1
|
Provenza NR, Reddy S, Allam AK, Rajesh SV, Diab N, Reyes G, Caston RM, Katlowitz KA, Gandhi AD, Bechtold RA, Dang HQ, Najera RA, Giridharan N, Kabotyanski KE, Momin F, Hasen M, Banks GP, Mickey BJ, Kious BM, Shofty B, Hayden BY, Herron JA, Storch EA, Patel AB, Goodman WK, Sheth SA. Disruption of neural periodicity predicts clinical response after deep brain stimulation for obsessive-compulsive disorder. Nat Med 2024; 30:3004-3014. [PMID: 38997607 PMCID: PMC11485242 DOI: 10.1038/s41591-024-03125-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 06/11/2024] [Indexed: 07/14/2024]
Abstract
Recent advances in surgical neuromodulation have enabled chronic and continuous intracranial monitoring during everyday life. We used this opportunity to identify neural predictors of clinical state in 12 individuals with treatment-resistant obsessive-compulsive disorder (OCD) receiving deep brain stimulation (DBS) therapy ( NCT05915741 ). We developed our neurobehavioral models based on continuous neural recordings in the region of the ventral striatum in an initial cohort of five patients and tested and validated them in a held-out cohort of seven additional patients. Before DBS activation, in the most symptomatic state, theta/alpha (9 Hz) power evidenced a prominent circadian pattern and a high degree of predictability. In patients with persistent symptoms (non-responders), predictability of the neural data remained consistently high. On the other hand, in patients who improved symptomatically (responders), predictability of the neural data was significantly diminished. This neural feature accurately classified clinical status even in patients with limited duration recordings, indicating generalizability that could facilitate therapeutic decision-making.
Collapse
Affiliation(s)
- Nicole R Provenza
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
- Department of Electrical & Computer Engineering, Rice University, Houston, TX, USA
| | - Sandesh Reddy
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Anthony K Allam
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Sameer V Rajesh
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Nabeel Diab
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Gabriel Reyes
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Rose M Caston
- Department of Neurosurgery, University of Utah, Salt Lake City, UT, USA
| | - Kalman A Katlowitz
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Ajay D Gandhi
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Raphael A Bechtold
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Huy Q Dang
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Ricardo A Najera
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Nisha Giridharan
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | | | - Faiza Momin
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Mohammed Hasen
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Garrett P Banks
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Brian J Mickey
- Department of Psychiatry, University of Utah, Salt Lake City, UT, USA
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Brent M Kious
- Department of Psychiatry, University of Utah, Salt Lake City, UT, USA
| | - Ben Shofty
- Department of Neurosurgery, University of Utah, Salt Lake City, UT, USA
| | - Benjamin Y Hayden
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
- Department of Electrical & Computer Engineering, Rice University, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Jeffrey A Herron
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA
| | - Eric A Storch
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Ankit B Patel
- Department of Electrical & Computer Engineering, Rice University, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Wayne K Goodman
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
- Department of Electrical & Computer Engineering, Rice University, Houston, TX, USA
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Sameer A Sheth
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA.
- Department of Electrical & Computer Engineering, Rice University, Houston, TX, USA.
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
2
|
Beckenstrom AC, Coloma PM, Dawson GR, Finlayson AK, Malik A, Post A, Steiner MA, Potenza MN. Use of experimental medicine approaches for the development of novel psychiatric treatments based on orexin receptor modulation. Neurosci Biobehav Rev 2023; 147:105107. [PMID: 36828161 PMCID: PMC10165155 DOI: 10.1016/j.neubiorev.2023.105107] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/08/2023] [Accepted: 02/18/2023] [Indexed: 02/25/2023]
Abstract
Despite progress in understanding the pathological mechanisms underlying psychiatric disorders, translation from animal models into clinical use remains a significant bottleneck. Preclinical studies have implicated the orexin neuropeptide system as a potential target for psychiatric disorders through its role in regulating emotional, cognitive, and behavioral processes. Clinical studies are investigating orexin modulation in addiction and mood disorders. Here we review performance-outcome measures (POMs) arising from experimental medicine research methods which may show promise as markers of efficacy of orexin receptor modulators in humans. POMs provide objective measures of brain function, complementing patient-reported or clinician-observed symptom evaluation, and aid the translation from preclinical to clinical research. Significant challenges include the development, validation, and operationalization of these measures. We suggest that collaborative networks comprising clinical practitioners, academics, individuals working in the pharmaceutical industry, drug regulators, patients, patient advocacy groups, and other relevant stakeholders may provide infrastructure to facilitate validation of experimental medicine approaches in translational research and in the implementation of these approaches in real-world clinical practice.
