1
|
Massaccesi C, Korb S, Götzendorfer S, Chiappini E, Willeit M, Lundström JN, Windischberger C, Eisenegger C, Silani G. Effects of dopamine and opioid receptor antagonism on the neural processing of social and nonsocial rewards. Hum Brain Mapp 2024; 45:e26645. [PMID: 38445523 PMCID: PMC10915723 DOI: 10.1002/hbm.26645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 02/01/2024] [Accepted: 02/19/2024] [Indexed: 03/07/2024] Open
Abstract
Rewards are a broad category of stimuli inducing approach behavior to aid survival. Extensive evidence from animal research has shown that wanting (the motivation to pursue a reward) and liking (the pleasure associated with its consumption) are mostly regulated by dopaminergic and opioidergic activity in dedicated brain areas. However, less is known about the neuroanatomy of dopaminergic and opioidergic regulation of reward processing in humans, especially when considering different types of rewards (i.e., social and nonsocial). To fill this gap of knowledge, we combined dopaminergic and opioidergic antagonism (via amisulpride and naltrexone administration) with functional neuroimaging to investigate the neurochemical and neuroanatomical bases of wanting and liking of matched nonsocial (food) and social (interpersonal touch) rewards, using a randomized, between-subject, placebo-controlled, double-blind design. While no drug effect was observed at the behavioral level, brain activity was modulated by the administered compounds. In particular, opioid antagonism, compared to placebo, reduced activity in the medial orbitofrontal cortex during consumption of the most valued social and nonsocial rewards. Dopamine antagonism, however, had no clear effects on brain activity in response to reward anticipation. These findings provide insights into the neurobiology of human reward processing and suggest a similar opioidergic regulation of the neural responses to social and nonsocial reward consumption.
Collapse
Affiliation(s)
- Claudia Massaccesi
- Department of Clinical and Health PsychologyUniversity of ViennaViennaAustria
- Department of Cognition, Emotion and Methods in PsychologyUniversity of ViennaViennaAustria
| | - Sebastian Korb
- Department of Cognition, Emotion and Methods in PsychologyUniversity of ViennaViennaAustria
- Department of PsychologyUniversity of EssexColchesterUK
| | | | - Emilio Chiappini
- Department of Clinical and Health PsychologyUniversity of ViennaViennaAustria
| | - Matthaeus Willeit
- Department of Psychiatry and PsychotherapyMedical University of ViennaViennaAustria
| | | | - Christian Windischberger
- MR Center of Excellence, Center for Medical Physics and Biomedical EngineeringMedical University of ViennaViennaAustria
| | - Christoph Eisenegger
- Department of Cognition, Emotion and Methods in PsychologyUniversity of ViennaViennaAustria
| | - Giorgia Silani
- Department of Clinical and Health PsychologyUniversity of ViennaViennaAustria
| |
Collapse
|
2
|
Mas-Herrero E, Ferreri L, Cardona G, Zatorre RJ, Pla-Juncà F, Antonijoan RM, Riba J, Valle M, Rodriguez-Fornells A. The role of opioid transmission in music-induced pleasure. Ann N Y Acad Sci 2023; 1520:105-114. [PMID: 36514207 DOI: 10.1111/nyas.14946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Studies conducted in rodents indicate a crucial role of the opioid circuit in mediating objective hedonic reactions to primary rewards. However, it remains unclear whether opioid transmission is also essential to experience pleasure with more abstract rewards, such as music. We addressed this question using a double-blind within-subject pharmacological design in which opioid levels were up- and downregulated by administering an opioid agonist (oxycodone) and antagonist (naltrexone), respectively, before healthy participants (n = 21) listened to music. Participants also performed a monetary incentive delay (MID) task to control for the effectiveness of the treatment and the specificity of the effects. Our results revealed that the pharmacological intervention did not modulate subjective reports of pleasure, nor the occurrence of chills. On the contrary, psychophysiological (objective) measures of emotional arousal, such as skin conductance responses (SCRs), were bidirectionally modulated in both the music and MID tasks. This modulation specifically occurred during reward consumption, with greater pleasure-related SCR following oxycodone than naltrexone. These findings indicate that opioid transmission does not modulate subjective evaluations but rather affects objective reward-related psychophysiological responses. These findings raise new caveats about the role of the opioidergic system in the modulation of pleasure for more abstract or cognitive forms of rewarding experiences, such as music.
Collapse
Affiliation(s)
- Ernest Mas-Herrero
- Department of Cognition, Development and Educational Psychology, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Cognition and Brain Plasticity Unit, Bellvitge Biomedical Research Institute [IDIBELL], L'Hospitalet de Llobregat, Barcelona, Spain
| | - Laura Ferreri
- Department of Brain & Behavioural Sciences, University of Pavia, Pavia, Italy
- Laboratoire d'Etude des Mécanismes Cognitifs, Université Lumière Lyon 2, Lyon, France
| | - Gemma Cardona
- Department of Cognition, Development and Educational Psychology, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Cognition and Brain Plasticity Unit, Bellvitge Biomedical Research Institute [IDIBELL], L'Hospitalet de Llobregat, Barcelona, Spain
| | - Robert J Zatorre
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
- International Laboratory for Brain, Music and Sound Research, Montreal, Quebec, Canada
| | - Francesc Pla-Juncà
- Departament de Farmacologia i Terapèutica, Universitat Autònoma de Barcelona, Barcelona, Spain
- Pharmacokinetic/Pharmacodynamic Modeling and Simulation, Institut d'Investigació Biomèdica Sant Pau, Barcelona, Spain
| | - Rosa María Antonijoan
- Clinical Pharmacology Service, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Drug Research Center, Institut d'Investigació Biomèdica Sant Pau, IIB-Sant Pau, Barcelona, Spain
| | - Jordi Riba
- Department of Neuropsychology and Psychopharmacology, Maastricht University, Maastricht, The Netherlands
| | - Marta Valle
- Departament de Farmacologia i Terapèutica, Universitat Autònoma de Barcelona, Barcelona, Spain
- Pharmacokinetic/Pharmacodynamic Modeling and Simulation, Institut d'Investigació Biomèdica Sant Pau, Barcelona, Spain
| | - Antoni Rodriguez-Fornells
- Department of Cognition, Development and Educational Psychology, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Cognition and Brain Plasticity Unit, Bellvitge Biomedical Research Institute [IDIBELL], L'Hospitalet de Llobregat, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| |
Collapse
|
3
|
Zapparoli L, Devoto F, Giannini G, Zonca S, Gallo F, Paulesu E. Neural structural abnormalities behind altered brain activation in obesity: Evidence from meta-analyses of brain activation and morphometric data. Neuroimage Clin 2022; 36:103179. [PMID: 36088842 PMCID: PMC9474923 DOI: 10.1016/j.nicl.2022.103179] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/27/2022] [Accepted: 08/30/2022] [Indexed: 12/14/2022]
Abstract
Obesity represents a risk factor for disability with a major bearing on life expectancy. Neuroimaging techniques are contributing to clarify its neurobiological underpinnings. Here, we explored whether structural brain abnormalities might accompany altered brain activations in obesity. We combined and compared data from brain activation studies for food stimuli and the data reported in structural voxel-based morphometry studies. We found that obese individuals have reduced grey matter density and functional activations in the thalamus and midbrain. A functional connectivity analysis based on these two clusters and its quantitative decoding showed that these regions are part of the reward system functional brain network. Moreover, we found specific grey matter hypo-densities in prefrontal cortex for the obese subjects, regions involved in controlled behaviour. These results support theories of obesity that point to reduced bottom-up reward processes (i.e., the Reward Deficit Theory), but also top-down theories postulating a deficit in cognitive control (i.e., the Inhibitory Control Deficit Theory). The same results also warrant a more systematic exploration of obesity whereby the reward of food and the intentional control over consummatory behaviour is manipulated.
Collapse
Affiliation(s)
- Laura Zapparoli
- Psychology Department and NeuroMi – Milan Centre for Neuroscience, University of Milano-Bicocca, Milan, Italy,IRCCS Orthopedic Institute Galeazzi, Milan, Italy,Corresponding authors.
| | - Francantonio Devoto
- Psychology Department and NeuroMi – Milan Centre for Neuroscience, University of Milano-Bicocca, Milan, Italy
| | - Gianluigi Giannini
- Psychology Department and NeuroMi – Milan Centre for Neuroscience, University of Milano-Bicocca, Milan, Italy
| | - Sara Zonca
- Psychology Department and NeuroMi – Milan Centre for Neuroscience, University of Milano-Bicocca, Milan, Italy
| | - Francesca Gallo
- Psychology Department and NeuroMi – Milan Centre for Neuroscience, University of Milano-Bicocca, Milan, Italy
| | - Eraldo Paulesu
- Psychology Department and NeuroMi – Milan Centre for Neuroscience, University of Milano-Bicocca, Milan, Italy,IRCCS Orthopedic Institute Galeazzi, Milan, Italy
| |
Collapse
|
4
|
Schneider E, Dourish CT, Higgs S. Utility of an experimental medicine model to evaluate efficacy, side-effects and mechanism of action of novel treatments for obesity and binge-eating disorder. Appetite 2022; 176:106087. [PMID: 35588993 DOI: 10.1016/j.appet.2022.106087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/22/2022] [Accepted: 05/12/2022] [Indexed: 11/02/2022]
Abstract
Obesity and Binge Eating Disorder (BED) are prevalent conditions that are associated with increased risk of morbidity and mortality. There is evidence that the use of pharmacotherapy alongside behavioural treatments can improve quality of life and reduce disease risk for patients with these disorders. However, there are few approved drug therapies for obesity, and these are limited by poor efficacy and/or side effects and only one drug has been approved for the treatment of BED. There is considerable potential to use experimental medicine models to identify new drug treatments for obesity and BED, with greater efficacy and an improved side effect profile, at an early stage of development. Here, we present a model developed in our laboratory that incorporates both behavioural and neuroimaging measures which can be used to facilitate drug development for obesity and BED. The results from validation studies conducted to date using our model suggest that it is sensitive to the effects of agents with behavioural, neurophysiological and neuropharmacological mechanisms of action known to be associated with weight loss and reductions in binge eating. Future studies using the model will be valuable to evaluate the potential efficacy and side-effects of new candidate drugs at an early stage in the development pipeline for both obesity and BED.
