1
|
Wang Z, Zhao Y, Wang Z, Sun N, Yu W, Feng Q, Kim HY, Ge F, Yang X, Guan X. Comparative analysis of functional network dynamics in high and low alcohol preference mice. Exp Neurol 2025; 389:115238. [PMID: 40189125 DOI: 10.1016/j.expneurol.2025.115238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 03/18/2025] [Accepted: 04/01/2025] [Indexed: 04/11/2025]
Abstract
Individual variability preference is a typical characteristic of alcohol drinking behaviors, with a higher risk for the development of alcohol use disorders (AUDs) in high alcohol preference (HP) populations. Here, we created a map of alcohol-related brain regions through c-Fos profiling, and comparatively investigated the differences of functional neural networks between the HP mice and low alcohol preference (LP) mice. We found that neuronal activity in some brain regions, such as ventral tegmental area (VTA), was altered in both HP and LP mice, indicating that these neurons were universally sensitive to alcohol. Most importantly, several brain regions, such as the prefrontal cortex and insular cortex, exhibited significantly higher c-Fos expression in HP mice than that in LP mice and displayed broader and stronger neural connections across brain networks, suggesting that these brain regions are the potential targets for individual alcohol preference. Graph theory-based analysis unraveled a decrease in brain modularity in HP networks, yet with more centralized connection patterns, and maintained higher communication efficiency and redundancy. Furthermore, LP mice switched the central network hubs, with the key differential network centered on nucleus accumbens shell (NAc Sh), nucleus accumbens core (NAc C), VTA, and anterior insular cortex (AIC), indicating that these brain regions and related neural circuits, such as NAc Sh-AIC may be involved in regulating individual alcohol preference. These results provide novel insights into the neural connections governing individual preferences to alcohol consumption, which may contribute to AUDs prediction and pharmacotherapy.
Collapse
Affiliation(s)
- Zilin Wang
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yingying Zhao
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ze Wang
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Nongyuan Sun
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wen Yu
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Quying Feng
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Hee Young Kim
- Department of Physiology, Yonsei University College of Medicine, Seoul, South Korea
| | - Feifei Ge
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xin Yang
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Xiaowei Guan
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
2
|
Xu L, Xiong J, Li X, Wang J, Wang P, Wu X, Wang J, Liu Y, Guo R, Fan X, Zhu X, Guan Y. Role of Lactobacillus plantarum-Derived Extracellular Vesicles in Regulating Alcohol Consumption. Mol Neurobiol 2025; 62:2889-2902. [PMID: 39180695 DOI: 10.1007/s12035-024-04447-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 08/19/2024] [Indexed: 08/26/2024]
Abstract
Alcohol Use Disorder (AUD), characterized by repeated alcohol consumption and withdrawal symptoms, poses a significant public health issue. Alcohol-induced impairment of the intestinal barrier results in alterations in intestinal permeability and the composition of the intestinal microbiota. Such alterations lead to a reduced relative abundance of intestinal lactic acid bacteria. However, the role of gut microbiota in alcohol consumption is not yet fully understood. In this study, we explore the mechanism by which gut microbiota regulates alcohol consumption, specifically using extracellular vesicles derived from Lactobacillus plantarum (L-EVs). L-EVs were administered to Sprague-Dawley rats either through intraperitoneal injection or microinjection into the ventral tegmental area (VTA), resulting in a significant reduction in alcohol consumption 72 hours after withdrawal. The observed reduction was akin to the effect of an intra-VTA microinjection of Brain-Derived Neurotrophic Factor (BDNF). Intriguingly, the microinjection of K252a (a Trk B antagonist) into the VTA blocked the reducing effect of L-EVs on alcohol consumption. The intraperitoneal injection of L-EVs restored the diminished BDNF expression in the VTA of alcohol-dependent rats. Furthermore, L-EVs rescued the low BDNF expression in alcohol-incubated PC12 cells. In conclusion, our study demonstrates that L-EVs attenuated alcohol consumption by enhancing BDNF expression in alcohol-dependent rats, thus suggesting the significant therapeutic potential of L-EVs in preventing excessive alcohol consumption.
Collapse
Affiliation(s)
- Lulu Xu
- Department of Physiology & Neurobiology, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Junwei Xiong
- Department of Physiology & Neurobiology, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Xinxin Li
- Heilongjiang Province Key Laboratory of Mechanism and Prevention of Substance Dependence Disease, Mudanjiang, 157011, China
| | - Jiajia Wang
- Department of Physiology & Neurobiology, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Pengyu Wang
- Department of Physiology & Neurobiology, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Xiaobin Wu
- Department of Physiology & Neurobiology, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Jiaxi Wang
- Department of Physiology & Neurobiology, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Yong Liu
- Heilongjiang Province Key Laboratory of Mechanism and Prevention of Substance Dependence Disease, Mudanjiang, 157011, China
| | - Ran Guo
- Department of Physiology & Neurobiology, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Xiaohe Fan
- Heilongjiang Province Key Laboratory of Mechanism and Prevention of Substance Dependence Disease, Mudanjiang, 157011, China
| | - Xiaofeng Zhu
- Department of Physiology & Neurobiology, Mudanjiang Medical University, Mudanjiang, 157011, China.
- Heilongjiang Province Key Laboratory of Mechanism and Prevention of Substance Dependence Disease, Mudanjiang, 157011, China.
- Development and Application of North Traditional Chinese Medicine Collaborative Innovation Center in Mudanjiang, Mudanjiang, 157011, China.
| | - Yanzhong Guan
- Department of Physiology & Neurobiology, Mudanjiang Medical University, Mudanjiang, 157011, China.
- Heilongjiang Province Key Laboratory of Mechanism and Prevention of Substance Dependence Disease, Mudanjiang, 157011, China.
- Development and Application of North Traditional Chinese Medicine Collaborative Innovation Center in Mudanjiang, Mudanjiang, 157011, China.
| |
Collapse
|
3
|
Gironda SC, Centanni SW, Weiner JL. Early life psychosocial stress increases binge-like ethanol consumption and CSF1R inhibition prevents stress-induced alterations in microglia and brain macrophage population density. Brain Behav Immun Health 2025; 43:100933. [PMID: 39896839 PMCID: PMC11787031 DOI: 10.1016/j.bbih.2024.100933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 12/04/2024] [Accepted: 12/21/2024] [Indexed: 02/04/2025] Open
Abstract
Early life stress (ELS) has lasting consequences on microglia and brain macrophage function. During ELS, microglia and brain macrophages alter their engagement with synapses leading to changes in neuronal excitability. Further, ELS can induce innate immune memory formation in microglia and brain macrophages resulting in altered responsivity to future environmental stimuli. These alterations can result in lasting adaptations in circuit function and may mediate the relationship between ELS and the risk to develop alcohol use disorder (AUD). Whether microglia and brain macrophages truly mediate this relationship remains elusive. Here, we report: 1) an ELS model, psychosocial stress (PSS), increases binge-like ethanol consumption in early adulthood. 2) Repeated binge-like ethanol consumption increases microglia and brain macrophage population densities across the brain. 3) PSS may elicit innate immune memory formation in microglia and brain macrophages leading to altered population densities following repeated binge-like ethanol consumption. 4) Microglia and brain macrophage inhibition trended towards preventing PSS-evoked changes in binge-like ethanol consumption and normalized microglia and brain macrophage population densities. Therefore, our study suggests that acutely inhibiting microglia and brain macrophage function during periods of early life PSS may prevent innate immune memory formation and assist in reducing the risk to develop AUD.
Collapse
Affiliation(s)
| | - Samuel W. Centanni
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston Salem, NC, 27101, USA
| | | |
Collapse
|
4
|
Mehr SR, Nakhaei B, Soleimani H, Madadlou SK, Abbasi Maleky A, Abbasi-Maleki S. Addiction and stress: Exploring the reward pathways in brain affected by different drugs. PROGRESS IN BRAIN RESEARCH 2025; 291:381-404. [PMID: 40222788 DOI: 10.1016/bs.pbr.2025.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
This chapter delves into the complex interplay among addiction, stress, and the reward pathways in the brain, emphasizing the ways in which various drugs affect these systems and exacerbate SUD. Drugs have physiological effects that can be both pleasurable and unpleasant. These effects change behavior through both positive and negative reinforcement. A person's genetic predisposition to addiction is mostly determined by factors such as biological sex, age of first usage, and dopamine receptor density. Drug use behaviors are also greatly influenced by environmental stressors, media exposure, and substance accessibility; nevertheless, protective variables including social support, participation in healthy activities, and preventative programs serve to reduce the dangers associated with drug use. The reinforcement of addictive behaviors is mostly dependent on the brain's reward circuits, which include the nucleus accumbens, ventral tegmental region, and prefrontal cortex, in addition to neurotransmitters such as dopamine, serotonin, and endorphins. Stress makes addiction worse by intensifying cravings and raising the possibility of relapsing. Examined are the impacts of several drug types, such as opioids, stimulants, depressants, and hallucinogens, emphasizing the long-term consequences on brain function and susceptibility to addiction. In order to create individualized interventions that target the environmental and neurological components of addiction and eventually improve treatment results, a thorough understanding of these elements is important.
Collapse
Affiliation(s)
- Samira Rostami Mehr
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Babak Nakhaei
- Department of Pathobiology, Faculty of Veterinary Medicine, Urmia Branch, Islamic Azad University, Urmia, Iran
| | - Hossein Soleimani
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Pathobiology, Faculty of Veterinary Medicine, Urmia Branch, Islamic Azad University, Urmia, Iran; Research and Development Unit (R&D), Daana Pharmaceutical Co, Tabriz, Iran; Department of Biological Science, North Tehran Branch, Islamic Azad University, Tehran, Iran; Department of Pharmacology & Toxicology, School of Pharmacy, Kermanshah University of Medical Science, Kermanshah, Iran
| | | | - Asghar Abbasi Maleky
- Department of Biological Science, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Saeid Abbasi-Maleki
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Pharmacology & Toxicology, School of Pharmacy, Kermanshah University of Medical Science, Kermanshah, Iran.
| |
Collapse
|
5
|
Germé K, Pfaus JG. Acute ethanol disrupts conditioned inhibition in the male rat. Psychopharmacology (Berl) 2024; 241:2061-2071. [PMID: 38822097 DOI: 10.1007/s00213-024-06618-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/15/2024] [Indexed: 06/02/2024]
Abstract
RATIONALE Alcohol can disrupt conditioned sexual inhibition (CSI) established by first-order conditioning in male rats. CSI can also be induced using second-order conditioning, during which male rats are trained to associate a neutral odor with a nonreceptive female. As a result, when given access to two receptive females (one scented and one unscented) during a copulatory preference test, they display CSI toward the scented female. OBJECTIVE The present study examined the effect of low-to-moderate doses of alcohol on CSI and brain activation following exposure to alcohol and the olfactory cue alone. METHODS Sexually-naïve Long-Evans rats received alternate conditioning sessions with unscented receptive or scented (almond extract) non-receptive females. Following the conditioning phase, males were injected with saline, alcohol 0.5 g/kg or 1 g/kg, 45 min before a copulatory test with two receptive females, with one bearing the olfactory cue. Fos activation was later assessed, following exposure to alcohol and the olfactory cue alone, in several brain regions involved in the expression and regulation of male sexual behavior. RESULTS While males in the saline group displayed sexual avoidance towards the scented female, those injected with alcohol before the copulatory test, regardless of the dose, copulated indiscriminately with both females. Subsequent exposure to alcohol and the olfactory cue alone induced different Fos expression between groups in several brain regions. CONCLUSIONS Low to moderate doses of alcohol disrupt conditioned sexual inhibition in male rats and induce a differential pattern of neural activation, particularly in regions involved in the expression and regulation of sexual behavior.
Collapse
Affiliation(s)
- Katuschia Germé
- Center for Studies in Behavioral Neurobiology, Department of Biology, Concordia University, Montréal, QC, H4B 1R7, Canada
| | - James G Pfaus
- Center for Sexual Health and Intervention, Czech National Institute of Mental Health, Klecany, 25067, Czech Republic.
- Department of Psychology and Life Sciences, Faculty of Humanities, Charles University, Prague, 18200, Czech Republic.
| |
Collapse
|
6
|
Besong OTO, Koo JS, Zhang H. Brain lncRNA-mRNA co-expression regulatory networks and alcohol use disorder. Genomics 2024; 116:110928. [PMID: 39197730 PMCID: PMC11531342 DOI: 10.1016/j.ygeno.2024.110928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/08/2024] [Accepted: 08/24/2024] [Indexed: 09/01/2024]
Abstract
Prolonged alcohol consumption can disturb the expression of both coding and noncoding genes in the brain. These dysregulated genes may co-express in modules and interact within networks, consequently influencing the susceptibility to developing alcohol use disorder (AUD). In the present study, we performed an RNA-seq analysis of the expression of both long noncoding RNAs (lncRNAs) and messenger RNAs (mRNAs) in 192 postmortem tissue samples collected from eight brain regions (amygdala, caudate nucleus, cerebellum, hippocampus, nucleus accumbens, prefrontal cortex, putamen, and ventral tegmental area) of 12 AUD and 12 control subjects of European ancestry. Applying the limma-voom method, we detected a total of 57 lncRNAs and 51 mRNAs exhibiting significant differential expression (Padj < 0.05 and fold-change ≥2) across at least one of the eight brain regions investigated. Machine learning analysis further confirmed the potential of these top genes in predicting AUD. Through Weighted Gene Co-expression Network Analysis (WGCNA), we identified distinct lncRNA-mRNA co-expression modules associated with AUD in each of the eight brain regions. Additionally, lncRNA-mRNA co-expression networks were constructed for each brain region using Cytoscape to reveal gene regulatory interactions implicated in AUD. Hub genes within these networks were found to be enriched in several key KEGG pathways, including Axon Guidance, MAPK Signaling, p53 Signaling, Adherens Junction, and Neurodegeneration. Our results underscore the significance of networks involving AUD-associated lncRNAs and mRNAs in modulating neuroplasticity in response to alcohol exposure. Further elucidating these molecular mechanisms holds promise for the development of targeted therapeutic interventions for AUD.
