1
|
Qi M, Zhu P, Wang H, He Q, Huo C. Abnormalities in behavior relevant to schizophrenia in embryonic day 17 MAM-exposed rodent models: A systematic review and meta-analysis. Pharmacol Biochem Behav 2024; 245:173888. [PMID: 39384086 DOI: 10.1016/j.pbb.2024.173888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/25/2024] [Accepted: 09/30/2024] [Indexed: 10/11/2024]
Abstract
BACKGROUND Neurodevelopmental disorders, notably schizophrenia, present ongoing challenges in mental health. Methylazoxymethanol (MAM), a potent neurodevelopmental disruptor, is implicated in inducing schizophrenia-like structural and functional alterations in rodent models. This study conducts a systematic review and meta-analysis to assess comprehensively the behavioral consequences of embryonic MAM exposure in rodents, focusing on diverse paradigms reflective of schizophrenia-related phenotypes. METHODS Employing a meticulous search strategy across PubMed, Embase, Cochrane Library, Sino Med, CNKI, Weip Database, Wan Fang, and Web of Science, this study adheres to PRISMA guidelines. The analysis includes studies examining the impact of embryonic MAM exposure on behavioral outcomes, such as Prepulse Inhibition (PPI), social interaction (SI), novel object recognition (NOR), elevated plus maze (EPM) performance, and open field test (OFT) results. The study protocol is registered with PROSPERO, number 42024521442 CRD. RESULTS Involving 19 studies, the meta-analysis reveals nuanced behavioral alterations. MAM-exposed male rats in the EPM group exhibit a Mean Difference of -0.27 (95 % CI: [-1.02, 0.49]) during puberty, with a broader Mean Difference of -0.50 (95 % CI: [-1.97, 0.96]) in adulthood. Combining both stages yields an overall Mean Difference of -0.31 (95 % CI: [-1.01, 0.38]), indicating potential EPM performance differences. Subgroup analysis by MAM dosage levels reveals a Mean Difference of -0.90 (95 % CI: [-1.86, 0.05]) for moderate-dose MAM and 0.65 (95 % CI: [0.29, 1.02]) for high-dose MAM. In the OFT group, adulthood shows a Mean Difference of -1.22 (95 % CI: [-2.14, -0.29]), emphasizing altered exploratory behavior. The NOR group indicates significant Mean Differences of -6.18 (95 % CI: [-8.41, -3.94]) in adulthood, signifying recognition memory deficits. SI assessments show consistent negative Mean Differences during puberty and adulthood for male rats (-1.88 and - 1.87, respectively) and female rats in preestrus and estrus (-1.09). CONCLUSIONS This systematic review and meta-analysis offer a comprehensive overview of behavioral consequences linked to embryonic MAM exposure in rodents. Findings underscore intricate relationships between MAM and various behavioral domains relevant to schizophrenia. Dose-dependent effects, developmental stage considerations, and potential sex-specific influences contribute to the complexity of MAM-induced alterations, advancing our understanding of neurodevelopmental disruptions and suggesting avenues for future research and therapeutic interventions targeting the developmental origins of psychiatric disorders.
Collapse
Affiliation(s)
- Miao Qi
- Capital Medical University, Yanjing Medical College, Beijing 101300, China
| | - Peixin Zhu
- Capital Medical University, Yanjing Medical College, Beijing 101300, China
| | - Honglai Wang
- Beijing Miyun Mental Health Hospital, Beijing 101500, China
| | - Qi He
- Capital Medical University, Yanjing Medical College, Beijing 101300, China
| | - Chunyue Huo
- Capital Medical University, Yanjing Medical College, Beijing 101300, China.
| |
Collapse
|
2
|
Péczely L, Dusa D, Lénárd L, Ollmann T, Kertes E, Gálosi R, Berta B, Szabó Á, László K, Zagoracz O, Karádi Z, Kállai V. The antipsychotic agent sulpiride microinjected into the ventral pallidum restores positive symptom-like habituation disturbance in MAM-E17 schizophrenia model rats. Sci Rep 2024; 14:12305. [PMID: 38811614 PMCID: PMC11136981 DOI: 10.1038/s41598-024-63059-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/24/2024] [Indexed: 05/31/2024] Open
Abstract
Dysfunction of subcortical D2-like dopamine receptors (D2Rs) can lead to positive symptoms of schizophrenia, and their analog, the increased locomotor activity in schizophrenia model MAM-E17 rats. The ventral pallidum (VP) is a limbic structure containing D2Rs. The D2R antagonist sulpiride is a widespread antipsychotic drug, which can alleviate positive symptoms in human patients. However, it is still not known how sulpiride can influence positive symptoms via VP D2Rs. We hypothesize that the microinjection of sulpiride into the VP can normalize hyperactivity in MAM-E17 rats. In addition, recently, we showed that the microinjection of sulpirid into the VP induces place preference in neurotypical rats. Thus, we aimed to test whether intra-VP sulpiride can also have a rewarding effect in MAM-E17 rats. Therefore, open field-based conditioned place preference (CPP) test was applied in neurotypical (SAL-E17) and MAM-E17 schizophrenia model rats to test locomotor activity and the potential locomotor-reducing and rewarding effects of sulpiride. Sulpiride was microinjected bilaterally in three different doses into the VP, and the controls received only vehicle. The results of the present study demonstrated that the increased locomotor activity of the MAM-E17 rats was caused by habituation disturbance. Accordingly, larger doses of sulpiride in the VP reduce the positive symptom-analog habituation disturbance of the MAM-E17 animals. Furthermore, we showed that the largest dose of sulpiride administered into the VP induced CPP in the SAL-E17 animals but not in the MAM-E17 animals. These findings revealed that VP D2Rs play an important role in the formation of positive symptom-like habituation disturbances in MAM-E17 rats.
Collapse
Affiliation(s)
- László Péczely
- Learning in Biological and Artificial Systems Research Group, Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary.
- Institute of Physiology, Medical School, University of Pécs, Szigeti Str. 12, P.O. Box: 99, 7602, Pécs, Hungary.