Collapse
Affiliation(s)
- Amy C Beckenstrom
- P1vital Ltd, Manor House, Howbery Business Park, Wallingford OX10 8BA, UK.
| | - Preciosa M Coloma
- Idorsia Pharmaceuticals Ltd, Hegenheimermattweg 91, Allschwil 4123, Switzerland
| | - Gerard R Dawson
- P1vital Ltd, Manor House, Howbery Business Park, Wallingford OX10 8BA, UK
| | - Ailidh K Finlayson
- P1vital Ltd, Manor House, Howbery Business Park, Wallingford OX10 8BA, UK; Department of Psychology, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Asad Malik
- P1vital Ltd, Manor House, Howbery Business Park, Wallingford OX10 8BA, UK
| | - Anke Post
- Corlieve Therapeutics, Swiss Innovation Park, Hegenheimermattweg 167A, 4123 Allschwil, Switzerland
| | | | - Marc N Potenza
- Departments of Psychiatry and Neuroscience and the Child Study Center, Yale School of Medicine, 1 Church Street, Room 726, New Haven, CT 06510, USA; Connecticut Mental Health Center, 34 Park Street, New Haven, CT 06519, USA; Connecticut Council on Problem Gambling, Wethersfield, CT, USA; The Wu Tsai Institute, Yale University, 100 College St, New Haven, CT 06510, USA
| |
Collapse
|
3
|
Kaplan GB, Lakis GA, Zhoba H. Sleep-Wake and Arousal Dysfunctions in Post-Traumatic Stress Disorder:Role of Orexin Systems. Brain Res Bull 2022; 186:106-122. [PMID: 35618150 DOI: 10.1016/j.brainresbull.2022.05.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 04/20/2022] [Accepted: 05/10/2022] [Indexed: 12/15/2022]
Abstract
Post-traumatic stress disorder (PTSD) is a trauma-related condition that produces distressing fear memory intrusions, avoidance behaviors, hyperarousal/startle, stress responses and insomnia. This review focuses on the importance of the orexin neural system as a novel mechanism related to the pathophysiology of PTSD. Orexinergic neurons originate in the lateral hypothalamus and project widely to key neurotransmitter system neurons, autonomic neurons, the hypothalamic-pituitaryadrenal (HPA) axis, and fear-related neural circuits. After trauma or stress, the basolateral amygdala (BLA) transmits sensory information to the central nucleus of the amygdala (CeA) and in turn to the hypothalamus and other subcortical and brainstem regions to promote fear and threat. Orexin receptors have a prominent role in this circuit as fear conditioned orexin receptor knockout mice show decreased fear expression while dual orexin receptor antagonists (DORAs) inhibit fear acquisition and expression. Orexin activation of an infralimbic-amygdala circuit impedes fear extinction while DORA treatments enhance it. Increased orexin signaling to the amygdalocortical- hippocampal circuit promotes avoidance behaviors. Orexin has an important role in activating sympathetic nervous system (SNS) activity and the HPA axis stress responses. Blockade of orexin receptors reduces fear-conditioned startle responses. In PTSD models, individuals demonstrate sleep disturbances such as increased sleep latency and more transitions to wakefulness. Increased orexin activity impairs sleep by promoting wakefulness and reducing total sleep time while DORA treatments enhance sleep onset and maintenance. The orexinergic neural system provides important mechanisms for understanding multiple PTSD behaviors and provides new medication targets to treat this often persistent and debilitating illness.
Collapse
Affiliation(s)
- Gary B Kaplan
- Mental Health Service, VA Boston Healthcare System, West Roxbury, MA, 02132 USA; Department of Psychiatry, Boston University School of Medicine, Boston, MA, 02118 USA; Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, 02118 USA.
| | - Gabrielle A Lakis
- Research Service, VA Boston Healthcare System, West Roxbury, MA, 02132 USA; Undergraduate Program in Neuroscience, Boston University, Boston, MA, 02215 USA
| | - Hryhoriy Zhoba
- Research Service, VA Boston Healthcare System, West Roxbury, MA, 02132 USA
| |
Collapse
|
4
|
Kirson D, Steinman MQ, Wolfe SA, Bagsic SRS, Bajo M, Sureshchandra S, Oleata CS, Messaoudi I, Zorrilla EP, Roberto M. Sex and context differences in the effects of trauma on comorbid alcohol use and post-traumatic stress phenotypes in actively drinking rats. J Neurosci Res 2021; 99:3354-3372. [PMID: 34687080 PMCID: PMC8712392 DOI: 10.1002/jnr.24972] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/02/2021] [Accepted: 09/18/2021] [Indexed: 02/06/2023]
Abstract
Alcohol use disorder (AUD) and affective disorders are frequently comorbid and share underlying mechanisms that could be targets for comprehensive treatment. Post-traumatic stress disorder (PTSD) has high comorbidity with AUD, but comprehensive models of this overlap are nascent. We recently characterized a model of comorbid AUD and PTSD-like symptoms, wherein stressed rats receive an inhibitory avoidance (IA)-related footshock on two occasions followed by two-bottle choice (2BC) voluntary alcohol drinking. Stressed rats received the second footshock in a familiar (FAM, same IA box as the first footshock) or novel context (NOV, single-chambered apparatus); the FAM paradigm more effectively increased alcohol drinking in males and the NOV paradigm in females. During abstinence, stressed males displayed avoidance-like PTSD symptoms, and females showed hyperarousal-like PTSD symptoms. Rats in the model had altered spontaneous action potential-independent GABAergic transmission in the central amygdala (CeA), a brain region key in alcohol dependence and stress-related signaling. However, PTSD sufferers may have alcohol experience prior to their trauma. Here, we therefore modified our AUD/PTSD comorbidity model to provide 3 weeks of intermittent extended alcohol access before footshock and then studied the effects of NOV and FAM stress on drinking and PTSD phenotypes. NOV stress suppressed the escalation of alcohol intake and preference seen in male controls, but no stress effects were seen on drinking in females. Additionally, NOV males had decreased action potential-independent presynaptic GABA release and delayed postsynaptic GABAA receptor kinetics in the CeA compared to control and FAM males. Despite these changes to alcohol intake and CeA GABA signaling, stressed rats showed broadly similar anxiogenic-like behaviors to our previous comorbid model, suggesting decoupling of the PTSD symptoms from the AUD vulnerability for some of these animals. The collective results show the importance of alcohol history and trauma context in vulnerability to comorbid AUD/PTSD-like symptoms.