Collapse
Affiliation(s)
- Ojong Tabi Ojong Besong
- Department of Psychiatry, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA; Section of Biomedical Genetics, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Ji Sun Koo
- Department of Psychiatry, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA; Section of Biomedical Genetics, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Huiping Zhang
- Department of Psychiatry, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA; Section of Biomedical Genetics, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA.
| |
Collapse
|
7
|
Gironda SC, Centanni SW, Weiner JL. Early life psychosocial stress increases binge-like ethanol consumption and CSF1R inhibition prevents stress-induced alterations in microglia and brain macrophage population density. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.27.605403. [PMID: 39211115 PMCID: PMC11361020 DOI: 10.1101/2024.07.27.605403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Early life stress (ELS) has lasting consequences on microglia and brain macrophage function. During ELS, microglia and brain macrophages alter their engagement with synapses leading to changes in neuronal excitability. Further, ELS can induce innate immune memory formation in microglia and brain macrophages resulting in altered responsivity to future environmental stimuli. These alterations can result in lasting adaptations in circuit function and may mediate the relationship between ELS and the risk to develop alcohol use disorder (AUD). Whether microglia and brain macrophages truly mediate this relationship remains elusive. Here, we report: 1) an ELS model, psychosocial stress (PSS), increases binge-like ethanol consumption in early adulthood. 2) Repeated binge-like ethanol consumption increases microglia and brain macrophage population densities across the brain. 3) PSS may elicit innate immune memory formation in microglia and brain macrophages leading to altered population densities following repeated binge-like ethanol consumption. 4) Microglia and brain macrophage inhibition trended towards preventing PSS-evoked changes in binge-like ethanol consumption and normalized microglia and brain macrophage population densities. Therefore, our study suggests that acutely inhibiting microglia and brain macrophage function during periods of early life PSS may prevent innate immune memory formation and assist in reducing the risk to develop AUD. Highlights An early life psychosocial stress (PSS) exposure increases ethanol consumptionMicroglial inhibition during PSS trends towards reducing ethanol consumptionBinge ethanol consumption increases microglial count and alters cell proximityEarly life PSS alters microglial responsivity to binge ethanol consumptionMicroglial inhibition may prevent microglial innate immune memory formation.
Collapse
|
8
|
Torres Irizarry VC, Feng B, Yang X, Patel N, Schaul S, Ibrahimi L, Ye H, Luo P, Carrillo-Sáenz L, Lai P, Kota M, Dixit D, Wang C, Lasek AW, He Y, Xu P. Estrogen signaling in the dorsal raphe regulates binge-like drinking in mice. Transl Psychiatry 2024; 14:122. [PMID: 38413577 PMCID: PMC10899193 DOI: 10.1038/s41398-024-02821-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/29/2024] Open
Abstract
Estrogens promote binge alcohol drinking and contribute to sex differences in alcohol use disorder. However, the mechanisms are largely unknown. This study aims to test if estrogens act on 5-hydroxytryptamine neurons in the dorsal raphe nucleus (5-HTDRN) to promote binge drinking. We found that female mice drank more alcohol than male mice in chronic drinking in the dark (DID) tests. This sex difference was associated with distinct alterations in mRNA expression of estrogen receptor α (ERα) and 5-HT-related genes in the DRN, suggesting a potential role of estrogen/ERs/5-HT signaling. In supporting this view, 5-HTDRN neurons from naïve male mice had lower baseline firing activity but higher sensitivity to alcohol-induced excitation compared to 5-HTDRN neurons from naïve female mice. Notably, this higher sensitivity was blunted by 17β-estradiol treatment in males, indicating an estrogen-dependent mechanism. We further showed that both ERα and ERβ are expressed in 5-HTDRN neurons, whereas ERα agonist depolarizes and ERβ agonist hyperpolarizes 5-HTDRN neurons. Notably, both treatments blocked the stimulatory effects of alcohol on 5-HTDRN neurons in males, even though they have antagonistic effects on the activity dynamics. These results suggest that ERs' inhibitory effects on ethanol-induced burst firing of 5-HTDRN neurons may contribute to higher levels of binge drinking in females. Consistently, chemogenetic activation of ERα- or ERβ-expressing neurons in the DRN reduced binge alcohol drinking. These results support a model in which estrogens act on ERα/β to prevent alcohol-induced activation of 5-HTDRN neurons, which in return leads to higher binge alcohol drinking.
Collapse
Affiliation(s)
- Valeria C Torres Irizarry
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL, 60612, USA
- Department of Physiology and Biophysics, The University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Bing Feng
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, 70808, USA
| | - Xiaohua Yang
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL, 60612, USA
- Guangdong Laboratory of Lingnan Modern Agriculture and Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, 483 Wushan Road, Tianhe District, 510642, Guangzhou, Guangdong, China
| | - Nirali Patel
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Sarah Schaul
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Lucas Ibrahimi
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Hui Ye
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Pei Luo
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL, 60612, USA
- Guangdong Laboratory of Lingnan Modern Agriculture and Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, 483 Wushan Road, Tianhe District, 510642, Guangzhou, Guangdong, China
| | - Leslie Carrillo-Sáenz
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL, 60612, USA
- Department of Physiology and Biophysics, The University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Penghua Lai
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Maya Kota
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Devin Dixit
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Chunmei Wang
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Amy W Lasek
- Center for Alcohol Research in Epigenetics and Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, 60612, USA
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VI, 23298, USA
| | - Yanlin He
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, 70808, USA.
| | - Pingwen Xu
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL, 60612, USA.
- Department of Physiology and Biophysics, The University of Illinois at Chicago, Chicago, IL, 60612, USA.
| |
Collapse
|
9
|
You C, Krishnan HR, Chen Y, Zhang H, Drnevich J, Pinna G, Guidotti A, Glover EJ, Lasek AW, Grayson DR, Pandey SC, Brodie MS. Transcriptional Dysregulation of Cholesterol Synthesis Underlies Hyposensitivity to GABA in the Ventral Tegmental Area During Acute Alcohol Withdrawal. Biol Psychiatry 2024; 95:275-285. [PMID: 37562519 PMCID: PMC10840816 DOI: 10.1016/j.biopsych.2023.07.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 07/25/2023] [Accepted: 07/30/2023] [Indexed: 08/12/2023]
Abstract
BACKGROUND The ventral tegmental area (VTA) is a dopaminergic brain area that is critical in the development and maintenance of addiction. During withdrawal from chronic ethanol exposure, the response of VTA neurons to GABA (gamma-aminobutyric acid) is reduced through an epigenetically regulated mechanism. In the current study, a whole-genome transcriptomic approach was used to investigate the underlying molecular mechanism of GABA hyposensitivity in the VTA during withdrawal after chronic ethanol exposure. METHODS We performed RNA sequencing of the VTA of Sprague Dawley male rats withdrawn for 24 hours from a chronic ethanol diet as well as sequencing of the VTA of control rats fed the Lieber-DeCarli diet. RNA sequencing data were analyzed using weighted gene coexpression network analysis to identify modules that contained coexpressed genes. Validation was performed with quantitative polymerase chain reaction, gas chromatography-mass spectrometry, and electrophysiological assays. RESULTS Pathway and network analysis of weighted gene coexpression network analysis module 1 revealed a significant downregulation of genes associated with the cholesterol synthesis pathway. Consistent with this association, VTA cholesterol levels were significantly decreased during withdrawal. Chromatin immunoprecipitation indicated a decrease in levels of acetylated H3K27 at the transcriptional control regions of these genes. Electrophysiological studies in VTA slices demonstrated that GABA hyposensitivity during withdrawal was normalized by addition of exogenous cholesterol. In addition, inhibition of cholesterol synthesis produced GABA hyposensitivity, which was reversed by adding exogenous cholesterol to VTA slices. CONCLUSIONS These results suggest that decreased expression of cholesterol synthesis genes may regulate GABA hyposensitivity of VTA neurons during alcohol withdrawal. Increasing cholesterol levels in the brain may be a novel avenue for therapeutic intervention to reverse detrimental effects of chronic alcohol exposure.
Collapse
Affiliation(s)
- Chang You
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois; Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois
| | - Harish R Krishnan
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois
| | - Ying Chen
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois
| | - Huaibo Zhang
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois
| | - Jenny Drnevich
- Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Graziano Pinna
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois
| | - Alessandro Guidotti
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois
| | - Elizabeth J Glover
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois
| | - Amy W Lasek
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois
| | - Dennis R Grayson
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois
| | - Subhash C Pandey
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois; Jesse Brown VA Medical Center, Chicago, Illinois
| | - Mark S Brodie
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois; Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois.
| |
Collapse
|
10
|
Doyle MA, Taylor A, Winder DG. Neural Circuitries and Alcohol Use Disorder: Cutting Corners in the Cycle. Curr Top Behav Neurosci 2023. [PMID: 38082108 DOI: 10.1007/7854_2023_454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2024]
Abstract
An implicit tenet of the alcohol use disorder (AUD) research field is that knowledge of how alcohol interacts with the brain is critical to the development of an understanding of vulnerability to AUD and treatment approaches. Gaining this understanding requires the mapping of brain function critical to specific components of this heterogeneous disorder. Early approaches in humans and animal models focused on the determination of specific brain regions sensitive to alcohol action and their participation in AUD-relevant behaviors. Broadly speaking, this research has focused on three domains, Binge/Intoxication, Negative Affect/Withdrawal, and Preoccupation/Anticipation, with a number of regions identified as participating in each. With the generational advances in technologies that the field of neuroscience has undergone over the last two decades, this focus has shifted to a circuit-based analysis. A wealth of new data has sharpened the field's focus on the specific roles of the interconnectivity of multiple brain regions in AUD and AUD-relevant behaviors, as well as demonstrating that the three major domains described above have much fuzzier edges than originally thought.In this chapter, we very briefly review brain regions previously implicated in aspects of AUD-relevant behavior from animal model research. Next, we move to a more in-depth overview of circuit-based approaches, and the utilization of these approaches in current AUD research.
Collapse
Affiliation(s)
- Marie A Doyle
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Center for Addiction Research, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Anne Taylor
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Center for Addiction Research, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Danny G Winder
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Vanderbilt Center for Addiction Research, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN, USA.
| |
Collapse
|
11
|
DeBaker MC, Mitten EH, Rose TR, Marron Fernandez de Velasco E, Gao R, Lee AM, Wickman K. RGS6 negatively regulates inhibitory G protein signaling in dopamine neurons and positively regulates binge-like alcohol consumption in mice. Br J Pharmacol 2023; 180:2140-2155. [PMID: 36929333 PMCID: PMC10504421 DOI: 10.1111/bph.16071] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/02/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023] Open
Abstract
BACKGROUND AND PURPOSE Drugs of abuse, including alcohol, increase dopamine in the mesocorticolimbic system via actions on dopamine neurons in the ventral tegmental area (VTA). Increased dopamine transmission can activate inhibitory G protein signalling pathways in VTA dopamine neurons, including those controlled by GABAB and D2 receptors. Members of the R7 subfamily of regulator of G protein signalling (RGS) proteins can regulate inhibitory G protein signalling, but their influence on VTA dopamine neurons is unclear. Here, we investigated the influence of RGS6, an R7 RGS family memberthat has been implicated in the regulation of alcohol consumption in mice, on inhibitory G protein signalling in VTA dopamine neurons. EXPERIMENTAL APPROACH We used molecular, electrophysiological and genetic approaches to probe the impact of RGS6 on inhibitory G protein signalling in VTA dopamine neurons and on binge-like alcohol consumption in mice. KEY RESULTS RGS6 is expressed in adult mouse VTA dopamine neurons and it modulates inhibitory G protein signalling in a receptor-dependent manner, tempering D2 receptor-induced somatodendritic currents and accelerating deactivation of synaptically evoked GABAB receptor-dependent responses. RGS6-/- mice exhibit diminished binge-like alcohol consumption, a phenotype replicated in female (but not male) mice lacking RGS6 selectively in VTA dopamine neurons. CONCLUSIONS AND IMPLICATIONS RGS6 negatively regulates GABAB - and D2 receptor-dependent inhibitory G protein signalling pathways in mouse VTA dopamine neurons and exerts a sex-dependent positive influence on binge-like alcohol consumption in adult mice. As such, RGS6 may represent a new diagnostic and/or therapeutic target for alcohol use disorder.