Collapse
Affiliation(s)
- Elizabeth Schneider
- School of Psychology, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom.
| | - Colin T Dourish
- P1vital Ltd, Howbery Park, Wallingford, OX10 8BA, United Kingdom; P1vital Products Ltd, Howbery Park, Wallingford, OX10 8BA, United Kingdom
| | - Suzanne Higgs
- School of Psychology, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| |
Collapse
|
5
|
Yeung AWK. Differences in Brain Responses to Food or Tastants Delivered with and Without Swallowing: a Meta-analysis on Functional Magnetic Resonance Imaging (fMRI) Studies. CHEMOSENS PERCEPT 2022. [DOI: 10.1007/s12078-022-09299-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
6
|
Campos A, Port JD, Acosta A. Integrative Hedonic and Homeostatic Food Intake Regulation by the Central Nervous System: Insights from Neuroimaging. Brain Sci 2022; 12:431. [PMID: 35447963 PMCID: PMC9032173 DOI: 10.3390/brainsci12040431] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/11/2022] [Accepted: 03/22/2022] [Indexed: 02/01/2023] Open
Abstract
Food intake regulation in humans is a complex process controlled by the dynamic interaction of homeostatic and hedonic systems. Homeostatic regulation is controlled by appetitive signals from the gut, adipose tissue, and the vagus nerve, while conscious and unconscious reward processes orchestrate hedonic regulation. On the one hand, sight, smell, taste, and texture perception deliver potent food-related feedback to the central nervous system (CNS) and influence brain areas related to food reward. On the other hand, macronutrient composition stimulates the release of appetite signals from the gut, which are translated in the CNS into unconscious reward processes. This multi-level regulation process of food intake shapes and regulates human ingestive behavior. Identifying the interface between hormones, neurotransmitters, and brain areas is critical to advance our understanding of conditions like obesity and develop better therapeutical interventions. Neuroimaging studies allow us to take a glance into the central nervous system (CNS) while these processes take place. This review focuses on the available neuroimaging evidence to describe this interaction between the homeostatic and hedonic components in human food intake regulation.
Collapse
Affiliation(s)
- Alejandro Campos
- Precision Medicine for Obesity Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA;
| | - John D. Port
- Department of Diagnostic Radiology, Mayo Clinic, Rochester, MN 55905, USA;
| | - Andres Acosta
- Precision Medicine for Obesity Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA;
| |
Collapse
|
7
|
Yang Y, Wu Q, Morys F. Brain Responses to High-Calorie Visual Food Cues in Individuals with Normal-Weight or Obesity: An Activation Likelihood Estimation Meta-Analysis. Brain Sci 2021; 11:brainsci11121587. [PMID: 34942889 PMCID: PMC8699077 DOI: 10.3390/brainsci11121587] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/28/2021] [Accepted: 11/29/2021] [Indexed: 01/16/2023] Open
Abstract
Overconsumption of high-calorie or unhealthy foods commonly leads to weight gain. Understanding people’s neural responses to high-calorie food cues might help to develop better interventions for preventing or reducing overeating and weight gain. In this review, we conducted a coordinate-based meta-analysis of functional magnetic resonance imaging studies of viewing high-calorie food cues in both normal-weight people and people with obesity. Electronic databases were searched for relevant articles, retrieving 59 eligible studies containing 2410 unique participants. The results of an activation likelihood estimation indicate large clusters in a range of structures, including the orbitofrontal cortex (OFC), amygdala, insula/frontal operculum, culmen, as well as the middle occipital gyrus, lingual gyrus, and fusiform gyrus. Conjunction analysis suggested that both normal-weight people and people with obesity activated OFC, supporting that the two groups share common neural substrates of reward processing when viewing high-calorie food cues. The contrast analyses did not show significant activations when comparing obesity with normal-weight. Together, these results provide new important evidence for the neural mechanism underlying high-calorie food cues processing, and new insights into common and distinct brain activations of viewing high-calorie food cues between people with obesity and normal-weight people.
Collapse
Affiliation(s)
- Yingkai Yang
- Faculty of Psychology, Southwest University, No. 2 Tiansheng Street, Beibei District, Chongqing 400715, China
- Correspondence: ; Tel.: +86-13164407461
| | - Qian Wu
- The Lab of Mental Health and Social Adaptation, Faculty of Psychology, Research Center of Mental Health Education, Southwest University, Chongqing 400715, China;
| | - Filip Morys
- Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada;
| |
Collapse
|
8
|
Anker JJ, Nakajima M, Raatz S, Allen S, al'Absi M. Tobacco withdrawal increases junk food intake: The role of the endogenous opioid system. Drug Alcohol Depend 2021; 225:108819. [PMID: 34182373 PMCID: PMC8297656 DOI: 10.1016/j.drugalcdep.2021.108819] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 03/29/2021] [Accepted: 04/10/2021] [Indexed: 01/18/2023]
Abstract
BACKGROUND The aims of this study were to 1) determine whether acute nicotine withdrawal increases the intake of junk food (high in salt, fat, and sugar) and 2) assess whether the endogenous opioid system is involved in junk food intake during nicotine withdrawal using naltrexone as a pharmacological probe. METHODS Smokers were randomly assigned to 24-hr withdrawal from tobacco products (n = 42) or smoking ad libitum (n = 34). A non-smoking group (n = 29) was included. Participants completed two laboratory sessions where a placebo or 50 mg of naltrexone was administered. At the end of each session, participants were given a tray of snack items that differed in high to low energy density and dimensions of salty, sweet, and fat. Self-reported mood and withdrawal measures were collected immediately before the snacks were offered. Generalized linear and logistic models were used to assess the effects of acute smoking withdrawal, drug, and sex on the intake of snack items and self-reported measures. RESULTS Choice and consumption of food items were impacted by smoking condition (withdrawal > ad lib smoking and non-smokers; p < .05), the opioid blockade (naltrexone < placebo; p < .05), and sex (male > female; p < .05). The effects were evidenced in high sweet and high fat foods. No differences were found in low sweet and fat foods. CONCLUSIONS These findings extend earlier studies indicating impact of tobacco use on appetite, and identify the regulatory influence of the endogenous opioid system on appetite during nicotine withdrawal.
Collapse
Affiliation(s)
- Justin J Anker
- Department of Psychiatry and Behavioral Sciences, University of Minnesota Medical School, 2450 Riverside Avenue, Minneapolis, MN, 55454, USA.
| | - Motohiro Nakajima
- Department of Family Medicine and Biobehavioral Health, University of Minnesota Medical School, 1035 University Drive, Duluth, MN, 55812, USA.
| | - Susan Raatz
- Department of Food Science and Nutrition, University of Minnesota, St Paul, MN, USA.
| | - Sharon Allen
- Department of Family Medicine and Community Health, University of Minnesota Medical School, 516 Delaware St. SE, Minneapolis, MN, 55455, USA.
| | - Mustafa al'Absi
- Department of Family Medicine and Biobehavioral Health, University of Minnesota Medical School, 1035 University Drive, Duluth, MN, 55812, USA.
| |
Collapse
|
9
|
Mas-Herrero E, Maini L, Sescousse G, Zatorre RJ. Common and distinct neural correlates of music and food-induced pleasure: A coordinate-based meta-analysis of neuroimaging studies. Neurosci Biobehav Rev 2021; 123:61-71. [PMID: 33440196 DOI: 10.1016/j.neubiorev.2020.12.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/11/2020] [Accepted: 12/12/2020] [Indexed: 12/31/2022]
Abstract
Neuroimaging studies have shown that, despite the abstractness of music, it may mimic biologically rewarding stimuli (e.g., food) in its ability to engage the brain's reward circuitry. However, due to the lack of research comparing music and other types of reward, it is unclear to what extent the recruitment of reward-related structures overlaps among domains. To achieve this goal, we performed a coordinate-based meta-analysis of 38 neuroimaging studies (703 subjects) comparing the brain responses specifically to music and food-induced pleasure. Both engaged a common set of brain regions, including the ventromedial prefrontal cortex, ventral striatum, and insula. Yet, comparative analyses indicated a partial dissociation in the engagement of the reward circuitry as a function of the type of reward, as well as additional reward type-specific activations in brain regions related to perception, sensory processing, and learning. These results support the idea that hedonic reactions rely on the engagement of a common reward network, yet through specific routes of access depending on the modality and nature of the reward.