Collapse
Affiliation(s)
- Dean Kirson
- The Scripps Research Institute, Department of Molecular Medicine, La Jolla, CA 92037, USA
| | - Michael Q. Steinman
- The Scripps Research Institute, Department of Molecular Medicine, La Jolla, CA 92037, USA
| | - Sarah A. Wolfe
- The Scripps Research Institute, Department of Molecular Medicine, La Jolla, CA 92037, USA
| | | | - Michal Bajo
- The Scripps Research Institute, Department of Molecular Medicine, La Jolla, CA 92037, USA
| | - Suhas Sureshchandra
- University of California Irvine, Department of Molecular Biology and Biochemistry, Irvine, CA 92697, USA
| | - Christopher S. Oleata
- The Scripps Research Institute, Department of Molecular Medicine, La Jolla, CA 92037, USA
| | - Ilhem Messaoudi
- University of California Irvine, Department of Molecular Biology and Biochemistry, Irvine, CA 92697, USA
| | - Eric P. Zorrilla
- The Scripps Research Institute, Department of Molecular Medicine, La Jolla, CA 92037, USA
| | - Marisa Roberto
- The Scripps Research Institute, Department of Molecular Medicine, La Jolla, CA 92037, USA
| |
Collapse
|
5
|
Steinman MQ, Kirson D, Wolfe SA, Khom S, D'Ambrosio SR, Spierling Bagsic SR, Bajo M, Vlkolinský R, Hoang NK, Singhal A, Sureshchandra S, Oleata CS, Messaoudi I, Zorrilla EP, Roberto M. Importance of sex and trauma context on circulating cytokines and amygdalar GABAergic signaling in a comorbid model of posttraumatic stress and alcohol use disorders. Mol Psychiatry 2021; 26:3093-3107. [PMID: 33087855 PMCID: PMC8058115 DOI: 10.1038/s41380-020-00920-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 09/29/2020] [Accepted: 10/06/2020] [Indexed: 02/08/2023]
Abstract
Alcohol use disorder (AUD) and anxiety disorders are frequently comorbid and share mechanisms that could be therapeutic targets. To facilitate mechanistic studies, we adapted an inhibitory avoidance-based "2-hit" rat model of posttraumatic stress disorder (PTSD) and identified predictors and biomarkers of comorbid alcohol (ethanol)/PTSD-like symptoms in these animals. Stressed Wistar rats received a single footshock on two occasions. The first footshock occurred when rats crossed into the dark chamber of a shuttle box. Forty-eight hours later, rats received the second footshock in a familiar (FAM) or novel (NOV) context. Rats then received 4 weeks of two-bottle choice (2BC) ethanol access. During subsequent abstinence, PTSD-like behavior responses, GABAergic synaptic transmission in the central amygdala (CeA), and circulating cytokine levels were measured. FAM and NOV stress more effectively increased 2BC drinking in males and females, respectively. Stressed male rats, especially drinking-vulnerable individuals (≥0.8 g/kg average 2-h ethanol intake with >50% ethanol preference), showed higher fear overgeneralization in novel contexts, increased GABAergic transmission in the CeA, and a profile of increased G-CSF, GM-CSF, IL-13, IL-6, IL-17a, leptin, and IL-4 that discriminated between stress context (NOV > FAM > Control). However, drinking-resilient males showed the highest G-CSF, IL-13, and leptin levels. Stressed females showed increased acoustic startle and decreased sleep maintenance, indicative of hyperarousal, with increased CeA GABAergic transmission in NOV females. This paradigm promotes key features of PTSD, including hyperarousal, fear generalization, avoidance, and sleep disturbance, with comorbid ethanol intake, in a sex-specific fashion that approximates clinical comorbidities better than existing models, and identifies increased CeA GABAergic signaling and a distinct pro-hematopoietic, proinflammatory, and pro-atopic cytokine profile that may aid in treatment.