- Centre for Neuroscience, University of Pécs, Pécs, Hungary.
| | - Daniella Dusa
- Learning in Biological and Artificial Systems Research Group, Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary
- Institute of Physiology, Medical School, University of Pécs, Szigeti Str. 12, P.O. Box: 99, 7602, Pécs, Hungary
- Centre for Neuroscience, University of Pécs, Pécs, Hungary
| | - László Lénárd
- Institute of Physiology, Medical School, University of Pécs, Szigeti Str. 12, P.O. Box: 99, 7602, Pécs, Hungary
- Molecular Neuroendocrinology and Neurophysiology Research Group, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Centre for Neuroscience, University of Pécs, Pécs, Hungary
| | - Tamás Ollmann
- Learning in Biological and Artificial Systems Research Group, Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary
- Neuropeptides, Cognition, Animal Models of Neuropsychiatric Disorders Research Group, Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary
- Institute of Physiology, Medical School, University of Pécs, Szigeti Str. 12, P.O. Box: 99, 7602, Pécs, Hungary
- Centre for Neuroscience, University of Pécs, Pécs, Hungary
| | - Erika Kertes
- Learning in Biological and Artificial Systems Research Group, Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary
- Neuropeptides, Cognition, Animal Models of Neuropsychiatric Disorders Research Group, Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary
- Institute of Physiology, Medical School, University of Pécs, Szigeti Str. 12, P.O. Box: 99, 7602, Pécs, Hungary
- Centre for Neuroscience, University of Pécs, Pécs, Hungary
| | - Rita Gálosi
- Learning in Biological and Artificial Systems Research Group, Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary
- Reinforcement Learning Research Group, Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary
- Institute of Physiology, Medical School, University of Pécs, Szigeti Str. 12, P.O. Box: 99, 7602, Pécs, Hungary
- Centre for Neuroscience, University of Pécs, Pécs, Hungary
| | - Beáta Berta
- Learning in Biological and Artificial Systems Research Group, Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary
- Neuropeptides, Cognition, Animal Models of Neuropsychiatric Disorders Research Group, Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary
- Institute of Physiology, Medical School, University of Pécs, Szigeti Str. 12, P.O. Box: 99, 7602, Pécs, Hungary
- Centre for Neuroscience, University of Pécs, Pécs, Hungary
| | - Ádám Szabó
- Learning in Biological and Artificial Systems Research Group, Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary
- Institute of Physiology, Medical School, University of Pécs, Szigeti Str. 12, P.O. Box: 99, 7602, Pécs, Hungary
| | - Kristóf László
- Neuropeptides, Cognition, Animal Models of Neuropsychiatric Disorders Research Group, Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary
- Institute of Physiology, Medical School, University of Pécs, Szigeti Str. 12, P.O. Box: 99, 7602, Pécs, Hungary
- Centre for Neuroscience, University of Pécs, Pécs, Hungary
| | - Olga Zagoracz
- Neuropeptides, Cognition, Animal Models of Neuropsychiatric Disorders Research Group, Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary
- Institute of Physiology, Medical School, University of Pécs, Szigeti Str. 12, P.O. Box: 99, 7602, Pécs, Hungary
- Centre for Neuroscience, University of Pécs, Pécs, Hungary
| | - Zoltán Karádi
- Institute of Physiology, Medical School, University of Pécs, Szigeti Str. 12, P.O. Box: 99, 7602, Pécs, Hungary
- Molecular Neuroendocrinology and Neurophysiology Research Group, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Centre for Neuroscience, University of Pécs, Pécs, Hungary
| | - Veronika Kállai
- Learning in Biological and Artificial Systems Research Group, Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary
- Neuropeptides, Cognition, Animal Models of Neuropsychiatric Disorders Research Group, Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary
- Institute of Physiology, Medical School, University of Pécs, Szigeti Str. 12, P.O. Box: 99, 7602, Pécs, Hungary
- Centre for Neuroscience, University of Pécs, Pécs, Hungary
| |
Collapse
|
3
|
Gui J, Ding R, Huang D, Wang L, Han Z, Yang X, Yang J, Luo H, Jiang L. Associations between urinary heavy metals and anxiety among adults in the National Health and Nutrition Examination Survey (NHANES), 2007-2012. CHEMOSPHERE 2023; 341:140085. [PMID: 37690549 DOI: 10.1016/j.chemosphere.2023.140085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 09/01/2023] [Accepted: 09/04/2023] [Indexed: 09/12/2023]
Abstract
BACKGROUND Few studies have investigated the associations between heavy metals and anxiety. The purpose of this study was to examine the associations between single and combined exposure to heavy metals and anxiety. METHODS This study employed data from the National Health and Nutrition Examination Survey (NHANES) from 2007 to 2012. Anxiety was assessed by patients self-reporting the number of anxious days per month. First, we evaluated the associations between 10 heavy metals single exposure and anxiety by multivariable logistic regression. We then selected 5 heavy metals (cadmium, antimony, cobalt, tungsten, and uranium) for further analysis by elastic net regression. Subsequently, principal component analysis (PCA), weighted quantile regression (WQS), and Bayesian kernel machine regression (BKMR) were utilized to evaluate the associations between 5 heavy metals co-exposure and anxiety. RESULTS This study included 4512 participants, among whom 1206 participants were in an anxiety state. Urinary cadmium and antimony were separately related to an increased risk of anxiety (p for trend <0.01 and < 0.01, respectively). In PCA analysis, PC1 was associated with an increased risk of anxiety (p for trend <0.001). In WQS analysis, the positive WQS index was substantially linked with the risk of anxiety (OR (95%CI): 1.23 (1.04,1.39)). In BKMR analysis, the overall effects of co-exposure to heavy metals were positively connected with anxiety. CONCLUSION Our study identified a positive correlation between individual exposure to cadmium and antimony and the risk of anxiety. Additionally, the co-exposure to cadmium, antimony, cobalt, tungsten, and uranium was associated with an increased risk of anxiety.
Collapse
Affiliation(s)
- Jianxiong Gui
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Ran Ding
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Dishu Huang
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Lingman Wang
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Ziyao Han
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Xiaoyue Yang
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Jiaxin Yang
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Hanyu Luo
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Li Jiang
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China.
| |
Collapse
|
4
|
Bozkurt NM, Unal G. Vortioxetine improved negative and cognitive symptoms of schizophrenia in subchronic MK-801 model in rats. Behav Brain Res 2023; 444:114365. [PMID: 36858318 DOI: 10.1016/j.bbr.2023.114365] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 02/08/2023] [Accepted: 02/25/2023] [Indexed: 03/02/2023]
Abstract
Schizophrenia is a devastating psychiatric disorder with complex symptoms and neurobiology. Serotonergic dysregulation is known to contribute to the pathogenesis of schizophrenia although dopaminergic and glutamatergic systems are thought to have central roles in neurobiology. No significant success can be achieved in the treatment of negative and cognitive symptoms while positive symptoms can be significantly reduced with current pharmacotherapy. Vortioxetine is a new multimodal antidepressant with 5-HT1A agonism, 5-HT1B partial agonism, 5-HT3, 5-HT7, and 5-HT1D antagonism, and serotonin reuptake inhibition. A limited number of studies suggest its therapeutic effect on the negative and cognitive symptoms of schizophrenia. Therefore, we investigated the potential beneficial effects of vortioxetine on behavioral and molecular deficits in the MK-801 model of schizophrenia in rats. Female Wistar albino rats (10-12 weeks) were grouped as saline, MK-801 (0.2 mg/kg), MK-801 + vortioxetine (2.5 mg/kg), MK-801 + vortioxetine (5 mg/kg), MK-801 + vortioxetine (10 mg/kg), MK-801 + risperidone (0.3 mg/kg), MK-801 + haloperidol (1 mg/kg) (n = 8 in each group). MK-801 has been daily administered (i.p.) for 14 days. Vortioxetine and antipsychotic treatments were injected for 21 days after a washout period of MK-801 and locomotor activity (LA), social interaction (SI), novel object recognition (NOR), Y-maze and prepulse inhibition (PPI) tests were performed at the 16-20th days of treatments, respectively. ELISA test was conducted to evaluate molecular analyses. MK-801 decreased PPI (%), social behaviors, and discrimination index in NOR and alternation (%) in the Y-maze test. In NOR and Y-maze tests, especially vortioxetine 5 and 10 mg/kg increased discrimination index and alternation (%) compared to MK-801. In addition, vortioxetine administration increased social behaviors. Moreover, MK-801 decreased GAD67 and parvalbumin levels while vortioxetine increased these protein levels compared to MK-801. Herein, we first suggested a potential therapeutic effect of vortioxetine, a new multimodal antidepressant, on negative and cognitive symptoms and neurobiological deficits including GAD67 and parvalbumin low expression in the MK-801 model in rats. It would be beneficial to confirm our results in different rodent models and to shed light on the possible mechanisms underlying these effects.