Collapse
Affiliation(s)
- Ernest Mas-Herrero
- Cognition and Brain Plasticity Unit, Bellvitge Biomedical Research Institute, L'Hospitalet de Llobregat, 08907, Barcelona, Spain; Department of Cognition, Development and Education Psychology, University of Barcelona, 08035, Barcelona, Spain.
| | - Larissa Maini
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada; Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Guillaume Sescousse
- Lyon Neuroscience Research Center - INSERM U1028 - CNRS UMR5292, PSYR2 Team, University of Lyon, Lyon, France
| | - Robert J Zatorre
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada; International Laboratory for Brain, Music, and Sound Research (BRAMS), Montreal, QC, Canada.
| |
Collapse
|
10
|
Zhao Y, Rütgen M, Zhang L, Lamm C. Pharmacological fMRI provides evidence for opioidergic modulation of discrimination of facial pain expressions. Psychophysiology 2020; 58:e13717. [PMID: 33140886 PMCID: PMC7816233 DOI: 10.1111/psyp.13717] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 09/03/2020] [Accepted: 10/09/2020] [Indexed: 12/21/2022]
Abstract
The endogenous opioid system is strongly involved in the modulation of pain. However, the potential role of this system in perceiving painful facial expressions from others has not been sufficiently explored as of yet. To elucidate the contribution of the opioid system to the perception of painful facial expressions, we conducted a double‐blind, within‐subjects pharmacological functional magnetic resonance imaging (fMRI) study, in which 42 participants engaged in an emotion discrimination task (pain vs. disgust expressions) in two experimental sessions, receiving either the opioid receptor antagonist naltrexone or an inert substance (placebo). On the behavioral level, participants less frequently judged an expression as pain under naltrexone as compared to placebo. On the neural level, parametric modulation of activation in the (putative) right fusiform face area (FFA), which was correlated with increased pain intensity, was higher under naltrexone than placebo. Regression analyses revealed that brain activity in the right FFA significantly predicted behavioral performance in disambiguating pain from disgust, both under naltrexone and placebo. These findings suggest that reducing opioid system activity decreased participants' sensitivity for facial expressions of pain, and that this was linked to possibly compensatory engagement of processes related to visual perception, rather than to higher level affective processes, and pain regulation. The behavioral and neural findings of this psychopharmacological fMRI study shed light on a causal role of the opioid system in the discrimination of painful facial expressions, paving the way for further exploration of clinical implications in the domains of pain diagnosis and treatment, on the one hand, and future research on the relationship between basic socio‐perceptual processing and empathy, on the other.
Collapse
Affiliation(s)
- Yili Zhao
- Social, Cognitive and Affective Neuroscience Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Vienna, Austria
| | - Markus Rütgen
- Social, Cognitive and Affective Neuroscience Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Vienna, Austria.,Vienna Cognitive Science Hub, University of Vienna, Vienna, Austria
| | - Lei Zhang
- Social, Cognitive and Affective Neuroscience Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Vienna, Austria.,Neuropsychopharmacology and Biopsychology Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Vienna, Austria
| | - Claus Lamm
- Social, Cognitive and Affective Neuroscience Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Vienna, Austria.,Vienna Cognitive Science Hub, University of Vienna, Vienna, Austria.,Neuropsychopharmacology and Biopsychology Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Vienna, Austria
| |
Collapse
|
11
|
Chen EY, Zeffiro TA. Hunger and BMI modulate neural responses to sweet stimuli: fMRI meta-analysis. Int J Obes (Lond) 2020; 44:1636-1652. [PMID: 32555497 PMCID: PMC8023765 DOI: 10.1038/s41366-020-0608-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 02/16/2020] [Accepted: 02/21/2020] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Consuming sweet foods, even when sated, can lead to unwanted weight gain. Contextual factors, such as longer time fasting, subjective hunger, and body mass index (BMI), may increase the likelihood of overeating. Nevertheless, the neural mechanisms underlying these moderating influences on energy intake are poorly understood. METHODS We conducted both categorical meta-analysis and meta-regression of factors modulating neural responses to sweet stimuli, using data from 30 functional magnetic resonance imaging (fMRI) articles incorporating 39 experiments (N = 995) carried out between 2006 and 2019. RESULTS Responses to sweet stimuli were associated with increased activity in regions associated with taste, sensory integration, and reward processing. These taste-evoked responses were modulated by context. Longer fasts were associated with higher posterior cerebellar, thalamic, and striatal activity. Greater self-reported hunger was associated with higher medial orbitofrontal cortex (OFC), dorsal striatum, and amygdala activity and lower posterior cerebellar activity. Higher BMI was associated with higher posterior cerebellar and insular activity. CONCLUSIONS Variations in fasting time, self-reported hunger, and BMI are contexts associated with differential sweet stimulus responses in regions associated with reward processing and homeostatic regulation. These results are broadly consistent with a hierarchical model of taste processing. Hunger, but not fasting or BMI, was associated with sweet stimulus-related OFC activity. Our findings extend existing models of taste processing to include posterior cerebellar regions that are associated with moderating effects of both state (fast length and self-reported hunger) and trait (BMI) variables.
Collapse
Affiliation(s)
- Eunice Y Chen
- TEDP (Temple Eating Disorders Program), Department of Psychology, Temple University, 1701 N 13th Street, Philadelphia, PA, 19122, USA.
| | | |
Collapse
|
12
|
Saad Z, Hibar D, Fedgchin M, Popova V, Furey ML, Singh JB, Kolb H, Drevets WC, Chen G. Effects of Mu-Opiate Receptor Gene Polymorphism rs1799971 (A118G) on the Antidepressant and Dissociation Responses in Esketamine Nasal Spray Clinical Trials. Int J Neuropsychopharmacol 2020; 23:549-558. [PMID: 32367114 PMCID: PMC7710914 DOI: 10.1093/ijnp/pyaa030] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 03/27/2020] [Accepted: 04/29/2020] [Indexed: 12/17/2022] Open
Abstract
Background At ketamine and esketamine doses at which antidepressant doses are achieved, these agents are relatively selective, noncompetitive, N-methyl-D-aspartate receptor antagonists. However, at substantially higher doses, ketamine has shown mu-opioid receptor (MOR–gene symbol: OPRM1) agonist effects. Preliminary clinical studies showed conflicting results on whether naltrexone, a MOR antagonist, blocks the antidepressant action of ketamine. We examined drug-induced or endogenous MOR involvement in the antidepressant and dissociative responses to esketamine by assessing the effects of a functional single nucleotide polymorphism rs1799971 (A118G) of OPRM1, which is known to alter MOR agonist-mediated responses. Methods Participants with treatment-resistant depression from 2 phase III, double-blind, controlled trials of esketamine (or placebo) nasal spray plus an oral antidepressant were genotyped for rs1799971. Participants received the experimental agents twice weekly for 4 weeks. Antidepressant responses were rated using the change in Montgomery–Åsberg Depression Rating Scale (MADRS) score on days 2 and 28 post-dose initiation, and dissociative side effects were assessed using the Clinician-Administered Dissociative-States Scale at 40 minutes post-dose on days 1 and 25. Results In the esketamine + antidepressant arm, no significant genotype effect of single nucleotide polymorphism rs1799971 (A118G) on MADRS score reductions was detected on either day 2 or 28. By contrast, in the antidepressant + placebo arm, there was a significant genotype effect on MADRS score reductions on day 2 and a nonsignificant trend on day 28 towards an improvement in depression symptoms in G-allele carriers. No significant genotype effects on dissociative responses were detected. Conclusions Variation in rs1799971 (A118G) did not affect the antidepressant response to esketamine + antidepressant. Antidepressant response to antidepressant + placebo was increased in G-allele carriers, compatible with previous reports that release of endorphins/enkephalins may play a role in mediating placebo effect. Trial Registration NCT02417064 and NCT02418585; www.clinicaltrials.gov
Collapse
Affiliation(s)
- Ziad Saad
- Janssen Research & Development, San Diego, California
| | | | | | | | - Maura L Furey
- Janssen Research & Development, San Diego, California
| | | | - Hartmuth Kolb
- Janssen Research & Development, San Diego, California
| | | | - Guang Chen
- Janssen Research & Development, San Diego, California
| |
Collapse
|
13
|
Tchalova K, MacDonald G. Opioid receptor blockade inhibits self-disclosure during a closeness-building social interaction. Psychoneuroendocrinology 2020; 113:104559. [PMID: 31911348 DOI: 10.1016/j.psyneuen.2019.104559] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 12/29/2022]
Abstract
Social ties are critical to human health and well-being; thus, it is important to gain a better understanding of the neurobiological mechanisms involved in the development of interpersonal closeness. Prior research indicates that endogenous opioids may play a role in social affiliation by elaborating feelings of social connection and warmth; however, it is not currently known whether opioids mediate affiliative behavior and emerging feelings of closeness in humans at the relationship initiation stage. This randomized, double-blind study examined opioidergic processes in the context of a naturalistic, face-to-face social interaction. Eighty pairs of unacquainted participants (final N = 159 due to removal of one dyad member from analysis) received either 50 mg of the opioid receptor antagonist naltrexone or placebo prior to completing a closeness-building exercise centered on escalating self-disclosure (sharing of personal information about the self). Compared to the placebo group, naltrexone participants held lower social reward expectations prior to the interaction, engaged in less intimacy-fostering behavior (self-disclosure) during the interaction, and reported wanting less closeness with their partner. Feelings of social connection were not significantly lower in the naltrexone group. However, placebo participants experienced improvements in mood after the closeness-building task whereas naltrexone participants did not. These findings suggest that endogenous opioids may contribute to behavioral, affective, and motivational processes related to the development of initial closeness.
Collapse
Affiliation(s)
- Kristina Tchalova
- Department of Psychology, University of Toronto, 100 St. George Street, Toronto, ON M5S 3G3, Canada; Department of Psychology, McGill University, 2001 McGill College Avenue, Montréal, QC H3A 1G1, Canada.
| | - Geoff MacDonald
- Department of Psychology, University of Toronto, 100 St. George Street, Toronto, ON M5S 3G3, Canada
| |
Collapse
|
14
|
Browne CA, Smith T, Lucki I. Behavioral effects of the kappa opioid receptor partial agonist nalmefene in tests relevant to depression. Eur J Pharmacol 2020; 872:172948. [PMID: 31991139 DOI: 10.1016/j.ejphar.2020.172948] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 01/13/2020] [Accepted: 01/24/2020] [Indexed: 01/14/2023]
Abstract
Compounds with high affinity at kappa and mu opioid receptors may have clinical utility in treating major depressive disorder. Nalmefene (NMF) is a partial kappa opioid receptor agonist and potent mu opioid receptor antagonist, but there has been no preclinical evaluation of NMF in rodent tests relevant to depression and anxiety. To address this, the effects of NMF on neurochemical and behavioral endpoints in C57BL/6J mice were examined and contrasted with a structurally related analog, naltrexone (NTX). NMF exhibited kappa opioid receptor agonist activity, measured as a reduction in extracellular dopamine release in the nucleus accumbens using in vivo microdialysis following acute but not chronic administration. In the mouse forced swim test, female mice were more responsive to higher doses of NMF and NTX compared to male mice. The behavioral effects of NMF in the forced swim test were blocked in Oprk1-/- and Oprm1-/- mice. Conversely, the effects of NTX were blocked only in Oprm1-/- mice. These results indicate that both kappa and mu opioid receptors mediate the behavioral effects of NMF, but the effects of NTX in this test were modified only by mu opioid receptor engagement. Unlike NTX, NMF did not produce conditioned place aversion in either sex. Finally, NMF's activity in the marble burying test and forced swim test were retained following chronic administration. The sustained effects exerted by NMF on tests that are sensitive to antidepressant and anxiolytic compounds support further investigation of NMF as a potential therapeutic for depression.