Collapse
Affiliation(s)
- Margot C. DeBaker
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN
| | - Eric H. Mitten
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN
| | - Timothy R. Rose
- Department of Pharmacology, University of Minnesota, Minneapolis, MN
| | | | - Runbo Gao
- Department of Pharmacology, University of Minnesota, Minneapolis, MN
| | - Anna M. Lee
- Department of Pharmacology, University of Minnesota, Minneapolis, MN
| | - Kevin Wickman
- Department of Pharmacology, University of Minnesota, Minneapolis, MN
| |
Collapse
|
12
|
Heilig M. Stress-related neuropeptide systems as targets for treatment of alcohol addiction: A clinical perspective. J Intern Med 2023; 293:559-573. [PMID: 37052145 DOI: 10.1111/joim.13636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Alcohol use is a major cause of disability and death globally. These negative consequences disproportionately affect people who develop alcohol addiction, a chronic relapsing condition characterized by increased motivation to use alcohol, choice of alcohol over healthy, natural rewards, and continued use despite negative consequences. Available pharmacotherapies for alcohol addiction are few, have effect sizes in need of improvement, and remain infrequently prescribed. Research aimed at developing novel therapeutics has in large part focused on attenuating pleasurable or "rewarding" properties of alcohol, but this targets processes that primarily play a role as initiation factors. As clinical alcohol addiction develops, long-term changes in brain function result in a shift of affective homeostasis, and rewarding alcohol effects become progressively reduced. Instead, increased stress sensitivity and negative affective states emerge in the absence of alcohol and create powerful incentives for relapse and continued use through negative reinforcement, or "relief." Based on research in animal models, several neuropeptide systems have been proposed to play an important role in this shift, suggesting that these systems could be targeted by novel medications. Two mechanisms in this category, antagonism at corticotropin-releasing factor type 1, and neurokinin 1/substance P receptors, have been subject to initial evaluation in humans. A third, kappa-opioid receptor antagonism, has been evaluated in nicotine addiction and could soon be tested for alcohol. This paper discusses findings with these mechanisms to date, and their prospects as future targets for novel medications.
Collapse
Affiliation(s)
- Markus Heilig
- Center for Social and Affective Neuroscience, BKV, Linköping University and Department of Psychiatry, Linköping University Hospital, Linköping, Sweden
| |
Collapse
|
13
|
Arnold ME, Butts AN, Erlenbach TR, Amico KN, Schank JR. Sex differences in neuronal activation during aversion-resistant alcohol consumption. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2023; 47:240-250. [PMID: 36575056 PMCID: PMC9992309 DOI: 10.1111/acer.15006] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 12/15/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022]
Abstract
BACKGROUND One of the DSM-5 criteria for Alcohol Use Disorder is continued alcohol consumption despite negative consequences. This has been modeled in mice using adulteration of alcohol solution with the bitter tastant quinine. Mice that continue to consume alcohol despite this adulteration are considered aversion resistant. The limited number of studies dissecting the underlying neuronal mechanisms of aversion-resistant drinking behaviors used only male subjects. We have previously shown that female mice are more resistant to quinine adulteration of alcohol than males. Our aim here is to identify potential sex differences in neuronal activation that may underlie this behavior. METHODS Male and female C57BL/6J mice were allowed continuous access to 20% alcohol in a two-bottle choice procedure. To test aversion-resistance, the alcohol was adulterated with increasing concentrations (0.03, 0.1, and 0.2 mM) of quinine hydrochloride. After consumption rates were calculated, brains were extracted to examine neuronal activation using Fos immunohistochemistry. RESULTS We found that female mice suppressed their intake to a lesser extent than males when the alcohol solution was adulterated with quinine. Our Fos staining revealed three regions of interest that exhibit a sex difference during quinine-adulterated alcohol drinking: the ventromedial prefrontal cortex (vmPFC), the posterior insular cortex (PIC), and the ventral tegmental area (VTA). Both the vmPFC and the PIC exhibited higher neuronal activation in males during quinine-adulterated alcohol consumption. However, females showed higher Fos activation in the VTA during quinine-adulterated alcohol consumption. CONCLUSIONS Females more readily exhibit aversion-resistant alcohol intake than their male counterparts and exhibit some differences in neuronal activation patterns. We conclude that there are sex differences in neurocircuitry that may underlie compulsive drinking behaviors.
Collapse
Affiliation(s)
- Miranda E Arnold
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Arielle N Butts
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Theresa R Erlenbach
- Department of Genetics, Franklin College of Arts and Science, University of Georgia, Athens, Georgia, USA
| | - Kristen N Amico
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Jesse R Schank
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
14
|
Ray SK, Mukherjee S. Neuropharmacology of Alcohol Addiction with Special Emphasis on Proteomic Approaches for Identification of Novel Therapeutic Targets. Curr Neuropharmacol 2023; 21:119-132. [PMID: 35959616 PMCID: PMC10193758 DOI: 10.2174/1570159x20666220811092906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 07/01/2022] [Accepted: 07/10/2022] [Indexed: 02/04/2023] Open
Abstract
Alcohol is a generic pharmacological agent with only a few recognized primary targets. Nmethyl- D-aspartate, gamma-aminobutyric acid, glycine, 5-hydroxytryptamine 3 (serotonin), nicotinic acetylcholine receptors, and L-type Ca2+ channels and G-protein-activated inwardly rectifying K channels are all involved. Following the first hit of alcohol on specific brain targets, the second wave of indirect effects on various neurotransmitter/neuropeptide systems begins, leading to the typical acute behavioral effects of alcohol, which range from disinhibition to sedation and even hypnosis as alcohol concentrations rise. Recent research has revealed that gene regulation is significantly more complex than previously thought and does not fully explain changes in protein levels. As a result, studying the proteome directly, which differs from the genome/transcriptome in terms of complexity and dynamicity, has provided unique insights into extraordinary advances in proteomic techniques that have changed the way we can analyze the composition, regulation, and function of protein complexes and pathways underlying altered neurobiological conditions. Neuroproteomics has the potential to revolutionize alcohol research by allowing researchers to gain a better knowledge of how alcohol impacts protein structure, function, connections, and networks on a global scale. The amount of information collected from these breakthroughs can aid in identifying valuable biomarkers for early detection and improved prognosis of an alcohol use disorder and future pharmaceutical targets for the treatment of alcoholism.
Collapse
Affiliation(s)
- Suman Kumar Ray
- Independent Researcher, Bhopal, Madhya Pradesh 462020, India
| | - Sukhes Mukherjee
- Department of Biochemistry, All India Institute of Medical Science, Bhopal, Madhya Pradesh 462020, India
| |
Collapse
|
15
|
Grothusen JR, Blendy JA, Barr GA. A Brief Overview of the Neuropharmacology of Opioid Addiction. TRANSLATIONAL PERIOPERATIVE AND PAIN MEDICINE 2022; 9:491-496. [PMID: 36935906 PMCID: PMC10019698 DOI: 10.31480/2330-4871/165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The world is in the midst of an opioid crisis. Nearly 92,000 persons in the U.S. alone died from illicit drugs and prescription opioids in 2020 [1]. This number does not include the countless other individuals who die as a result of the violent crime that accompanies the illicit drug trade. To address this crisis, we need to appreciate aspects of drug addiction. The goal of this brief review is to highlight some major facets of addiction neurobiology, focused on opioids, to provide a basic understanding of the research and terminology encountered in more detailed in-depth articles and discussions on addiction.
Collapse
Affiliation(s)
- John R Grothusen
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Julie A Blendy
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, Translational Research Laboratories, 125 South 31st St., Philadelphia, PA, USA
| | - Gordon A Barr
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
16
|
Marrero-Cristobal G, Gelpi-Dominguez U, Morales-Silva R, Alvarado-Torres J, Perez-Torres J, Perez-Perez Y, Sepulveda-Orengo M. Aerobic exercise as a promising nonpharmacological therapy for the treatment of substance use disorders. J Neurosci Res 2022; 100:1602-1642. [PMID: 34850988 PMCID: PMC9156662 DOI: 10.1002/jnr.24990] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 10/06/2021] [Accepted: 10/14/2021] [Indexed: 12/12/2022]
Abstract
Despite the prevalence and public health impact of substance use disorders (SUDs), effective long-term treatments remain elusive. Aerobic exercise is a promising, nonpharmacological treatment currently under investigation as a strategy for preventing drug relapse. Aerobic exercise could be incorporated into the comprehensive treatment regimens for people with substance abuse disorders. Preclinical studies of SUD with animal models have shown that aerobic exercise diminishes drug-seeking behavior, which leads to relapse, in both male and female rats. Nevertheless, little is known regarding the effects of substance abuse-induced cellular and physiological adaptations believed to be responsible for drug-seeking behavior. Accordingly, the overall goal of this review is to provide a summary and an assessment of findings to date, highlighting evidence of the molecular and neurological effects of exercise on adaptations associated with SUD.
Collapse
Affiliation(s)
| | - Ursula Gelpi-Dominguez
- School of Behavioral and Brain Sciences, Ponce Health Sciences University, Ponce, PR, USA
| | - Roberto Morales-Silva
- Department of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University, Ponce, PR, USA
| | - John Alvarado-Torres
- Department of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University, Ponce, PR, USA
| | - Joshua Perez-Torres
- Department of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University, Ponce, PR, USA
| | - Yobet Perez-Perez
- Department of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University, Ponce, PR, USA
| | - Marian Sepulveda-Orengo
- Department of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University, Ponce, PR, USA
| |
Collapse
|
17
|
Conte R, Zangirolame CMS, Gobbo DR, Pereira LDAS, Panfilio CE, Reginato RD, Maluf LLS, Scerni DA, Céspedes IC. Effects of moderate alcohol consumption on behavior and neural systems of Wistar rats. AN ACAD BRAS CIENC 2022; 94:e20210673. [PMID: 35857964 DOI: 10.1590/0001-3765202220210673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 11/09/2021] [Indexed: 11/21/2022] Open
Abstract
Chronic alcohol consumption affects various neurotransmitters, especially those implicated in the transitioning to alcohol use disorders (particularly dopaminergic and CRFergic systems). Few studies have investigated moderate alcohol consumption and its harmful consequences. The objective of this work was to analyze behavioral and neurochemical (dopaminergic and CRFergic systems) alterations during chronic moderate alcohol consumption. Twelve male Wistar rats were submitted to an intermittent alcohol ingestion protocol (alcohol group) for four weeks. The control group consisted of six rats. Open Field and Elevated Plus Maze tests were used for analysis of motor and anxiety-like behaviors. Immunohistochemistry analysis was performed in dopaminergic and CRFergic systems. Animals exposed to alcohol consumed moderate doses, chronic and intermittently. Behavioral tests detected fewer fecal boli in the alcohol exposed group, and immunohistochemical analysis indicated fewer dopamine-immunoreactive cells in the ventral tegmental area, and more CRF-immunoreactive cells in the anterior cingulate cortex and dorsolateral septum in this group. Thus we concluded that Wistar rats that consumed moderate doses of alcohol voluntarily and chronically showed a discreet anxiolytic effect in behavior, and a hypodopaminergic and hyperCRFergic neurochemical condition, which together are strong inducers of alcohol consumption predisposing to the development of alcohol use disorder (AUD).
Collapse
Affiliation(s)
- Rafael Conte
- Universidade Federal de São Paulo/UNIFESP, Escola Paulista de Medicina, Departamento de Morfologia e Genética, Rua Botucatu, 740, 1º andar do Edifício Leitão da Cunha, 04023-900 São Paulo, SP, Brazil
| | - Carolline M S Zangirolame
- Universidade Federal de São Paulo/UNIFESP, Instituto de Saúde e Sociedade, Departamento de Biociências, Rua Silva Jardim, 136, Vila Matias, 11015-020 Santos, SP, Brazil
| | - Denise R Gobbo
- Universidade Federal de São Paulo/UNIFESP, Escola Paulista de Medicina, Departamento de Morfologia e Genética, Rua Botucatu, 740, 1º andar do Edifício Leitão da Cunha, 04023-900 São Paulo, SP, Brazil
| | - Laís DA S Pereira
- Universidade Federal de São Paulo/UNIFESP, Escola Paulista de Medicina, Departamento de Morfologia e Genética, Rua Botucatu, 740, 1º andar do Edifício Leitão da Cunha, 04023-900 São Paulo, SP, Brazil
| | - Carlos E Panfilio
- Universidade Municipal de São Caetano do Sul/USCS, Escola da Saúde, Rua Santo Antônio, 50, Centro, 09521-160 São Caetano do Sul, SP, Brazil
| | - Rejane D Reginato
- Universidade Federal de São Paulo/UNIFESP, Escola Paulista de Medicina, Departamento de Morfologia e Genética, Rua Botucatu, 740, 1º andar do Edifício Leitão da Cunha, 04023-900 São Paulo, SP, Brazil
| | - Luciana L S Maluf
- Universidade Federal de São Paulo/UNIFESP, Instituto de Saúde e Sociedade, Departamento de Biociências, Rua Silva Jardim, 136, Vila Matias, 11015-020 Santos, SP, Brazil
| | - Debora A Scerni
- Universidade Federal de São Paulo/UNIFESP, Escola Paulista de Medicina, Departamento de Neurologia e Neurocirurgia, Rua Pedro De Toledo, 669, Vila Clementino, 04039-032 São Paulo, SP, Brazil
| | - Isabel C Céspedes
- Universidade Federal de São Paulo/UNIFESP, Escola Paulista de Medicina, Departamento de Neurologia e Neurocirurgia, Rua Pedro De Toledo, 669, Vila Clementino, 04039-032 São Paulo, SP, Brazil
| |
Collapse
|
18
|
Is There a Novel Biosynthetic Pathway in Mice That Converts Alcohol to Dopamine, Norepinephrine and Epinephrine? Molecules 2022; 27:molecules27092726. [PMID: 35566075 PMCID: PMC9105937 DOI: 10.3390/molecules27092726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 04/21/2022] [Indexed: 11/29/2022] Open
Abstract
Previous studies in animals and humans have shown multiple types of interaction between alcohol (ethanol) intake and the catecholamine signaling molecules: dopamine, norepinephrine and epinephrine. This literature suggests that the administration of alcohol to rodents affects the central and peripheral (blood plasma) levels of these catecholamines. Two prior publications (Fitzgerald 2012, 2020) put forth the hypothesis that there may be a currently unidentified biosynthetic pathway, in a range of organisms, that actually converts alcohol to dopamine, norepinephrine and epinephrine. This publication describes the details for how to test this hypothesis in mice. Mice can be systemically injected with an intoxicating dose of commercially available stable isotope-labeled ethanol (ethanol-1-13C), and blood plasma samples and brains can be collected approximately two to 24 h post-injection. Liquid chromatography-mass spectrometry analysis can then be used to test whether some of the labeled ethanol molecules have been incorporated into new dopamine, norepinephrine, and epinephrine molecules, in plasma and brain samples. If confirmed, this hypothesis may have broadly reaching implications both for basic neuroscience and our understanding of alcohol abuse and alcoholism.