Collapse
Affiliation(s)
- Nuh Mehmet Bozkurt
- Erciyes University, Faculty of Pharmacy, Department of Pharmacology, Kayseri, Türkiye; Erciyes University, Experimental Research, and Application Center (DEKAM), Brain Research Unit, Kayseri, Türkiye
| | - Gokhan Unal
- Erciyes University, Faculty of Pharmacy, Department of Pharmacology, Kayseri, Türkiye; Erciyes University, Experimental Research, and Application Center (DEKAM), Brain Research Unit, Kayseri, Türkiye.
| |
Collapse
|
5
|
Spitzer SO, Tkacz A, Savignac HM, Cooper M, Giallourou N, Mann EO, Bannerman DM, Swann JR, Anthony DC, Poole PS, Burnet PW. Postnatal prebiotic supplementation in rats affects adult anxious behaviour, hippocampus, electrophysiology, metabolomics, and gut microbiota. iScience 2021; 24:103113. [PMID: 34611610 PMCID: PMC8476651 DOI: 10.1016/j.isci.2021.103113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/16/2021] [Accepted: 09/08/2021] [Indexed: 12/13/2022] Open
Abstract
We have shown previously that prebiotic (Bimuno galacto-oligosacharides, B-GOS®) administration to neonatal rats increased hippocampal NMDAR proteins. The present study has investigated the effects of postnatal B-GOS® supplementation on hippocampus-dependent behavior in young, adolescent, and adult rats and applied electrophysiological, metabolomic and metagenomic analyses to explore potential underlying mechanisms. The administration of B-GOS® to suckling, but not post-weaned, rats reduced anxious behavior until adulthood. Neonatal prebiotic intake also reduced the fast decay component of hippocampal NMDAR currents, altered age-specific trajectories of the brain, intestinal, and liver metabolomes, and reduced abundance of fecal Enterococcus and Dorea bacteria. Our data are the first to show that prebiotic administration to rats during a specific postnatal period has long-term effects on behavior and hippocampal physiology. The study also suggests that early-life prebiotic intake may affect host brain function through the reduction of stress-related gut bacteria rather than increasing the proliferation of beneficial microbes.
Collapse
Affiliation(s)
- Sonia O. Spitzer
- Department of Psychiatry, University of Oxford, Warneford Lane, Oxford, OX3 7JX, UK
| | - Andrzej Tkacz
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - Helene M. Savignac
- Quadram Institute, Rosalind Franklin Road, Norwich Research Park, Norwich NR4 7UQ, UK
| | - Matthew Cooper
- Department of Physiology, Anatomy and Genomics, University of Oxford, Sherrington Building, Parks Road, Oxford OX1 3PT, UK
- Oxford Ion Channel Initiative, University of Oxford, Oxford OX1 3PT, UK
| | - Natasa Giallourou
- Department of Metabolism, Digestion and Reproduction, Imperial College, South Kensington Campus, London SW7 2AZ, UK
| | - Edward O. Mann
- Department of Physiology, Anatomy and Genomics, University of Oxford, Sherrington Building, Parks Road, Oxford OX1 3PT, UK
- Oxford Ion Channel Initiative, University of Oxford, Oxford OX1 3PT, UK
| | - David M. Bannerman
- Oxford Ion Channel Initiative, University of Oxford, Oxford OX1 3PT, UK
- Department of Experimental Psychology, University of Oxford, Anna Watts Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford OX2 6GG, UK
| | - Jonathan R. Swann
- Department of Metabolism, Digestion and Reproduction, Imperial College, South Kensington Campus, London SW7 2AZ, UK
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Daniel C. Anthony
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Philip S. Poole
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - Philip W.J. Burnet
- Department of Psychiatry, University of Oxford, Warneford Lane, Oxford, OX3 7JX, UK
| |
Collapse
|
6
|
Bilecki W, Latusz J, Gawlińska K, Chmelova M, Maćkowiak M. Prenatal MAM treatment altered fear conditioning following social isolation: Relevance to schizophrenia. Behav Brain Res 2021; 406:113231. [PMID: 33737089 DOI: 10.1016/j.bbr.2021.113231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 11/28/2022]
Abstract
Adolescent social isolation (SI) might change the trajectory of brain development. In the present study, we investigated the effect of short-term adolescent SI on fear memory, anxiety and protein levels in the adult medial prefrontal cortex of rats prenatally treated with methylazoxymethanol, MAM-E17 model of schizophrenia. The animals were maintained in standard housing (SH) or social isolation (P30-P40, SI) conditions. Behavioural tests (trace or delay fear conditioning, light/dark box) were performed in late adolescence and early adulthood. The results showed that MAM treatment did not alter fear memory, which was investigated with the use of either trace or delay fear conditioning, at any age, and SI decreased the fear response in adult control animals only under trace conditioning. Neither MAM nor SI influenced anxiety-related behaviour measured in the light/dark box. A proteomics study showed that both MAM and SI changed the protein levels related to synapse maturation and cytoskeletal organization, energy transfer and metabolic processes. Prenatal or adolescent environmental factors are able to change the expression of proteins that are correlated with behavioural impairments. Moreover, SI reversed some alterations in proteins induced by MAM. Thus, normally developing brains showed different responses to adolescent SI than those with altering courses of MAM administration.