Collapse
Affiliation(s)
- Caroline A Browne
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA; Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA; Department of Pharmacology & Molecular Therapeutics, Uniformed Services University, Bethesda, 20814, MD, USA.
| | - Tiffany Smith
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA; Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - Irwin Lucki
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA; Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA; Department of Pharmacology & Molecular Therapeutics, Uniformed Services University, Bethesda, 20814, MD, USA
| |
Collapse
|
15
|
Giromini L, Viglione DJ, Vitolo E, Cauda F, Zennaro A. Introducing the concept of neurobiological foundation of Rorschach responses using the example of Oral Dependent Language. Scand J Psychol 2019; 60:528-538. [PMID: 31598986 DOI: 10.1111/sjop.12585] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 08/26/2019] [Indexed: 12/31/2022]
Abstract
We introduce the concept of "neurobiological foundation" of Rorschach interpretations as an extension of the concept of behavioral representation as a foundation for interpretation of R-PAS variables. Here, we propose that if there is a parallelism between the mental, verbal and perceptual behaviors occurring within the microcosm of the Rorschach task and those occurring in the external environment [behavioral foundation], then the same brain regions engaged by the test-taker when producing of a given code, should be engaged also when reproducing, in the external environment, the same psychological processes underlying that specific Rorschach code [neurobiological foundation]. To investigate this concept, we used archival, fMRI data and tested whether producing Oral Dependency Language (ODL) responses would associate with increased activation in brain regions associated with dependency-related, psychological processes. Results from a sample of 21 non-clinical volunteers partially confirmed our hypothesis, providing some support to the neurobiological foundation of the ODL code.
Collapse
Affiliation(s)
| | | | - Enrico Vitolo
- Department of Psychology, University of Turin, Italy
| | - Franco Cauda
- Department of Psychology, University of Turin, Italy
| | | |
Collapse
|
16
|
van Steenbergen H, Eikemo M, Leknes S. The role of the opioid system in decision making and cognitive control: A review. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2019; 19:435-458. [PMID: 30963411 PMCID: PMC6599188 DOI: 10.3758/s13415-019-00710-6] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The opioid system regulates affective processing, including pain, pleasure, and reward. Restricting the role of this system to hedonic modulation may be an underestimation, however. Opioid receptors are distributed widely in the human brain, including the more "cognitive" regions in the frontal and parietal lobes. Nonhuman animal research points to opioid modulation of cognitive and decision-making processes. We review emerging evidence on whether acute opioid drug modulation in healthy humans can influence cognitive function, such as how we choose between actions of different values and how we control our behavior in the face of distracting information. Specifically, we review studies employing opioid agonists or antagonists together with experimental paradigms of reward-based decision making, impulsivity, executive functioning, attention, inhibition, and effort. Although this field is still in its infancy, the emerging picture suggests that the mu-opioid system can influence higher-level cognitive function via modulation of valuation, motivation, and control circuits dense in mu-opioid receptors, including orbitofrontal cortex, basal ganglia, amygdalae, anterior cingulate cortex, and prefrontal cortex. The framework that we put forward proposes that opioids influence decision making and cognitive control by increasing the subjective value of reward and reducing aversive arousal. We highlight potential mechanisms that might underlie the effects of mu-opioid signaling on decision making and cognitive control and provide directions for future research.
Collapse
Affiliation(s)
- Henk van Steenbergen
- Cognitive Psychology Unit, Institute of Psychology, Leiden University, Wassenaarseweg 52, 2333 AK, Leiden, The Netherlands.
- Leiden Institute for Brain and Cognition, Leiden, The Netherlands.
| | - Marie Eikemo
- Department of Diagnostic Physics, Oslo University Hospital, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Siri Leknes
- Department of Psychology, University of Oslo, Oslo, Norway
| |
Collapse
|
17
|
Stice E, Burger K. Neural vulnerability factors for obesity. Clin Psychol Rev 2019; 68:38-53. [PMID: 30587407 PMCID: PMC6397091 DOI: 10.1016/j.cpr.2018.12.002] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 10/05/2018] [Accepted: 12/17/2018] [Indexed: 01/09/2023]
Abstract
Multiple theories identify neural vulnerability factors that may increase risk for overeating and weight gain. Early cross-sectional neuroimaging studies were unable to determine whether aberrant neural responsivity was a risk factor for or a consequence of overeating. More recent obesity risk, prospective, repeated-measures, and experimental neuroimaging studies with humans have advanced knowledge of etiologic processes and neural plasticity resulting from overeating. Herein, we review evidence from these more rigorous human neuroimaging studies, in conjunction with behavioral measures reflecting neural function, as well as experiments with animals that investigated neural vulnerability theories for overeating. Findings provide support for the reward surfeit theory that posits that individuals at risk for obesity initially show hyper-responsivity of reward circuitry to high-calorie food tastes, which theoretically drives elevated intake of such foods. However, findings provide little support for the reward deficit theory that postulates that individuals at risk for obesity show an initial hypo-responsivity of reward circuitry that motives overeating. Further, results provide support for the incentive sensitization and dynamic vulnerability theories that propose that overconsumption of high-calorie foods results in increased reward and attention region responsivity to cues that are associated with hedonic reward from intake of these high-calorie foods via conditioning, as well as a simultaneous decrease in reward region responsivity to high-calorie food tastes. However, there is little evidence that this induced reduction in reward region response to high-calorie food tastes drives an escalation in overeating. Finally, results provide support for the theory that an initial deficit in inhibitory control and a bias for immediate reward contribute to overconsumption of high-calorie foods. Findings imply that interventions that reduce reward and attention region responsivity to food cues and increase inhibitory control should reduce overeating and excessive weight gain, an intervention theory that is receiving support in randomized trials.
Collapse
Affiliation(s)
- Eric Stice
- Oregon Research Institute, Eugene, OR, USA.
| | - Kyle Burger
- University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
18
|
Moore CF, Panciera JI, Sabino V, Cottone P. Neuropharmacology of compulsive eating. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0024. [PMID: 29352024 DOI: 10.1098/rstb.2017.0024] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2017] [Indexed: 12/22/2022] Open
Abstract
Compulsive eating behaviour is a transdiagnostic construct observed in certain forms of obesity and eating disorders, as well as in the proposed construct of 'food addiction'. Compulsive eating can be conceptualized as comprising three elements: (i) habitual overeating, (ii) overeating to relieve a negative emotional state, and (iii) overeating despite adverse consequences. Neurobiological processes that include maladaptive habit formation, the emergence of a negative affect, and dysfunctions in inhibitory control are thought to drive the development and persistence of compulsive eating behaviour. These complex psychobehavioural processes are under the control of various neuropharmacological systems. Here, we describe the current evidence implicating these systems in compulsive eating behaviour, and contextualize them within the three elements. A better understanding of the neuropharmacological substrates of compulsive eating behaviour has the potential to significantly advance the pharmacotherapy for feeding-related pathologies.This article is part of a discussion meeting issue 'Of mice and mental health: facilitating dialogue between basic and clinical neuroscientists'.
Collapse
Affiliation(s)
- Catherine F Moore
- Laboratory of Addictive Disorders, Departments of Pharmacology and Psychiatry, Boston University School of Medicine, 72 E. Concord Street, R-618, Boston, MA 02118, USA.,Graduate Program for Neuroscience, Boston University School of Medicine, 72 E. Concord Street, R-618, Boston, MA 02118, USA
| | - Julia I Panciera
- Laboratory of Addictive Disorders, Departments of Pharmacology and Psychiatry, Boston University School of Medicine, 72 E. Concord Street, R-618, Boston, MA 02118, USA.,MS in Medical Sciences Program, Graduate Medical Sciences, Boston University School of Medicine, 72 E. Concord Street, R-618, Boston, MA 02118, USA.,Master of Public Health Program, Department of Health Policy and Management, Boston University School of Public Health, 715 Albany Street, Boston, MA, USA
| | - Valentina Sabino
- Laboratory of Addictive Disorders, Departments of Pharmacology and Psychiatry, Boston University School of Medicine, 72 E. Concord Street, R-618, Boston, MA 02118, USA
| | - Pietro Cottone
- Laboratory of Addictive Disorders, Departments of Pharmacology and Psychiatry, Boston University School of Medicine, 72 E. Concord Street, R-618, Boston, MA 02118, USA
| |
Collapse
|
19
|
Moningka H, Lichenstein S, Worhunsky PD, DeVito EE, Scheinost D, Yip SW. Can neuroimaging help combat the opioid epidemic? A systematic review of clinical and pharmacological challenge fMRI studies with recommendations for future research. Neuropsychopharmacology 2019; 44:259-273. [PMID: 30283002 PMCID: PMC6300537 DOI: 10.1038/s41386-018-0232-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/11/2018] [Accepted: 09/18/2018] [Indexed: 02/04/2023]
Abstract
The current opioid epidemic is an urgent public health problem, with enormous individual, societal, and healthcare costs. Despite effective, evidence-based treatments, there is significant individual variability in treatment responses and relapse rates are high. In addition, the neurobiology of opioid-use disorder (OUD) and its treatment is not well understood. This review synthesizes published fMRI literature relevant to OUD, with an emphasis on findings related to opioid medications and treatment, and proposes areas for further research. We conducted a systematic literature review of Medline and Psychinfo to identify (i) fMRI studies comparing OUD and control participants; (ii) studies related to medication, treatment, abstinence or withdrawal effects in OUD; and (iii) studies involving manipulation of the opioid system in healthy individuals. Following application of exclusionary criteria (e.g., insufficient sample size), 45 studies were retained comprising data from ~1400 individuals. We found convergent evidence that individuals with OUD display widespread heightened neural activation to heroin cues. This pattern is potentiated by heroin, attenuated by medication-assisted treatments for opioids, predicts treatment response, and is reduced following extended abstinence. Nonetheless, there is a paucity of literature examining neural characteristics of OUD and its treatment. We discuss limitations of extant research and identify critical areas for future neuroimaging studies, including the urgent need for studies examining prescription opioid users, assessing sex differences and utilizing a wider range of clinically relevant task-based fMRI paradigms across different stages of addiction.