Collapse
|
19
|
Gupta S, Mukhopadhyay S, Mitra A. Therapeutic potential of GHSR-1A antagonism in alcohol dependence, a review. Life Sci 2022; 291:120316. [PMID: 35016882 DOI: 10.1016/j.lfs.2022.120316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 01/05/2022] [Accepted: 01/05/2022] [Indexed: 11/28/2022]
Abstract
Growth hormone secretagogue receptor type 1A (GHSR-1A) is a functional receptor of orexigenic peptide ghrelin and is highly expressed in mesolimbic dopaminergic systems that regulate incentive value of artificial reward in substance abuse. Interestingly, GHSR-1A has also shown ligand-independent constitutive activity. Alcohol use disorder (AUD) is one of the growing concerns worldwide as it involves complex neuro-psycho-endocrinological interactions. Positive correlation of acylated ghrelin and alcohol-induced human brain response in the right and left ventral striatum are evident. In the last decade, the beneficial effects of ghrelin receptor (GHSR-1A) antagonism to suppress artificial reward circuitries and induce self-control for alcohol consumption have drawn significant attention from researchers. In this updated review, we summarize the available recent preclinical, clinical, and experimental data to discuss functional, molecular actions of central ghrelin-GHSR-1A signaling in different craving levels for alcohol as well as to promote "GHSR-1A antagonism" as one of the potential therapies in early abstinence.
Collapse
Affiliation(s)
- Shreyasi Gupta
- Department of Zoology, Triveni Devi Bhalotia College, Raniganj, Paschim Bardhaman 713 347, West Bengal, India
| | - Sanchari Mukhopadhyay
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Hombegowda Nagar, Bengaluru 560029, India
| | - Arkadeep Mitra
- Department of Zoology, City College, 102/1, Raja Rammohan Sarani, Kolkata 700 009, West Bengal, India.
| |
Collapse
|
20
|
Abstract
PURPOSE A growing body of evidence has implicated the endocannabinoid (eCB) system in the acute, chronic, and withdrawal effects of alcohol/ethanol on synaptic function. These eCB-mediated synaptic effects may contribute to the development of alcohol use disorder (AUD). Alcohol exposure causes neurobiological alterations similar to those elicited by chronic cannabinoid (CB) exposure. Like alcohol, cannabinoids alter many central processes, such as cognition, locomotion, synaptic transmission, and neurotransmitter release. There is a strong need to elucidate the effects of ethanol on the eCB system in different brain regions to understand the role of eCB signaling in AUD. SEARCH METHODS For the scope of this review, preclinical studies were identified through queries of the PubMed database. SEARCH RESULTS This search yielded 459 articles. Clinical studies and papers irrelevant to the topic of this review were excluded. DISCUSSION AND CONCLUSIONS The endocannabinoid system includes, but is not limited to, cannabinoid receptors 1 (CB1), among the most abundantly expressed neuronal receptors in the brain; cannabinoid receptors 2 (CB2); and endogenously formed CB1 ligands, including arachidonoylethanolamide (AEA; anandamide), and 2-arachidonoylglycerol (2-AG). The development of specific CB1 agonists, such as WIN 55,212-2 (WIN), and antagonists, such as SR 141716A (rimonabant), provide powerful pharmacological tools for eCB research. Alcohol exposure has brain region-specific effects on the eCB system, including altering the synthesis of endocannabinoids (e.g., AEA, 2-AG), the synthesis of their precursors, and the density and coupling efficacy of CB1. These alcohol-induced alterations of the eCB system have subsequent effects on synaptic function including neuronal excitability and postsynaptic conductance. This review will provide a comprehensive evaluation of the current literature on the synaptic interactions of alcohol exposure and eCB signaling systems, with an emphasis on molecular and physiological synaptic effects of alcohol on the eCB system. A limited volume of studies has focused on the underlying interactions of alcohol and the eCB system at the synaptic level in the brain. Thus, the data on synaptic interactions are sparse, and future research addressing these interactions is much needed.
Collapse
Affiliation(s)
- Sarah A Wolfe
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, California
| | - Valentina Vozella
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, California
| | - Marisa Roberto
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, California
| |
Collapse
|
21
|
Curley DE, Webb AE, Sheffler DJ, Haass-Koffler CL. Corticotropin Releasing Factor Binding Protein as a Novel Target to Restore Brain Homeostasis: Lessons Learned From Alcohol Use Disorder Research. Front Behav Neurosci 2021; 15:786855. [PMID: 34912198 PMCID: PMC8667027 DOI: 10.3389/fnbeh.2021.786855] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/08/2021] [Indexed: 11/13/2022] Open
Abstract
Stress is well-known to contribute to the development of many psychiatric illnesses including alcohol and substance use disorder (AUD and SUD). The deleterious effects of stress have also been implicated in the acceleration of biological age, and age-related neurodegenerative disease. The physio-pathology of stress is regulated by the corticotropin-releasing factor (CRF) system, the upstream component of the hypothalamic-pituitary-adrenal (HPA) axis. Extensive literature has shown that dysregulation of the CRF neuroendocrine system contributes to escalation of alcohol consumption and, similarly, chronic alcohol consumption contributes to disruption of the stress system. The CRF system also represents the central switchboard for regulating homeostasis, and more recent studies have found that stress and aberrations in the CRF pathway are implicated in accelerated aging and age-related neurodegenerative disease. Corticotropin releasing factor binding protein (CRFBP) is a secreted glycoprotein distributed in peripheral tissues and in specific brain regions. It neutralizes the effects of CRF by sequestering free CRF, but may also possess excitatory function by interacting with CRF receptors. CRFBP's dual role in influencing CRF bioavailability and CRF receptor signaling has been shown to have a major part in the HPA axis response. Therefore, CRFBP may represent a valuable target to treat stress-related illness, including: development of novel medications to treat AUD and restore homeostasis in the aging brain. This narrative review focuses on molecular mechanisms related to the role of CRFBP in the progression of addictive and psychiatric disorders, biological aging, and age-related neurodegenerative disease. We provide an overview of recent studies investigating modulation of this pathway as a potential therapeutic target for AUD and age-related neurodegenerative disease.
Collapse
Affiliation(s)
- Dallece E. Curley
- Center for Alcohol and Addiction Studies, Brown University, Providence, RI, United States
- Neuroscience Graduate Program, Department of Neuroscience, Brown University, Providence, RI, United States
| | - Ashley E. Webb
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, United States
- Carney Institute for Brain Science, Brown University, Providence, RI, United States
| | - Douglas J. Sheffler
- Cell and Molecular Biology of Cancer Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Carolina L. Haass-Koffler
- Center for Alcohol and Addiction Studies, Brown University, Providence, RI, United States
- Carney Institute for Brain Science, Brown University, Providence, RI, United States
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Department of Behavioral and Social Sciences, School of Public Health, Brown University, Providence, RI, United States
| |
Collapse
|
22
|
Borruto AM, Fotio Y, Stopponi S, Petrella M, De Carlo S, Domi A, Ubaldi M, Weiss F, Ciccocioppo R. NOP receptor antagonism attenuates reinstatement of alcohol-seeking through modulation of the mesolimbic circuitry in male and female alcohol-preferring rats. Neuropsychopharmacology 2021; 46:2121-2131. [PMID: 34285372 PMCID: PMC8505627 DOI: 10.1038/s41386-021-01096-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 06/17/2021] [Accepted: 06/28/2021] [Indexed: 02/06/2023]
Abstract
In patients suffering from alcohol use disorder (AUD), stress and environmental stimuli associated with alcohol availability are important triggers of relapse. Activation of the nociceptin opioid peptide (NOP) receptor by its endogenous ligand Nociceptin/Orphanin FQ (N/OFQ) attenuates alcohol drinking and relapse in rodents, suggesting that NOP agonists may be efficacious in treating AUD. Intriguingly, recent data demonstrated that also blockade of NOP receptor reduced alcohol drinking in rodents. To explore further the potential of NOP antagonism, we investigated its effects on the reinstatement of alcohol-seeking elicited by administration of the α2 antagonist yohimbine (1.25 mg/kg, i.p.) or by environmental conditioning factors in male and female genetically selected alcohol-preferring Marchigian Sardinian (msP) rats. The selective NOP receptor antagonist LY2817412 (0.0, 3.0, 10.0, and 30.0 mg/kg) was first tested following oral (p.o.) administration. We then investigated the effects of LY2817412 (1.0, 3.0, 6.0 μg/μl/rat) microinjected into three candidate mesolimbic brain regions: the ventral tegmental area (VTA), the central nucleus of the amygdala (CeA), and the nucleus accumbens (NAc). We found that relapse to alcohol seeking was generally stronger in female than in male rats and oral administration of LY2817412 reduced yohimbine- and cue-induced reinstatement in both sexes. Following site-specific microinjections, LY2817412 reduced yohimbine-induced reinstatement of alcohol-seeking when administered into the VTA and the CeA, but not in the NAc. Cue-induced reinstatement was suppressed only when LY2817412 was microinjected into the VTA. Infusions of LY2817412 into the VTA and the CeA did not alter saccharin self-administration. These results demonstrate that NOP receptor blockade prevents the reinstatement of alcohol-seeking through modulation of mesolimbic system circuitry, providing further evidence of the therapeutic potential of NOP receptor antagonism in AUD.
Collapse
Affiliation(s)
- Anna Maria Borruto
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy
| | - Yannick Fotio
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy
| | - Serena Stopponi
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy
| | - Michele Petrella
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy
| | - Sara De Carlo
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy
| | - Ana Domi
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy
| | - Massimo Ubaldi
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy
| | - Friedbert Weiss
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
| | - Roberto Ciccocioppo
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy.
| |
Collapse
|
23
|
Arunogiri S, Crossin R, Rizzo D, Walker L, Ridley K, Gurvich C. A systematic review of the effect of ovarian sex hormones on stimulant use in females. Addict Biol 2021; 26:e13079. [PMID: 34374475 DOI: 10.1111/adb.13079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/23/2021] [Accepted: 07/14/2021] [Indexed: 12/12/2022]
Abstract
Stimulant use disorder is associated with significant global health burden. Despite evidence for sex differences in the development and maintenance of stimulant use disorder, few studies have focused on mechanisms underpinning distinct trajectories in females versus males, including the effect of the ovarian sex hormones estrogen and progesterone. This review aimed to identify and synthesise the existing preclinical and clinical literature on the effect of ovarian sex hormones on stimulant consumption in females. A systematic search of peer-reviewed literature identified 1593 articles, screened using the following inclusion criteria: (1) adult female humans or animals, (2) using stimulant drugs, (3) ovarian sex hormones were administered exogenously OR were measured in a validated manner and (4) with stimulant consumption as an outcome measure. A total of 50 studies (3 clinical and 47 preclinical) met inclusion criteria. High-estrogen (low progesterone) phases of the menstrual/estrus cycle were associated with increased stimulant use in preclinical studies, while there were no clinical studies examining estrogen and stimulant consumption. Consistent preclinical evidence supported progesterone use reducing stimulant consumption, which was also identified in one clinical study. The review was limited by inconsistent data reporting across studies and different protocols across preclinical laboratory paradigms. Importantly, almost all studies examined cocaine use, with impact on methamphetamine use a significant gap in the existing evidence. Given the safety and tolerability profile of progesterone, further research is urgently needed to address this gap, to explore the potential therapeutic utility of progesterone as a treatment for stimulant use disorder.