Collapse
Affiliation(s)
- Michael Q Steinman
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Dean Kirson
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Sarah A Wolfe
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Sophia Khom
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Shannon R D'Ambrosio
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | | | - Michal Bajo
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Roman Vlkolinský
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Noah K Hoang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Anshita Singhal
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Suhas Sureshchandra
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, 92697, USA
| | - Christopher S Oleata
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Ilhem Messaoudi
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, 92697, USA
| | - Eric P Zorrilla
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA.
| | - Marisa Roberto
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA.
| |
Collapse
|
6
|
Soares VPMN, de Andrade TGCS, Canteras NS, Coimbra NC, Wotjak CT, Almada RC. Orexin 1 and 2 Receptors in the Prelimbic Cortex Modulate Threat Valuation. Neuroscience 2021; 468:158-167. [PMID: 34126185 DOI: 10.1016/j.neuroscience.2021.06.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/10/2021] [Accepted: 06/03/2021] [Indexed: 12/21/2022]
Abstract
The ability to distinguish between threatening (repulsors), neutral and appetitive stimuli (attractors) stimuli is essential for survival. The orexinergic neurons of hypothalamus send projections to the limbic structures, such as different subregions of the medial prefrontal cortex (mPFC), suggesting that the orexinergic mechanism in the prelimbic cortex (PL) is involved in the processing of fear and anxiety. We investigated the role of orexin receptors type 1 (OX1R) and type 2 (OX2R) in the PL in such processes upon confrontation with an erratically moving robo-beetle in mice. The selective blockade of OX1R and OX2R in the PL with SB 334867 (3, 30, 300 nM) and TCS OX2 29 (3, 30, 300 nM), respectively, did not affect general exploratory behavior or reactive fear such as avoidance, jumping or freezing, but significantly enhances tolerance and approach behavior at the highest dose of each antagonist tested (300 nM). We interpret these findings as evidence for an altered cognitive appraisal of the potential threatening stimulus. Consequently, the orexin system seems to bias the perception of stimuli towards danger or threat via OX1R and OX2R in the PL.
Collapse
Affiliation(s)
- Victor P M N Soares
- Department of Biological Sciences, School of Sciences, Humanities and Languages of the São Paulo State University (UNESP), Assis, São Paulo, Brazil
| | - Telma G C S de Andrade
- Department of Biological Sciences, School of Sciences, Humanities and Languages of the São Paulo State University (UNESP), Assis, São Paulo, Brazil
| | - Newton S Canteras
- Department of Anatomy, Biomedical Sciences Institute of the University of São Paulo (ICB-USP), São Paulo, São Paulo, Brazil
| | - Norberto C Coimbra
- Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil; Behavioural Neuroscience Institute (INeC), Ribeirão Preto, São Paulo, Brazil; NAP-USP-Neurobiology of Emotions Research Centre (NuPNE), Ribeirão Preto Medical School of the University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Carsten T Wotjak
- Neuronal Plasticity Research Group, Max Planck Institute of Psychiatry, Munich, Germany; Central Nervous System Diseases Research, Boehringer Ingelheim Pharmaceuticals Die Gesellschaft mit Beschränkter Haftung & Compagnie Kommanditgesellschaft, Biberach Riss, Germany
| | - Rafael C Almada
- Department of Biological Sciences, School of Sciences, Humanities and Languages of the São Paulo State University (UNESP), Assis, São Paulo, Brazil; Behavioural Neuroscience Institute (INeC), Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
7
|
Nonclinical pharmacology of daridorexant: a new dual orexin receptor antagonist for the treatment of insomnia. Psychopharmacology (Berl) 2021; 238:2693-2708. [PMID: 34415378 PMCID: PMC8455402 DOI: 10.1007/s00213-021-05954-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/03/2021] [Indexed: 12/29/2022]
Abstract
Dual orexin receptor antagonists (DORAs) represent a novel type of sleep medication that provide an alternative to the traditionally used positive allosteric gamma-aminobutyric acid (GABA)-A receptor modulators. Daridorexant is a new DORA that exhibited in phase 3 trials in insomnia not only a beneficial effect on sleep variables, measured objectively and assessed subjectively, but also an improvement in daytime functioning. Daridorexant was discovered through a tailored research program aimed at identifying an optimized sleep-promoting molecule with pharmacokinetic properties appropriate for covering the whole night while avoiding next-morning residual activity at efficacious doses. By specific binding to both orexin receptors, daridorexant inhibits the actions of the wake-promoting orexin (also called hypocretin) neuropeptides. This mechanism avoids a more widespread inhibition of neuronal pathways and associated side effects that are intrinsic to positive allosteric GABA-A receptor modulators. Here, we review the general pharmacology of daridorexant, based on nonclinical pharmacology studies of daridorexant, unpublished or already described, or based on work with other DORAs. Some unique features of daridorexant will be highlighted, such as the promotion of natural and surmountable sleep, the preservation of memory and cognition, the absence of tolerance development or risk of physical dependence, and how it can benefit daytime functioning.