Collapse
Affiliation(s)
- Wiktor Bilecki
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pharmacology, Laboratory of Pharmacology and Brain Biostructure, Smętna Str. 12, 31-343 Kraków, Poland
| | - Joachim Latusz
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pharmacology, Laboratory of Pharmacology and Brain Biostructure, Smętna Str. 12, 31-343 Kraków, Poland
| | - Kinga Gawlińska
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pharmacology, Laboratory of Pharmacology and Brain Biostructure, Smętna Str. 12, 31-343 Kraków, Poland
| | - Magdalena Chmelova
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pharmacology, Laboratory of Pharmacology and Brain Biostructure, Smętna Str. 12, 31-343 Kraków, Poland
| | - Marzena Maćkowiak
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pharmacology, Laboratory of Pharmacology and Brain Biostructure, Smętna Str. 12, 31-343 Kraków, Poland.
| |
Collapse
|
7
|
Diminished excitatory synaptic transmission correlates with impaired spatial working memory in neurodevelopmental rodent models of schizophrenia. Pharmacol Biochem Behav 2021; 202:173103. [PMID: 33444600 DOI: 10.1016/j.pbb.2021.173103] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/04/2021] [Accepted: 01/06/2021] [Indexed: 11/23/2022]
Abstract
Neurodevelopmental abnormalities are associated with cognitive dysfunction in schizophrenia. In particular, deficits of working memory, are consistently observed in schizophrenia, reflecting prefrontal cortex (PFc) dysfunction. To elucidate the mechanism of such deficits in working memory, the pathophysiological properties of PFc neurons and synaptic transmission have been studied in several developmental models of schizophrenia. Given the pathogenetic heterogeneity of schizophrenia, comparison of PFc synaptic transmission between models of prenatal and postnatal defect would promote our understanding on the developmental components of the biological vulnerability to schizophrenia. In the present study, we investigated the excitatory synaptic transmission onto pyramidal cells localized in layer 5 of the medial PFc (mPFc) in two developmental models of schizophrenia: gestational methylazoxymethanol acetate (MAM) administration and post-weaning social isolation (SI). We found that both models exhibited defective spatial working memory, as indicated by lower spontaneous alternations in a Y-maze paradigm. The recordings from pyramidal neurons in both models exhibited decreased spontaneous excitatory postsynaptic current (sEPSC), representing the reduction of excitatory synaptic transmission in the mPFc. Interestingly, a positive correlation between the impaired spontaneous alternation behavior and the decreased excitatory synaptic transmission of pyramidal neurons was found in both models. These findings suggest that diminished excitatory neurotransmission in the mPFc could be a common pathophysiology regardless of the prenatal and postnatal pathogenesis in developmental models of schizophrenia, and that it might underlie the mechanism of defective working memory in those models.
Collapse
|
8
|
Tricklebank MD, Robbins TW, Simmons C, Wong EHF. Time to re-engage psychiatric drug discovery by strengthening confidence in preclinical psychopharmacology. Psychopharmacology (Berl) 2021; 238:1417-1436. [PMID: 33694032 PMCID: PMC7945970 DOI: 10.1007/s00213-021-05787-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 02/04/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND There is urgent need for new medications for psychiatric disorders. Mental illness is expected to become the leading cause of disability worldwide by 2030. Yet, the last two decades have seen the pharmaceutical industry withdraw from psychiatric drug discovery after costly late-stage trial failures in which clinical efficacy predicted pre-clinically has not materialised, leading to a crisis in confidence in preclinical psychopharmacology. METHODS Based on a review of the relevant literature, we formulated some principles for improving investment in translational neuroscience aimed at psychiatric drug discovery. RESULTS We propose the following 8 principles that could be used, in various combinations, to enhance CNS drug discovery: (1) consider incorporating the NIMH Research Domain Criteria (RDoC) approach; (2) engage the power of translational and systems neuroscience approaches; (3) use disease-relevant experimental perturbations; (4) identify molecular targets via genomic analysis and patient-derived pluripotent stem cells; (5) embrace holistic neuroscience: a partnership with psychoneuroimmunology; (6) use translational measures of neuronal activation; (7) validate the reproducibility of findings by independent collaboration; and (8) learn and reflect. We provide recent examples of promising animal-to-human translation of drug discovery projects and highlight some that present re-purposing opportunities. CONCLUSIONS We hope that this review will re-awaken the pharma industry and mental health advocates to the opportunities for improving psychiatric pharmacotherapy and so restore confidence and justify re-investment in the field.
Collapse
Affiliation(s)
- Mark David Tricklebank
- Centre for Neuroimaging Sciences, Institute of Psychiatry Psychology and Neuroscience, King's College, London, UK.
| | - Trevor W. Robbins
- Department of Psychology and Behavioural and Clinical Neuroscience Institute, University of Cambridge, CB23EB, Cambridge, UK
| | - Camilla Simmons
- Centre for Neuroimaging Sciences, Institute of Psychiatry Psychology and Neuroscience, King’s College, London, UK
| | - Erik H. F. Wong
- Department of Psychiatry, University of British Columbia, Vancouver, Canada
| |
Collapse
|
9
|
Kállai V, Lénárd L, Péczely L, Gálosi R, Dusa D, Tóth A, László K, Kertes E, Kovács A, Zagoracz O, Berta B, Karádi Z, Ollmann T. Cognitive performance of the MAM-E17 schizophrenia model rats in different age-periods. Behav Brain Res 2020; 379:112345. [PMID: 31704232 DOI: 10.1016/j.bbr.2019.112345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/03/2019] [Accepted: 11/04/2019] [Indexed: 11/17/2022]
Abstract
Cognitive disturbances are among the most important features of schizophrenia, and have a significant role in the outcome of the disease. However, the treatment of cognitive symptoms is poorly effective. In order to develop new therapeutic opportunities, the MAM-E17 rat model of schizophrenia can be an appropriate implement. In the present study we investigated several cognitive capabilities of MAM-treated rats using radial arm maze (RAM) task, which corresponds to the recent research directives. Because of the diachronic appearance of schizophrenia symptoms and the early appearance of cognitive deficiencies, we carried out our experiments in three different age-periods of rats, i.e. in prepuberty, late puberty and adulthood. The performance of MAM-E17 rats was similar to control rats in the acquisition phase of RAM task, except for puberty. However, after rearrangement of reward positions (in the reverse paradigm) the number of errors of MAM-treated rats was higher in each age-period. In the reverse paradigm MAM-treated groups visited more frequently those non-rewarding arms, which were previously rewarding. Our results suggest that working memory of MAM-E17 rats is impaired. This deficit depends on the difficulty of the task and on the age-period. MAM-E17 rats seem to be more sensitive in puberty in comparison to controls. Diminished behavioral flexibility was shown as well. These behavioral results observed in MAM-E17 rats were similar to those of cognitive deficiencies in schizophrenia patients. Therefore, MAM-E17 model can be a useful implement for further research aiming to improve cognition in schizophrenia.
