMC8797927 DOI: 10.3389/fnbeh.2021.812142] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/24/2021] [Indexed: 01/10/2023] Open
Abstract
Rats are highly social animals known to communicate with ultrasonic vocalizations (USV) of different frequencies. Calls around 50 kHz are thought to represent a positive affective state, whereas calls around 22 kHz are believed to serve as alarm or distress calls. During playback of natural 50-kHz USV, rats show a reliable and strong social approach response toward the sound source. While this response has been studied in great detail in numerous publications, little is known about the emission of USV in response to natural 50-kHz USV playback. To close this gap, we capitalized on three data sets previously obtained and analyzed USV evoked by natural 50-kHz USV playback in male juvenile rats. We compared different rat stocks, namely Wistar (WI) and Sprague-Dawley (SD) and investigated the pharmacological treatment with the dopaminergic D2 receptor antagonist haloperidol. These response calls were found to vary broadly inter-individually in numbers, mean peak frequencies, durations and frequency modulations. Despite the large variability, the results showed no major differences between experimental conditions regarding call likelihood or call parameters, representing a robust phenomenon. However, most response calls had clearly lower frequencies and were longer than typical 50-kHz calls, i.e., around 30 kHz and lasting generally around 0.3 s. These calls resemble aversive 22-kHz USV of adult rats but were of higher frequencies and shorter durations. Moreover, blockade of dopamine D2 receptors did not substantially affect the emission of response calls suggesting that they are not dependent on the D2 receptor function. Taken together, this study provides a detailed analysis of response calls toward playback of 50-kHz USV in juvenile WI and SD rats. This includes calls representing 50-kHz USV, but mostly calls with lower frequencies that are not clearly categorizable within the so far known two main groups of USV in adult rats. We discuss the possible functions of these response calls addressing their communicative functions like contact or appeasing calls, and whether they may reflect a state of frustration. In future studies, response calls might also serve as a new read-out in rat models for neuropsychiatric disorders, where acoustic communication is impaired, such as autism spectrum disorder.
Collapse
Affiliation(s)
- Annuska C. Berz
- Behavioral Neuroscience, Experimental and Biological Psychology, Faculty of Psychology, Philipps-University Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior, Philipps-University Marburg, Marburg, Germany
- *Correspondence: Annuska C. Berz,
| | - Markus Wöhr
- Behavioral Neuroscience, Experimental and Biological Psychology, Faculty of Psychology, Philipps-University Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior, Philipps-University Marburg, Marburg, Germany
- Research Unit Brain and Cognition, Laboratory of Biological Psychology, Social and Affective Neuroscience Research Group, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium
- Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Rainer K. W. Schwarting
- Behavioral Neuroscience, Experimental and Biological Psychology, Faculty of Psychology, Philipps-University Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior, Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
18
|
Román V, Kedves R, Kelemen K, Némethy Z, Sperlágh B, Lendvai B, Vizi ES. Contribution of analog signaling to neurotransmitter interactions and behavior: Role of transporter-mediated nonquantal dopamine release. Physiol Rep 2021; 9:e15088. [PMID: 34762352 PMCID: PMC8582292 DOI: 10.14814/phy2.15088] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/28/2021] [Accepted: 10/08/2021] [Indexed: 11/28/2022] Open
Abstract
Neuronal networks cause changes in behaviorally important information processing through the vesicular release of neurotransmitters governed by the rate and timing of action potentials (APs). Herein, we provide evidence that dopamine (DA), nonquantally released from the cytoplasm, may exert similar effects in vivo. In mouse slice preparations, (+/-)-3,4-methylenedioxy-methamphetamine (MDMA, or ecstasy) and β-phenylethylamine (β-PEA)-induced DA release in the striatum and nucleus accumbens (NAc), two regions of the brain involved in reward-driven and social behavior and inhibited the axonal stimulation-induced release of tritiated acetylcholine ([3 H]ACh) in the striatum. The DA transporter (DAT) inhibitor (GBR-12909) prevented MDMA and β-PEA from causing DA release. GBR-12909 could also restore some of the stimulated acetylcholine release reduced by MDMA or β-PEA in the striatum confirming the fundamental role of DAT. In addition, hypothermia could prevent the β-PEA-induced release in the striatum and in the NAc. Sulpiride, a D2 receptor antagonist, also prevented the inhibitory effects of MDMA or β-PEA on stimulated ACh release, suggesting they act indirectly via binding of DA. Reflecting the neurochemical interactions in brain slices at higher system level, MDMA altered the social behavior of rats by preferentially enhancing passive social behavior. Similar to the in vitro effects, GBR-12909 treatment reversed specific elements of the MDMA-induced changes in behavior, such as passive social behavior, while left others including social play unchanged. The changes in behavior by the high level of extracellular DA-- a significant amount originating from cytoplasmic release--suggest that in addition to digital computation through synapses, the brain also uses analog communication, such as DA signaling, to mediate some elements of complex behaviors, but in a much longer time scale.
Collapse
Affiliation(s)
- Viktor Román
- Pharmacology and Drug Safety ResearchGedeon Richter Plc.BudapestHungary
| | - Rita Kedves
- Pharmacology and Drug Safety ResearchGedeon Richter Plc.BudapestHungary
| | - Kristóf Kelemen
- Pharmacology and Drug Safety ResearchGedeon Richter Plc.BudapestHungary
| | - Zsolt Némethy
- Pharmacology and Drug Safety ResearchGedeon Richter Plc.BudapestHungary
| | | | - Balázs Lendvai
- Pharmacology and Drug Safety ResearchGedeon Richter Plc.BudapestHungary
| | - E. Sylvester Vizi
- Institute of Experimental MedicineBudapestHungary
- Department of Pharmacology and PharmacotherapySemmelweis UniversityBudapestHungary
| |
Collapse
|
19
|
Hughes EM, Calcagno P, Sanchez C, Smith K, Kelly JP, Finn DP, Roche M. Mu-opioid receptor agonism differentially alters social behaviour and immediate early gene expression in male adolescent rats prenatally exposed to valproic acid versus controls. Brain Res Bull 2021; 174:260-267. [PMID: 34197938 DOI: 10.1016/j.brainresbull.2021.06.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/29/2021] [Accepted: 06/25/2021] [Indexed: 01/18/2023]
Abstract
Mu-opioid receptors (MOPs) mediate and modulate social reward and social interaction. However, few studies have examined the functionality of this system in rodent models of social impairment. Deficits in social motivation and cognition are observed in rodents following pre-natal exposure to the anti-epileptic valproic acid (VPA), however it is not known whether MOP functionality is altered in these animals. The present study examined the effects of acute administration of the prototypical MOP agonist morphine (1 mg/kg) on social behavioural responding in the 3-chamber test and immediate early gene expression in adolescent rats (postnatal day 28-43) prenatally exposed to VPA vs saline-exposed controls. Pharmacokinetic analysis of morphine concentration, MOP binding and expression were also examined. The data revealed that sociability and social novelty preference in the 3-chamber test were reduced in rats prenatally exposed to VPA compared to saline-exposed control counterparts. Morphine reduced both sociability and social novelty preference behaviour in saline-, but not VPA-, exposed rats. Analysis of immediate early gene expression revealed that morphine reduced the expression of cfos in the prefrontal cortex of both saline- and VPA-exposed rats and reduced expression of cfos and junb in the hippocampus of VPA-exposed rats only. Pharmacokinetic analysis revealed similar concentrations of morphine in the plasma and brain of both saline- and VPA-exposed rats and similar thalamic MOP occupancy levels. Gene and protein expression of MOP in prefrontal cortex and hippocampus did not differ between saline and VPA-exposed rats. These data indicate differential effects of morphine on social responding and immediate early gene expression in the hippocampus of VPA-exposed rats compared with saline-exposed controls. This study provides support for altered MOP functionality in rats prenatally exposed to VPA, which may underlie the social deficits observed in the model.