Collapse
|
8
|
Depletion of hypothalamic hypocretin/orexin neurons correlates with impaired memory in a Parkinson's disease animal model. Exp Neurol 2020; 323:113110. [DOI: 10.1016/j.expneurol.2019.113110] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 10/18/2019] [Accepted: 11/07/2019] [Indexed: 12/12/2022]
|
9
|
Ji MJ, Zhang XY, Chen Z, Wang JJ, Zhu JN. Orexin prevents depressive-like behavior by promoting stress resilience. Mol Psychiatry 2019; 24:282-293. [PMID: 30087452 PMCID: PMC6755988 DOI: 10.1038/s41380-018-0127-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 04/17/2018] [Accepted: 06/20/2018] [Indexed: 12/21/2022]
Abstract
Hypothalamic neuropeptide orexin has been implicated in the pathophysiology of psychiatric disorders and accumulating clinical evidence indicates a potential link between orexin and depression. However, the exact role of orexin in depression, particularly the underlying neural substrates and mechanisms, remains unknown. In this study, we reveal a direct projection from the hypothalamic orexinergic neurons to the ventral pallidum (VP), a structure that receives an increasing attention for its critical position in rewarding processing, stress responses, and depression. We find that orexin directly excites GABAergic VP neurons and prevents depressive-like behaviors in rats. Two orexin receptors, OX1R and OX2R, and their downstream Na+-Ca2+ exchanger and L-type Ca2+ channel co-mediate the effect of orexin. Furthermore, pharmacological blockade or genetic knockdown of orexin receptors in VP increases depressive-like behaviors in forced swim test and sucrose preference test. Intriguingly, blockage of orexinergic inputs in VP has no impact on social proximity in social interaction test between novel partners, but remarkably strengthens social avoidance under an acute psychosocial stress triggered by social rank. Notably, a significantly increased orexin level in VP is accompanied by an increase in serum corticosterone in animals exposed to acute stresses, including forced swimming, food/water deprivation and social rank stress, rather than non-stress situations. These results suggest that endogenous orexinergic modulation on VP is especially critical for protecting against depressive reactions to stressful events. The findings define an indispensable role for the central orexinergic system in preventing depression by promoting stress resilience.
Collapse
Affiliation(s)
- Miao-Jin Ji
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Xiao-Yang Zhang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Zi Chen
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Jian-Jun Wang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China.
- Institute for Brain Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China.
| | - Jing-Ning Zhu
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China.
- Institute for Brain Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China.
| |
Collapse
|
10
|
Orexin as a modulator of fear-related behavior: Hypothalamic control of noradrenaline circuit. Brain Res 2018; 1731:146037. [PMID: 30481504 DOI: 10.1016/j.brainres.2018.11.032] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 11/19/2018] [Accepted: 11/23/2018] [Indexed: 12/20/2022]
Abstract
Fear is an important physiological function for survival. It appears when animals or humans are confronted with an environmental threat. The amygdala has been shown to play a highly important role in emergence of fear. Hypothalamic orexin neurons are activated by fearful stimuli to evoke a 'defense reaction' with an increase in arousal level and sympathetic outflow to deal with the imminent danger. However, how this system contributes to the emergence of fear-related behavior is not well understood. Orexin neurons in the hypothalamus send excitatory innervations to noradrenergic neurons in the locus coeruleus (NALC) which express orexin receptor 1 (OX1R) and send projections to the lateral amygdala (LA). Inhibition of this di-synaptic orexin → NALC → LA pathway by pharmacological or opto/chemogenetic methods reduces cue-induced fear expression. Excitatory manipulation of this pathway induces freezing, a fear-related behavior that only occurs when the environment contains some elements suggestive of danger. Although, fear memory helps animals respond to a context or cue previously paired with an aversive stimulus, fear-related behavior is sometimes evoked even in a distinct context containing some similar elements, which is known as fear generalization. Our recent observation suggests that the orexin → NALC → LA pathway might contribute to this response. This review focuses on recent advances regarding the role of hypothalamic orexin neurons in behavioral fear expression. We also discuss the potential effectiveness of orexin receptor antagonists for treating excessive fear response or overgeneralization seen in anxiety disorder and post-traumatic stress disorder (PTSD).
Collapse
|
11
|
Shi L, Chen W, Deng J, Chen S, Han Y, Khan MZ, Liu J, Que J, Bao Y, Lu L, Shi J. Orexin A Differentially Influences the Extinction Retention of Recent and Remote Fear Memory. Front Neurosci 2018; 12:295. [PMID: 29773974 PMCID: PMC5943634 DOI: 10.3389/fnins.2018.00295] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 04/16/2018] [Indexed: 12/02/2022] Open
Abstract
Recently the role of the orexin system in the learning and memory, especially orexin A, which could enhance fear memory through regulating the activity of amygdala, has drawn considerable attention. However, the relationship between orexin A and extinction memory remains unclear. To investigate the effect of orexin A on extinction memory in humans, we recruited 43 male subjects and divided them into a recent group and remote group. After acquiring Pavlovian fear conditioning, individuals in recent group experienced fear extinction 24 h after acquisition, and remote group underwent extinction 2 weeks later. Meanwhile, plasma orexin A levels before extinction were measured by enzyme-linked immunosorbent assay. Both groups received memory test 24 h after fear extinction. The results showed that both recent and remote groups successfully acquired fear conditioning and had spontaneous recovery at test. In particular, the correlational analysis indicated that orexin A levels before extinction were negatively associated with fear responses during test only in recent group, but not in remote group. Moreover, individuals with high orexin A levels still kept low fear responses after extinction in recent group by subgroup analyses. The results suggest that orexin A could influence the retention of recent fear memory extinction, without affecting remote fear extinction. These findings remind us the orexin system can be a potential treatment target for fear-related disorders, and the mechanisms of recent and remote fear extinction may be different.