Collapse
Affiliation(s)
- Shalini Arunogiri
- Monash Addiction Research Centre and Eastern Health Clinical School, Faculty of Medicine, Nursing and Health Sciences Monash University Richmond Victoria Australia
- Monash Alfred Psychiatry Research Centre, Central Clinical School, Faculty of Medicine, Nursing and Health Sciences Monash University and the Alfred Hospital Melbourne Victoria Australia
- Turning Point, Eastern Health Richmond Victoria Australia
| | - Rose Crossin
- Department of Population Health University of Otago Christchurch New Zealand
- Florey Institute of Neuroscience and Mental Health University of Melbourne Parkville Victoria Australia
| | - Davinia Rizzo
- Monash Addiction Research Centre and Eastern Health Clinical School, Faculty of Medicine, Nursing and Health Sciences Monash University Richmond Victoria Australia
- Turning Point, Eastern Health Richmond Victoria Australia
| | - Leigh Walker
- Florey Institute of Neuroscience and Mental Health University of Melbourne Parkville Victoria Australia
| | - Kelly Ridley
- West Australian Country Health Service Albany Western Australia Australia
| | - Caroline Gurvich
- Monash Alfred Psychiatry Research Centre, Central Clinical School, Faculty of Medicine, Nursing and Health Sciences Monash University and the Alfred Hospital Melbourne Victoria Australia
| |
Collapse
|
24
|
Hauser SR, Mulholland PJ, Truitt WA, Waeiss RA, Engleman EA, Bell RL, Rodd ZA. Adolescent Intermittent Ethanol (AIE) Enhances the Dopaminergic Response to Ethanol within the Mesolimbic Pathway during Adulthood: Alterations in Cholinergic/Dopaminergic Genes Expression in the Nucleus Accumbens Shell. Int J Mol Sci 2021; 22:11733. [PMID: 34769161 PMCID: PMC8584082 DOI: 10.3390/ijms222111733] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/06/2021] [Accepted: 10/26/2021] [Indexed: 12/17/2022] Open
Abstract
A consistent preclinical finding is that exposure to alcohol during adolescence produces a persistent hyperdopaminergic state during adulthood. The current experiments determine that effects of Adolescent Intermittent Ethanol (AIE) on the adult neurochemical response to EtOH administered directly into the mesolimbic dopamine system, alterations in dendritic spine and gene expression within the nucleus accumbens shell (AcbSh), and if treatment with the HDACII inhibitor TSA could normalize the consequences of AIE. Rats were exposed to the AIE (4 g/kg ig; 3 days a week) or water (CON) during adolescence, and all testing occurred during adulthood. CON and AIE rats were microinjected with EtOH directly into the posterior VTA and dopamine and glutamate levels were recorded in the AcbSh. Separate groups of AIE and CON rats were sacrificed during adulthood and Taqman arrays and dendritic spine morphology assessments were performed. The data indicated that exposure to AIE resulted in a significant leftward and upward shift in the dose-response curve for an increase in dopamine in the AcbSh following EtOH microinjection into the posterior VTA. Taqman array indicated that AIE exposure affected the expression of target genes (Chrna7, Impact, Chrna5). The data indicated no alterations in dendritic spine morphology in the AcbSh or any alteration in AIE effects by TSA administration. Binge-like EtOH exposure during adolescence enhances the response to acute ethanol challenge in adulthood, demonstrating that AIE produces a hyperdopaminergic mesolimbic system in both male and female Wistar rats. The neuroadaptations induced by AIE in the AcbSh could be part of the biological basis of the observed negative consequences of adolescent binge-like alcohol exposure on adult drug self-administration behaviors.
Collapse
Affiliation(s)
- Sheketha R. Hauser
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (S.R.H.); (W.A.T.); (R.A.W.); (E.A.E.); (R.L.B.)
| | - Patrick J. Mulholland
- Department of Neuroscience, Charleston Alcohol Research Center, Medical University of South Carolina, Charleston, SC 29425, USA;
| | - William A. Truitt
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (S.R.H.); (W.A.T.); (R.A.W.); (E.A.E.); (R.L.B.)
| | - R. Aaron Waeiss
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (S.R.H.); (W.A.T.); (R.A.W.); (E.A.E.); (R.L.B.)
| | - Eric A. Engleman
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (S.R.H.); (W.A.T.); (R.A.W.); (E.A.E.); (R.L.B.)
| | - Richard L. Bell
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (S.R.H.); (W.A.T.); (R.A.W.); (E.A.E.); (R.L.B.)
| | - Zachary A. Rodd
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (S.R.H.); (W.A.T.); (R.A.W.); (E.A.E.); (R.L.B.)
| |
Collapse
|
25
|
Dahchour A, Ward RJ. Changes in Brain Dopamine Extracellular Concentration after Ethanol Administration; Rat Microdialysis Studies. Alcohol Alcohol 2021; 57:165-175. [PMID: 34693981 DOI: 10.1093/alcalc/agab072] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 09/24/2021] [Accepted: 09/28/2021] [Indexed: 11/14/2022] Open
Abstract
AIMS The purpose of this review is to evaluate microdialysis studies where alterations in the dopaminergic system have been evaluated after different intoxication states, in animals showing preference or not for alcohol, as well as during alcohol withdrawal. METHODS Ethanol administration induces varying alterations in dopamine microdialysate concentrations, thereby modulating the functional output of the dopaminergic system. RESULTS Administration of low doses of ethanol, intraperitoneally, intravenously, orally or directly into the nucleus accumbens, NAc, increases mesolimbic dopamine, transmission, as shown by increases in dopamine content. Chronic alcohol administration to rats, which show alcohol-dependent behaviour, induced little change in basal dopamine microdialysis content. In contrast, reduced basal dopamine content occurred after ethanol withdrawal, which might be the stimulus to induce alcohol cravings and consumption. Intermittent alcohol consumption did not identify any consistent changes in dopamine transmission. Animals which have been selectively or genetically bred for alcohol preference did not show consistent changes in basal dopamine content although, exhibited a significant ethanol-evoked dopamine response by comparison to non-preference animals. CONCLUSIONS Microdialysis has provided valuable information about ethanol-evoked dopamine release in the different animal models of alcohol abuse. Acute ethanol administration increases dopamine transmission in the rat NAc whereas chronic ethanol consumption shows variable results which might reflect whether the rat is prior to or experiencing ethanol withdrawal. Ethanol withdrawal significantly decreases the extracellular dopamine content. Such changes in dopamine surges will contribute to both drug dependence, e.g. susceptibility to drug withdrawal, and addiction, by compromising the ability to react to normal dopamine fluctuations.
Collapse
Affiliation(s)
- Abdelkader Dahchour
- Department of Biology, Faculty of Sciences, Clinical Neurosciences Laboratory, Faulty of medicine and Pharmacy. Sidi Mohamed Ben Abdellah University, Imouzzer Road, Fez 30000, Morocco
| | - Roberta J Ward
- Centre for Neuroinflammation & Neurodegeneration, Division of Brain Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| |
Collapse
|
26
|
Nitric Oxide Signaling Pathway in Ventral Tegmental Area is Involved in Regulation of 7,8-Dihydroxyflavone on Alcohol Consumption in Rats. Mol Neurobiol 2021; 59:35-46. [PMID: 34618330 DOI: 10.1007/s12035-021-02575-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 09/15/2021] [Indexed: 01/12/2023]
Abstract
We recently reported that intraperitoneal injection of 7,8-dihydroxyflavone (7,8-DHF), a brain-derived neurotrophic factor-mimicking small compound, could attenuate alcohol-related behaviors in a two-bottle choice ethanol consumption procedure (IA2BC) in rats via tropomyosin receptor kinase B in the ventral tegmental area (VTA), which is closely related to alcohol use disorder. However, the detailed mechanisms underlying the regulation of 7,8-DHF on alcohol drinking behavior remain elusive. In this study, we determined the role of nitric oxide (NO), a pleiotropic signaling molecule, in the VTA in the action of 7,8-DHF upon alcohol drinking behavior. Intermittent alcohol exposure led to the overexpression of NO in the VTA, especially 72 h after withdrawal from four weeks of ethanol exposure in IA2BC rats. A higher amount of alcohol intake was also found at the same time point, consistent with the overexpression of NO in the VTA. Microinjection of NG-Nitro-l-Arginine Methyl Ester, (NO synthase inhibitor) or 2-4-carboxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (NO scavenger) into the VTA inhibited alcohol intake, whereas application of S-Nitroso-N-acetyl-DL-penicillamine (SNAP, the NO donor) in the VTA further enhanced alcohol consumption in IA2BC rats. Interestingly, either 1H-[1,2,4]oxadiazolo[4,3,-a]quinoxalin-1-one (a sGC inhibitor) or KT5823 [a selective protein kinase G (PKG) inhibitor] blocked NO's enhancing effect on ethanol intake. Intraperitoneal injection of 7,8-DHF reduced the overexpression of NO; SNAP microinjected into the VTA reversed the inhibitory effects of 7,8-DHF on alcohol consumption. Our findings suggest that NO-cGMP-PKG might be involved in regulation of 7,8-DHF on alcohol consumption in IA2BC rats.
Collapse
|
27
|
Many Drugs of Abuse May Be Acutely Transformed to Dopamine, Norepinephrine and Epinephrine In Vivo. Int J Mol Sci 2021; 22:ijms221910706. [PMID: 34639047 PMCID: PMC8509043 DOI: 10.3390/ijms221910706] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/25/2021] [Accepted: 09/29/2021] [Indexed: 12/21/2022] Open
Abstract
It is well established that a wide range of drugs of abuse acutely boost the signaling of the sympathetic nervous system and the hypothalamic–pituitary–adrenal (HPA) axis, where norepinephrine and epinephrine are major output molecules. This stimulatory effect is accompanied by such symptoms as elevated heart rate and blood pressure, more rapid breathing, increased body temperature and sweating, and pupillary dilation, as well as the intoxicating or euphoric subjective properties of the drug. While many drugs of abuse are thought to achieve their intoxicating effects by modulating the monoaminergic neurotransmitter systems (i.e., serotonin, norepinephrine, dopamine) by binding to these receptors or otherwise affecting their synaptic signaling, this paper puts forth the hypothesis that many of these drugs are actually acutely converted to catecholamines (dopamine, norepinephrine, epinephrine) in vivo, in addition to transformation to their known metabolites. In this manner, a range of stimulants, opioids, and psychedelics (as well as alcohol) may partially achieve their intoxicating properties, as well as side effects, due to this putative transformation to catecholamines. If this hypothesis is correct, it would alter our understanding of the basic biosynthetic pathways for generating these important signaling molecules, while also modifying our view of the neural substrates underlying substance abuse and dependence, including psychological stress-induced relapse. Importantly, there is a direct way to test the overarching hypothesis: administer (either centrally or peripherally) stable isotope versions of these drugs to model organisms such as rodents (or even to humans) and then use liquid chromatography-mass spectrometry to determine if the labeled drug is converted to labeled catecholamines in brain, blood plasma, or urine samples.
Collapse
|
28
|
You C, Vandegrift BJ, Brodie MS. KCNK13 potassium channels in the ventral tegmental area of rats are important for excitation of ventral tegmental area neurons by ethanol. Alcohol Clin Exp Res 2021; 45:1348-1358. [PMID: 33960499 DOI: 10.1111/acer.14630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 04/23/2021] [Accepted: 04/27/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Alcohol excites neurons of the ventral tegmental area (VTA) and the release of dopamine from these neurons is a key event in ethanol (EtOH)-induced reward and reinforcement. Many mechanisms have been proposed to explain EtOH's actions on neurons of the VTA, but antagonists generally do not eliminate the EtOH-induced excitation of VTA neurons. We have previously demonstrated that the ion channel KCNK13 plays an important role in the EtOH-related excitation of mouse VTA neurons. Here, we elaborate on that finding and further assess the importance of KCNK13 in rats. METHODS Rats (Sprague-Dawley and Fisher 344) were used in these studies. In addition to single-unit electrophysiology in brain slices, we used quantitative PCR and immunohistochemistry to discern the effects of EtOH and the brain slice preparation method on the expression levels of the Kcnk13 gene and KCNK13 protein. RESULTS Immunohistochemistry demonstrated that the levels of KCNK13 were significantly reduced during procedures normally used to prepare brain slices for electrophysiology, with a reduction of about 75% in KCNK13 protein at the time that electrophysiological recordings would normally be made. Extracellular recordings demonstrated that EtOH-induced excitation of VTA neurons was reduced after knockdown of Kcnk13 using a small interfering RNA (siRNA) delivered via the recording micropipette. Real-time PCR demonstrated that the expression of Kcnk13 was altered in a time-dependent manner after alcohol withdrawal. CONCLUSIONS KCNK13 plays an important role in EtOH-induced stimulation of rat VTA neurons and is dynamically regulated by cell damage and EtOH exposure, and during withdrawal. KCNK13 is a novel alcohol-sensitive protein, and further investigation of this channel may offer new avenues for the development of agents useful in altering the rewarding effect of alcohol.