Collapse
Affiliation(s)
- Edel M Hughes
- Physiology, School of Medicine, National University of Ireland, Galway, Ireland; Galway Neuroscience Centre, National University of Ireland, Galway, Ireland
| | - Patricia Calcagno
- Physiology, School of Medicine, National University of Ireland, Galway, Ireland; Pharmacology and Therapeutics, School of Medicine, National University of Ireland, Galway, Ireland
| | | | | | - John P Kelly
- Galway Neuroscience Centre, National University of Ireland, Galway, Ireland; Pharmacology and Therapeutics, School of Medicine, National University of Ireland, Galway, Ireland
| | - David P Finn
- Galway Neuroscience Centre, National University of Ireland, Galway, Ireland; Pharmacology and Therapeutics, School of Medicine, National University of Ireland, Galway, Ireland; Centre for Pain Research, National University of Ireland, Galway, Ireland
| | - Michelle Roche
- Physiology, School of Medicine, National University of Ireland, Galway, Ireland; Galway Neuroscience Centre, National University of Ireland, Galway, Ireland; Centre for Pain Research, National University of Ireland, Galway, Ireland.
| |
Collapse
|
20
|
Seidisarouei M, van Gurp S, Pranic NM, Calabus IN, van Wingerden M, Kalenscher T. Distinct Profiles of 50 kHz Vocalizations Differentiate Between Social Versus Non-social Reward Approach and Consumption. Front Behav Neurosci 2021; 15:693698. [PMID: 34234654 PMCID: PMC8255485 DOI: 10.3389/fnbeh.2021.693698] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 05/18/2021] [Indexed: 11/21/2022] Open
Abstract
Social animals tend to possess an elaborate vocal communication repertoire, and rats are no exception. Rats utilize ultrasonic vocalizations (USVs) to communicate information about a wide range of socially relevant cues, as well as information regarding the valence of the behavior and/or surrounding environment. Both quantitative and qualitative acoustic properties of these USVs are thought to communicate context-specific information to conspecifics. Rat USVs have been broadly categorized into 22 and 50 kHz call categories, which can be further classified into subtypes based on their sonographic features. Recent research indicates that the 50 kHz calls and their various subtype profiles may be related to the processing of social and non-social rewards. However, only a handful of studies have investigated USV elicitation in the context of both social and non-social rewards. Here, we employ a novel behavioral paradigm, the social-sucrose preference test, that allowed us to measure rats’ vocal responses to both non-social (i.e., 2, 5, and 10% sucrose) and social reward (interact with a Juvenile rat), presented concurrently. We analyzed adult male Long-Evans rats’ vocal responses toward social and non-social rewards, with a specific focus on 50 kHz calls and their 14 subtypes. We demonstrate that rats’ preference and their vocal responses toward a social reward were both influenced by the concentration of the non-social reward in the maze. In other words, rats showed a trade-off between time spent with non-social or social stimuli along with increasing concentrations of sucrose, and also, we found a clear difference in the emission of flat and frequency-modulated calls in the social and non-social reward zones. Furthermore, we report that the proportion of individual subtypes of 50 kHz calls, as well as the total USV counts, showed variation across different types of rewards as well. Our findings provide a thorough overview of rat vocal responses toward non-social and social rewards and are a clear depiction of the variability in the rat vocalization repertoire, establishing the role of call subtypes as key players driving context-specific vocal responses of rats.
Collapse
Affiliation(s)
- Mohammad Seidisarouei
- Social Rodent Lab, Institute of Experimental Psychology, Heinrich-Heine-University, Düsseldorf, Germany.,Comparative Psychology, Institute of Experimental Psychology, Heinrich-Heine-University, Düsseldorf, Germany
| | - Sander van Gurp
- Social Rodent Lab, Institute of Experimental Psychology, Heinrich-Heine-University, Düsseldorf, Germany
| | | | - Irina Noguer Calabus
- Comparative Psychology, Institute of Experimental Psychology, Heinrich-Heine-University, Düsseldorf, Germany
| | - Marijn van Wingerden
- Social Rodent Lab, Institute of Experimental Psychology, Heinrich-Heine-University, Düsseldorf, Germany.,Department of Cognitive Science and Artificial Intelligence, Tilburg School of Humanities and Digital Sciences, Tilburg University, Tilburg, Netherlands
| | - Tobias Kalenscher
- Comparative Psychology, Institute of Experimental Psychology, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
21
|
Wöhr M, Kisko TM, Schwarting RK. Social Behavior and Ultrasonic Vocalizations in a Genetic Rat Model Haploinsufficient for the Cross-Disorder Risk Gene Cacna1c. Brain Sci 2021; 11:brainsci11060724. [PMID: 34072335 PMCID: PMC8229447 DOI: 10.3390/brainsci11060724] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 01/27/2023] Open
Abstract
The top-ranked cross-disorder risk gene CACNA1C is strongly associated with multiple neuropsychiatric dysfunctions. In a recent series of studies, we applied a genomically informed approach and contributed extensively to the behavioral characterization of a genetic rat model haploinsufficient for the cross-disorder risk gene Cacna1c. Because deficits in processing social signals are associated with reduced social functioning as commonly seen in neuropsychiatric disorders, we focused on socio-affective communication through 22-kHz and 50-kHz ultrasonic vocalizations (USV). Specifically, we applied a reciprocal approach for studying socio-affective communication in sender and receiver by including rough-and-tumble play and playback of 22-kHz and 50-kHz USV. Here, we review the findings obtained in this recent series of studies and link them to the key features of 50-kHz USV emission during rough-and-tumble play and social approach behavior evoked by playback of 22-kHz and 50-kHz USV. We conclude that Cacna1c haploinsufficiency in rats leads to robust deficits in socio-affective communication through 22-kHz and 50-kHz USV and associated alterations in social behavior, such as rough-and-tumble play behavior.
Collapse
Affiliation(s)
- Markus Wöhr
- Social and Affective Neuroscience Research Group, Laboratory of Biological Psychology, Research Unit Brain and Cognition, Faculty of Psychology and Educational Sciences, KU Leuven, B-3000 Leuven, Belgium
- Leuven Brain Institute, KU Leuven, B-3000 Leuven, Belgium
- Faculty of Psychology, Experimental and Biological Psychology, Behavioral Neuroscience, Philipps-University of Marburg, D-35032 Marburg, Germany; (T.M.K.); (R.K.W.S.)