Collapse
Affiliation(s)
- Veronika Kállai
- Institute of Physiology, Medical School, Pécs University, Pécs, Hungary; Centre for Neuroscience, Pécs University, Pécs, Hungary
| | - László Lénárd
- Institute of Physiology, Medical School, Pécs University, Pécs, Hungary; Molecular Neuroendocrinology and Neurophysiology Research Group, Szentágothai Research Centre, Pécs University, Pécs, Hungary; Centre for Neuroscience, Pécs University, Pécs, Hungary.
| | - László Péczely
- Institute of Physiology, Medical School, Pécs University, Pécs, Hungary; Centre for Neuroscience, Pécs University, Pécs, Hungary
| | - Rita Gálosi
- Institute of Physiology, Medical School, Pécs University, Pécs, Hungary; Centre for Neuroscience, Pécs University, Pécs, Hungary
| | - Daniella Dusa
- Institute of Physiology, Medical School, Pécs University, Pécs, Hungary; Centre for Neuroscience, Pécs University, Pécs, Hungary
| | - Attila Tóth
- Institute of Physiology, Medical School, Pécs University, Pécs, Hungary; Centre for Neuroscience, Pécs University, Pécs, Hungary
| | - Kristóf László
- Institute of Physiology, Medical School, Pécs University, Pécs, Hungary; Centre for Neuroscience, Pécs University, Pécs, Hungary
| | - Erika Kertes
- Institute of Physiology, Medical School, Pécs University, Pécs, Hungary; Centre for Neuroscience, Pécs University, Pécs, Hungary
| | - Anita Kovács
- Institute of Physiology, Medical School, Pécs University, Pécs, Hungary; Centre for Neuroscience, Pécs University, Pécs, Hungary
| | - Olga Zagoracz
- Institute of Physiology, Medical School, Pécs University, Pécs, Hungary; Centre for Neuroscience, Pécs University, Pécs, Hungary
| | - Beáta Berta
- Institute of Physiology, Medical School, Pécs University, Pécs, Hungary; Centre for Neuroscience, Pécs University, Pécs, Hungary
| | - Zoltán Karádi
- Institute of Physiology, Medical School, Pécs University, Pécs, Hungary; Molecular Neuroendocrinology and Neurophysiology Research Group, Szentágothai Research Centre, Pécs University, Pécs, Hungary; Centre for Neuroscience, Pécs University, Pécs, Hungary
| | - Tamás Ollmann
- Institute of Physiology, Medical School, Pécs University, Pécs, Hungary; Centre for Neuroscience, Pécs University, Pécs, Hungary
| |
Collapse
|
10
|
Xue LL, Wang F, Niu RZ, Tan YX, Liu J, Jin Y, Ma Z, Zhang ZB, Jiang Y, Chen L, Xia QJ, Chen JJ, Wang TH, Xiong LL. Offspring of rats with cerebral hypoxia-ischemia manifest cognitive dysfunction in learning and memory abilities. Neural Regen Res 2020; 15:1662-1670. [PMID: 32209770 PMCID: PMC7437586 DOI: 10.4103/1673-5374.276359] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Neonatal hypoxic-ischemic encephalopathy is a serious neurological disease, often resulting in long-term neurodevelopmental disorders among surviving children. However, whether these neurodevelopmental issues can be passed to offspring remains unclear. The right common carotid artery of 7-day-old parental-generation rats was subjected to permanent ligation using a vessel electrocoagulator. Neonatal hypoxic-ischemic rat models were established by subjecting the rats to 8% O2–92% N2 for 2 hours. The results showed that 24 hours after hypoxia and ischemia, pathological damage, cerebral atrophy, liquefaction, and impairment were found, and Zea-Longa scores were significantly increased. The parental-generation rats were propagated at 3 months old, and offspring were obtained. No changes in the overall brain structures of these offspring rats were identified by magnetic resonance imaging. However, the escape latency was longer and the number of platform crossings was reduced among these offspring compared with normal rats. These results indicated that the offspring of hypoxic-ischemic encephalopathy model rats displayed cognitive impairments in learning and memory. This study was approved by the Animal Care & Welfare Committee of Kunming Medical University, China in 2018 (approval No. kmmu2019072).
Collapse
Affiliation(s)
- Lu-Lu Xue
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province; Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan Province, China
| | - Fang Wang
- Department of Science and Technology, Kunming Medical University, Kunming, Yunnan Province, China
| | - Rui-Ze Niu
- Department of Laboratory Zoology, Kunming Medical University, Kunming, Yunnan Province, China
| | - Ya-Xin Tan
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan Province, China
| | - Jia Liu
- Department of Laboratory Zoology, Kunming Medical University, Kunming, Yunnan Province, China
| | - Yuan Jin
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan Province, China
| | - Zheng Ma
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan Province, China
| | - Zi-Bin Zhang
- Institute of Neurological Disease, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Ya Jiang
- Department of Laboratory Zoology, Kunming Medical University, Kunming, Yunnan Province, China
| | - Li Chen
- Institute of Neurological Disease, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Qing-Jie Xia
- Institute of Neurological Disease, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Jun-Jie Chen
- Southwest Medical University, Luzhou, Sichuan Province, China
| | - Ting-Hua Wang
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan Province; Institute of Neurological Disease, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Liu-Lin Xiong
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China; School of Pharmacy and Medical Sciences, Division of Health Sciences, University of South Australia, Adelaide, Australia
| |
Collapse
|
11
|
Development of the MAM model of schizophrenia in mice: Sex similarities and differences of hippocampal and prefrontal cortical function. Neuropharmacology 2019; 144:193-207. [DOI: 10.1016/j.neuropharm.2018.10.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 10/06/2018] [Accepted: 10/19/2018] [Indexed: 12/31/2022]
|
12
|
O'Reilly KC, Levy ERJ, Patino AV, Perica MI, Fenton AA. Sub-circuit alterations in dorsal hippocampus structure and function after global neurodevelopmental insult. Brain Struct Funct 2018; 223:3543-3556. [PMID: 29951917 PMCID: PMC6278823 DOI: 10.1007/s00429-018-1704-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 06/20/2018] [Indexed: 11/30/2022]
Abstract
Patients with neuropsychiatric and neurological disorders often express limbic circuit abnormalities and deficits in information processing. While these disorders appear to have diverse etiologies, their common features suggest neurodevelopmental origins. Neurodevelopment is a prolonged process of diverse events including neurogenesis/apoptosis, axon pathfinding, synaptogenesis, and pruning, to name a few. The precise timing of the neurodevelopmental insult to these processes likely determines the resulting functional outcome. We used the epilepsy and schizophrenia-related gestational day 17 methylazoxymethanol acetate model to examine the impact of this timed neurodevelopmental insult on principal cell morphology and synaptic network function of the dorsal hippocampus (dHPC) circuit. Our observed structural and functional alterations in dHPC are compartment specific, indicating that adverse global exposure during gestation can produce specific alterations and distort information processing in neural circuits that underlie cognitive abilities.
Collapse
Affiliation(s)
- Kally C O'Reilly
- Center for Neural Science, New York University, 4 Washington Place, New York, NY, 10003, USA.
