1
|
Liu X, Liu H, Wu X, Zhao Z, Wang S, Wang H, Qin X. Xiaoyaosan against depression through suppressing LPS mediated TLR4/NLRP3 signaling pathway in "microbiota-gut-brain" axis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118683. [PMID: 39121928 DOI: 10.1016/j.jep.2024.118683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Depression impairs not only central nervous system, but also peripheral systems of the host. Gut microbiota have been proved to be involved in the pathogenesis of depression. Xiaoyaosan (XYS) has a history of over a thousand years in China for treating depression, dramatically alleviating anxiety, cognitive disorders, and especially gastrointestinal dysfunctions. Yet, it still just scratches the surface of the anti-depression mechanisms of XYS. AIM OF THE STUDY This study aims to elucidate the mechanism of actions of XYS from the perspective of "microbiota-gut-brain" axis. MATERIALS AND METHODS We firstly evaluated the effects of XYS on the macroscopic behaviors of depressed rats that induced by chronic unpredictable mild stress (CUMS). Secondly, the effects of XYS on intestinal homeostasis of depressed rats were revealed by using dysbacteriosis model. Subsequently, the underlying mechanisms were demonstrated by 16S rRNA gene sequencing technology and molecular biology methods. Finally, correlation analysis and visualization of the anti-depression effects of XYS were performed from the "microbiota - gut - brain" perspective. RESULTS Our data indicated that XYS ameliorated the depression-like symptoms of CUMS rats, partly depending on the presence of gut microbiota. Furthermore, we illustrated that XYS reversed CUMS-induced gut dysbiosis of depressed rats in terms of decreasing the Bacteroidetes/Firmicutes ratio and the abundances of Bacteroides, and Corynebacterium, while increasing the abundances of Lactobacillus and Adlercreutzia. The significant enrichment of Bacteroides and the level of lipopolysaccharides (LPS) suggested that depression damaged the immune responses and gut barrier. Mechanistically, XYS significantly down-regulated the expression levels of factors that involved in TLR4/NLRP3 signaling pathway in the colon and brain tissues of depressed rats. In addition, XYS significantly increased the levels of claudin 1 and ZO-1, showing that XYS positively maintained the integrity of gut and blood-brain barriers (BBB). CONCLUSION Our study offers insights into the anti-depression effects of XYS through a lens of "microbiota-TLR4/NLRP3 signaling pathway-barriers", providing a foundation for enhancing clinical efficiency and enriching drug selection, and contributing to our understanding of the mechanisms of traditional Chinese medicines (TCMs) in treating depression.
Collapse
Affiliation(s)
- Xiaojie Liu
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan, 030006, Shanxi, China; The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan, 030006, Shanxi, China.
| | - Huimin Liu
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan, 030006, Shanxi, China; The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan, 030006, Shanxi, China
| | - Xiaoling Wu
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan, 030006, Shanxi, China; The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan, 030006, Shanxi, China
| | - Ziyu Zhao
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan, 030006, Shanxi, China; The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan, 030006, Shanxi, China
| | - Senyan Wang
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan, 030006, Shanxi, China; The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan, 030006, Shanxi, China
| | - Huimin Wang
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan, 030006, Shanxi, China; The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan, 030006, Shanxi, China
| | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan, 030006, Shanxi, China; The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan, 030006, Shanxi, China
| |
Collapse
|
2
|
Angelopoulou E, Bougea A, Hatzimanolis A, Scarmeas N, Papageorgiou SG. Unraveling the Potential Underlying Mechanisms of Mild Behavioral Impairment: Focusing on Amyloid and Tau Pathology. Cells 2024; 13:1164. [PMID: 38995015 PMCID: PMC11240615 DOI: 10.3390/cells13131164] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/21/2024] [Accepted: 06/27/2024] [Indexed: 07/13/2024] Open
Abstract
The emergence of sustained neuropsychiatric symptoms (NPS) among non-demented individuals in later life, defined as mild behavioral impairment (MBI), is linked to a higher risk of cognitive decline. However, the underlying pathophysiological mechanisms remain largely unexplored. A growing body of evidence has shown that MBI is associated with alterations in structural and functional neuroimaging studies, higher genetic predisposition to clinical diagnosis of Alzheimer's disease (AD), as well as amyloid and tau pathology assessed in the blood, cerebrospinal fluid, positron-emission tomography (PET) imaging and neuropathological examination. These findings shed more light on the MBI-related potential neurobiological mechanisms, paving the way for the development of targeted pharmacological approaches. In this review, we aim to discuss the available clinical evidence on the role of amyloid and tau pathology in MBI and the potential underlying pathophysiological mechanisms. Dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis, disruption of neurotrophic factors, such as the brain-derived neurotrophic factor (BDNF), abnormal neuroinflammatory responses including the kynurenine pathway, dysregulation of transforming growth factor beta (TGF-β1), epigenetic alterations including micro-RNA (miR)-451a and miR-455-3p, synaptic dysfunction, imbalance in neurotransmitters including acetylcholine, dopamine, serotonin, gamma-aminobutyric acid (GABA) and norepinephrine, as well as altered locus coeruleus (LC) integrity are some of the potential mechanisms connecting MBI with amyloid and tau pathology. The elucidation of the underlying neurobiology of MBI would facilitate the design and efficacy of relative clinical trials, especially towards amyloid- or tau-related pathways. In addition, we provide insights for future research into our deeper understanding of its underlying pathophysiology of MBI, and discuss relative therapeutic implications.