Collapse
Affiliation(s)
- Hestia Moningka
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Sarah Lichenstein
- Yale School of Medicine, Radiology and Bioimaging Sciences, New Haven, CT, 06510, USA
| | - Patrick D Worhunsky
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Elise E DeVito
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Dustin Scheinost
- Yale School of Medicine, Radiology and Bioimaging Sciences, New Haven, CT, 06510, USA
| | - Sarah W Yip
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06510, USA.
| |
Collapse
|
20
|
Wen S, Wang C, Gong M, Zhou L. An overview of energy and metabolic regulation. SCIENCE CHINA-LIFE SCIENCES 2018; 62:771-790. [PMID: 30367342 DOI: 10.1007/s11427-018-9371-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 08/23/2018] [Indexed: 12/21/2022]
Abstract
The physiology and behaviors related to energy balance are monitored by the nervous and humoral systems. Because of the difficulty in treating diabetes and obesity, elucidating the energy balance mechanism and identifying critical targets for treatment are important research goals. Therefore, the purpose of this article is to describe energy regulation by the central nervous system (CNS) and peripheral humoral pathway. Homeostasis and rewarding are the basis of CNS regulation. Anorexigenic or orexigenic effects reflect the activities of the POMC/CART or NPY/AgRP neurons within the hypothalamus. Neurotransmitters have roles in food intake, and responsive brain nuclei have different functions related to food intake, glucose monitoring, reward processing. Peripheral gut- or adipose-derived hormones are the major source of peripheral humoral regulation systems. Nutrients or metabolites and gut microbiota affect metabolism via a discrete pathway. We also review the role of peripheral organs, the liver, adipose tissue, and skeletal muscle in peripheral regulation. We discuss these topics and how the body regulates metabolism.
Collapse
Affiliation(s)
- Song Wen
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, 201399, China
| | - Chaoxun Wang
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, 201399, China
| | - Min Gong
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, 201399, China
| | - Ligang Zhou
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, 201399, China.
| |
Collapse
|
21
|
Devoto F, Zapparoli L, Bonandrini R, Berlingeri M, Ferrulli A, Luzi L, Banfi G, Paulesu E. Hungry brains: A meta-analytical review of brain activation imaging studies on food perception and appetite in obese individuals. Neurosci Biobehav Rev 2018; 94:271-285. [PMID: 30071209 DOI: 10.1016/j.neubiorev.2018.07.017] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 07/06/2018] [Accepted: 07/25/2018] [Indexed: 11/24/2022]
Abstract
The dysregulation of food intake in chronic obesity has been explained by different theories. To assess their explanatory power, we meta-analyzed 22 brain-activation imaging studies. We found that obese individuals exhibit hyper-responsivity of the brain regions involved in taste and reward for food-related stimuli. Consistent with a Reward Surfeit Hypothesis, obese individuals exhibit a ventral striatum hyper-responsivity in response to pure tastes, particularly when fasting. Furthermore, we found that obese subjects display more frequent ventral striatal activation for visual food cues when satiated: this continued processing within the reward system, together with the aforementioned evidence, is compatible with the Incentive Sensitization Theory. On the other hand, we did not find univocal evidence in favor of a Reward Deficit Hypothesis nor for a systematic deficit of inhibitory cognitive control. We conclude that the available brain activation data on the dysregulated food intake and food-related behavior in chronic obesity can be best framed within an Incentive Sensitization Theory. Implications of these findings for a brain-based therapy of obesity are briefly discussed.
Collapse
Affiliation(s)
- F Devoto
- fMRI Unit, IRCSS Istituto Ortopedico Galeazzi, Milan, Italy; Department of Psychology and PhD Program in Neuroscience of the School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - L Zapparoli
- fMRI Unit, IRCSS Istituto Ortopedico Galeazzi, Milan, Italy
| | - R Bonandrini
- Department of Psychology and NeuroMi - Milan Centre for Neuroscience, University of Milano-Bicocca, Milan, Italy
| | - M Berlingeri
- DISTUM, Department of Humanistic Studies, University of Urbino Carlo Bo, Urbino, Italy; Center of Developmental Neuropsychology, ASUR Marche, Area Vasta 1, Pesaro, Italy
| | - A Ferrulli
- Endocrinology and Metabolic Diseases Unit, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - L Luzi
- Endocrinology and Metabolic Diseases Unit, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy; Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - G Banfi
- fMRI Unit, IRCSS Istituto Ortopedico Galeazzi, Milan, Italy; University Vita e Salute San Raffaele, Milan, Italy
| | - E Paulesu
- fMRI Unit, IRCSS Istituto Ortopedico Galeazzi, Milan, Italy; Department of Psychology and NeuroMi - Milan Centre for Neuroscience, University of Milano-Bicocca, Milan, Italy.
| |
Collapse
|
22
|
Leigh SJ, Lee F, Morris MJ. Hyperpalatability and the Generation of Obesity: Roles of Environment, Stress Exposure and Individual Difference. Curr Obes Rep 2018; 7:6-18. [PMID: 29435959 DOI: 10.1007/s13679-018-0292-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
PURPOSE OF REVIEW This review investigates how exposure to palatable food and its associated cues alters appetite regulation and feeding behaviour to drive overeating and weight gain. RECENT FINDINGS Both supraphysiological and physiological feeding systems are affected by exposure to palatable foods and its associated cues. Preclinical research, largely using rodents, has demonstrated that palatable food modulates feeding-related neural systems and food-seeking behaviour by recruiting the mesolimbic reward pathway. This is supported by studies in adolescents which have shown that mesolimbic activity in response to palatable food cues and consumption predicts future weight gain. Additionally, stress exposure, environmental factors and individual susceptibility have been shown to modulate the effects of highly palatable foods on behaviour. Further preclinical research using free-choice diets modelling the modern obesogenic environment is needed to identify how palatable foods drive overeating. Moreover, future clinical research would benefit from more appropriate quantification of palatability, making use of rating systems and surveys.
Collapse
Affiliation(s)
- Sarah-Jane Leigh
- Department of Pharmacology, School of Medical Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Frances Lee
- Department of Pharmacology, School of Medical Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Margaret J Morris
- Department of Pharmacology, School of Medical Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia.
| |
Collapse
|
23
|
Shi Z, Wang AL, Jagannathan K, Fairchild VP, O'Brien CP, Childress AR, Langleben DD. Effects of extended-release naltrexone on the brain response to drug-related stimuli in patients with opioid use disorder. J Psychiatry Neurosci 2018; 43:170036. [PMID: 29485031 PMCID: PMC6019353 DOI: 10.1503/jpn.170036] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 07/22/2017] [Accepted: 10/07/2017] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Heightened response to drug-related cues is a hallmark of addiction. Extended-release naltrexone (XR-NTX) is a US Food and Drug Administration-approved pharmacotherapy for relapse prevention in patients with opioid use disorder (OUD). In these patients, XR-NTX has been shown to reduce brain responses to opioid-related visual stimuli. To assess the biomarker potential of this phenomenon, it is necessary to determine whether this effect is limited to opioid-related stimuli and whether it is associated with key OUD symptoms. METHODS Using functional MRI (fMRI), we measured the brain responses to opioid-related and control (i.e., sexual and aversive) images in detoxified patients with OUD before, during and after XR-NTX treatment. Craving and withdrawal severity were evaluated using clinician- and self-administered instruments during each session. RESULTS We included 24 patients with OUD in our analysis. During XR-NTX treatment, we found reduced responses to opioid-related stimuli in the nucleus accumbens (NAcc) and medial orbitofrontal cortex (mOFC). The reduction in mOFC response was specific to the opioid-related stimuli. The reduced NAcc and mOFC opioid cue reactivity was correlated with reduction in clinician-assessed and self-reported withdrawal symptoms, respectively. LIMITATIONS The study was not placebo-controlled owing to ethical, safety and feasibility concerns. CONCLUSION Extended-release naltrexone reduces the NAcc and mOFC cue reactivity in patients with OUD. This effect is specific to opioid-related stimuli in the mOFC only. The reduction in neural response to opioid-related stimuli is more robust in patients with greater decline in withdrawal severity. Our results support the clinical utility of mesocorticolimbic cue reactivity in monitoring the XR-NTX treatment outcomes and highlight the link between opioid withdrawal symptomatology and neural opioid cue reactivity.
