1
|
Zheng JY, Li XX, Liu X, Zhang CC, Sun YX, Ma YN, Wang HL, Su YA, Si TM, Li JT. Fluoxetine reverses early-life stress-induced depressive-like behaviors and region-specific alterations of monoamine transporters in female mice. Pharmacol Biochem Behav 2024; 237:173722. [PMID: 38336220 DOI: 10.1016/j.pbb.2024.173722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/21/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024]
Abstract
The sex difference that females are more vulnerable to depression than males has been recently replicated in an animal model of early-life stress (ES) called the limited bedding and nesting material (LBN) paradigm. Adopting this animal model, we have previously examined the effects of ES on monoamine transporter (MATs) expression in stress-related regions in adult female mice, and the reversal effects of a novel multimodal antidepressant, vortioxetine. In this study, replacing vortioxetine with a classical antidepressant, fluoxetine, we aimed to replicate the ES effects in adult female mice and to elucidate the commonality and differences between fluoxetine and vortioxetine. We found that systemic 30-day treatment with fluoxetine successfully reversed ES-induced depression-like behaviors (especially sucrose preference) in adult female mice. At the molecular level, we largely replicated the ES effects, such as reduced serotonin transporter (SERT) expression in the amygdala and increased norepinephrine transporter (NET) expression in the medial prefrontal cortex (mPFC) and hippocampus. Similar reversal effects of fluoxetine and vortioxetine were observed, including SERT in the amygdala and NET in the mPFC, whereas different reversal effects were observed for NET in the hippocampus and vesicular monoamine transporters expression in the nucleus accumbens. Overall, these results demonstrate the validity of the LBN paradigm to induce depression-like behaviors in female mice, highlight the involvement of region-specific MATs in ES-induced depression-like behaviors, and provide insights for further investigation of neurobiological mechanisms, treatment, and prevention associated with depression in women.
Collapse
Affiliation(s)
- Jia-Ya Zheng
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital/Institute of Mental Health) and the Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China
| | - Xue-Xin Li
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital/Institute of Mental Health) and the Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China
| | - Xiao Liu
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital/Institute of Mental Health) and the Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China
| | - Chen-Chen Zhang
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital/Institute of Mental Health) and the Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China
| | - Ya-Xin Sun
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital/Institute of Mental Health) and the Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China
| | - Yu-Nu Ma
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital/Institute of Mental Health) and the Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China
| | - Hong-Li Wang
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital/Institute of Mental Health) and the Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China
| | - Yun-Ai Su
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital/Institute of Mental Health) and the Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China
| | - Tian-Mei Si
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital/Institute of Mental Health) and the Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China.
| | - Ji-Tao Li
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital/Institute of Mental Health) and the Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China.
| |
Collapse
|
2
|
Hettiarachchi P, Johnson MA. Characterization of D3 Autoreceptor Function in Whole Zebrafish Brain with Fast-Scan Cyclic Voltammetry. ACS Chem Neurosci 2022; 13:2863-2873. [PMID: 36099546 PMCID: PMC10105970 DOI: 10.1021/acschemneuro.2c00280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Zebrafish (Danio rerio) are ideal model organisms for investigating nervous system function, both in health and disease. Nevertheless, functional characteristics of dopamine (DA) release and uptake regulation are still not well-understood in zebrafish. In this study, we assessed D3 autoreceptor function in the telencephalon of whole zebrafish brains ex vivo by measuring the electrically stimulated DA release ([DA]max) and uptake at carbon fiber microelectrodes with fast-scan cyclic voltammetry. Treatment with pramipexole and 7-OH-DPAT, selective D3 autoreceptor agonists, sharply decreased [DA]max. Conversely, SB277011A, a selective D3 antagonist, nearly doubled [DA]max and decreased k, the first-order rate constant for the DA uptake, to about 20% of its original value. Treatment with desipramine, a selective norepinephrine transporter blocker, failed to increase current, suggesting that our electrochemical signal arises solely from the release of DA. Furthermore, blockage of DA uptake with nomifensine-reversed 7-OH-DPAT induced decreases in [DA]max. Collectively, our data show that, as in mammals, D3 autoreceptors regulate DA release, likely by inhibiting uptake. The results of this study are useful in the further development of zebrafish as a model organism for DA-related neurological disorders such as Parkinson's disease, schizophrenia, and drug addiction.