Collapse
Affiliation(s)
- Chang You
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, USA.,Department of Psychiatry, Center for Alcohol Research in Epigenetics, University of Illinois at Chicago, Chicago, IL, USA
| | - Bertha J Vandegrift
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, USA.,Department of Psychiatry, Center for Alcohol Research in Epigenetics, University of Illinois at Chicago, Chicago, IL, USA
| | - Mark S Brodie
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, USA.,Department of Psychiatry, Center for Alcohol Research in Epigenetics, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
29
|
Daack CW, Yeh D, Busch M, Kliethermes CL. GABAergic regulation of locomotion before and during an ethanol exposure in Drosophila melanogaster. Behav Brain Res 2021; 410:113369. [PMID: 34015397 DOI: 10.1016/j.bbr.2021.113369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/30/2021] [Accepted: 05/14/2021] [Indexed: 11/17/2022]
Abstract
Ethanol at low doses induces a locomotor stimulant response across a range of phylogenetically diverse species. In rodents, this response is commonly used as an index of ethanol's disinhibitory, anxiolytic, or reinforcing effects, and its expression is regulated by signaling through a number of conserved neurotransmitter systems. In the current experiments, we asked whether ethanol-induced locomotor stimulation in the fruit fly Drosophila melanogaster might be mediated by ionotropic GABA receptors. We measured basal and ethanol-stimulated locomotion in flies expressing RNAi directed against three known subunits of ionotropic GABA receptors, and also examined the effects of picrotoxin feeding on these behaviors. We found that RNAi-mediated knockdown of a subunit of fly ionotropic GABA receptors, RDL, in all neurons resulted in an increased ethanol-induced locomotor stimulant response, while knockdown of two other subunits, LCCH3 and GRD, did not affect the responses. The effect of pan neuronal RDL knockdown was recapitulated with selective RDL knockdown in cholinergic neurons, and increased ethanol-induced locomotor stimulation was also seen by feeding the GABAA antagonist picrotoxin to flies prior to behavioral testing. However, the increase in ethanol-stimulated locomotion in each of these experiments was largely accounted for by decreased baseline activity. Our results indicate that ionotropic GABA receptors might be a conserved mediator of the locomotor stimulant effects of ethanol, but that alternative experimental approaches will be necessary to disentangle effects of GABAergic manipulations on baseline and ethanol-stimulated locomotion in flies.
Collapse
Affiliation(s)
- Calvin W Daack
- Drake University, 318 Olin Hall, 1344 27thStreet, Des Moines, IA, 50311, United States
| | - Derek Yeh
- Drake University, 318 Olin Hall, 1344 27thStreet, Des Moines, IA, 50311, United States
| | - Marc Busch
- Drake University, 318 Olin Hall, 1344 27thStreet, Des Moines, IA, 50311, United States
| | | |
Collapse
|
30
|
Coles C, Lasek AW. Binge-Like Ethanol Drinking Increases Otx2, Wnt1, and Mdk Gene Expression in the Ventral Tegmental Area of Adult Mice. Neurosci Insights 2021; 16:26331055211009850. [PMID: 33954290 PMCID: PMC8058803 DOI: 10.1177/26331055211009850] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 03/25/2021] [Indexed: 12/23/2022] Open
Abstract
Alcohol use disorder is associated with pathophysiological changes in the dopaminergic system. Orthodenticle homeobox 2 (OTX2) is a transcription factor important for the development of dopaminergic neurons residing in the ventral tegmental area (VTA), a critical region of the brain involved in drug reinforcement. Previous studies have demonstrated that ethanol exposure during embryonic development reduces Otx2 mRNA levels in the central nervous system. We hypothesized that levels of OTX2 would be altered by binge-like ethanol consumption in adult animals. To test this, Otx2 mRNA and protein levels in the mouse VTA were measured by quantitative real-time PCR and western blotting, respectively, after mice drank ethanol for 4 days in a procedure that elicits binge levels of ethanol consumption (drinking in the dark). Expression of known and putative OTX2 transcriptional target genes (Sema3c, Wnt1, and Mdk) were also measured in the VTA after ethanol drinking. Otx2 mRNA and protein levels were elevated in the VTA 24 hours after the fourth drinking session and there was a corresponding increase in the expression of Mdk transcript. Interestingly, Wnt1 transcript was elevated in the VTA immediately after the fourth drinking session but returned to control levels 24 hours later. We next investigated if viral-mediated reduction of Otx2 in the mouse VTA would alter ethanol or sucrose intake. Lentiviral vectors expressing a shRNA targeting Otx2 or a control shRNA were injected into the VTA and mice were tested in the drinking in the dark protocol for ethanol and sucrose drinking. Reducing levels of OTX2 in the VTA did not alter ethanol or sucrose consumption. One limitation is that the extent of OTX2 reduction may not have been sufficient. Although OTX2 in the VTA may not play a role in binge-like drinking in adult mice, OTX2 could contribute to ethanol-induced transcriptional changes in this region.
Collapse
Affiliation(s)
- Cassandre Coles
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA.,Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
| | - Amy W Lasek
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
31
|
Buck SA, Torregrossa MM, Logan RW, Freyberg Z. Roles of dopamine and glutamate co-release in the nucleus accumbens in mediating the actions of drugs of abuse. FEBS J 2021; 288:1462-1474. [PMID: 32702182 PMCID: PMC7854787 DOI: 10.1111/febs.15496] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/30/2020] [Accepted: 07/21/2020] [Indexed: 12/20/2022]
Abstract
Projections of ventral tegmental area dopamine (DA) neurons to the medial shell of the nucleus accumbens have been increasingly implicated as integral to the behavioral and physiological changes involved in the development of substance use disorders (SUDs). Recently, many of these nucleus accumbens-projecting DA neurons were found to also release the neurotransmitter glutamate. This glutamate co-release from DA neurons is critical in mediating the effect of drugs of abuse on addiction-related behaviors. Potential mechanisms underlying the role(s) of dopamine/glutamate co-release in contributing to SUDs are unclear. Nevertheless, an important clue may relate to glutamate's ability to potentiate loading of DA into synaptic vesicles within terminals in the nucleus accumbens in response to drug-induced elevations in neuronal activity, enabling a more robust release of DA after stimulation. Here, we summarize how drugs of abuse, particularly cocaine, opioids, and alcohol, alter DA release in the nucleus accumbens medial shell, examine the potential role of DA/glutamate co-release in mediating these effects, and discuss future directions for further investigating these mechanisms.
Collapse
Affiliation(s)
- Silas A. Buck
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychiatry, Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mary M. Torregrossa
- Department of Psychiatry, Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ryan W. Logan
- Department of Psychiatry, Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Systems Neurogenetics of Addiction, The Jackson Laboratory, Bar Harbor, ME, USA
| | - Zachary Freyberg
- Department of Psychiatry, Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
32
|
Ben Hamida S, Lecourtier L, Loureiro M, Cosquer B, Tracqui A, Simmoneaux V, Nehlig A, Jones BC, Pereira de Vasconcelos A, Cassel J. Ventral striatum regulates behavioral response to ethanol and MDMA combination. Addict Biol 2021; 26:e12938. [PMID: 32666571 DOI: 10.1111/adb.12938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/20/2020] [Accepted: 06/29/2020] [Indexed: 11/30/2022]
Abstract
Our previous studies consistently showed that MDMA-induced locomotor hyperactivity is dramatically increased by coadministration of ethanol (EtOH) in rats, indicating possible potentiation of MDMA abuse liability. Thus, we aimed to identify the brain region(s) and neuropharmacological substrates involved in the pharmacodynamics of this potentiation. We first showed that potentiation of locomotor activity by the combination of ip administration of EtOH (1.5 g/kg) and MDMA (6.6 mg/kg) is delay sensitive and maximal when both drugs are injected simultaneously. Then, we used the 2-deoxyglucose quantitative autoradiography technique to assess the impact of EtOH, MDMA, or their combination on local cerebral metabolic rates for glucose (CMRglcs). We showed a specific metabolic activation in the ventral striatum (VS) under MDMA + EtOH versus MDMA or EtOH alone. We next tested if reversible (tetrodotoxin, TTX) or permanent (6-hydrodoxyopamine, 6-OHDA) lesion of the VS could affect locomotor response to MDMA and MDMA + EtOH. Finally, we blocked dopamine D1 or glutamate NMDA receptors in the VS and measured the effects of MDMA and MDMA + EtOH on locomotor activity. We showed that bilateral reversible inactivation (TTX) or permanent lesion (6-OHDA) of the VS prevented the potentiation by EtOH of MDMA-induced locomotor hyperactivity. Likewise, blockade of D1 or NMDA receptors in the VS also reduced the potentiation of MDMA locomotor activity by EtOH. These data indicate that dopamine D1 and glutamate NMDA receptor-driven mechanisms in the VS play a key role in the pharmacodynamics of EtOH-induced potentiation of the locomotor effects of MDMA.
Collapse
Affiliation(s)
- Sami Ben Hamida
- Laboratoire de Neurosciences Cognitives et Adaptatives, LNCA, UMR7364–CNRS Université de Strasbourg Strasbourg France
- Douglas Research Center, Department of Psychiatry, Faculty of Medicine McGill University Montréal Quebec Canada
| | - Lucas Lecourtier
- Laboratoire de Neurosciences Cognitives et Adaptatives, LNCA, UMR7364–CNRS Université de Strasbourg Strasbourg France
| | - Michaël Loureiro
- Laboratoire de Neurosciences Cognitives et Adaptatives, LNCA, UMR7364–CNRS Université de Strasbourg Strasbourg France
| | - Brigitte Cosquer
- Laboratoire de Neurosciences Cognitives et Adaptatives, LNCA, UMR7364–CNRS Université de Strasbourg Strasbourg France
| | - Antoine Tracqui
- Service de Médecine Légale Hôpital Saint‐Jacques–CHRU Besançon France
| | - Valérie Simmoneaux
- INCI, Institut des Neurosciences Cellulaires et Intégratives, UPR 3212, CNRS Université de Strasbourg Strasbourg France
| | - Astrid Nehlig
- INSERM U1129 Pediatric Neurology Necker‐Enfants Malades Hospital University of Paris Descartes Paris France
| | - Byron C. Jones
- The University of Tennessee Health Science Center 77 South Manassas Street Memphis Tennessee USA
| | - Anne Pereira de Vasconcelos
- Laboratoire de Neurosciences Cognitives et Adaptatives, LNCA, UMR7364–CNRS Université de Strasbourg Strasbourg France
| | - Jean‐Christophe Cassel
- Laboratoire de Neurosciences Cognitives et Adaptatives, LNCA, UMR7364–CNRS Université de Strasbourg Strasbourg France
| |
Collapse
|
33
|
Dos Santos LC, Junqueira Ayres DD, de Sousa Pinto ÍA, Silveira MA, Albino MDC, Holanda VAD, Lima RH, André E, Padovan CM, Gavioli EC, de Paula Soares V. Early and late behavioral consequences of ethanol withdrawal: focus on brain indoleamine 2,3 dioxygenase activity. Alcohol 2021; 90:1-9. [PMID: 33031882 DOI: 10.1016/j.alcohol.2020.09.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 09/15/2020] [Accepted: 09/28/2020] [Indexed: 12/18/2022]
Abstract
Anxiety and depression are symptoms associated with ethanol withdrawal that lead individuals to relapse. In the kynurenine pathway, the enzyme indoleamine 2,3 dioxygenase (IDO) is responsible for the conversion of tryptophan to kynurenine, and dysregulation of this pathway has been associated with psychiatric disorders, such as anxiety and depression. The present study evaluated the early and late behavioral and biochemical effects of ethanol withdrawal in rats. Male Wistar rats were submitted to increasing concentrations of ethanol in drinking water during 21 days. In experiment 1, both control and withdrawal groups were submitted to a battery of behavioral tests 3, 5, 10, 19, and 21 days following ethanol removal. In experiment 2, animals were euthanized 3 days (short-term) or 21 days (long-term) after withdrawal, and the brains were dissected altogether, following kynurenine concentration analysis in prefrontal cortex, hippocampus, and striatum. Short-term ethanol withdrawal decreased the exploration of the open arms in the elevated plus-maze. In the forced swimming test, long-term ethanol-withdrawn rats displayed higher immobility time than control animals. Ethanol withdrawal altered neither locomotion nor motor coordination of rats. In experiment 2, kynurenine concentrations were increased in the prefrontal cortex after a long-term period of withdrawal. In conclusion, short-term ethanol withdrawal produced anxiety-like behaviors, while long-term withdrawal favored depressive-like behaviors. Long-term ethanol withdrawal elevated kynurenine levels, specifically in the prefrontal cortex, suggesting that the depressive-like responses observed after long-term withdrawal might be related to the increased IDO activity.