Collapse
Affiliation(s)
- Zhenhao Shi
- From the Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pa. (Shi, Wang, Jagannathan, Fairchild, O'Brien, Childress, Langleben); the Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY (Wang); the Annenberg Public Policy Center, University of Pennsylvania, Philadelphia, Pa. (Langleben); and the Corporal Michael J. Crescenz Veterans Administration Medical Center, Philadelphia, Pa. (Langleben)
| | - An-Li Wang
- From the Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pa. (Shi, Wang, Jagannathan, Fairchild, O'Brien, Childress, Langleben); the Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY (Wang); the Annenberg Public Policy Center, University of Pennsylvania, Philadelphia, Pa. (Langleben); and the Corporal Michael J. Crescenz Veterans Administration Medical Center, Philadelphia, Pa. (Langleben)
| | - Kanchana Jagannathan
- From the Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pa. (Shi, Wang, Jagannathan, Fairchild, O'Brien, Childress, Langleben); the Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY (Wang); the Annenberg Public Policy Center, University of Pennsylvania, Philadelphia, Pa. (Langleben); and the Corporal Michael J. Crescenz Veterans Administration Medical Center, Philadelphia, Pa. (Langleben)
| | - Victoria P Fairchild
- From the Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pa. (Shi, Wang, Jagannathan, Fairchild, O'Brien, Childress, Langleben); the Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY (Wang); the Annenberg Public Policy Center, University of Pennsylvania, Philadelphia, Pa. (Langleben); and the Corporal Michael J. Crescenz Veterans Administration Medical Center, Philadelphia, Pa. (Langleben)
| | - Charles P O'Brien
- From the Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pa. (Shi, Wang, Jagannathan, Fairchild, O'Brien, Childress, Langleben); the Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY (Wang); the Annenberg Public Policy Center, University of Pennsylvania, Philadelphia, Pa. (Langleben); and the Corporal Michael J. Crescenz Veterans Administration Medical Center, Philadelphia, Pa. (Langleben)
| | - Anna Rose Childress
- From the Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pa. (Shi, Wang, Jagannathan, Fairchild, O'Brien, Childress, Langleben); the Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY (Wang); the Annenberg Public Policy Center, University of Pennsylvania, Philadelphia, Pa. (Langleben); and the Corporal Michael J. Crescenz Veterans Administration Medical Center, Philadelphia, Pa. (Langleben)
| | - Daniel D Langleben
- From the Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pa. (Shi, Wang, Jagannathan, Fairchild, O'Brien, Childress, Langleben); the Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY (Wang); the Annenberg Public Policy Center, University of Pennsylvania, Philadelphia, Pa. (Langleben); and the Corporal Michael J. Crescenz Veterans Administration Medical Center, Philadelphia, Pa. (Langleben)
| |
Collapse
|
24
|
Affective value, intensity and quality of liquid tastants/food discernment in the human brain: An activation likelihood estimation meta-analysis. Neuroimage 2017; 169:189-199. [PMID: 29247808 DOI: 10.1016/j.neuroimage.2017.12.034] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 11/20/2017] [Accepted: 12/13/2017] [Indexed: 12/13/2022] Open
Abstract
The primary dimensions of taste are affective value, intensity and quality. Numerous studies have reported the role of the insula in evaluating these dimensions of taste; however, the results were inconsistent. Therefore, in the current study, we performed meta-analyses of published data to identify locations consistently activated across studies and evaluate whether different regions of the human brain could be responsible for processing different dimensions of taste. Meta-analyses were performed on 39 experiments, with 846 total healthy subjects (without psychiatric/neurological disorders) in 34 studies reporting whole-brain results. The aim was to establish the activation likelihood estimation (ALE) of taste-mediated regional activation across the whole brain. Apart from one meta-analysis for all studies in general, three analyses were performed to reveal the clusters of activation that were attributable to processing the affective value (data from 323 foci), intensity (data from 43 foci) and quality (data from 45 foci) of taste. The ALE revealed eight clusters of activation outside the insula for processing affective value, covering the middle and posterior cingulate, pre-/post-central gyrus, caudate and thalamus. The affective value had four clusters of activation (two in each hemisphere) in the insula. The intensity and quality activated only the insula, each with one cluster on the right. The concurrence between studies was moderate; at best, 53% of the experiments contributed to the significant clusters attributable to the affective value, 60% to intensity and 50% to quality. The affective value was processed bilaterally in the anterior to middle insula, whereas intensity was processed in the right antero-middle insula, and quality was processed in the right middle insula. The right middle dorsal insula was responsible for processing both the affective value and quality of taste. The exploratory analysis on taste quality did not have a significant result if the studies using liquid food stimuli were excluded. Results from the meta-analyses on studies involving the oral delivery of liquid tastants or liquid food stimuli confirmed that the insula is involved in processing all three dimensions of taste. More experimental studies are required to investigate whether brain activations differ between liquid tastants and food. The coordinates of activated brain areas and brain maps are provided to serve as references for future taste/food studies.
Collapse
|
25
|
Abstract
Understanding of the neural and physiological substrates of hunger and satiety has increased rapidly over the last three decades, and pharmacological targets have already been identified for the treatment of obesity that has moved from pre-clinical screening to therapies approved by regulatory authorities. Initially, this review describes the way in which physiological signals of energy availability interact with hedonic and rewarding properties of food to modulate the neural circuitry that supports eating behaviour. This is followed by a brief account of current and promising targets for drug development and a review of the wide range of preclinical paradigms that model important influences on human eating behaviour, and can be used to guide early stages of the drug development process.
Collapse
|
26
|
Worley J. The Role of Pleasure Neurobiology and Dopamine in Mental Health Disorders. J Psychosoc Nurs Ment Health Serv 2017; 55:17-21. [PMID: 28850647 DOI: 10.3928/02793695-20170818-09] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Recent evidence and research has demonstrated that the pleasure response and associated neurotransmitters and brain circuits play a significant role in substance use disorders (SUDs). It was thought that negative behaviors associated with SUDs resulted from negative choices, but it is now known that chemical changes in the brain drive those behaviors. Several mental health disorders (e.g., eating disorders, non-suicidal self-injury, compulsive sex behaviors, internet gaming, gambling) are also thought to involve those same pleasure responses, neurotransmitters, and brain regions. Studies have shown that the use of naltrexone, a dopamine antagonist, can reduce symptoms of these disorders. It is important for nurses to understand the underlying physiology of mental health disorders that are thought to have an addictive or craving component. This understanding can help reduce stigma. Educating patients about likely neurobiological causes for their disorders can also help reduce guilt and shame. Nurses should educate patients about these disorders and evidence-based treatments, including off-label use of naltrexone. [Journal of Psychosocial Nursing and Mental Health Services, 55(9), 17-21.].
Collapse
|
27
|
Rees R, Seyfoddin A. The effectiveness of naltrexone combined with current smoking cessation medication to attenuate post smoking cessation weight gain: a literature review. J Pharm Policy Pract 2017; 10:20. [PMID: 28702203 PMCID: PMC5504719 DOI: 10.1186/s40545-017-0109-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 06/29/2017] [Indexed: 11/10/2022] Open
Abstract
Background Smoking is the number one cause of preventable morbidity and mortality globally and although many countries have invested heavily in smoking cessation programs, 21% of the global population still smoke. Post cessation weight gain has been identified as a barrier to attempting cessation and is implicated in the high rates of relapse. Naltrexone has been touted as a possible solution to address post smoking cessation weight gain. Results The results from seven original studies assessing the effectiveness of naltrexone in combination with existing smoking cessation medications to attenuate post smoking cessation weight gain were obtained and critically reviewed. Five returned positive results and two returned results that were statistically insignificant. The positive results were seen more often in those identified as more likely to exhibit hedonic eating behaviour for example women and participants who were categorised as overweight or obese. Conclusion The evidence suggests further investigation in to a combination of naltrexone and approved smoking cessation medications is warranted and could provide a solution to attenuate post smoking cessation weight gain especially in women and those classified as overweight or obese. This may provide the tool required to remove a perceived barrier to smoking cessation and improve global statistics.
Collapse
Affiliation(s)
- Raewyn Rees
- School of Interprofessional Health Studies, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
| | - Ali Seyfoddin
- School of Interprofessional Health Studies, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand.,Drug Delivery Research Group, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
| |
Collapse
|
28
|
Bojanowska E, Ciosek J. Can We Selectively Reduce Appetite for Energy-Dense Foods? An Overview of Pharmacological Strategies for Modification of Food Preference Behavior. Curr Neuropharmacol 2016; 14:118-42. [PMID: 26549651 PMCID: PMC4825944 DOI: 10.2174/1570159x14666151109103147] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 09/19/2015] [Accepted: 10/31/2015] [Indexed: 12/11/2022] Open
Abstract
Excessive intake of food, especially palatable and energy-dense carbohydrates and fats, is
largely responsible for the growing incidence of obesity worldwide. Although there are a number of
candidate antiobesity drugs, only a few of them have been proven able to inhibit appetite for palatable
foods without the concurrent reduction in regular food consumption. In this review, we discuss the
interrelationships between homeostatic and hedonic food intake control mechanisms in promoting
overeating with palatable foods and assess the potential usefulness of systemically administered pharmaceuticals that
impinge on the endogenous cannabinoid, opioid, aminergic, cholinergic, and peptidergic systems in the modification of
food preference behavior. Also, certain dietary supplements with the potency to reduce specifically palatable food intake
are presented. Based on human and animal studies, we indicate the most promising therapies and agents that influence the
effectiveness of appetite-modifying drugs. It should be stressed, however, that most of the data included in our review
come from preclinical studies; therefore, further investigations aimed at confirming the effectiveness and safety of the
aforementioned medications in the treatment of obese humans are necessary.