Collapse
Affiliation(s)
- Piyanka Hettiarachchi
- Department of Chemistry and R.N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, Kansas 66045
| | - Michael A Johnson
- Department of Chemistry and R.N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, Kansas 66045
| |
Collapse
|
3
|
Liu X, Sun YX, Zhang CC, Zhang XQ, Zhang Y, Wang T, Ma YN, Wang H, Su YA, Li JT, Si TM. Vortioxetine attenuates the effects of early-life stress on depression-like behaviors and monoamine transporters in female mice. Neuropharmacology 2021; 186:108468. [PMID: 33485943 DOI: 10.1016/j.neuropharm.2021.108468] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 12/23/2020] [Accepted: 01/17/2021] [Indexed: 01/06/2023]
Abstract
Major depressive disorder is a major psychiatric disorder and a leading cause of disability around the world. Females have about twice as high an incidence of depression as males. However, preclinical animal models of depression have seldom investigated the molecular alterations associated with higher depression risk in females. In this study, adopting the early-life stress (ELS) paradigm of limited bedding and nesting material, we found that ELS induced depression-like behaviors only in adult female mice, as evaluated by sucrose preference and tail suspension tests. We then examined the ELS effects on monoamine neurotransmission (transporters for monoamine reuptake and release) in depression-related brain regions in female mice. We found that ELS resulted in widespread changes of the expression levels of these transporters in four brain regions. Moreover, systemic 21-day treatment with vortioxetine, a novel multimodal antidepressant, successfully reversed depression-like behaviors and normalized some molecular changes, including that of the norepinephrine transporter in the medial prefrontal cortex, vesicular monoamine transporter 2 in nucleus accumbens core, and serotonin transporter in amygdala. Collectively, these results provide evidence for the validity of using the limited bedding and nesting material paradigm to investigate sex differences in depression and demonstrate that the region-specific alterations of monoamine neurotransmission may be associated with depression-like behaviors in female mice. This article is part of the special issue on 'Stress, Addiction and Plasticity'.
Collapse
Affiliation(s)
- Xiao Liu
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital/Institute of Mental Health, The Key Laboratory of Mental Health, Ministry of Health, Peking University, Beijing, China
| | - Ya-Xin Sun
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital/Institute of Mental Health, The Key Laboratory of Mental Health, Ministry of Health, Peking University, Beijing, China
| | - Chen-Chen Zhang
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital/Institute of Mental Health, The Key Laboratory of Mental Health, Ministry of Health, Peking University, Beijing, China
| | - Xian-Qiang Zhang
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital/Institute of Mental Health, The Key Laboratory of Mental Health, Ministry of Health, Peking University, Beijing, China
| | - Yue Zhang
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital/Institute of Mental Health, The Key Laboratory of Mental Health, Ministry of Health, Peking University, Beijing, China
| | - Ting Wang
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital/Institute of Mental Health, The Key Laboratory of Mental Health, Ministry of Health, Peking University, Beijing, China
| | - Yu-Nu Ma
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital/Institute of Mental Health, The Key Laboratory of Mental Health, Ministry of Health, Peking University, Beijing, China
| | - Han Wang
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital/Institute of Mental Health, The Key Laboratory of Mental Health, Ministry of Health, Peking University, Beijing, China
| | - Yun-Ai Su
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital/Institute of Mental Health, The Key Laboratory of Mental Health, Ministry of Health, Peking University, Beijing, China
| | - Ji-Tao Li
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital/Institute of Mental Health, The Key Laboratory of Mental Health, Ministry of Health, Peking University, Beijing, China.
| | - Tian-Mei Si
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital/Institute of Mental Health, The Key Laboratory of Mental Health, Ministry of Health, Peking University, Beijing, China.
| |
Collapse
|
4
|
Montagud-Romero S, Montesinos J, Pavón FJ, Blanco-Gandia MC, Ballestín R, Rodríguez de Fonseca F, Miñarro J, Guerri C, Rodríguez-Arias M. Social defeat-induced increase in the conditioned rewarding effects of cocaine: Role of CX3CL1. Prog Neuropsychopharmacol Biol Psychiatry 2020; 96:109753. [PMID: 31446159 DOI: 10.1016/j.pnpbp.2019.109753] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/27/2019] [Accepted: 08/21/2019] [Indexed: 12/17/2022]
Abstract
Social stress is associated with higher vulnerability to drug use, as it enhances the reinforcing effects of psychostimulants in rodents. Furthermore, continued or severe stress induces a proinflammatory state of microglial activation and augmented cytokine production. The aim of the present work was to evaluate the role of fractalkine [C-X3-C motif ligand 1 (CX3CL1)], an inflammatory chemokine, in the increased conditioned rewarding effects of cocaine in animals exposed to social defeat stress. In addition, we measured the signaling cascade pathway of CX3CL1 in the hippocampus (HPC) (including p-ERK/ERK, p-p38/p38 MAPK, p-p65/p65 NFκB and p-CREB/CREB ratios). The glutamate receptor subunits NR1, NR2B and GluA1 were also assessed. A total of 102 adult male C57BL/6 J wild-type (WT) and Cx3cr1 knockout (KO) mice were divided into different experimental groups according to stress condition (exploration or social defeat). Three weeks after the last social defeat, conditioned place preference (CPP) was induced by a subthreshold dose of cocaine (1 mg/kg). Brain tissue samples were taken 24 h after the CPP procedure to determine the levels of the proteins and transcription factors. Our results showed that, in WT animals, repeated social defeat (RSD) decreased CX3CL1 striatal levels without producing changes in the HPC. In addition, RSD induced an increase in the conditioned rewarding effects of cocaine, regardless of the genotype. After CPP induced by cocaine, defeated Cx3cr1-deficient mice showed a decrease in the p-p65/p65 NFκB and pCREB/CREB ratio in the HPC, and an increase in the hippocampal levels of CX3CL1 and p-p38/p38 MAPK relation. In all defeated mice, there was a decrease in the ionotropic glutamate receptor subunit NR1. In conclusion, these results suggest that the lack of CX3CL1/Cx3cr1 signaling under stress conditions induces changes in protein and transcription factors, indicating that CX3CL1 is needed to shield the response to social defeat.