- Center for Mind, Brain, and Behavior, Philipps-University of Marburg, D-35032 Marburg, Germany
- Correspondence: ; Tel.: +32-16-19-45-57
| | - Theresa M. Kisko
- Faculty of Psychology, Experimental and Biological Psychology, Behavioral Neuroscience, Philipps-University of Marburg, D-35032 Marburg, Germany; (T.M.K.); (R.K.W.S.)
- Center for Mind, Brain, and Behavior, Philipps-University of Marburg, D-35032 Marburg, Germany
| | - Rainer K.W. Schwarting
- Faculty of Psychology, Experimental and Biological Psychology, Behavioral Neuroscience, Philipps-University of Marburg, D-35032 Marburg, Germany; (T.M.K.); (R.K.W.S.)
- Center for Mind, Brain, and Behavior, Philipps-University of Marburg, D-35032 Marburg, Germany
| |
Collapse
|
22
|
Berz A, Pasquini de Souza C, Wöhr M, Schwarting RKW. Limited generalizability, pharmacological modulation, and state-dependency of habituation towards pro-social 50-kHz calls in rats. iScience 2021; 24:102426. [PMID: 33997703 PMCID: PMC8102916 DOI: 10.1016/j.isci.2021.102426] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/23/2020] [Accepted: 04/09/2021] [Indexed: 12/20/2022] Open
Abstract
Communication constitutes a fundamental component of mammalian social behavior. Rats are highly social animals and emit 50-kHz ultrasonic vocalizations (USV), which function as social contact calls. Playback of 50-kHz USV leads to strong and immediate social approach responses in receiver rats, but this response is weak or even absent during repeated 50-kHz USV playback. Given the important role of 50-kHz USV in initiating social contact and coordinating social interactions, the occurrence of habituation is highly unexpected. It is not clear why a social signal characterized by significant incentive salience loses its power to change the behavior of the receiver so rapidly. Here, we show that the habituation phenomenon displayed by rats in response to repeated playback of 50-kHz USV (1) is characterized by limited generalizability because it is present in Wistar but not Sprague-Dawley rats, (2) can be overcome by amphetamine treatment, and (3) depends on the subject’s internal state. Rats display social approach in response to playback of pro-social 50-kHz calls Repeated playback leads to habituation with limited generalizability Habituation can be overcome by amphetamine treatment Habituation depends on the subject’s internal state
Collapse
Affiliation(s)
- Annuska Berz
- Behavioral Neuroscience, Experimental and Biological Psychology, Faculty of Psychology, Philipps-University Marburg, Gutenberg-Straße 18, 35032 Marburg, Germany.,Center for Mind, Brain and Behavior, Philipps-University Marburg, Hans-Meerwein-Straße 6, 35032 Marburg, Germany
| | - Camila Pasquini de Souza
- Department of Pharmacology, Biological Sciences Building, Federal University of Parana, 81530-000 Curitiba, PR, Brazil
| | - Markus Wöhr
- Behavioral Neuroscience, Experimental and Biological Psychology, Faculty of Psychology, Philipps-University Marburg, Gutenberg-Straße 18, 35032 Marburg, Germany.,Center for Mind, Brain and Behavior, Philipps-University Marburg, Hans-Meerwein-Straße 6, 35032 Marburg, Germany.,KU Leuven, Faculty of Psychology and Educational Sciences, Research Unit Brain and Cognition, Laboratory of Biological Psychology, Social and Affective Neuroscience Research Group, Tiensestraat 102, 3000 Leuven, Belgium.,KU Leuven, Leuven Brain Institute, 3000 Leuven, Belgium
| | - Rainer K W Schwarting
- Behavioral Neuroscience, Experimental and Biological Psychology, Faculty of Psychology, Philipps-University Marburg, Gutenberg-Straße 18, 35032 Marburg, Germany.,Center for Mind, Brain and Behavior, Philipps-University Marburg, Hans-Meerwein-Straße 6, 35032 Marburg, Germany
| |
Collapse
|
23
|
Wöhr M. Measuring mania-like elevated mood through amphetamine-induced 50-kHz ultrasonic vocalizations in rats. Br J Pharmacol 2021; 179:4201-4219. [PMID: 33830495 DOI: 10.1111/bph.15487] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/01/2021] [Accepted: 03/09/2021] [Indexed: 02/07/2023] Open
Abstract
Rats emit 50-kHz ultrasonic vocalizations (USV) in appetitive situations, reflecting a positive affective state. Particularly high rates of 50-kHz USV are elicited by the psychostimulant d-amphetamine. Exaggerated 50-kHz USV emission evoked by d-amphetamine is modulated by dopamine, noradrenaline and 5-hydroxytyrptamine receptor ligands and inhibited by the mood stabilizer lithium, the gold standard anti-manic drug for treating bipolar disorder. This indicates that exaggerated 50-kHz USV emission can serve as a reliable and valid measure for assessing mania-like elevated mood in rats with sufficient translational power for gaining a better understanding of relevant pathophysiological mechanisms and the identification of new therapeutic targets. The improved capacity to study the effects of anti-manic pharmacological interventions on a broader range of behaviours by including exaggerated 50-kHz USV emission as preclinical outcome measure complementary to locomotor hyperactivity will refine rodent models for mania.
Collapse
Affiliation(s)
- Markus Wöhr
- Faculty of Psychology and Educational Sciences, Research Unit Brain and Cognition, Laboratory of Biological Psychology, Social and Affective Neuroscience Research Group, KU Leuven, Leuven, Belgium.,Leuven Brain Institute, KU Leuven, Leuven, Belgium.,Faculty of Psychology, Experimental and Biological Psychology, Behavioral Neuroscience, Philipps-University of Marburg, Marburg, Germany.,Center for Mind, Brain and Behavior, Philipps-University of Marburg, Marburg, Germany
| |
Collapse
|
24
|
Lenell C, Broadfoot CK, Schaen-Heacock NE, Ciucci MR. Biological and Acoustic Sex Differences in Rat Ultrasonic Vocalization. Brain Sci 2021; 11:459. [PMID: 33916537 PMCID: PMC8067311 DOI: 10.3390/brainsci11040459] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/26/2021] [Accepted: 04/01/2021] [Indexed: 11/30/2022] Open
Abstract
The rat model is a useful tool for understanding peripheral and central mechanisms of laryngeal biology. Rats produce ultrasonic vocalizations (USVs) that have communicative intent and are altered by experimental conditions such as social environment, stress, diet, drugs, age, and neurological diseases, validating the rat model's utility for studying communication and related deficits. Sex differences are apparent in both the rat larynx and USV acoustics and are differentially affected by experimental conditions. Therefore, the purpose of this review paper is to highlight the known sex differences in rat USV production, acoustics, and laryngeal biology detailed in the literature across the lifespan.
Collapse
Affiliation(s)
- Charles Lenell
- Department of Surgery, University of Wisconsin Madison, Madison, WI 53792, USA; (C.L.); (C.K.B.); (N.E.S.-H.)
- Communicative Sciences and Disorders, New York University, New York, NY 10001, USA
| | - Courtney K. Broadfoot
- Department of Surgery, University of Wisconsin Madison, Madison, WI 53792, USA; (C.L.); (C.K.B.); (N.E.S.-H.)
- Department of Communication Sciences and Disorders, University of Wisconsin Madison, Madison, WI 53706, USA
| | - Nicole E. Schaen-Heacock
- Department of Surgery, University of Wisconsin Madison, Madison, WI 53792, USA; (C.L.); (C.K.B.); (N.E.S.-H.)