Collapse
Affiliation(s)
- Ewa Bojanowska
- Department of Behavioral Pathophysiology, Institute of General and Experimental Pathology, Medical University of Lodz, 60 Narutowicza Street, 90-136 Lodz, Poland.
| | | |
Collapse
|
29
|
McCabe C, Rocha-Rego V. Investigating the Predictive Value of Functional MRI to Appetitive and Aversive Stimuli: A Pattern Classification Approach. PLoS One 2016; 11:e0165295. [PMID: 27870866 PMCID: PMC5117589 DOI: 10.1371/journal.pone.0165295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 10/10/2016] [Indexed: 12/26/2022] Open
Abstract
Background Dysfunctional neural responses to appetitive and aversive stimuli have been investigated as possible biomarkers for psychiatric disorders. However it is not clear to what degree these are separate processes across the brain or in fact overlapping systems. To help clarify this issue we used Gaussian process classifier (GPC) analysis to examine appetitive and aversive processing in the brain. Method 25 healthy controls underwent functional MRI whilst seeing pictures and receiving tastes of pleasant and unpleasant food. We applied GPCs to discriminate between the appetitive and aversive sights and tastes using functional activity patterns. Results The diagnostic accuracy of the GPC for the accuracy to discriminate appetitive taste from neutral condition was 86.5% (specificity = 81%, sensitivity = 92%, p = 0.001). If a participant experienced neutral taste stimuli the probability of correct classification was 92. The accuracy to discriminate aversive from neutral taste stimuli was 82.5% (specificity = 73%, sensitivity = 92%, p = 0.001) and appetitive from aversive taste stimuli was 73% (specificity = 77%, sensitivity = 69%, p = 0.001). In the sight modality, the accuracy to discriminate appetitive from neutral condition was 88.5% (specificity = 85%, sensitivity = 92%, p = 0.001), to discriminate aversive from neutral sight stimuli was 92% (specificity = 92%, sensitivity = 92%, p = 0.001), and to discriminate aversive from appetitive sight stimuli was 63.5% (specificity = 73%, sensitivity = 54%, p = 0.009). Conclusions Our results demonstrate the predictive value of neurofunctional data in discriminating emotional and neutral networks of activity in the healthy human brain. It would be of interest to use pattern recognition techniques and fMRI to examine network dysfunction in the processing of appetitive, aversive and neutral stimuli in psychiatric disorders. Especially where problems with reward and punishment processing have been implicated in the pathophysiology of the disorder.
Collapse
Affiliation(s)
- Ciara McCabe
- School of Psychology and Clinical Language Sciences, University of Reading, Reading, United Kingdom
- * E-mail:
| | - Vanessa Rocha-Rego
- Instituto de Biofisica Carlos Chagas Filho, University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
30
|
Yi Z, Guo S, Hu X, Wang X, Zhang X, Griffin N, Shan F. Functional modulation on macrophage by low dose naltrexone (LDN). Int Immunopharmacol 2016; 39:397-402. [DOI: 10.1016/j.intimp.2016.08.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 08/17/2016] [Accepted: 08/17/2016] [Indexed: 12/31/2022]
|
31
|
Merson B, Pezdek K. Response Inhibition and Interference Suppression in Restrained Eating. JOURNAL OF APPLIED RESEARCH IN MEMORY AND COGNITION 2016. [DOI: 10.1016/j.jarmac.2016.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
32
|
Dopamine D2/3- and μ-opioid receptor antagonists reduce cue-induced responding and reward impulsivity in humans. Transl Psychiatry 2016; 6:e850. [PMID: 27378550 PMCID: PMC4969763 DOI: 10.1038/tp.2016.113] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Revised: 04/27/2016] [Accepted: 04/29/2016] [Indexed: 01/05/2023] Open
Abstract
Increased responding to drug-associated stimuli (cue reactivity) and an inability to tolerate delayed gratification (reward impulsivity) have been implicated in the development and maintenance of drug addiction. Whereas data from animal studies suggest that both the dopamine and opioid system are involved in these two reward-related processes, their role in humans is less clear. Moreover, dopaminergic and opioidergic drugs have not been directly compared with regard to these functions, even though a deeper understanding of the underlying mechanisms might inform the development of specific treatments for elevated cue reactivity and reward impulsivity. In a randomized, double-blind, between-subject design we administered the selective dopamine D2/D3 receptor antagonist amisulpride (400 mg, n=41), the unspecific opioid receptor antagonist naltrexone (50 mg, n=40) or placebo (n=40) to healthy humans and measured cue-induced responding with a Pavlovian-instrumental transfer task and reward impulsivity with a delay discounting task. Mood was assessed using a visual analogue scale. Compared with placebo, amisulpride significantly suppressed cue-induced responding and reward impulsivity. The effects of naltrexone were similar, although less pronounced. Both amisulpride and naltrexone decreased average mood ratings compared with placebo. Our results demonstrate that a selective blockade of dopamine D2/D3 receptors reduces cue-induced responding and reward impulsivity in healthy humans. Antagonizing μ-opioid receptors has similar effects for cue-induced responding and to a lesser extent for reward impulsivity.
Collapse
|
33
|
Rose JH, Karkhanis AN, Chen R, Gioia D, Lopez MF, Becker HC, McCool BA, Jones SR. Supersensitive Kappa Opioid Receptors Promotes Ethanol Withdrawal-Related Behaviors and Reduce Dopamine Signaling in the Nucleus Accumbens. Int J Neuropsychopharmacol 2016; 19:pyv127. [PMID: 26625893 PMCID: PMC4886667 DOI: 10.1093/ijnp/pyv127] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 11/22/2015] [Accepted: 11/24/2015] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Chronic ethanol exposure reduces dopamine transmission in the nucleus accumbens, which may contribute to the negative affective symptoms associated with ethanol withdrawal. Kappa opioid receptors have been implicated in withdrawal-induced excessive drinking and anxiety-like behaviors and are known to inhibit dopamine release in the nucleus accumbens. The effects of chronic ethanol exposure on kappa opioid receptor-mediated changes in dopamine transmission at the level of the dopamine terminal and withdrawal-related behaviors were examined. METHODS Five weeks of chronic intermittent ethanol exposure in male C57BL/6 mice were used to examine the role of kappa opioid receptors in chronic ethanol-induced increases in ethanol intake and marble burying, a measure of anxiety/compulsive-like behavior. Drinking and marble burying were evaluated before and after chronic intermittent ethanol exposure, with and without kappa opioid receptor blockade by nor-binaltorphimine (10mg/kg i.p.). Functional alterations in kappa opioid receptors were assessed using fast scan cyclic voltammetry in brain slices containing the nucleus accumbens. RESULTS Chronic intermittent ethanol-exposed mice showed increased ethanol drinking and marble burying compared with controls, which was attenuated with kappa opioid receptor blockade. Chronic intermittent ethanol-induced increases in behavior were replicated with kappa opioid receptor activation in naïve mice. Fast scan cyclic voltammetry revealed that chronic intermittent ethanol reduced accumbal dopamine release and increased uptake rates, promoting a hypodopaminergic state of this region. Kappa opioid receptor activation with U50,488H concentration-dependently decreased dopamine release in both groups; however, this effect was greater in chronic intermittent ethanol-treated mice, indicating kappa opioid receptor supersensitivity in this group. CONCLUSIONS These data suggest that the chronic intermittent ethanol-induced increase in ethanol intake and anxiety/compulsive-like behaviors may be driven by greater kappa opioid receptor sensitivity and a hypodopaminergic state of the nucleus accumbens.
Collapse
MESH Headings
- Alcohol Drinking/adverse effects
- Alcohol Drinking/metabolism
- Alcohol Drinking/physiopathology
- Alcohol Drinking/psychology
- Alcohol-Induced Disorders, Nervous System/metabolism
- Alcohol-Induced Disorders, Nervous System/physiopathology
- Alcohol-Induced Disorders, Nervous System/psychology
- Analgesics, Opioid/pharmacology
- Animals
- Anxiety/metabolism
- Anxiety/physiopathology
- Anxiety/psychology
- Behavior, Animal/drug effects
- Compulsive Behavior
- Disease Models, Animal
- Dopamine/metabolism
- Dopaminergic Neurons/metabolism
- Dose-Response Relationship, Drug
- Ethanol
- In Vitro Techniques
- Male
- Mice, Inbred C57BL
- Narcotic Antagonists/pharmacology
- Nucleus Accumbens/drug effects
- Nucleus Accumbens/metabolism
- Nucleus Accumbens/physiopathology
- Receptors, Opioid, kappa/drug effects
- Receptors, Opioid, kappa/metabolism
- Substance Withdrawal Syndrome/metabolism
- Substance Withdrawal Syndrome/physiopathology
- Substance Withdrawal Syndrome/psychology
- Synaptic Transmission/drug effects
Collapse
Affiliation(s)
- Jamie H Rose
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina (Dr Rose, Dr Karkhanis, Dr Chen, Mr Gioia, Dr McCool, and Dr Jones); Charleston Alcohol Research Center (Drs Lopez and Becker), Department of Psychiatry (Drs Lopez and Becker), and Department of Neurosciences (Dr Becker), Medical University of South Carolina, Charleston, South Carolina; RHJ Department of Veterans Affairs Medical Center, Charleston, South Carolina (Dr Becker)
| | - Anushree N Karkhanis
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina (Dr Rose, Dr Karkhanis, Dr Chen, Mr Gioia, Dr McCool, and Dr Jones); Charleston Alcohol Research Center (Drs Lopez and Becker), Department of Psychiatry (Drs Lopez and Becker), and Department of Neurosciences (Dr Becker), Medical University of South Carolina, Charleston, South Carolina; RHJ Department of Veterans Affairs Medical Center, Charleston, South Carolina (Dr Becker)
| | - Rong Chen
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina (Dr Rose, Dr Karkhanis, Dr Chen, Mr Gioia, Dr McCool, and Dr Jones); Charleston Alcohol Research Center (Drs Lopez and Becker), Department of Psychiatry (Drs Lopez and Becker), and Department of Neurosciences (Dr Becker), Medical University of South Carolina, Charleston, South Carolina; RHJ Department of Veterans Affairs Medical Center, Charleston, South Carolina (Dr Becker)
| | - Dominic Gioia
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina (Dr Rose, Dr Karkhanis, Dr Chen, Mr Gioia, Dr McCool, and Dr Jones); Charleston Alcohol Research Center (Drs Lopez and Becker), Department of Psychiatry (Drs Lopez and Becker), and Department of Neurosciences (Dr Becker), Medical University of South Carolina, Charleston, South Carolina; RHJ Department of Veterans Affairs Medical Center, Charleston, South Carolina (Dr Becker)
| | - Marcelo F Lopez
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina (Dr Rose, Dr Karkhanis, Dr Chen, Mr Gioia, Dr McCool, and Dr Jones); Charleston Alcohol Research Center (Drs Lopez and Becker), Department of Psychiatry (Drs Lopez and Becker), and Department of Neurosciences (Dr Becker), Medical University of South Carolina, Charleston, South Carolina; RHJ Department of Veterans Affairs Medical Center, Charleston, South Carolina (Dr Becker)
| | - Howard C Becker
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina (Dr Rose, Dr Karkhanis, Dr Chen, Mr Gioia, Dr McCool, and Dr Jones); Charleston Alcohol Research Center (Drs Lopez and Becker), Department of Psychiatry (Drs Lopez and Becker), and Department of Neurosciences (Dr Becker), Medical University of South Carolina, Charleston, South Carolina; RHJ Department of Veterans Affairs Medical Center, Charleston, South Carolina (Dr Becker)
| | - Brian A McCool
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina (Dr Rose, Dr Karkhanis, Dr Chen, Mr Gioia, Dr McCool, and Dr Jones); Charleston Alcohol Research Center (Drs Lopez and Becker), Department of Psychiatry (Drs Lopez and Becker), and Department of Neurosciences (Dr Becker), Medical University of South Carolina, Charleston, South Carolina; RHJ Department of Veterans Affairs Medical Center, Charleston, South Carolina (Dr Becker)
| | - Sara R Jones
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina (Dr Rose, Dr Karkhanis, Dr Chen, Mr Gioia, Dr McCool, and Dr Jones); Charleston Alcohol Research Center (Drs Lopez and Becker), Department of Psychiatry (Drs Lopez and Becker), and Department of Neurosciences (Dr Becker), Medical University of South Carolina, Charleston, South Carolina; RHJ Department of Veterans Affairs Medical Center, Charleston, South Carolina (Dr Becker).