Collapse
Affiliation(s)
- Le Shi
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.,National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, China
| | - Wenhao Chen
- Peking University Sixth Hospital, Peking University Institute of Mental Health, Key Laboratory of Mental Health, Ministry of Health, National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Peking University, Beijing, China
| | - Jiahui Deng
- Peking University Sixth Hospital, Peking University Institute of Mental Health, Key Laboratory of Mental Health, Ministry of Health, National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Peking University, Beijing, China
| | - Sijing Chen
- Peking University Sixth Hospital, Peking University Institute of Mental Health, Key Laboratory of Mental Health, Ministry of Health, National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Peking University, Beijing, China
| | - Ying Han
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, China
| | - Muhammad Z Khan
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.,National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, China
| | - Jiajia Liu
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.,National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, China
| | - Jianyu Que
- Peking University Sixth Hospital, Peking University Institute of Mental Health, Key Laboratory of Mental Health, Ministry of Health, National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Peking University, Beijing, China
| | - Yanping Bao
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, China
| | - Lin Lu
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, China.,Peking University Sixth Hospital, Peking University Institute of Mental Health, Key Laboratory of Mental Health, Ministry of Health, National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Jie Shi
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, China
| |
Collapse
|
12
|
Mavanji V, Butterick TA, Duffy CM, Nixon JP, Billington CJ, Kotz CM. Orexin/hypocretin treatment restores hippocampal-dependent memory in orexin-deficient mice. Neurobiol Learn Mem 2017; 146:21-30. [PMID: 29107703 DOI: 10.1016/j.nlm.2017.10.014] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 10/02/2017] [Accepted: 10/27/2017] [Indexed: 12/31/2022]
Abstract
Orexin A is produced in neurons of the lateral, perifornical and dorsomedial regions of the lateral hypothalamic area, which then project widely throughout the central nervous system to regulate arousal state, sleep-wake architecture, energy homeostasis and cognitive processes. Disruption of orexin signaling leads to sleep disturbances and increased body mass index, but recent studies also indicate that orexin neuron activation improves learning and memory. We hypothesized that hippocampal orexin receptor activation improves memory. To test this idea, we obtained orexin/ataxin-3 (O/A3) mice, which become deficient in orexin neurons by about 12 weeks of age. We first measured hippocampal orexin receptor 1 (OX1R) gene expression and protein levels, then tested acquisition and consolidation of two-way active avoidance (TWAA) memory, a hippocampal-dependent learning and memory task. Finally, we determined if exogenous intra-hippocampal OXA treatment could reverse cognitive impairment (as determined by TWAA) in OA/3 mice. We showed that OX1R mRNA expression and protein levels were significantly elevated in O/A3 mice, indicating the potential for preserved orexin responsiveness. The O/A3 mice were significantly impaired in TWAA memory vs. control mice, but OXA treatment (both acute and chronic) reversed these memory deficits. These results demonstrate that orexin plays an important role in hippocampal-dependent consolidation of two-way active avoidance memory, and orexin replacement can rescue the cognitive impairment.
Collapse
Affiliation(s)
- Vijayakumar Mavanji
- Research Service, Veterans Affairs Health Care System, Minneapolis, MN 55417 USA
| | - Tammy A Butterick
- Research Service, Veterans Affairs Health Care System, Minneapolis, MN 55417 USA; Department of Food Science and Nutrition, University of Minnesota, St Paul, MN 55108 USA; Minnesota Obesity Center, St Paul, MN 55108 USA
| | - Cayla M Duffy
- Research Service, Veterans Affairs Health Care System, Minneapolis, MN 55417 USA; Department of Food Science and Nutrition, University of Minnesota, St Paul, MN 55108 USA; Minnesota's Discovery, Research and Innovation Economy, Brain Conditions, University of Minnesota, Minneapolis, MN 55455
| | - Joshua P Nixon
- Research Service, Veterans Affairs Health Care System, Minneapolis, MN 55417 USA; Department of Food Science and Nutrition, University of Minnesota, St Paul, MN 55108 USA
| | - Charles J Billington
- Research Service, Veterans Affairs Health Care System, Minneapolis, MN 55417 USA; Minnesota Obesity Center, St Paul, MN 55108 USA; Department of Medicine, University of Minnesota, Minneapolis, MN 55455 USA
| | - Catherine M Kotz
- Research Service, Veterans Affairs Health Care System, Minneapolis, MN 55417 USA; Minnesota Obesity Center, St Paul, MN 55108 USA; Geriatric Research Education Clinical Center, Veterans Affairs Health Care System, Minneapolis, MN 55417 USA; Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN 55455 USA.