- Department of Communication Sciences and Disorders, University of Wisconsin Madison, Madison, WI 53706, USA
| | - Michelle R. Ciucci
- Department of Surgery, University of Wisconsin Madison, Madison, WI 53792, USA; (C.L.); (C.K.B.); (N.E.S.-H.)
- Department of Communication Sciences and Disorders, University of Wisconsin Madison, Madison, WI 53706, USA
| |
Collapse
|
25
|
Goldstein Ferber S, Trezza V, Weller A. Early life stress and development of the endocannabinoid system: A bidirectional process in programming future coping. Dev Psychobiol 2021; 63:143-152. [PMID: 31849055 DOI: 10.1002/dev.21944] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/31/2019] [Accepted: 11/21/2019] [Indexed: 01/06/2023]
Abstract
The endocannabinoid system (ECS) critically regulates stress responsivity and emotional behavior throughout development. It regulates anxiety-like behaviors in humans and animal models. In addition, it is sensitive to early life stress at the gene expression level in a sex-dependent and region-dependent manner, and these changes are already evident in the adolescent brain. The ECS modulates the neuroendocrine and behavioral effects of stress, and is also capable of being affected by stress exposure itself. Early life stress interferes with the development of corticolimbic circuits, a major location of endocannabinoid receptors, and increases vulnerability to adult psychopathology. Early life stress alters the ontogeny of the ECS, resulting in a sustained deficit in its function, particularly within the hippocampus. Specifically, exposure to early stress results in bidirectional changes in anandamide and 2-AG tissue levels within the amygdala and hippocampus and reduces hippocampal endocannabinoid function at puberty. CB1 receptor densities across all brain regions are downregulated later in life following exposure to early life stress. Manipulations affecting the glucocorticoid and the endocannabinoid systems persistently adjust individual emotional responses and synaptic plasticity. This review aims to show the bidirectional trajectories of endocannabinoid modulation of emotionality in reaction to early life stress.
Collapse
Affiliation(s)
- Sari Goldstein Ferber
- Psychology Department and Gonda Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
| | | | - Aron Weller
- Psychology Department and Gonda Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
26
|
Schiavi S, Melancia F, Carbone E, Buzzelli V, Manduca A, Peinado PJ, Zwergel C, Mai A, Campolongo P, Vanderschuren LJ, Trezza V. Detrimental effects of the 'bath salt' methylenedioxypyrovalerone on social play behavior in male rats. Neuropsychopharmacology 2020; 45:2012-2019. [PMID: 32506112 PMCID: PMC7547114 DOI: 10.1038/s41386-020-0729-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 05/29/2020] [Accepted: 06/01/2020] [Indexed: 12/30/2022]
Abstract
Methylenedioxypyrovalerone (MDPV) is the most popular synthetic cathinone found in products marketed as 'bath salts', widely abused among teenagers and young adults. Synthetic cathinones have pharmacological effects resembling those of psychostimulants, which are known to disrupt a variety of social behaviors. However, despite the popular use of MDPV by young people in social contexts, information about its effects on social behavior is scarce. To investigate the impact of MDPV on social behavior at young age, and the underlying neurobehavioral mechanisms, we focused on social play behavior. Social play behavior is the most characteristic social behavior displayed by young mammals and it is crucial for neurobehavioral development. Treatment with MDPV reduced social play behavior in both juvenile and young adult male rats, and its play-suppressant effect was subject to tolerance but not sensitization. As the behavioral effects of MDPV have been ascribed to dopaminergic and noradrenergic neurotransmission, and given the role of these neurotransmitters in social play, we investigated the involvement of dopamine and noradrenaline in the play-suppressant effects of MDPV. The effects of MDPV on social play were blocked by either the α2 adrenoceptor antagonist RX821002 or the dopamine receptor antagonist flupenthixol, given alone or together at sub-effective doses. In sum, MDPV selectively suppresses the most vigorous social behavior of developing rats through both noradrenergic and dopaminergic mechanisms. This study provides important preclinical evidence of the deleterious effects of MDPV on social behavior, and as such increases our understanding of the neurobehavioral effects of this popular cathinone.
Collapse
Affiliation(s)
- Sara Schiavi
- grid.8509.40000000121622106Department of Science, University “Roma Tre”, Rome, Italy
| | - Francesca Melancia
- grid.8509.40000000121622106Department of Science, University “Roma Tre”, Rome, Italy
| | - Emilia Carbone
- grid.8509.40000000121622106Department of Science, University “Roma Tre”, Rome, Italy
| | - Valeria Buzzelli
- grid.8509.40000000121622106Department of Science, University “Roma Tre”, Rome, Italy
| | - Antonia Manduca
- grid.8509.40000000121622106Department of Science, University “Roma Tre”, Rome, Italy
| | | | - Clemens Zwergel
- grid.7841.aDepartment of Drug Chemistry & Technologies, Sapienza University of Rome, Rome, Italy ,Department of precision medicine, “Luigi Vanvitelli”, Università della Campania, Naples, Italy
| | - Antonello Mai
- grid.7841.aDepartment of Drug Chemistry & Technologies, Sapienza University of Rome, Rome, Italy ,grid.7841.aIstituto Pasteur—Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Patrizia Campolongo
- grid.7841.aDepartment of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy ,grid.417778.a0000 0001 0692 3437Neurobiology of Behavior Laboratory, Santa Lucia Foundation, 00143 Rome, Italy
| | - Louk J.M.J. Vanderschuren
- grid.5477.10000000120346234Department of Animals in Science and Society, Division of Behavioural Neuroscience, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Viviana Trezza
- Department of Science, University "Roma Tre", Rome, Italy.
| |
Collapse
|
27
|
Stevenson SA, Piepenburg A, Spool JA, Angyal CS, Hahn AH, Zhao C, Riters LV. Endogenous opioids facilitate intrinsically-rewarded birdsong. Sci Rep 2020; 10:11083. [PMID: 32632172 PMCID: PMC7338348 DOI: 10.1038/s41598-020-67684-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/11/2020] [Indexed: 01/16/2023] Open
Abstract
Many songbirds sing in non-reproductive contexts while in flocks. Singing in such gregarious contexts is critical for maintaining and learning songs; however, song is not directed towards other individuals and has no obvious, immediate social consequences. Studies using conditioned place preference (CPP) tests of reward indicate that song production in gregarious contexts correlates positively with a bird’s intrinsic reward state and with opioid markers in the medial preoptic nucleus (mPOA). However, the causal involvement of opioids in gregarious song is unknown. Here we report that the selective mu opioid receptor (MOR) agonist fentanyl dose-dependently facilitates gregarious song and reduces stress/anxiety-related behavior in male and female European starlings. Furthermore, infusion of siRNA targeting MORs specifically in mPOA both suppresses gregarious song and disrupts the positive association between affective state and singing behavior, as revealed using CPP tests of song-associated reward. Results strongly implicate opioids in gregarious song and suggest that endogenous opioids in the mPOA may facilitate song by influencing an individual’s intrinsic reward state.