- Child and Adolescent Psychiatry, New York State Psychiatric Institute, 1051 Riverside Dr, New York, NY, 10032, USA.
| | - Eliott R J Levy
- Center for Neural Science, New York University, 4 Washington Place, New York, NY, 10003, USA
| | - Alejandra V Patino
- Center for Neural Science, New York University, 4 Washington Place, New York, NY, 10003, USA
| | - Maria I Perica
- Center for Neural Science, New York University, 4 Washington Place, New York, NY, 10003, USA
| | - André A Fenton
- Center for Neural Science, New York University, 4 Washington Place, New York, NY, 10003, USA.
- Neuroscience Institute at the New York University Langone Medical Center, New York, NY, 10016, USA.
- Department of Physiology and Pharmacology, Robert F. Furchgott Center for Neuroscience, State University of New York, Downstate Medical Center, Brooklyn, NY, USA.
| |
Collapse
|
13
|
Nikiforuk A. Assessment of cognitive functions in animal models of schizophrenia. Pharmacol Rep 2018; 70:639-649. [DOI: 10.1016/j.pharep.2018.01.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 01/19/2018] [Accepted: 01/31/2018] [Indexed: 12/16/2022]
|
14
|
Matsuda W, Ehara A, Nakadate K, Yoshimoto K, Ueda S. Effects of environmental enrichment on the activity of the amygdala in micrencephalic rats exposed to a novel open field. Congenit Anom (Kyoto) 2018; 58:16-23. [PMID: 28464341 DOI: 10.1111/cga.12228] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 04/26/2017] [Accepted: 04/28/2017] [Indexed: 12/25/2022]
Abstract
Environmental enrichment (EE) mediates recovery from sensory, motor, and cognitive deficits and emotional abnormalities. In the present study, we examined the effects of EE on locomotor activity and neuronal activity in the amygdala in control and methylazoxymethanol acetate (MAM)-induced micrencephalic rats after challenge in a novel open field. Control rats housed in EE (CR) showed reduced locomotor activity compared to rats housed in a conventional cage (CC), whereas hyperactivity was seen in MAM rats housed in a conventional cage (MC) and in MAM rats housed in EE (MR). Novel open field exposure in both CC and MC resulted in a marked increase in Fos expression in the anterior and posterior parts of the basolateral amygdaloid nucleus, basomedial nucleus, and medial nucleus, whereas these increases in expression were not observed in CR. The effect of EE on Fos expression in the amygdala was different in MR exposed to a novel open field compared to CR. Furthermore, we observed a quite different pattern of Fos expression in the central nucleus of the amygdala between control and MAM rats. The present results suggest that neuronal activity in the amygdala that responds to anxiety is altered in MAM rats, especially when the rats are reared in EE. These alterations may cause behavioral differences between control and MAM rats.
Collapse
Affiliation(s)
- Wakoto Matsuda
- Department of Histology and Neurobiology, Dokkyo Medical University School of Medicine, Tochigi, Japan
| | - Ayuka Ehara
- Department of Histology and Neurobiology, Dokkyo Medical University School of Medicine, Tochigi, Japan
| | - Kazuhiko Nakadate
- Department of Basic Science, Educational and Research Center for Pharmacy, Meiji Pharmaceutical University, Kiyose, Tokyo, Japan
| | - Kanji Yoshimoto
- Department of Food Sciences and Biotechnology, Faculty of Life Sciences, Hiroshima Institute of Technology, Miyake, Saeki-ku, Hiroshima, Japan
| | - Shuichi Ueda
- Department of Histology and Neurobiology, Dokkyo Medical University School of Medicine, Tochigi, Japan
| |
Collapse
|
15
|
Mar AC, Nilsson SRO, Gamallo-Lana B, Lei M, Dourado T, Alsiö J, Saksida LM, Bussey TJ, Robbins TW. MAM-E17 rat model impairments on a novel continuous performance task: effects of potential cognitive enhancing drugs. Psychopharmacology (Berl) 2017; 234:2837-2857. [PMID: 28744563 PMCID: PMC5591806 DOI: 10.1007/s00213-017-4679-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 06/18/2017] [Indexed: 12/02/2022]
Abstract
RATIONALE Impairments in attention and inhibitory control are endophenotypic markers of neuropsychiatric disorders such as schizophrenia and represent key targets for therapeutic management. Robust preclinical models and assays sensitive to clinically relevant treatments are crucial for improving cognitive enhancement strategies. OBJECTIVES We assessed a rodent model with neural and behavioral features relevant to schizophrenia (gestational day 17 methylazoxymethanol acetate treatment (MAM-E17)) on a novel test of attention and executive function, and examined the impact of putative nootropic drugs. METHODS MAM-E17 and sham control rats were trained on a novel touchscreen-based rodent continuous performance test (rCPT) designed to closely mimic the human CPT paradigm. Performance following acute, systemic treatment with an array of pharmacological compounds was investigated. RESULTS Two cohorts of MAM-E17 rats were impaired on rCPT performance including deficits in sensitivity (d') and increased false alarm rates (FARs). Sulpiride (0-30 mg/kg) dose-dependently reduced elevated FAR in MAM-E17 rats whereas low-dose modafinil (8 mg/kg) only improved d' in sham controls. ABT-594 (5.9-19.4 μg/kg) and modafinil (64 mg/kg) showed expected stimulant-like effects, while LSN2463359 (5 mg/kg), RO493858 (10 mg/kg), atomoxetine (0.3-1 mg/kg), and sulpiride (30 mg/kg) showed expected suppressant effects on performance across all animals. Donepezil (0.1-1 mg/kg) showed near-significant enhancements in d', and EVP-6124 (0.3-3 mg/kg) exerted no effects in the rCPT paradigm. CONCLUSION The MAM-E17 model exhibits robust and replicable impairments in rCPT performance that resemble attention and inhibitory control deficits seen in schizophrenia. Pharmacological profiles were highly consistent with known drug effects on cognition in preclinical and clinical studies. The rCPT is a sensitive and reliable tool with high translational potential for understanding the etiology and treatment of disorders affecting attention and executive dysfunction.
Collapse
Affiliation(s)
- Adam C Mar
- Neuroscience Institute, New York University Medical Center, New York, NY, 10016, USA.
- Department of Neuroscience and Physiology, New York University Medical Center, New York, NY, USA.
- Department of Psychology, University of Cambridge, Cambridge, UK.