| |
Collapse
|
13
|
Sharko AC, Fadel JR, Kaigler KF, Wilson MA. Activation of orexin/hypocretin neurons is associated with individual differences in cued fear extinction. Physiol Behav 2017; 178:93-102. [PMID: 27746261 PMCID: PMC5391308 DOI: 10.1016/j.physbeh.2016.10.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 09/23/2016] [Accepted: 10/11/2016] [Indexed: 01/15/2023]
Abstract
Identifying the neurobiological mechanisms that underlie differential sensitivity to stress is critical for understanding the development and expression of stress-induced disorders, such as post-traumatic stress disorder (PTSD). Preclinical studies have suggested that rodents display different phenotypes associated with extinction of Pavlovian conditioned fear responses, with some rodent populations being resistant to extinction. An emerging literature also suggests a role for orexins in the consolidation processes associated with fear learning and extinction. To examine the possibility that the orexin system might be involved in individual differences in fear extinction, we used a Pavlovian conditioning paradigm in outbred Long-Evans rats. Rats showed significant variability in the extinction of cue-conditioned freezing and extinction recall, and animals were divided into groups based on their extinction profiles based on a median split of percent freezing behavior during repeated exposure to the conditioned cue. Animals resistant to extinction (high freezers) showed more freezing during repeated cue presentations during the within trial and between trial extinction sessions compared with the group showing significant extinction (low freezers), although there were no differences between these groups in freezing upon return to the conditioned context or during the conditioning session. Following the extinction recall session, activation of orexin neurons was determined using dual label immunohistochemistry for cFos in orexin positive neurons in the hypothalamus. Individual differences in the extinction of cue conditioned fear were associated with differential activation of hypothalamic orexin neurons. Animals showing poor extinction of cue-induced freezing (high freezers) had significantly greater percentage of orexin neurons with Fos in the medial hypothalamus than animals displaying significant extinction and good extinction recall (low freezers). Further, the freezing during extinction learning was positively correlated with the percentage of activated orexin neurons in both the lateral and medial hypothalamic regions. No differences in the overall density of orexin neurons or Fos activation were seen between extinction phenotypes. Although correlative, our results support other studies implicating a role of the orexinergic system in regulating extinction of conditioned responses to threat.
Collapse
Affiliation(s)
- Amanda C Sharko
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina, School of Medicine, Columbia, SC, USA; WJB Dorn Veterans Affairs Medical Center, Columbia, SC, USA
| | - Jim R Fadel
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina, School of Medicine, Columbia, SC, USA; WJB Dorn Veterans Affairs Medical Center, Columbia, SC, USA
| | - Kris F Kaigler
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina, School of Medicine, Columbia, SC, USA; WJB Dorn Veterans Affairs Medical Center, Columbia, SC, USA
| | - Marlene A Wilson
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina, School of Medicine, Columbia, SC, USA; WJB Dorn Veterans Affairs Medical Center, Columbia, SC, USA.
| |
Collapse
|
14
|
James MH, Campbell EJ, Dayas CV. Role of the Orexin/Hypocretin System in Stress-Related Psychiatric Disorders. Curr Top Behav Neurosci 2017; 33:197-219. [PMID: 28083790 DOI: 10.1007/7854_2016_56] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Orexins (hypocretins) are critically involved in coordinating appropriate physiological and behavioral responses to aversive and threatening stimuli. Acute stressors engage orexin neurons via direct projections from stress-sensitive brain regions. Orexin neurons, in turn, facilitate adaptive behavior via reciprocal connections as well as via direct projections to the hypophysiotropic neurons that coordinate the hypothalamic-pituitary-adrenal (HPA) axis response to stress. Consequently, hyperactivity of the orexin system is associated with increased motivated arousal and anxiety, and is emerging as a key feature of panic disorder. Accordingly, there has been significant interest in the therapeutic potential of pharmacological agents that antagonize orexin signaling at their receptors for the treatment of anxiety disorders. In contrast, disorders characterized by inappropriately low levels of motivated arousal, such as depression, generally appear to be associated with hypoactivity of the orexin system. This includes narcolepsy with cataplexy, a disorder characterized by the progressive loss of orexin neurons and increased rates of moderate/severe depression symptomology. Here, we provide a comprehensive overview of both clinical and preclinical evidence highlighting the role of orexin signaling in stress reactivity, as well as how perturbations to this system can result in dysregulated behavioral phenotypes.
Collapse
Affiliation(s)
- Morgan H James
- Brain Health Institute, Rutgers University/Rutgers Biomedical and Health Sciences, Piscataway, NJ, USA
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 2337, Australia
| | - Erin J Campbell
- School of Biomedical Sciences and Pharmacy, Centre for Brain and Mental Health, University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, 1 Kookaburra Circuit, New Lambton Heights, NSW, Australia
| | - Christopher V Dayas
- School of Biomedical Sciences and Pharmacy, Centre for Brain and Mental Health, University of Newcastle, Callaghan, NSW, Australia.