Collapse
Affiliation(s)
- Sharon A Stevenson
- Department of Integrative Biology, University of Wisconsin Madison, 428 Birge Hall, 430 Lincoln Drive, Madison, WI, 53706, USA
| | - Alice Piepenburg
- Department of Integrative Biology, University of Wisconsin Madison, 428 Birge Hall, 430 Lincoln Drive, Madison, WI, 53706, USA
| | - Jeremy A Spool
- Department of Integrative Biology, University of Wisconsin Madison, 428 Birge Hall, 430 Lincoln Drive, Madison, WI, 53706, USA.,Department of Psychological and Brain Sciences, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Caroline S Angyal
- Department of Integrative Biology, University of Wisconsin Madison, 428 Birge Hall, 430 Lincoln Drive, Madison, WI, 53706, USA
| | - Allison H Hahn
- Department of Integrative Biology, University of Wisconsin Madison, 428 Birge Hall, 430 Lincoln Drive, Madison, WI, 53706, USA.,Department of Psychology, St. Norbert College, De Pere, WI, 54115, USA
| | - Changjiu Zhao
- Department of Integrative Biology, University of Wisconsin Madison, 428 Birge Hall, 430 Lincoln Drive, Madison, WI, 53706, USA
| | - Lauren V Riters
- Department of Integrative Biology, University of Wisconsin Madison, 428 Birge Hall, 430 Lincoln Drive, Madison, WI, 53706, USA.
| |
Collapse
|
28
|
Siviy SM. How strain differences could help decipher the neurobiology of mammalian playfulness: What the less playful Fischer 344 rat can tell us about play. INTERNATIONAL JOURNAL OF PLAY 2020; 9:9-24. [PMID: 33717643 PMCID: PMC7954129 DOI: 10.1080/21594937.2020.1721024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 12/10/2019] [Indexed: 06/12/2023]
Abstract
Play is common among the young of many mammalian species. How that play is exhibited results from a dynamic interplay between genetic framework and experiential influences that, in turn, operate on hard-wired brain systems. One approach towards understanding how genes and environment interact with brain substrates to yield a particular playful phenotype is to take advantage of inbred strains of rats that come with a known genetic identity and assess the effects of varying early social experiences and targeted neurobiological interventions on rats of these strains. This paper primarily summarizes research utilizing the F344 inbred strain, a rat that consistently plays less than most other strains.
Collapse
Affiliation(s)
- Stephen M Siviy
- Dept. of Psychology, Gettysburg College, Gettysburg, PA 17325, USA
| |
Collapse
|
29
|
Ryan AM, Berman RF, Bauman MD. Bridging the species gap in translational research for neurodevelopmental disorders. Neurobiol Learn Mem 2019; 165:106950. [PMID: 30347236 PMCID: PMC6474835 DOI: 10.1016/j.nlm.2018.10.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 09/19/2018] [Accepted: 10/17/2018] [Indexed: 02/07/2023]
Abstract
The prevalence and societal impact of neurodevelopmental disorders (NDDs) continue to increase despite years of research in both patient populations and animal models. There remains an urgent need for translational efforts between clinical and preclinical research to (i) identify and evaluate putative causes of NDD, (ii) determine their underlying neurobiological mechanisms, (iii) develop and test novel therapeutic approaches, and (iv) translate basic research into safe and effective clinical practices. Given the complexity behind potential causes and behaviors affected by NDDs, modeling these uniquely human brain disorders in animals will require that we capitalize on unique advantages of a diverse array of species. While much NDD research has been conducted in more traditional animal models such as the mouse, ultimately, we may benefit from creating animal models with species that have a more sophisticated social behavior repertoire such as the rat (Rattus norvegicus) or species that more closely related to humans, such as the rhesus macaque (Macaca mulatta). Here, we highlight the rat and rhesus macaque models for their role in previous psychological research discoveries, current efforts to understand the neurobiology of NDDs, and focus on the convergence of behavior outcome measures that parallel features of human NDDs.
Collapse
Affiliation(s)
- A M Ryan
- The UC Davis MIND Institute, University of California, Davis, United States; Department of Psychiatry and Behavioral Sciences, University of California, Davis, United States; California National Primate Research Center, University of California, Davis, United States
| | - R F Berman
- The UC Davis MIND Institute, University of California, Davis, United States; Department of Neurological Surgery, University of California, Davis, United States
| | - M D Bauman
- The UC Davis MIND Institute, University of California, Davis, United States; Department of Psychiatry and Behavioral Sciences, University of California, Davis, United States; California National Primate Research Center, University of California, Davis, United States.
| |
Collapse
|
30
|
Siviy SM. Basal ganglia involvement in the playfulness of juvenile rats. J Neurosci Res 2019; 97:1521-1527. [PMID: 31165503 DOI: 10.1002/jnr.24475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/14/2019] [Accepted: 05/15/2019] [Indexed: 11/07/2022]
Abstract
Play is an important part of normal childhood development and can be readily studied in the laboratory rat in the form of rough-and-tumble play. Given the robust nature of rough-and-tumble play, it has often been assumed that the basal ganglia would have a prominent role in modulating this behavior. Recent work using c-fos expression as a metabolic marker for neural activity combined with temporary inactivation of relevant corticostriatal regions and pharmacological manipulations of opioid, cannabinoid, and dopamine systems has led to a better understanding of how basal ganglia circuitry may be involved in modulating social play in the juvenile rat. Studies using selective play deprivation have also provided insight into the consequences of playful experiences on basal ganglia function. Data reviewed in this paper support a role for the basal ganglia in social play and also suggest that corticostriatal functioning also benefits from playful activities.
Collapse
Affiliation(s)
- Stephen M Siviy
- Department of Psychology, Gettysburg College, Gettysburg, Pennsylvania
| |
Collapse
|
31
|
Mulvihill KG, Brudzynski SM. Individual behavioural predictors of amphetamine-induced emission of 50 kHz vocalization in rats. Behav Brain Res 2018; 350:80-86. [PMID: 29758247 DOI: 10.1016/j.bbr.2018.05.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/09/2018] [Accepted: 05/10/2018] [Indexed: 01/21/2023]
Abstract
Measurement of ultrasonic vocalizations (USVs) produced by adult rats represents a highly useful index of emotional arousal. The associations found between 50 kHz USV production and a variety of behavioural and pharmacological protocols increasingly suggests they serve as a marker of positive motivational states. This study used a powerful within-subjects design to investigate the relationships among individual differences in approach to a sweet-food reward, predisposition to emit 50 kHz USVs spontaneously, and 50 kHz USVs emission following acute systemic administration of amphetamine. Both approach motivation and predisposition to call were found to not correlate with each other but did predict 50 kHz USV response to acute amphetamine. These two behavioural phenotypes appear to represent dissociable predictors of acute amphetamine-induced emission of 50 kHz USVs in a non-sensitization paradigm. In contrast to that, a measure of sucrose preference was not found to predict 50 kHz USV emission following amphetamine. Acute amphetamine was also found to increase average sound frequency of emitted USVs and selectively increase the proportion of Trill subtype 50 kHz USVs. Together, these data demonstrate that acute amphetamine-induced 50 kHz USVs in the adult rat represent more than just a univariate motivational state and may represent the product of dissociable subsystems of emotional behavior.