- MRC and Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK.
| | - Simon R O Nilsson
- Neuroscience Institute, New York University Medical Center, New York, NY, 10016, USA
- Department of Neuroscience and Physiology, New York University Medical Center, New York, NY, USA
- Department of Psychology, University of Cambridge, Cambridge, UK
- MRC and Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| | - Begoña Gamallo-Lana
- Neuroscience Institute, New York University Medical Center, New York, NY, 10016, USA
- Department of Neuroscience and Physiology, New York University Medical Center, New York, NY, USA
- Department of Psychology, University of Cambridge, Cambridge, UK
- MRC and Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| | - Ming Lei
- Department of Psychology, University of Cambridge, Cambridge, UK
- MRC and Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
- Department of Health Industry Management, Beijing International Studies University, 1 Dingfuzhuang Nanli, Beijing, China
| | - Theda Dourado
- Department of Psychology, University of Cambridge, Cambridge, UK
- MRC and Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| | - Johan Alsiö
- Department of Psychology, University of Cambridge, Cambridge, UK
- MRC and Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
- Department of Neuroscience, Unit of Functional Neurobiology, University of Uppsala, Uppsala, Sweden
| | - Lisa M Saksida
- Department of Psychology, University of Cambridge, Cambridge, UK
- MRC and Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
- Molecular Medicine Research Group, Robarts Research Institute, Western University, London, ON, Canada
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- The Brain and Mind Institute, Western University, London, ON, Canada
| | - Timothy J Bussey
- Department of Psychology, University of Cambridge, Cambridge, UK
- MRC and Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
- Molecular Medicine Research Group, Robarts Research Institute, Western University, London, ON, Canada
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- The Brain and Mind Institute, Western University, London, ON, Canada
| | - Trevor W Robbins
- Department of Psychology, University of Cambridge, Cambridge, UK
- MRC and Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| |
Collapse
|
16
|
Kállai V, Tóth A, Gálosi R, Péczely L, Ollmann T, Petykó Z, László K, Kállai J, Szabó I, Karádi Z, Lénárd L. The MAM-E17 schizophrenia rat model: Comprehensive behavioral analysis of pre-pubertal, pubertal and adult rats. Behav Brain Res 2017; 332:75-83. [DOI: 10.1016/j.bbr.2017.05.065] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 05/26/2017] [Accepted: 05/28/2017] [Indexed: 01/17/2023]
|
17
|
Kim EH, Yum MS, Lee M, Kim EJ, Shim WH, Ko TS. A New Rat Model of Epileptic Spasms Based on Methylazoxymethanol-Induced Malformations of Cortical Development. Front Neurol 2017; 8:271. [PMID: 28659857 PMCID: PMC5466970 DOI: 10.3389/fneur.2017.00271] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 05/26/2017] [Indexed: 02/03/2023] Open
Abstract
Malformations of cortical development (MCDs) can cause medically intractable epilepsies and cognitive disabilities in children. We developed a new model of MCD-associated epileptic spasms by treating rats prenatally with methylazoxymethanol acetate (MAM) to induce cortical malformations and postnatally with N-methyl-d-aspartate (NMDA) to induce spasms. To produce cortical malformations to infant rats, two dosages of MAM (15 mg/kg, intraperitoneally) were injected to pregnant rats at gestational day 15. In prenatally MAM-exposed rats and the controls, spasms were triggered by single (6 mg/kg on postnatal day 12 (P12) or 10 mg/kg on P13 or 15 mg/kg on P15) or multiple doses (P12, P13, and P15) of NMDA. In prenatally MAM-exposed rats with single NMDA-provoked spasms at P15, we obtain the intracranial electroencephalography and examine the pretreatment response to adrenocorticotropic hormone (ACTH) or vigabatrin. Rat pups prenatally exposed to MAM exhibited a significantly greater number of spasms in response to single and multiple postnatal NMDA doses than vehicle-exposed controls. Vigabatrin treatment prior to a single NMDA dose on P15 significantly suppressed spasms in MAM group rats (p < 0.05), while ACTH did not. The MAM group also showed significantly higher fast oscillation (25–100 Hz) power during NMDA-induced spasms than controls (p = 0.047). This new model of MCD-based epileptic spasms with corresponding features of human spasms will be valuable for future research of the developmental epilepsy.
Collapse
Affiliation(s)
- Eun-Hee Kim
- Department of Pediatrics, CHA Gangnam Medical Center, CHA University, Seoul, South Korea
| | - Mi-Sun Yum
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, South Korea
| | - Minyoung Lee
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, South Korea
| | - Eun-Jin Kim
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, South Korea
| | - Woo-Hyun Shim
- Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Tae-Sung Ko
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, South Korea
| |
Collapse
|
18
|
Brady LJ, Bartley AF, Li Q, McMeekin LJ, Hablitz JJ, Cowell RM, Dobrunz LE. Transcriptional dysregulation causes altered modulation of inhibition by haloperidol. Neuropharmacology 2016; 111:304-313. [PMID: 27480797 PMCID: PMC5207497 DOI: 10.1016/j.neuropharm.2016.07.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 07/14/2016] [Accepted: 07/26/2016] [Indexed: 11/30/2022]
Abstract
Many neuropsychiatric and neurodevelopmental disorders such as schizophrenia and autism involve interneuron transcriptional dysregulation. The transcriptional coactivator PGC-1α regulates gene expression in GABAergic interneurons, which are important for regulating hippocampal network activity. Genetic deletion of PGC-1α causes a decrease in parvalbumin expression, similar to what is observed in schizophrenia postmortem tissue. Our lab has previously shown that PGC-1α-/- mice have enhanced GABAergic inhibition onto CA1 pyramidal cells, which increases the inhibition/excitation (I/E) ratio, alters hippocampal circuit function, and impairs hippocampal dependent behavior. The typical antipsychotic haloperidol, a dopamine receptor antagonist with selectivity for D2-like receptors, has previously been shown to increase excitation in the CA1 region of hippocampus. We therefore tested whether haloperidol could normalize the I/E balance in CA1 of PGC-1α-/- mice, potentially improving circuit function and behavior. Surprisingly, we discovered instead that interneuron transcriptional dysregulation caused by loss of PGC-1α alters the effects of haloperidol on hippocampal synaptic transmission and circuit function. Acute administration of haloperidol causes disinhibition in CA1 and decreases the I/E ratio onto CA1 pyramidal cells in slices from PGC-1α+/+ mice, but not PGC-1α-/- mice. The spread of activity in CA1, assessed by voltage sensitive dye imaging, is increased by haloperidol in slices from PGC-1α+/+ mice; however haloperidol decreases the spread of activity in slices from PGC-1α-/- mice. Haloperidol increased the power of hippocampal gamma oscillation in slices from PGC-1α+/+ mice but reduced the power of gamma oscillations in slices from PGC-1α-/- mice. Nest construction, an innate hippocampal-dependent behavior, is inhibited by haloperidol in PGC-1α+/+ mice, but not in PGC-1α-/- mice, which already have impaired nest building. The effects of haloperidol are mimicked and occluded by a D2 receptor antagonist in slices from PGC-1α+/+ mice, and the effects of blocking D2 receptors are lost in slices from PGC-1α-/- mice, although there is no change in D2 receptor transcript levels. Together, our results show that hippocampal inhibitory synaptic transmission, CA1 circuit function, and hippocampal dependent behavior are modulated by the antipsychotic haloperidol, and that these effects of haloperidol are lost in PGC-1α-/- mice. These results have implications for the treatment of individuals with conditions involving PGC-1α deficiency.