Collapse
Affiliation(s)
- Efthalia Angelopoulou
- 1st Department of Neurology, Aiginition University Hospital, National and Kapodistrian University of Athens, Vasilissis Sofias Street 72-74, 11528 Athens, Greece; (E.A.); (N.S.); (S.G.P.)
| | - Anastasia Bougea
- 1st Department of Neurology, Aiginition University Hospital, National and Kapodistrian University of Athens, Vasilissis Sofias Street 72-74, 11528 Athens, Greece; (E.A.); (N.S.); (S.G.P.)
| | - Alexandros Hatzimanolis
- 1st Department of Psychiatry, Aiginition University Hospital, National and Kapodistrian University of Athens, Vasilissis Sofias Street 72-74, 11528 Athens, Greece;
| | - Nikolaos Scarmeas
- 1st Department of Neurology, Aiginition University Hospital, National and Kapodistrian University of Athens, Vasilissis Sofias Street 72-74, 11528 Athens, Greece; (E.A.); (N.S.); (S.G.P.)
| | - Sokratis G. Papageorgiou
- 1st Department of Neurology, Aiginition University Hospital, National and Kapodistrian University of Athens, Vasilissis Sofias Street 72-74, 11528 Athens, Greece; (E.A.); (N.S.); (S.G.P.)
| |
Collapse
|
3
|
Huang YY, Gan YH, Yang L, Cheng W, Yu JT. Depression in Alzheimer's Disease: Epidemiology, Mechanisms, and Treatment. Biol Psychiatry 2024; 95:992-1005. [PMID: 37866486 DOI: 10.1016/j.biopsych.2023.10.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/13/2023] [Accepted: 10/07/2023] [Indexed: 10/24/2023]
Abstract
Depression and Alzheimer's disease (AD) are substantial public health concerns. In the past decades, a link between the 2 disease entities has received extensive acknowledgment, yet the complex nature of this relationship demands further clarification. Some evidence indicates that midlife depression may be an AD risk factor, while a chronic course of depression in late life may be a precursor to or symptom of dementia. Recently, multiple pathophysiological mechanisms have been proposed to underlie the bidirectional relationship between depression and AD, including genetic predisposition, immune dysregulation, accumulation of AD-related biomarkers (e.g., amyloid-β and tau), and alterations in brain structure. Accordingly, numerous therapeutic approaches, such as pharmacology treatments, psychotherapy, and lifestyle interventions, have been suggested as potential means of interfering with these pathways. However, the current literature on this topic remains fragmented and lacks a comprehensive review characterizing the association between depression and AD. In this review, we aim to address these gaps by providing an overview of the co-occurrence and temporal relationship between depression and AD, as well as exploring their underlying mechanisms. We also examine the current therapeutic regimens for depression and their implications for AD management and outline key challenges facing the field.
Collapse
Affiliation(s)
- Yu-Yuan Huang
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yi-Han Gan
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Liu Yang
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wei Cheng
- Institute of Science and Technology for Brain-Inspired Intelligence, Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Jin-Tai Yu
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
4
|
Zhan Q, Kong F, Shao S, Zhang B, Huang S. Pathogenesis of Depression in Alzheimer's Disease. Neurochem Res 2024; 49:548-556. [PMID: 38015411 DOI: 10.1007/s11064-023-04061-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/02/2023] [Accepted: 11/07/2023] [Indexed: 11/29/2023]
Abstract
Depression is a prevalent occurrence among Alzheimer's disease (AD) patients, yet its underlying mechanism remains unclear. Recent investigations have revealed that several pathophysiological changes associated with Alzheimer's disease can lead to mood disorders. These alterations include irregularities in monoamine neurotransmitters, disruptions in glutamatergic synaptic transmission, neuro-inflammation, dysfunction within the hypothalamic-pituitary-adrenocortical (HPA) axis, diminished levels of brain-derived neurotrophic factor (BDNF), and hippocampal atrophy. This review consolidates research findings from pertinent fields to elucidate the mechanisms underlying depression in Alzheimer's disease, aiming to provide valuable insights for the study of its mechanisms and clinical treatment.