Collapse
Affiliation(s)
- Kevin G Mulvihill
- Department of Psychology, Brock University, St. Catharines, ON, L2S 3A1, Canada.
| | - Stefan M Brudzynski
- Department of Psychology, Brock University, St. Catharines, ON, L2S 3A1, Canada
| |
Collapse
|
32
|
Schwarting RK. Ultrasonic vocalization in female rats: A comparison among three outbred stocks from pups to adults. Physiol Behav 2018; 196:59-66. [DOI: 10.1016/j.physbeh.2018.08.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 08/22/2018] [Accepted: 08/22/2018] [Indexed: 10/28/2022]
|
33
|
Opioid modulation of social play reward in juvenile rats. Neuropharmacology 2018; 159:107332. [PMID: 30218673 DOI: 10.1016/j.neuropharm.2018.09.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 09/04/2018] [Accepted: 09/07/2018] [Indexed: 02/06/2023]
Abstract
Social play behaviour is a vigorous form of social interaction abundant during the juvenile and adolescent phases of life in many mammalian species, including rats and humans. Social play is thought to be important for social, emotional and cognitive development. Being a rewarding activity, the expression of social play depends on its pleasurable and motivational properties. Since opioids have been widely implicated in reward processes, in the present study we investigated the role of opioids in the pleasurable and motivational properties of social play behaviour in rats. To assess social play motivation, an operant conditioning setup was used in which rats responded for social play under a progressive ratio schedule of reinforcement. Treatment with the opioid receptor agonist morphine reduced responding for social play at the highest dose tested, likely due to its rate-limiting effects. Morphine treatment increased the expression of social play behaviour during reinforced periods. The acquisition of social play-induced conditioned place preference (CPP) in a subeffective conditioning protocol was enhanced by treatment with morphine. Morphine treatment alone also induced CPP. In contrast, antagonizing opioid receptors with naloxone reduced responding for social play, the expression of social play and blocked the development of social play-induced CPP. These data implicate opioid neurotransmission in both the pleasurable and the motivational aspects of social play behaviour in rats. This article is part of the Special Issue entitled 'The neuropharmacology of social behavior: from bench to bedside'.
Collapse
|
34
|
A touch-scaffolded model of human prosociality. Neurosci Biobehav Rev 2018; 92:453-463. [DOI: 10.1016/j.neubiorev.2018.07.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 05/21/2018] [Accepted: 07/11/2018] [Indexed: 01/10/2023]
|
35
|
Melancia F, Trezza V. Modelling fragile X syndrome in the laboratory setting: A behavioral perspective. Behav Brain Res 2018; 350:149-163. [DOI: 10.1016/j.bbr.2018.04.042] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 04/24/2018] [Accepted: 04/24/2018] [Indexed: 12/13/2022]
|
36
|
Struntz KH, Siegel JA. Effects of methamphetamine exposure on anxiety-like behavior in the open field test, corticosterone, and hippocampal tyrosine hydroxylase in adolescent and adult mice. Behav Brain Res 2018; 348:211-218. [DOI: 10.1016/j.bbr.2018.04.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 04/09/2018] [Accepted: 04/14/2018] [Indexed: 12/28/2022]
|
37
|
Northcutt KV, Nwankwo VC. Sex differences in juvenile play behavior differ among rat strains. Dev Psychobiol 2018; 60:903-912. [DOI: 10.1002/dev.21760] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 02/06/2018] [Accepted: 06/01/2018] [Indexed: 11/08/2022]
|
38
|
Schwarting RK. Ultrasonic vocalization in juvenile and adult male rats: A comparison among stocks. Physiol Behav 2018; 191:1-11. [DOI: 10.1016/j.physbeh.2018.03.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 03/20/2018] [Accepted: 03/20/2018] [Indexed: 01/08/2023]
|
39
|
Simola N, Brudzynski SM. Rat 50-kHz ultrasonic vocalizations as a tool in studying neurochemical mechanisms that regulate positive emotional states. J Neurosci Methods 2018; 310:33-44. [PMID: 29959002 DOI: 10.1016/j.jneumeth.2018.06.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 06/22/2018] [Accepted: 06/25/2018] [Indexed: 11/19/2022]
Abstract
BACKGROUND Adolescent and adult rats emit 50-kHz ultrasonic vocalizations (USVs) to communicate the appetitive arousal and the presence of positive emotional states to conspecifics. NEW METHOD Based on its communicative function, emission of 50-kHz USVs is increasingly being evaluated in preclinical studies of affective behavior, motivation and social behavior. RESULTS Emission of 50-kHz USVs is initiated by the activation of dopamine receptors in the shell subregion of the nucleus accumbens. However, several lines of evidence show that non-dopaminergic receptors may influence the numbers of 50-kHz USVs that are emitted, as well as the acoustic parameters of calls. COMPARISON WITH EXISTING METHODS Emission of 50-kHz USVs is a non-invasive method that may be used to study reward and motivation without the need for extensive training and complex animal manipulations. Moreover, emission of 50-kHz USVs can be used alone or combined with other well-standardized behavioral paradigms (e.g., conditioned place preference, self-administration). CONCLUSIONS This review summarizes the current evidence concerning molecular mechanisms that regulate the emission of 50-kHz USVs. Moreover, the review discusses the usefulness of 50-kHz USVs as an experimental tool to investigate how different neurotransmitter systems regulate the manifestations of positive emotional states, and also use of this tool in preclinical modeling of psychiatric diseases.
Collapse
Affiliation(s)
- Nicola Simola
- Department of Biomedical Sciences, Neuropsychopharmacology Division, University of Cagliari, Italy; National Institute of Neuroscience (INN), University of Cagliari, Cagliari, Italy.
| | - Stefan M Brudzynski
- Department of Psychology, Brock University, St. Catharines, ON, L3 3A1 Canada
| |
Collapse
|
40
|
Burke CJ, Kisko TM, Euston DR, Pellis SM. Do juvenile rats use specific ultrasonic calls to coordinate their social play? Anim Behav 2018. [DOI: 10.1016/j.anbehav.2018.03.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
41
|
Schwarting RKW, Wöhr M. Isolation-induced ultrasonic vocalizations in pups: A comparison between Long-Evans, Sprague-Dawley, and Wistar rats. Dev Psychobiol 2018; 60:534-543. [DOI: 10.1002/dev.21738] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 02/22/2018] [Indexed: 02/03/2023]
Affiliation(s)
- Rainer K. W. Schwarting
- Behavioral Neuroscience, Experimental and Biological Psychology; Philipps-University of Marburg; Marburg Germany
- Marburg Center for Mind, Brain, and Behavior (MCMBB); Marburg Germany
| | - Markus Wöhr
- Behavioral Neuroscience, Experimental and Biological Psychology; Philipps-University of Marburg; Marburg Germany
- Marburg Center for Mind, Brain, and Behavior (MCMBB); Marburg Germany
| |
Collapse
|
42
|
Pellis SM, Burke CJ, Kisko TM, Euston DR. 50-kHz Vocalizations, Play and the Development of Social Competence. HANDBOOK OF ULTRASONIC VOCALIZATION - A WINDOW INTO THE EMOTIONAL BRAIN 2018. [DOI: 10.1016/b978-0-12-809600-0.00011-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
43
|
Ultrasonic communication in rats: appetitive 50-kHz ultrasonic vocalizations as social contact calls. Behav Ecol Sociobiol 2017. [DOI: 10.1007/s00265-017-2427-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
44
|
Riters LV, Spool JA, Merullo DP, Hahn AH. Song practice as a rewarding form of play in songbirds. Behav Processes 2017; 163:91-98. [PMID: 29031813 DOI: 10.1016/j.beproc.2017.10.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 09/15/2017] [Accepted: 10/05/2017] [Indexed: 12/14/2022]
Abstract
In adult songbirds, the primary functions of song are mate attraction and territory defense; yet, many songbirds sing at high rates as juveniles and outside these primary contexts as adults. Singing outside primary contexts is critical for song learning and maintenance, and ultimately necessary for breeding success. However, this type of singing (i.e., song "practice") occurs even in the absence of immediate or obvious extrinsic reinforcement; that is, it does not attract mates or repel competitors. Here we review studies that support the hypothesis that song practice is stimulated and maintained by intrinsic reward mechanisms (i.e., that it is associated with a positive affective state). Additionally, we propose that song practice can be considered a rewarding form of play behavior similar to forms of play observed in multiple young animals as they practice sequences of motor events that are used later in primary adult reproductive contexts. This review highlights research suggesting at least partially overlapping roles for neural reward systems in birdsong and mammalian play and evidence that steroid hormones modify these systems to shift animals from periods of intrinsically rewarded motor exploration (i.e., singing in birds and play in mammals) to the use of similar motor patterns in primary reproductive contexts.