Collapse
Affiliation(s)
- Sandra Montagud-Romero
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez, 21, 46010 Valencia, Spain
| | - Jorge Montesinos
- Department of Molecular and Cellular Pathology of Alcohol, Príncipe Felipe Research Center, Valencia 46012, Spain; Department of Neurology, Columbia University Medical Center, New York, USA
| | - Francisco Javier Pavón
- Red Temática de Investigación Cooperativa en Salud (RETICS-Trastornos Adictivos), Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain; Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga/Universidad de Málaga, Málaga 29010, Spain
| | - M Carmen Blanco-Gandia
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez, 21, 46010 Valencia, Spain
| | - Raúl Ballestín
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez, 21, 46010 Valencia, Spain; Red Temática de Investigación Cooperativa en Salud (RETICS-Trastornos Adictivos), Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| | - Fernando Rodríguez de Fonseca
- Red Temática de Investigación Cooperativa en Salud (RETICS-Trastornos Adictivos), Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain; Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga/Universidad de Málaga, Málaga 29010, Spain
| | - José Miñarro
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez, 21, 46010 Valencia, Spain; Red Temática de Investigación Cooperativa en Salud (RETICS-Trastornos Adictivos), Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| | - Consuelo Guerri
- Red Temática de Investigación Cooperativa en Salud (RETICS-Trastornos Adictivos), Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain; Department of Molecular and Cellular Pathology of Alcohol, Príncipe Felipe Research Center, Valencia 46012, Spain
| | - Marta Rodríguez-Arias
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez, 21, 46010 Valencia, Spain; Red Temática de Investigación Cooperativa en Salud (RETICS-Trastornos Adictivos), Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain.
| |
Collapse
|
5
|
Young LW, Darios ES, Watts SW. An immunohistochemical analysis of SERT in the blood-brain barrier of the male rat brain. Histochem Cell Biol 2015; 144:321-9. [PMID: 26223876 PMCID: PMC4575874 DOI: 10.1007/s00418-015-1343-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2015] [Indexed: 02/07/2023]
Abstract
5-Hydroxytryptamine (5-HT) was originally discovered as a vasoconstrictor. 5-HT lowers blood pressure when administered peripherally to both normotensive and hypertensive male rats. Because the serotonin transporter (SERT) can function bidirectionally, we must consider whether 5-HT can be transported from the bloodstream to the central nervous system (CNS) in facilitating the fall in blood pressure. The blood-brain barrier (BBB) is a highly selective barrier that restricts movement of substances from the bloodstream to the CNS and vice versa, but the rat BBB has not been investigated in terms of SERT expression. This requires us to determine whether the BBB of the rat, the species in which we first observed a fall in blood pressure to infused 5-HT, expresses SERT. We hypothesized that SERT is present in the BBB of the male rat. To test this hypothesis, over 500 blood vessels were sampled from coronal slices of six male rat brains. Immunofluorescence of these coronal slices was used to determine whether SERT and RecA-1 (an endothelial cell marker) colocalized to the BBB. Blood vessels were considered to be capillaries if they were between 1.5 and 23 µm (intraluminal diameter). SERT was identified in the largest pial vessels of the BBB (mean ± SEM = 228.70 ± 18.71 µm, N = 9) and the smallest capillaries (mean ± SEM = 2.75 ± 0.12 µm, N = 369). SERT was not identified in the endothelium of blood vessels ranging from 20 to 135 µm (N = 45). The expression of SERT in the rat BBB means that 5-HT entry into the CNS must be considered a potential mechanism when investigating 5-HT-induced fall in blood pressure.
Collapse
Affiliation(s)
- Lindsey W Young
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - Emma S Darios
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA.
| | - Stephanie W Watts
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|