Collapse
Affiliation(s)
- Qingyang Zhan
- Institute of Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Fanyi Kong
- Institute of Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Shuai Shao
- Institute of Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Bo Zhang
- Institute of Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, 150040, China.
| | - Shuming Huang
- Institute of Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| |
Collapse
|
5
|
Bajaj S, Mahesh R. Converged avenues: depression and Alzheimer's disease- shared pathophysiology and novel therapeutics. Mol Biol Rep 2024; 51:225. [PMID: 38281208 DOI: 10.1007/s11033-023-09170-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/15/2023] [Indexed: 01/30/2024]
Abstract
Depression, a highly prevalent disorder affecting over 280 million people worldwide, is comorbid with many neurological disorders, particularly Alzheimer's disease (AD). Depression and AD share overlapping pathophysiology, and the search for accountable biological substrates made it an essential and intriguing field of research. The paper outlines the neurobiological pathways coinciding with depression and AD, including neurotrophin signalling, the hypothalamic-pituitary-adrenal axis (HPA), cellular apoptosis, neuroinflammation, and other aetiological factors. Understanding overlapping pathways is crucial in identifying common pathophysiological substrates that can be targeted for effective management of disease state. Antidepressants, particularly monoaminergic drugs (first-line therapy), are shown to have modest or no clinical benefits. Regardless of the ineffectiveness of conventional antidepressants, these drugs remain the mainstay for treating depressive symptoms in AD. To overcome the ineffectiveness of traditional pharmacological agents in treating comorbid conditions, a novel therapeutic class has been discussed in the paper. This includes neurotransmitter modulators, glutamatergic system modulators, mitochondrial modulators, antioxidant agents, HPA axis targeted therapy, inflammatory system targeted therapy, neurogenesis targeted therapy, repurposed anti-diabetic agents, and others. The primary clinical challenge is the development of therapeutic agents and the effective diagnosis of the comorbid condition for which no specific diagnosable scale is present. Hence, introducing Artificial Intelligence (AI) into the healthcare system is revolutionary. AI implemented with interdisciplinary strategies (neuroimaging, EEG, molecular biomarkers) bound to have accurate clinical interpretation of symptoms. Moreover, AI has the potential to forecast neurodegenerative and psychiatric illness much in advance before visible/observable clinical symptoms get precipitated.
Collapse
Affiliation(s)
- Shivanshu Bajaj
- Department of Pharmacy, Birla Institute of Technology and Science (BITS), Pilani, 333031, Rajasthan, India
| | - Radhakrishnan Mahesh
- Department of Pharmacy, Birla Institute of Technology and Science (BITS), Pilani, 333031, Rajasthan, India.
| |
Collapse
|
6
|
Wang S, Xu CL, Luo T, Wang HQ. Effects of Jatrorrhizine on inflammatory response induced by H 2O 2 in microglia by regulating the MAPK/NF-κB/NLRP3 signaling pathway. Mol Neurobiol 2023; 60:5725-5737. [PMID: 37338804 DOI: 10.1007/s12035-023-03385-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 05/13/2023] [Indexed: 06/21/2023]
Abstract
Microglia-induced neuroinflammation is a contributing factor to neurodegenerative diseases. Jatrorrhizine (JAT), an alkaloid isolated from Huanglian, has been shown to have neuroprotective effects against various neurodegenerative diseases, but its impact on microglia-induced neuroinflammation remains unclear. In this study, we investigated the role of JAT in MAPK/NF-κB/NLRP3 signaling pathway in an H2O2-induced oxidative stress model using microglia (N9 cells). We divided cells into six groups, including control, JAT, H2O2, H2O2 + 5 μmol/L JAT, H2O2 + 10 μmol/L JAT, and H2O2 + 20 μmol/L minocycline groups. Cell viability was measured using MTT assay and TNF-α levels were detected with an ELISA Kit. Western blot was used to detect NLRP3, HMGB1, NF-κB, p-NF-κB, ERK, p-ERK, p38, p-p38, p-JNK, JNK, IL-1β, and IL-18 expressions. Our results showed that JAT intervention improved H2O2-induced cytotoxicity in N9 cells and reduced the elevated expression of TNF-α, IL-1β, IL-18, p-ERK/ERK, p-p38/p38, p-JNK/JNK, p-p65/p65, NLRP3, and HMGB1 in H2O2 group. Furthermore, treatment with ERK inhibitor SCH772984 specifically blocked ERK phosphorylation, resulting in decreased protein levels of p-NF-κB, NLRP3, IL-1β, and IL-18 in H2O2 group. These results suggest that the MAPK/NF-κB signaling pathway may regulate the protein levels of NLRP3. Overall, our study indicates that JAT may have a protective effect on H2O2-treated microglia via inhibition the MAPK/NF-κB/NLRP3 pathway and could be a potential therapeutic approach for neurodegenerative diseases.