Collapse
Affiliation(s)
- Lauren V Riters
- Department of Integrative Biology, University of Wisconsin-Madison, 428 Birge Hall, 430 Lincoln Drive, Madison, WI 53706, United States.
| | - Jeremy A Spool
- Department of Integrative Biology, University of Wisconsin-Madison, 428 Birge Hall, 430 Lincoln Drive, Madison, WI 53706, United States.
| | - Devin P Merullo
- Department of Integrative Biology, University of Wisconsin-Madison, 428 Birge Hall, 430 Lincoln Drive, Madison, WI 53706, United States.
| | - Allison H Hahn
- Department of Integrative Biology, University of Wisconsin-Madison, 428 Birge Hall, 430 Lincoln Drive, Madison, WI 53706, United States.
| |
Collapse
|
45
|
Engelhardt KA, Fuchs E, Schwarting RKW, Wöhr M. Effects of amphetamine on pro-social ultrasonic communication in juvenile rats: Implications for mania models. Eur Neuropsychopharmacol 2017; 27:261-273. [PMID: 28119084 DOI: 10.1016/j.euroneuro.2017.01.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 12/08/2016] [Accepted: 01/05/2017] [Indexed: 11/16/2022]
Abstract
Communication is the act of information transfer between sender and receiver. In rats, vocal communication can be studied through ultrasonic vocalizations (USV). 50-kHz USV occur in appetitive situations, most notably juvenile play, likely expressing the sender׳s positive affective state. Such appetitive 50-kHz USV serve important pro-social communicative functions and elicit social exploratory and approach behavior in the receiver. Emission of 50-kHz USV can be induced pharmacologically by the administration of psychostimulant drugs, such as amphetamine. However, it is unknown whether amphetamine affects the pro-social communicative function of 50-kHz USV in the receiver. We therefore assessed dose-response effects of amphetamine (0.0mg/kg, 0.5mg/kg, 1.0mg/kg, 2.5mg/kg, 5.0mg/kg) on pro-social ultrasonic communication on both, sender and receiver, in juvenile rats. We found an inverted U-shaped effect of amphetamine on 50-kHz USV emission, with 50-kHz USV levels being strongly enhanced by moderate doses, yet less prominent effects were seen following the highest dose. Likewise, amphetamine exerted inverted U-shaped effects on social exploratory and approach behavior induced by playback of appetitive 50-kHz USV. Social approach was enhanced by moderate amphetamine doses, but completely abolished following the highest dose. Amphetamine further dose-dependently promoted the emission of 50-kHz USV following playback of appetitive 50-kHz USV, indicating more vigorous attempts to establish social proximity. Our results support an important role of dopamine in closing a perception-and-action-loop through linking mechanisms relevant for detection and production of social vocalizations. Moreover, our approach possibly provides a new means to study mania-like aberrant social interaction and communication in animal models for bipolar disorder.
Collapse
Affiliation(s)
- K-Alexander Engelhardt
- Behavioral Neuroscience, Experimental and Biological Psychology Philipps-University of Marburg, Gutenbergstr. 18, D-35032 Marburg, Germany
| | - Eberhard Fuchs
- German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, D-37077 Göttingen, Germany
| | - Rainer K W Schwarting
- Behavioral Neuroscience, Experimental and Biological Psychology Philipps-University of Marburg, Gutenbergstr. 18, D-35032 Marburg, Germany
| | - Markus Wöhr
- Behavioral Neuroscience, Experimental and Biological Psychology Philipps-University of Marburg, Gutenbergstr. 18, D-35032 Marburg, Germany.
| |
Collapse
|
46
|
Peters SM, Tuffnell JA, Pinter IJ, van der Harst JE, Spruijt BM. Short- and long-term behavioral analysis of social interaction, ultrasonic vocalizations and social motivation in a chronic phencyclidine model. Behav Brain Res 2017; 325:34-43. [PMID: 28235589 DOI: 10.1016/j.bbr.2017.02.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 02/15/2017] [Accepted: 02/16/2017] [Indexed: 11/24/2022]
Abstract
Phencyclidine (PCP) has been suggested to induce symptoms of schizophrenia. However, animal models using PCP administration have produced ambiguous results thus far. It seems that acute effects are similar to symptoms of schizophrenia, however, it is not clear if PCP can induce permanent behavioral changes that reflect schizophrenic-like symptoms. Therefore, we assessed the ability of chronic PCP administration (3mg/kg, 14 days) to induce short or long lasting behavioral changes in rats. Social behavior, including ultrasonic vocalizations and motivation for social contact were investigated at different time points, up to 29-36 days, after cessation of PCP treatment. During a social separation test, performed at 5 and 36 days, PCP treated rats spent less time near the divider that separates them from their familiar cage mate compared with saline (SAL) treated rats. Further, at short term, PCP was able to induce a decrease in social behavior. In contrast, at long-term, PCP treated animals spent more time in contact when exposed to an unfamiliar partner as compared to SAL treated rats. But, this difference was not observed when exposed to a familiar partner. We did not find any difference in ultrasonic vocalizations at all time points. The results of our study indicate that PCP is unable to induce overt long term deficits in social interaction behavior. Rather, it seems that PCP diminishes motivation for social contact. The long-term consequences of chronic PCP administration on social behavior in rodent models remain complex, and future studies addressing this are still needed.