| |
Collapse
|
34
|
Abstract
Theorists have proposed several neural vulnerability factors that may increase overeating and consequent weight gain. Early cross-sectional imaging studies could not determine whether aberrant neural responsivity was a precursor or consequence of overeating. However, recent prospective imaging studies examining predictors of future weight gain and response to obesity treatment, and repeated-measures imaging studies before and after weight gain and loss have advanced knowledge of etiologic processes and neural plasticity resulting from weight change. The present article reviews evidence from prospective studies using imaging and behavioral measures reflecting neural function, as well as randomized experiments with humans and animals that are consistent or inconsistent with 5 neural vulnerability theories for excessive weight gain. Extant data provide strong support for the incentive sensitization theory of obesity and moderate support for the reward surfeit theory, inhibitory control deficit theory, and dynamic vulnerability model of obesity, which attempted to synthesize the former theories into a single etiologic model. However, existing data provide only minimal support for the reward deficit theory. Findings are synthesized into a new working etiologic model that is based on current scientific knowledge. Important directions for future studies, which have the potential to support or refute this working etiologic model, are delineated. (PsycINFO Database Record
Collapse
|
35
|
Wardle MC, Bershad AK, de Wit H. Naltrexone alters the processing of social and emotional stimuli in healthy adults. Soc Neurosci 2016; 11:579-91. [PMID: 26710657 DOI: 10.1080/17470919.2015.1136355] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Endogenous opioids have complex social effects that may depend on specific receptor actions and vary depending on the "stage" of social behavior (e.g., seeking vs. responding to social stimuli). We tested the effects of a nonspecific opioid antagonist, naltrexone (NTX), on social processing in humans. NTX is used to treat alcohol and opiate dependence, and may affect both mu and kappa-opioid systems. We assessed attention ("seeking"), and subjective and psychophysiological responses ("responding") to positive and negative social stimuli. Based on literature suggesting mu-opioid blockade impairs positive social responses, we hypothesized that NTX would decrease responses to positive social stimuli. We also tested responses to negative stimuli, which might be either increased by NTX's mu-opioid effects or decreased by its kappa-opioid effects. Thirty-four healthy volunteers received placebo, 25 mg, or 50 mg NTX across three sessions under double-blind conditions. At each session, participants completed measures of attention, identification, and emotional responses for emotional faces and scenes. NTX increased attention to emotional expressions, slowed identification of sadness and fear, and decreased ratings of arousal for social and nonsocial emotional scenes. These findings are more consistent with anxiolytic kappa-antagonist than mu-blocking effects, suggesting effects on kappa receptors may contribute to the clinical effects of NTX.
Collapse
Affiliation(s)
- Margaret C Wardle
- a Department of Psychiatry and Behavioral Sciences , University of Texas Health Science Center at Houston , Houston , TX, USA
| | - Anya K Bershad
- b Department of Psychiatry and Behavioral Neuroscience , University of Chicago , Chicago , IL , USA
| | - Harriet de Wit
- b Department of Psychiatry and Behavioral Neuroscience , University of Chicago , Chicago , IL , USA
| |
Collapse
|
36
|
Abstract
Binge eating disorder is characterized by excessive, uncontrollable consumption of palatable food within brief periods of time. Excessive intake of palatable food is thought to be driven by hedonic, rather than energy homeostatic, mechanisms. However, reward processing does not only comprise consummatory actions; a key component is represented by the anticipatory phase directed at procuring the reward. This phase is highly influenced by environmental food-associated stimuli, which can robustly enhance the desire to eat even in the absence of physiological needs. The opioid system (endogenous peptides and their receptors) has been strongly linked to the rewarding aspects of palatable food intake, and perhaps represents the key system involved in hedonic overeating. Here we review evidence suggesting that the opioid system can also be regarded as one of the systems that regulates the anticipatory incentive processes preceding binge eating hedonic episodes.
Collapse
|
37
|
Rolls ET, Kellerhals MB, Nichols TE. Age differences in the brain mechanisms of good taste. Neuroimage 2015; 113:298-309. [PMID: 25842291 PMCID: PMC6529355 DOI: 10.1016/j.neuroimage.2015.03.065] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 03/23/2015] [Accepted: 03/25/2015] [Indexed: 12/20/2022] Open
Abstract
There is strong evidence demonstrating age-related differences in the acceptability of foods and beverages. To examine the neural foundations underlying these age-related differences in the acceptability of different flavors and foods, we performed an fMRI study to investigate brain and hedonic responses to orange juice, orange soda, and vegetable juice in three different age groups: Young (22), Middle (40) and Elderly (60 years). Orange juice and orange soda were found to be liked by all age groups, while vegetable juice was disliked by the Young, but liked by the Elderly. In the insular primary taste cortex, the activations to these stimuli were similar in the 3 age groups, indicating that the differences in liking for these stimuli between the 3 groups were not represented in this first stage of cortical taste processing. In the agranular insula (anterior to the insular primary taste cortex) where flavor is represented, the activations to the stimuli were similar in the Elderly, but in the Young the activations were larger to the vegetable juice than to the orange drinks; and the activations here were correlated with the unpleasantness of the stimuli. In the anterior midcingulate cortex, investigated as a site where the activations were correlated with the unpleasantness of the stimuli, there was again a greater activation to the vegetable than to the orange stimuli in the Young but not in the Elderly. In the amygdala (and orbitofrontal cortex), investigated as sites where the activations were correlated with the pleasantness of the stimuli, there was a smaller activation to the vegetable than to the orange stimuli in the Young but not in the Elderly. The Middle group was intermediate with respect to the separation of their activations to the stimuli in the brain areas that represent the pleasantness or unpleasantness of flavors. Thus age differences in the activations to different flavors can in some brain areas be related to, and probably cause, the differences in pleasantness of foods as they differ for people of different ages. This novel work provides a foundation for understanding the underlying neural bases for differences in food acceptability between age groups.
Collapse
Affiliation(s)
- Edmund T Rolls
- Oxford Centre for Computational Neuroscience, Oxford, UK.
| | | | - Thomas E Nichols
- Department of Statistics, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
38
|
Tudge L, Williams C, Cowen PJ, McCabe C. Neural effects of cannabinoid CB1 neutral antagonist tetrahydrocannabivarin on food reward and aversion in healthy volunteers. Int J Neuropsychopharmacol 2015; 18:pyu094. [PMID: 25542687 PMCID: PMC4438540 DOI: 10.1093/ijnp/pyu094] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 11/06/2014] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Disturbances in the regulation of reward and aversion in the brain may underlie disorders such as obesity and eating disorders. We previously showed that the cannabis receptor subtype (CB1) inverse agonist rimonabant, an antiobesity drug withdrawn due to depressogenic side effects, diminished neural reward responses yet increased aversive responses (Horder et al., 2010). Unlike rimonabant, tetrahydrocannabivarin is a neutral CB1 receptor antagonist (Pertwee, 2005) and may therefore produce different modulations of the neural reward system. We hypothesized that tetrahydrocannabivarin would, unlike rimonabant, leave intact neural reward responses but augment aversive responses. METHODS We used a within-subject, double-blind design. Twenty healthy volunteers received a single dose of tetrahydrocannabivarin (10mg) and placebo in randomized order on 2 separate occasions. We measured the neural response to rewarding (sight and/or flavor of chocolate) and aversive stimuli (picture of moldy strawberries and/or a less pleasant strawberry taste) using functional magnetic resonance imaging. Volunteers rated pleasantness, intensity, and wanting for each stimulus. RESULTS There were no significant differences between groups in subjective ratings. However, tetrahydrocannabivarin increased responses to chocolate stimuli in the midbrain, anterior cingulate cortex, caudate, and putamen. Tetrahydrocannabivarin also increased responses to aversive stimuli in the amygdala, insula, mid orbitofrontal cortex, caudate, and putamen. CONCLUSIONS Our findings are the first to show that treatment with the CB1 neutral antagonist tetrahydrocannabivarin increases neural responding to rewarding and aversive stimuli. This effect profile suggests therapeutic activity in obesity, perhaps with a lowered risk of depressive side effects.
Collapse
Affiliation(s)
| | | | | | - Ciara McCabe
- School of Psychology and Clinical Language Sciences, University of Reading, Reading, United Kingdom (Mr Tudge and Dr McCabe); Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, United Kingdom (Ms Williams and Prof Cowen).
| |
Collapse
|