Collapse
Affiliation(s)
- Luana Carla Dos Santos
- Laboratory of Psychopharmacology, Department of Biophysics and Pharmacology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Décio Dutra Junqueira Ayres
- Laboratory of Behavioral Pharmacology, Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Ícaro Aleksei de Sousa Pinto
- Laboratory of Psychopharmacology, Department of Biophysics and Pharmacology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Marana Ali Silveira
- Laboratory of Psychopharmacology, Department of Biophysics and Pharmacology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Maryelle de Cássia Albino
- Laboratory of Psychopharmacology, Department of Biophysics and Pharmacology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Victor Anastácio Duarte Holanda
- Laboratory of Behavioral Pharmacology, Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Ramón Hypolito Lima
- Graduate Program in Neuroengineering, Edmond and Lily Safra International Institute for Neuroscience, Macaiba, RN, Brazil
| | - Eunice André
- Department of Pharmacology, Federal University of Parana, Curitiba, PR, Brazil
| | - Cláudia Maria Padovan
- Department of Psychology, Faculty of Philosophy Science and Letters of Ribeirão Preto, University of São Paulo, SP, Brazil
| | - Elaine Cristina Gavioli
- Laboratory of Behavioral Pharmacology, Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Vanessa de Paula Soares
- Laboratory of Psychopharmacology, Department of Biophysics and Pharmacology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil.
| |
Collapse
|
34
|
Alcohol. Alcohol 2021. [DOI: 10.1016/b978-0-12-816793-9.00001-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
35
|
The Emerging Role of LHb CaMKII in the Comorbidity of Depressive and Alcohol Use Disorders. Int J Mol Sci 2020; 21:ijms21218123. [PMID: 33143210 PMCID: PMC7663385 DOI: 10.3390/ijms21218123] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 10/22/2020] [Accepted: 10/26/2020] [Indexed: 01/05/2023] Open
Abstract
Depressive disorders and alcohol use disorders are widespread among the general population and are significant public health and economic burdens. Alcohol use disorders often co-occur with other psychiatric conditions and this dual diagnosis is called comorbidity. Depressive disorders invariably contribute to the development and worsening of alcohol use disorders, and vice versa. The mechanisms underlying these disorders and their comorbidities remain unclear. Recently, interest in the lateral habenula, a small epithalamic brain structure, has increased because it becomes hyperactive in depression and alcohol use disorders, and can inhibit dopamine and serotonin neurons in the midbrain reward center, the hypofunction of which is believed to be a critical contributor to the etiology of depressive disorders and alcohol use disorders as well as their comorbidities. Additionally, calcium/calmodulin-dependent protein kinase II (CaMKII) in the lateral habenula has emerged as a critical player in the etiology of these comorbidities. This review analyzes the interplay of CaMKII signaling in the lateral habenula associated with depressive disorders and alcohol use disorders, in addition to the often-comorbid nature of these disorders. Although most of the CaMKII signaling pathway's core components have been discovered, much remains to be learned about the biochemical events that propagate and link between depression and alcohol abuse. As the field rapidly advances, it is expected that further understanding of the pathology involved will allow for targeted treatments.
Collapse
|
36
|
Engleman EA, Ingraham CM, Rodd ZA, Murphy JM, McBride WJ, Ding ZM. The reinforcing effects of ethanol within the prelimbic cortex and ethanol drinking: Involvement of local dopamine D 2 receptor-mediated neurotransmission. Drug Alcohol Depend 2020; 214:108165. [PMID: 32688071 PMCID: PMC7431019 DOI: 10.1016/j.drugalcdep.2020.108165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/21/2020] [Accepted: 06/20/2020] [Indexed: 11/17/2022]
Abstract
Previous studies have identified important mesolimbic regions in supporting the reinforcing effects of ethanol. However, the involvement of the medial prefrontal cortex (mPFC), another key region within the mesocorticolimbic system, in ethanol reinforcement has been understudied. The objective of the current study was to examine the role of the prelimbic (PL) cortex sub-region of the mPFC in ethanol reinforcement and drinking. Intracranial self-administration was used to examine the reinforcing effects of ethanol within the PL cortex. Quantitative microdialysis was used to measure basal extracellular DA concentrations and clearance in the PL cortex following chronic ethanol drinking. In addition, the involvement of dopamine (DA) D2 receptors within the PL cortex on the reinforcing effects of ethanol and ethanol drinking was determined. Ethanol was dose-dependent self-administered into the PL cortex, with significantly more infusions elicited by 100-200 mg% ethanol than vehicle. Co-infusion of the D2 receptor antagonist sulpiride significantly reduced ethanol self-administration. Chronic ethanol drinking significantly elevated basal extracellular DA concentrations without altering DA clearance. Microinjection of sulpiride into the PL cortex selectively reduced ethanol, but not saccharine, drinking. These results indicate that the PL cortex supported the reinforcing effects of ethanol, and that ethanol drinking enhanced basal DA neurotransmission within the PL cortex. In addition, D2 receptor antagonism within the PL cortex reduced ethanol self-administration and drinking. Collectively, these findings revealed important DA mechanisms within the PL cortex in mediating ethanol reinforcement and drinking.
Collapse
Affiliation(s)
- Eric A Engleman
- Department of Psychiatry, Indiana University School of Medicine, 355 West 16th Street, Indianapolis, IN 46202, United States
| | - Cynthia M Ingraham
- Department of Psychiatry, Indiana University School of Medicine, 355 West 16th Street, Indianapolis, IN 46202, United States
| | - Zachary A Rodd
- Department of Psychiatry, Indiana University School of Medicine, 355 West 16th Street, Indianapolis, IN 46202, United States
| | - James M Murphy
- Department of Psychiatry, Indiana University School of Medicine, 355 West 16th Street, Indianapolis, IN 46202, United States
| | - William J McBride
- Department of Psychiatry, Indiana University School of Medicine, 355 West 16th Street, Indianapolis, IN 46202, United States
| | - Zheng-Ming Ding
- Department of Psychiatry, Indiana University School of Medicine, 355 West 16th Street, Indianapolis, IN 46202, United States; Department of Anesthesiology and Perioperative Medicine, Department of Pharmacology, Pennsylvania State University College of Medicine, 700 HMC Crescent Road, Hershey, PA 17033, United States.
| |
Collapse
|
37
|
Crummy EA, O'Neal TJ, Baskin BM, Ferguson SM. One Is Not Enough: Understanding and Modeling Polysubstance Use. Front Neurosci 2020; 14:569. [PMID: 32612502 PMCID: PMC7309369 DOI: 10.3389/fnins.2020.00569] [Citation(s) in RCA: 160] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 05/08/2020] [Indexed: 12/19/2022] Open
Abstract
Substance use disorder (SUD) is a chronic, relapsing disease with a highly multifaceted pathology that includes (but is not limited to) sensitivity to drug-associated cues, negative affect, and motivation to maintain drug consumption. SUDs are highly prevalent, with 35 million people meeting criteria for SUD. While drug use and addiction are highly studied, most investigations of SUDs examine drug use in isolation, rather than in the more prevalent context of comorbid substance histories. Indeed, 11.3% of individuals diagnosed with a SUD have concurrent alcohol and illicit drug use disorders. Furthermore, having a SUD with one substance increases susceptibility to developing dependence on additional substances. For example, the increased risk of developing heroin dependence is twofold for alcohol misusers, threefold for cannabis users, 15-fold for cocaine users, and 40-fold for prescription misusers. Given the prevalence and risk associated with polysubstance use and current public health crises, examining these disorders through the lens of co-use is essential for translatability and improved treatment efficacy. The escalating economic and social costs and continued rise in drug use has spurred interest in developing preclinical models that effectively model this phenomenon. Here, we review the current state of the field in understanding the behavioral and neural circuitry in the context of co-use with common pairings of alcohol, nicotine, cannabis, and other addictive substances. Moreover, we outline key considerations when developing polysubstance models, including challenges to developing preclinical models to provide insights and improve treatment outcomes.
Collapse
Affiliation(s)
- Elizabeth A Crummy
- Graduate Program in Neuroscience, University of Washington, Seattle, WA, United States.,Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA, United States.,Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, United States.,Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States
| | - Timothy J O'Neal
- Graduate Program in Neuroscience, University of Washington, Seattle, WA, United States.,Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA, United States.,Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, United States.,Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States
| | - Britahny M Baskin
- Graduate Program in Neuroscience, University of Washington, Seattle, WA, United States.,Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA, United States.,Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, United States.,Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States
| | - Susan M Ferguson
- Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA, United States.,Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, United States.,Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States.,Alcohol and Drug Abuse Institute, University of Washington, Seattle, WA, United States
| |
Collapse
|
38
|
Li XX, Yang T, Wang N, Zhang LL, Liu X, Xu YM, Gao Q, Zhu XF, Guan YZ. 7,8-Dihydroxyflavone Attenuates Alcohol-Related Behavior in Rat Models of Alcohol Consumption via TrkB in the Ventral Tegmental Area. Front Neurosci 2020; 14:467. [PMID: 32508571 PMCID: PMC7248303 DOI: 10.3389/fnins.2020.00467] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 04/15/2020] [Indexed: 12/22/2022] Open
Abstract
Alcohol use disorder (AUD) is a ubiquitous substance use disorder in the world, of which neural mechanisms remain unclear. Alcohol consumption induces neuro-adaptations in the dopaminergic system originating from the ventral tegmental area (VTA), an important brain region for the reward function in AUD. Endogenous brain-derived neurotrophic factor (BDNF)-TrkB implicated in the development of neuroplasticity, including long-term potentiation of GABAergic synapses (LTP GABA ). We previously found that ethanol blocks LTP GABA in the VTA, either in vivo or in vitro. 7,8-dihydroflavone (7,8-DHF), a BDNF-mimicking small compound, was recently found to penetrate the blood-brain barrier to mimic the biological role of BDNF-TrkB. In this study, we demonstrate that repeated ethanol consumption (including intermittent and continuous ethanol exposure) results in low expression of BDNF in rat VTA. The amount of ethanol intake enhances significantly in rats with intermittent ethanol exposure after 72 h abstinence. Withdrawal signs emerge in rats with continuous ethanol exposure within 3 days after abstinence. Using behavioral tests, intraperitoneal injection of 7,8-DHF can reduce excessive ethanol consumption and preference as well as withdrawal signs in rats with repeated ethanol exposure. Interestingly, microinjection of K252a, an antagonist of TrkB, into the VTA blocks the effects of 7,8-DHF on ethanol-related behaviors. Furthermore, direct microinjection of BDNF into the VTA mimics the effect of 7,8-DHF on ethanol related behaviors. Taken together, 7,8-DHF attenuates alcohol-related behaviors in rats undergoing alcohol consumption via TrkB in the VTA. Our findings suggest BDNF-TrkB in VTA is a part of regulating signals for opposing neural adaptations in AUD, and 7,8-DHF may serve as a potential candidate for treating alcoholism.
Collapse
Affiliation(s)
- Xin-Xin Li
- Department of Physiology and Neurobiology, Mudanjiang Medical University, Mudanjiang, China
| | - Tao Yang
- Department of Physiology and Neurobiology, Mudanjiang Medical University, Mudanjiang, China
| | - Na Wang
- Department of Physiology and Neurobiology, Mudanjiang Medical University, Mudanjiang, China
| | - Li-Li Zhang
- Department of Physiology and Neurobiology, Mudanjiang Medical University, Mudanjiang, China
| | - Xing Liu
- Department of Physiology and Neurobiology, Mudanjiang Medical University, Mudanjiang, China
| | - Yan-Min Xu
- Department of Physiology and Neurobiology, Mudanjiang Medical University, Mudanjiang, China
| | - Qing Gao
- Department of Physiology and Neurobiology, Mudanjiang Medical University, Mudanjiang, China
| | - Xiao-Feng Zhu
- Department of Physiology and Neurobiology, Mudanjiang Medical University, Mudanjiang, China
| | - Yan-Zhong Guan
- Department of Physiology and Neurobiology, Mudanjiang Medical University, Mudanjiang, China
| |
Collapse
|
39
|
Marcolin ML, Baumbach JL, Hodges TE, McCormick CM. The effects of social instability stress and subsequent ethanol consumption in adolescence on brain and behavioral development in male rats. Alcohol 2020; 82:29-45. [PMID: 31465790 DOI: 10.1016/j.alcohol.2019.08.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/25/2019] [Accepted: 08/15/2019] [Indexed: 12/30/2022]
Abstract
Excessive drinking in adolescence continues to be a problem, and almost a quarter of young Canadians have reported consuming five or more alcoholic drinks in one occasion in recent surveys. The consequences of such drinking may be more pronounced when commenced in adolescence, given the ongoing brain development during this period of life. Here, we investigated the consequences of 3 weeks' intermittent access to ethanol in mid-adolescence to early adulthood in rats, and the extent to which a stress history moderated the negative consequences of ethanol access. In experiment 1, male rats that underwent adolescent social instability stress (SS; daily 1 h isolation + return to unfamiliar cage partner every day from postnatal day [PND] 30-45) did not differ from control (CTL) rats in intake of 10% ethanol sweetened with 0.1% saccharin (access period; PND 47-66). Ethanol drinking reduced proteins relevant for synaptic plasticity (αCaMKII, βCaMKII, and PSD-95) in the dorsal hippocampus, and in CTL rats only in the prefrontal cortex (αCaMKII and PSD 95), attenuating the difference between CTL and SS rats in the water-drinking group. In experiment 2, ethanol also attenuated the difference between SS and CTL rats in a social interaction test by reducing social interaction in SS rats; CTL rats, however, had a higher intake of ethanol than did SS rats during the access period. Ethanol drinking reduced baseline and fear recall recovery concentrations of corticosterone relative to those exposed only to water, although there was no effect of either ethanol or stress history on fear conditioning. Ethanol drinking did not influence intake after 9 days of withdrawal; however, ethanol-naïve SS rats drank more than did CTL rats when given a 24-h access in adulthood. These results reveal a complex relationship between stress history and ethanol intake in adolescence on outcomes in adulthood.