Collapse
Affiliation(s)
- Suzanne M Peters
- Faculty of Science, Utrecht University, Padualaan 8, NL-3584 CH Utrecht, The Netherlands; Delta Phenomics B.V., Nistelrooisebaan 3, NL-5374 RE Schaijk, The Netherlands.
| | - Joe A Tuffnell
- Faculty of Science, Utrecht University, Padualaan 8, NL-3584 CH Utrecht, The Netherlands
| | - Ilona J Pinter
- Faculty of Science, Utrecht University, Padualaan 8, NL-3584 CH Utrecht, The Netherlands; Delta Phenomics B.V., Nistelrooisebaan 3, NL-5374 RE Schaijk, The Netherlands
| | - Johanneke E van der Harst
- Faculty of Science, Utrecht University, Padualaan 8, NL-3584 CH Utrecht, The Netherlands; Delta Phenomics B.V., Nistelrooisebaan 3, NL-5374 RE Schaijk, The Netherlands
| | - Berry M Spruijt
- Faculty of Science, Utrecht University, Padualaan 8, NL-3584 CH Utrecht, The Netherlands.
| |
Collapse
|
47
|
Nummenmaa L, Tuominen L, Dunbar R, Hirvonen J, Manninen S, Arponen E, Machin A, Hari R, Jääskeläinen IP, Sams M. Social touch modulates endogenous μ-opioid system activity in humans. Neuroimage 2016; 138:242-247. [DOI: 10.1016/j.neuroimage.2016.05.063] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 04/06/2016] [Accepted: 05/25/2016] [Indexed: 10/21/2022] Open
|
48
|
Vanderschuren LJMJ, Achterberg EJM, Trezza V. The neurobiology of social play and its rewarding value in rats. Neurosci Biobehav Rev 2016; 70:86-105. [PMID: 27587003 DOI: 10.1016/j.neubiorev.2016.07.025] [Citation(s) in RCA: 216] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 07/18/2016] [Accepted: 07/21/2016] [Indexed: 02/07/2023]
Abstract
In the young of many mammalian species, including humans, a vigorous and highly rewarding social activity is abundantly expressed, known as social play behaviour. Social play is thought to be important for the development of social, cognitive and emotional processes and their neural underpinnings, and it is disrupted in pediatric psychiatric disorders. Here, we summarize recent progress in our understanding of the brain mechanisms of social play behaviour, with a focus on its rewarding properties. Opioid, endocannabinoid, dopamine and noradrenaline systems play a prominent role in the modulation of social play. Of these, dopamine is particularly important for the motivational properties of social play. The nucleus accumbens has been identified as a key site for opioid and dopamine modulation of social play. Endocannabinoid influences on social play rely on the basolateral amygdala, whereas noradrenaline modulates social play through the basolateral amygdala, habenula and prefrontal cortex. In sum, social play behaviour is the result of coordinated activity in a network of corticolimbic structures, and its monoamine, opioid and endocannabinoid innervation.
Collapse
Affiliation(s)
- Louk J M J Vanderschuren
- Department of Animals in Science and Society, Division of Behavioural Neuroscience, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
| | - E J Marijke Achterberg
- Department of Animals in Science and Society, Division of Behavioural Neuroscience, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Viviana Trezza
- Department of Science, Section of Biomedical Sciences and Technologies, University "Roma Tre", Rome, Italy
| |
Collapse
|
49
|
Rippberger H, van Gaalen MM, Schwarting RKW, Wohr M. Environmental and Pharmacological Modulation of Amphetamine- Induced 50-kHz Ultrasonic Vocalizations in Rats. Curr Neuropharmacol 2016; 13:220-32. [PMID: 26411764 PMCID: PMC4598433 DOI: 10.2174/1570159x1302150525124408] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Rats emit high-frequency 50-kHz ultrasonic vocalizations (USV) in appetitive situations like social interactions. Drugs of abuse are probably the most potent non-social elicitors of 50-kHz USV, possibly reflecting their euphorigenic properties. Psychostimulants induce the strongest elevation in 50-kHz USV emission, particularly amphetamine (AMPH), either when applied systemically or locally into the nucleus accumbens (Nacc). Emission of AMPH-induced 50-kHz USV depends on test context, such as the presence of conspecifics, and can be manipulated pharmacologically by targeting major neurotransmitter systems, including dopamine (DA), noradrenaline (NA), and serotonin (5-HT), but also protein kinase C (PKC) signaling. Several D1 and D2 receptor antagonists, as well as typical and atypical antipsychotics block the AMPH-induced elevation in 50-kHz USV. Inhibiting D1 and D2 receptors in the Nacc abolishes AMPH-induced 50-kHz USV, indicating a key role for this brain area. NA neurotransmission also regulates AMPH-induced 50-kHz USV emission given that α1 receptor antagonists and α2 receptor agonists exert attenuating effects. Supporting the involvement of the 5-HT system, AMPH-induced 50-kHz USV are attenuated by 5-HT2C receptor activation, whereas 5-HT2C receptor antagonism leads to the opposite effect. Finally, treatment with lithium, tamoxifen, and myricitrin was all found to result in a complete abolishment of the AMPH-induced increase in 50-kHz USV, suggesting the involvement of PKC signaling. Neurotransmitter systems involved in AMPH-induced 50-kHz USV emission only partially overlap with other AMPH-induced behaviors like hyperlocomotion. The validity of AMPH-induced 50-kHz USV as a preclinical model for neuropsychiatric disorders is discussed, particularly with relevance to altered drive and mood seen in bipolar disorder.
Collapse
Affiliation(s)
| | | | | | - Markus Wohr
- Behavioral Neuroscience, Experimental and Biological Psychology, Philipps-University of Marburg, Gutenbergstr. 18, 35032 Marburg, Germany.
| |
Collapse
|
50
|
Barker DJ, Simmons SJ, West MO. Ultrasonic Vocalizations as a Measure of Affect in Preclinical Models of Drug Abuse: A Review of Current Findings. Curr Neuropharmacol 2016; 13:193-210. [PMID: 26411762 PMCID: PMC4598431 DOI: 10.2174/1570159x13999150318113642] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The present review describes ways in which ultrasonic vocalizations (USVs) have been used in studies of substance abuse. Accordingly, studies are reviewed which demonstrate roles for affective processing in response to the presentation of drug-related cues, experimenter- and self-administered drug, drug withdrawal, and during tests of relapse/reinstatement. The review focuses on data collected from studies using cocaine and amphetamine, where a large body of evidence has been collected. Data suggest that USVs capture animals’ initial positive reactions to psychostimulant administration and are capable of identifying individual differences in affective responding. Moreover, USVs have been used to demonstrate that positive affect becomes sensitized to psychostimulants over acute exposure before eventually exhibiting signs of tolerance. In the drug-dependent animal, a mixture of USVs suggesting positive and negative affect is observed, illustrating mixed responses to psychostimulants. This mixture is predominantly characterized by an initial bout of positive affect followed by an opponent negative emotional state, mirroring affective responses observed in human addicts. During drug withdrawal, USVs demonstrate the presence of negative affective withdrawal symptoms. Finally, it has been shown that drug-paired cues produce a learned, positive anticipatory response during training, and that presentation of drug-paired cues following abstinence produces both positive affect and reinstatement behavior. Thus, USVs are a useful tool for obtaining an objective measurement of affective states in animal models of substance abuse and can increase the information extracted from drug administration studies. USVs enable detection of subtle differences in a behavioral response that might otherwise be missed using traditional measures.
Collapse
Affiliation(s)
- David J Barker
- National Institute on Drug Abuse, Neuronal Networks Section, 251 Bayview Boulevard, Baltimore, MD 21224.
| | | | | |
Collapse
|