- Hunter Medical Research Institute, 1 Kookaburra Circuit, New Lambton Heights, NSW, Australia.
| |
Collapse
|
15
|
Verma D, Hörmer B, Bellmann-Sickert K, Thieme V, Beck-Sickinger AG, Herzog H, Sperk G, Tasan RO. Pancreatic polypeptide and its central Y4 receptors are essential for cued fear extinction and permanent suppression of fear. Br J Pharmacol 2016; 173:1925-38. [PMID: 26844810 PMCID: PMC4882497 DOI: 10.1111/bph.13456] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 01/26/2016] [Accepted: 01/29/2016] [Indexed: 12/18/2022] Open
Abstract
Background and purpose Avoiding danger and finding food are closely related behaviours that are essential for surviving in a natural environment. Growing evidence supports an important role of gut‐brain peptides in modulating energy homeostasis and emotional‐affective behaviour. For instance, postprandial release of pancreatic polypeptide (PP) reduced food intake and altered stress‐induced motor activity and anxiety by activating central Y4 receptors. Experimental approach We characterized [K30(PEG2)]hPP2‐36 as long‐acting Y4 receptor agonist and injected it peripherally into wildtype and Y4 receptor knockout (Y4KO) C57Bl/6NCrl mice to investigate the role of Y4 receptors in fear conditioning. Extinction and relapse after extinction was measured by spontaneous recovery and renewal. Key results The Y4KO mice showed impaired cued and context fear extinction without affecting acquisition, consolidation or recall of fear. Correspondingly, peripheral injection of [K30(PEG2)]hPP2‐36 facilitated extinction learning upon fasting, an effect that was long‐lasting and generalized. Furthermore, peripherally applied [K30(PEG2)]hPP2‐36 before extinction inhibited the activation of orexin‐expressing neurons in the lateral hypothalamus in WT, but not in Y4KO mice. Conclusions and implications Our findings suggests suppression of excessive arousal as a possible mechanism for the extinction‐promoting effect of central Y4 receptors and provide strong evidence that fear extinction requires integration of vegetative stimuli with cortical and subcortical information, a process crucially depending on Y4 receptors. Importantly, in the lateral hypothalamus two peptide systems, PP and orexin, interact to generate an emotional response adapted to the current homeostatic state. Detailed investigations of feeding‐relevant genes may thus deliver multiple intervention points for treating anxiety‐related disorders.
Collapse
Affiliation(s)
- D Verma
- Department of Pharmacology, Medical University Innsbruck, Innsbruck, Austria
| | - B Hörmer
- Department of Pharmacology, Medical University Innsbruck, Innsbruck, Austria
| | | | - V Thieme
- Institute of Biochemistry, Leipzig University, Leipzig, Germany
| | | | - H Herzog
- Neuroscience Research Program, Garvan Institute of Medical Research, Sydney, Australia
| | - G Sperk
- Department of Pharmacology, Medical University Innsbruck, Innsbruck, Austria
| | - R O Tasan
- Department of Pharmacology, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
16
|
Flores Á, Saravia R, Maldonado R, Berrendero F. Orexins and fear: implications for the treatment of anxiety disorders. Trends Neurosci 2015. [DOI: 10.1016/j.tins.2015.06.005] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
17
|
Dong X, Li Y, Kirouac GJ. Blocking of orexin receptors in the paraventricular nucleus of the thalamus has no effect on the expression of conditioned fear in rats. Front Behav Neurosci 2015; 9:161. [PMID: 26136671 PMCID: PMC4468823 DOI: 10.3389/fnbeh.2015.00161] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 06/03/2015] [Indexed: 11/13/2022] Open
Abstract
The paraventricular nucleus of the thalamus (PVT) projects to the central nucleus of the amygdala and recent experimental evidence indicates a role for the PVT in conditioned fear. Furthermore, the PVT contains a high density of orexin receptors and fibers and acute injections of orexin antagonist into the PVT produce anxiolytic effects. The present study was done to determine if administration of a dual orexin receptor antagonist (DORA) in the region of the PVT interferes with the expression of conditioned fear in rats exposed to cued and contextual conditioning paradigms. Infusion of 0.5 μl of the DORA N-biphenyl-2-yl-1-[(1-methyl-1H-benzimidazol-2yl) sulfanyl] acetyl-L-prolinamide at a concentration of 0.1, 1.0, and 10 nmol had no effect on the freezing produced by exposing rats to an auditory cue or the context associated with foot shock. In contrast, the 1.0 and 10 nmol doses were anxiolytic in the social interaction test. The results of the present study do not support a role for orexin receptors in the PVT in the expression of learned fear. The finding that the 1.0 and 10 nmol doses of DORA in the PVT region were anxiolytic in the social interaction test is consistent with other studies indicating a role for orexins in the PVT in anxiety-like behaviors.
Collapse
Affiliation(s)
- Xinwen Dong
- Department of Oral Biology, College of Dentistry, Faculty of Health Sciences, University of Manitoba Winnipeg, Manitoba, Canada ; Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences Beijing, China
| | - Yonghui Li
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences Beijing, China
| | - Gilbert J Kirouac
- Department of Oral Biology, College of Dentistry, Faculty of Health Sciences, University of Manitoba Winnipeg, Manitoba, Canada ; Department of Psychiatry, College of Medicine, Faculty of Health Sciences, University of Manitoba Winnipeg, Manitoba, Canada
| |
Collapse
|