Collapse
Affiliation(s)
- Marina L Marcolin
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, L2S 3A1, Canada
| | - Jennet L Baumbach
- Department of Psychology, Brock University, St. Catharines, Ontario, L2S 3A1, Canada
| | - Travis E Hodges
- Department of Psychology, Brock University, St. Catharines, Ontario, L2S 3A1, Canada
| | - Cheryl M McCormick
- Department of Psychology, Brock University, St. Catharines, Ontario, L2S 3A1, Canada; Centre for Neuroscience, Brock University, St. Catharines, Ontario, L2S 3A1, Canada.
| |
Collapse
|
40
|
Morel C, Montgomery S, Han MH. Nicotine and alcohol: the role of midbrain dopaminergic neurons in drug reinforcement. Eur J Neurosci 2019; 50:2180-2200. [PMID: 30251377 PMCID: PMC6431587 DOI: 10.1111/ejn.14160] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 07/31/2018] [Accepted: 08/20/2018] [Indexed: 12/11/2022]
Abstract
Nicotine and alcohol addiction are leading causes of preventable death worldwide and continue to constitute a huge socio-economic burden. Both nicotine and alcohol perturb the brain's mesocorticolimbic system. Dopamine (DA) neurons projecting from the ventral tegmental area (VTA) to multiple downstream structures, including the nucleus accumbens, prefrontal cortex, and amygdala, are highly involved in the maintenance of healthy brain function. VTA DA neurons play a crucial role in associative learning and reinforcement. Nicotine and alcohol usurp these functions, promoting reinforcement of drug taking behaviors. In this review, we will first describe how nicotine and alcohol individually affect VTA DA neurons by examining how drug exposure alters the heterogeneous VTA microcircuit and network-wide projections. We will also examine how coadministration or previous exposure to nicotine or alcohol may augment the reinforcing effects of the other. Additionally, this review briefly summarizes the role of VTA DA neurons in nicotine, alcohol, and their synergistic effects in reinforcement and also addresses the remaining questions related to the circuit-function specificity of the dopaminergic system in mediating nicotine/alcohol reinforcement and comorbidity.
Collapse
Affiliation(s)
- Carole Morel
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Affective Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sarah Montgomery
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Affective Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ming-Hu Han
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Affective Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
41
|
You C, Savarese A, Vandegrift BJ, He D, Pandey SC, Lasek AW, Brodie MS. Ethanol acts on KCNK13 potassium channels in the ventral tegmental area to increase firing rate and modulate binge-like drinking. Neuropharmacology 2019; 144:29-36. [PMID: 30332606 PMCID: PMC6286249 DOI: 10.1016/j.neuropharm.2018.10.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 09/27/2018] [Accepted: 10/10/2018] [Indexed: 12/13/2022]
Abstract
Alcohol excitation of the ventral tegmental area (VTA) is important in neurobiological processes related to the development of alcoholism. The ionotropic receptors on VTA neurons that mediate ethanol-induced excitation have not been identified. Quinidine blocks ethanol excitation of VTA neurons, and blockade of two-pore potassium channels is among the actions of quinidine. Therefore two-pore potassium channels in the VTA may be potential targets for the action of ethanol. Here, we explored whether ethanol activation of VTA neurons is mediated by the two-pore potassium channel KCNK13. Extracellular recordings of the response of VTA neurons to ethanol were performed in combination with knockdown of Kcnk13 using a short hairpin RNA (shRNA) in C57BL/6 J mice. Real-time PCR and immunohistochemistry were used to examine expression of this channel in the VTA. Finally, the role of KCNK13 in binge-like drinking was examined in the drinking in the dark test after knockdown of the channel. Kcnk13 expression in the VTA was increased by acute ethanol exposure. Ethanol-induced excitation of VTA neurons was selectively reduced by shRNA targeting Kcnk13. Importantly, knockdown of Kcnk13 in the VTA resulted in increased alcohol drinking. These results are consistent with the idea that ethanol stimulates VTA neurons at least in part by inhibiting KCNK13, a specific two-pore potassium channel, and that KCNK13 can control both VTA neuronal activity and binge drinking. KCNK13 is a novel alcohol-sensitive molecular target and may be amenable to the development of pharmacotherapies for alcoholism treatment.
Collapse
Affiliation(s)
- Chang You
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, 60612, USA; Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Antonia Savarese
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Bertha J Vandegrift
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, 60612, USA; Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Donghong He
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Subhash C Pandey
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, 60612, USA; Jesse Brown VA Medical Center, Chicago, IL, 60612, USA
| | - Amy W Lasek
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Mark S Brodie
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, 60612, USA; Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| |
Collapse
|
42
|
Witkin JM, Wallace TL, Martin WJ. Therapeutic Approaches for NOP Receptor Antagonists in Neurobehavioral Disorders: Clinical Studies in Major Depressive Disorder and Alcohol Use Disorder with BTRX-246040 (LY2940094). Handb Exp Pharmacol 2019; 254:399-415. [PMID: 30701317 DOI: 10.1007/164_2018_186] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Conventional antidepressants increase the efflux of biogenic amine neurotransmitters (the monoamine hypothesis of depression) in the central nervous system (CNS) and are the principle drugs used to treat major depressive disorder (MDD). However, the lack of efficacy in some patients, the slow onset of action, and the side effect profiles of existing antidepressants necessitate the exploration of additional treatment options. The discovery of the nociceptin/orphanin FQ peptide NOP receptor (N/OFQ-NOP receptor) system and its characterization in preclinical biological and pharmacological stress-related conditions supports the potential antidepressant and anti-stress properties of a NOP receptor antagonist for the treatment of neurobehavioral disorders. BTRX-246040 (formerly LY2940094) was designed to test this hypothesis in the clinic. A small clinical proof of concept study demonstrated efficacy of BTRX-246040 in MDD patients. In this study, BTRX-246040 (40 mg, p.o.) significantly reduced negative bias as assessed by the facial recognition test within 1 week of treatment and decreased depression symptoms after 8 weeks. BTRX-246040 also reduced depression symptoms in a second trial with heavy alcohol drinkers. Given the comorbidity of MDD and alcohol use disorder, a compound with such effects in patients could be a valuable addition to the medications available. A proof of concept study showed efficacy of BTRX-246040 in reducing heavy drinking and increasing the probability of abstinence in individuals diagnosed with alcohol dependence. In addition, plasma levels of gamma-glutamyl transferase were decreased by BTRX-246040 compared to placebo control implying improvement in liver function. Collectively, the clinical data reviewed within this chapter suggest that BTRX-264040 functions to normalize dysfunction in reward circuits. The overall efficacy and safety of this compound with a novel mechanism of action are encouraging of further clinical development. BTRX-246040 is currently under development for MDD by BlackThorn Therapeutics.
Collapse
|
43
|
You C, Vandegrift BJ, Zhang H, Lasek AW, Pandey SC, Brodie MS. Histone Deacetylase Inhibitor Suberanilohydroxamic Acid Treatment Reverses Hyposensitivity to γ-Aminobutyric Acid in the Ventral Tegmental Area During Ethanol Withdrawal. Alcohol Clin Exp Res 2018; 42:2160-2171. [PMID: 30103280 PMCID: PMC6214766 DOI: 10.1111/acer.13870] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 08/08/2018] [Indexed: 12/24/2022]
Abstract
Background The ventral tegmental area (VTA) is important for alcohol‐related reward and reinforcement. Mouse VTA neurons are hyposensitive to γ‐aminobutyric acid (GABA) during ethanol (EtOH) withdrawal, and GABA responsiveness is normalized by in vitro treatment with histone deacetylase inhibitors (HDACi). The present study examined the effect of a systemically administered HDACi, suberanilohydroxamic acid (SAHA) on GABA sensitivity, and related molecular changes in VTA neurons during withdrawal after chronic EtOH intake in rats. Methods Sprague Dawley male adult rats were fed with Lieber‐DeCarli diet (9% EtOH or control diet) for 16 days. Experimental groups included control diet‐fed and EtOH diet‐fed (0‐ or 24‐hour withdrawal) rats treated with either SAHA or vehicle injection. Single‐unit recordings were used to measure the response of VTA neurons to GABA. Immunohistochemistry was performed to examine levels of HDAC2, acetylated histone H3 lysine 9 (acH3K9), and GABAA receptor α1 and α5 subunits in the VTA; quantitative polymerase chain reaction was performed to examine the mRNA levels of HDAC2 and GABAA receptor subunits. Results VTA neurons from the withdrawal group exhibited GABA hyposensitivity. In vivo SAHA treatment 2 hours before sacrifice normalized the sensitivity of VTA neurons to GABA. EtOH withdrawal was associated with increased HDAC2 and decreased acH3K9 protein levels; SAHA treatment normalized acH3K9 levels. Interestingly, no significant change was observed in the mRNA levels of HDAC2. The mRNA levels, but not protein levels, of GABAA receptor α1 and α5 subunits were increased during withdrawal. Conclusions Withdrawal from chronic EtOH exposure results in a decrease in GABA‐mediated inhibition, and this GABA hyposensitivity is normalized by in vivo SAHA treatment. Disruption of signaling in the VTA produced by alteration of GABA neurotransmission could be 1 neuroadaptive physiological process leading to craving and relapse. These results suggest that HDACi pharmacotherapy with agents like SAHA might be an effective treatment for alcoholism.
Collapse
Affiliation(s)
- Chang You
- Department of Physiology and Biophysics , University of Illinois at Chicago, Chicago, Illinois.,Center for Alcohol Research in Epigenetics , Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois
| | - Bertha J Vandegrift
- Department of Physiology and Biophysics , University of Illinois at Chicago, Chicago, Illinois.,Center for Alcohol Research in Epigenetics , Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois
| | - Huaibo Zhang
- Center for Alcohol Research in Epigenetics , Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois.,Jesse Brown VA Medical Center , Chicago, Illinois
| | - Amy W Lasek
- Center for Alcohol Research in Epigenetics , Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois
| | - Subhash C Pandey
- Center for Alcohol Research in Epigenetics , Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois.,Jesse Brown VA Medical Center , Chicago, Illinois
| | - Mark S Brodie
- Department of Physiology and Biophysics , University of Illinois at Chicago, Chicago, Illinois.,Center for Alcohol Research in Epigenetics , Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
44
|
Blum K, Siwicki D, Baron D, Modestino EJ, Badgaiyan RD. The benefits of genetic addiction risk score (GARS™) and pro-dopamine regulation in combating suicide in the American Indian population. ACTA ACUST UNITED AC 2018; 4. [PMID: 31660252 DOI: 10.15761/jsin.1000195] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
It is well-known that Native Americans (NA) clinically present with a very high rate of alcoholism and other drugs of abuse. It is also known that NA also display a very high rate of suicide compared to other ethnic groups. Furthermore, individuals with various psychiatric disorders (e.g., depression) also have higher rates of suicide that are frequently alcohol related. Males are as much as four times more likely to die from suicide than females. Studies comparing Native to other populations within the same geographic regions in North America divulged, almost universally, that alcohol involvement is higher among Native suicides than among the local, non-Native people. Unfortunately, suicide is the eighth leading cause of death in the U.S. and is the third cause of death in those ages 15-24. With these disappointing statistics, we are hereby proposing that because of such a high genetic risk as supported by the work of Barr and Kidd showing that NA carriers the DRD2 A1 allele at the rate of 86%, compared to a highly screened reward deficiency free control of only 3%. It seems reasonable that early identification, especially in children, be tested with the Genetic Addiction Risk Score (GARS) and concomitantly be offered the precision pro-dopamine regulator (KB220PAM), one that matches their unique brain polymorphisms involving serotonergic, endorphinergic, glutaminergic, gabaergic and dopaminergic pathways among others. We believe that using the Precision Addiction Management (PAM) platform at an early age may be prophylactic, while in adults PAM may reduce substance craving affecting tertiary treatment and even relapse and mortality prevention.
Collapse
Affiliation(s)
- Kenneth Blum
- Western University Health Sciences Graduate School of Biomedical Sciences, Pomona, CA, USA.,Department of Precision Behavioral Management, Geneus Health, San Antonio, Texas, USA.,Institute of Psychology, ELTE Eotvos Loránd University, Budapest, Hungary.,Department of Psychiatry, Wright University, Boonshoft School of Medicine, Dayton, OH, USA.,Division of Neurogenetic Research & Addiction Therapy, The Florida House Experience, Deerfield Beach, Fl., USA.,Division of Addiction Services, Dominion Diagnostics, North Kingston, RI, USA
| | - David Siwicki
- Department of Precision Behavioral Management, Geneus Health, San Antonio, Texas, USA
| | - David Baron
- Western University Health Sciences Graduate School of Biomedical Sciences, Pomona, CA, USA.,Department of Precision Behavioral Management, Geneus Health, San Antonio, Texas, USA
| | - Edward J Modestino
- Department of Precision Behavioral Management, Geneus Health, San Antonio, Texas, USA.,Division of Addiction Services, Dominion Diagnostics, North Kingston, RI, USA
| | - Rajendra D Badgaiyan
- Department of Precision Behavioral Management, Geneus Health, San Antonio, Texas, USA.,Department of Psychology, Curry College, Milton, MA, USA.,Department of Psychiatry, Ichan School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|