Collapse
Affiliation(s)
- Lillian J Brady
- Department of Neurobiology and Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, 1825 University Blvd., Birmingham, AL, USA; Civitan International Research Center, University of Alabama at Birmingham, 1719 6th Ave. S., Birmingham, AL, USA.
| | - Aundrea F Bartley
- Department of Neurobiology and Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, 1825 University Blvd., Birmingham, AL, USA; Civitan International Research Center, University of Alabama at Birmingham, 1719 6th Ave. S., Birmingham, AL, USA.
| | - Qin Li
- Department of Neurobiology and Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, 1825 University Blvd., Birmingham, AL, USA; Civitan International Research Center, University of Alabama at Birmingham, 1719 6th Ave. S., Birmingham, AL, USA.
| | - Laura J McMeekin
- Civitan International Research Center, University of Alabama at Birmingham, 1719 6th Ave. S., Birmingham, AL, USA; Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, 1720 7th Ave. S., Birmingham, AL, USA.
| | - John J Hablitz
- Department of Neurobiology and Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, 1825 University Blvd., Birmingham, AL, USA; Civitan International Research Center, University of Alabama at Birmingham, 1719 6th Ave. S., Birmingham, AL, USA.
| | - Rita M Cowell
- Civitan International Research Center, University of Alabama at Birmingham, 1719 6th Ave. S., Birmingham, AL, USA; Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, 1720 7th Ave. S., Birmingham, AL, USA.
| | - Lynn E Dobrunz
- Department of Neurobiology and Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, 1825 University Blvd., Birmingham, AL, USA; Civitan International Research Center, University of Alabama at Birmingham, 1719 6th Ave. S., Birmingham, AL, USA.
| |
Collapse
|
19
|
O'Reilly KC, Perica MI, Fenton AA. Memory deficits with intact cognitive control in the methylazoxymethanol acetate (MAM) exposure model of neurodevelopmental insult. Neurobiol Learn Mem 2016; 134 Pt B:294-303. [PMID: 27485950 DOI: 10.1016/j.nlm.2016.07.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 07/26/2016] [Accepted: 07/30/2016] [Indexed: 01/30/2023]
Abstract
Cognitive impairments are amongst the most debilitating deficits of schizophrenia and the best predictor of functional outcome. Schizophrenia is hypothesized to have a neurodevelopmental origin, making animal models of neurodevelopmental insult important for testing predictions that early insults will impair cognitive function. Rats exposed to methylazoxymethanol acetate (MAM) at gestational day 17 display morphological, physiological and behavioral abnormalities relevant to schizophrenia. Here we investigate the cognitive abilities of adult MAM rats. We examined brain activity in MAM rats by histochemically assessing cytochrome oxidase enzyme activity, a metabolic marker of neuronal activity. To assess cognition, we used a hippocampus-dependent two-frame active place avoidance paradigm to examine learning and spatial memory, as well as cognitive control and flexibility using the same environment and evaluating the same set of behaviors. We confirmed that adult MAM rats have altered hippocampal morphology and brain function, and that they are hyperactive in an open field. The latter likely indicates MAM rats have a sensorimotor gating deficit that is common to many animal models used for schizophrenia research. On first inspection, cognitive control seems impaired in MAM rats, indicated by more errors during the two-frame active place avoidance task. Because MAM rats are hyperactive throughout place avoidance training, we considered the possibility that the hyperlocomotion may account for the apparent cognitive deficits. These deficits were reduced on the basis of measures of cognitive performance that account for motor activity differences. However, though other aspects of memory are intact, the ability of MAM rats to express trial-to-trial memory is delayed compared to control rats. These findings suggest that spatial learning and cognitive abilities are largely intact, that the most prominent cognitive deficit is specific to acquiring memory in the MAM neurodevelopmental model, and that hyperactivity can confound assessments of cognition in animal models of mental dysfunction.
Collapse
Affiliation(s)
- Kally C O'Reilly
- Center for Neural Science, New York University, New York, NY 10003, United States
| | - Maria I Perica
- Center for Neural Science, New York University, New York, NY 10003, United States
| | - André A Fenton
- Center for Neural Science, New York University, New York, NY 10003, United States; Department of Physiology, SUNY Downstate Medical Center, Brooklyn, NY, United States.
| |
Collapse
|
20
|
Hvoslef-Eide M, Mar AC, Nilsson SRO, Alsiö J, Heath CJ, Saksida LM, Robbins TW, Bussey TJ. The NEWMEDS rodent touchscreen test battery for cognition relevant to schizophrenia. Psychopharmacology (Berl) 2015. [PMID: 26202612 DOI: 10.1007/s00213-015-4007-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
RATIONALE The NEWMEDS initiative (Novel Methods leading to New Medications in Depression and Schizophrenia, http://www.newmeds-europe.com ) is a large industrial-academic collaborative project aimed at developing new methods for drug discovery for schizophrenia. As part of this project, Work package 2 (WP02) has developed and validated a comprehensive battery of novel touchscreen tasks for rats and mice for assessing cognitive domains relevant to schizophrenia. OBJECTIVES This article provides a review of the touchscreen battery of tasks for rats and mice for assessing cognitive domains relevant to schizophrenia and highlights validation data presented in several primary articles in this issue and elsewhere. METHODS The battery consists of the five-choice serial reaction time task and a novel rodent continuous performance task for measuring attention, a three-stimulus visual reversal and the serial visual reversal task for measuring cognitive flexibility, novel non-matching to sample-based tasks for measuring spatial working memory and paired-associates learning for measuring long-term memory. RESULTS The rodent (i.e. both rats and mice) touchscreen operant chamber and battery has high translational value across species due to its emphasis on construct as well as face validity. In addition, it offers cognitive profiling of models of diseases with cognitive symptoms (not limited to schizophrenia) through a battery approach, whereby multiple cognitive constructs can be measured using the same apparatus, enabling comparisons of performance across tasks. CONCLUSION This battery of tests constitutes an extensive tool package for both model characterisation and pre-clinical drug discovery.
Collapse
Affiliation(s)
- M Hvoslef-Eide
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK. .,MRC and Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK.
| | - A C Mar
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK.,MRC and Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK.,Department of Neuroscience and Physiology, New York University Medical Center, New York, NY, 10016, USA
| | - S R O Nilsson
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK.,MRC and Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
| | - J Alsiö
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK.,MRC and Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK.,Department of Neuroscience, Unit of Functional Neurobiology, University of Uppsala, 75124, Uppsala, Sweden
| | - C J Heath
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK.,MRC and Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
| | - L M Saksida
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK.,MRC and Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
| | - T W Robbins
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK.,MRC and Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
| | - T J Bussey
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK.,MRC and Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
| |
Collapse
|