Collapse
Affiliation(s)
- Sheng Wang
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Cai-Li Xu
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Tao Luo
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China.
| | - Hua-Qiao Wang
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
7
|
Amouzad Mahdirejei H, Peeri M, Azarbayjani MA, Masrour FF. Diazepam and exercise training combination synergistically reduces lipopolysaccharide-induced anxiety-like behavior and oxidative stress in the prefrontal cortex of mice. Neurotoxicology 2023; 97:101-108. [PMID: 37295748 DOI: 10.1016/j.neuro.2023.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/27/2023] [Accepted: 06/05/2023] [Indexed: 06/12/2023]
Abstract
Anxiety-related disorders are among the most important risks for global health, especially in recent years due to the COVID-19 pandemic. Benzodiazepines like diazepam are generally used to treat anxiety disorders, but the overall outcome is not always satisfactory. This is why psychiatrists encourage patients with anxiety to change their lifestyle habits to decrease the risk of anxiety recurrence. However, the effect of diazepam and exercise in combination is unknown. This study aimed to investigate the effect of diazepam alone or in combination with swimming exercise on lipopolysaccharide (LPS)-induced anxiety-like behavior and oxidative stress in the hippocampus and prefrontal cortex of mice. Mice were exposed to diazepam and swimming exercise alone or in combination with each other and then received LPS. We assessed anxiety-like behavior using open field and light-dark box and measured oxidative markers including glutathione (GSH), malondialdehyde (MDA), and glutathione disulfide (GSSG) in the hippocampus and prefrontal cortex. The findings showed that LPS increased anxiety-related symptoms and oxidative stress by decreasing GSH and increasing MDA and GSSG levels in the prefrontal cortex but not in the hippocampus. Although diazepam alone did not reduce anxiety-like behavior and oxidative stress, it in combination with exercise significantly decreased anxiety-like behavior and oxidative stress in the prefrontal cortex of LPS-treated mice. This drug and exercise combination also displayed a more effective effect in comparison with exercise alone. Overall, this study suggests that diazepam in combination with swimming exercise has higher efficacy on anxiety-like behavior and oxidative stress than when they are used alone.
Collapse
Affiliation(s)
| | - Maghsoud Peeri
- Department of Exercise Physiology, Central Tehran Branch, Islamic Azad University, Tehran, Iran.
| | | | | |
Collapse
|
8
|
Li J, Zhang F, Zhao L, Dong C. Microbiota-gut-brain axis and related therapeutics in Alzheimer's disease: prospects for multitherapy and inflammation control. Rev Neurosci 2023:revneuro-2023-0006. [PMID: 37076953 DOI: 10.1515/revneuro-2023-0006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 03/26/2023] [Indexed: 04/21/2023]
Abstract
Alzheimer's disease (AD) is the most common type of dementia in the elderly and causes neurodegeneration, leading to memory loss, behavioral disorder, and psychiatric impairment. One potential mechanism contributing to the pathogenesis of AD may be the imbalance in gut microbiota, local and systemic inflammation, and dysregulation of the microbiota-gut-brain axis (MGBA). Most of the AD drugs approved for clinical use today are symptomatic treatments that do not improve AD pathologic changes. As a result, researchers are exploring novel therapeutic modalities. Treatments involving the MGBA include antibiotics, probiotics, transplantation of fecal microbiota, botanical products, and others. However, single-treatment modalities are not as effective as expected, and a combination therapy is gaining momentum. The purpose of this review is to summarize recent advances in MGBA-related pathological mechanisms and treatment modalities in AD and to propose a new concept of combination therapy. "MGBA-based multitherapy" is an emerging view of treatment in which classic symptomatic treatments and MGBA-based therapeutic modalities are used in combination. Donepezil and memantine are two commonly used drugs in AD treatment. On the basis of the single/combined use of these two drugs, two/more additional drugs and treatment modalities that target the MGBA are chosen based on the characteristics of the patient's condition as an adjuvant treatment, as well as the maintenance of good lifestyle habits. "MGBA-based multitherapy" offers new insights for the treatment of cognitive impairment in AD patients and is expected to show good therapeutic results.
Collapse
Affiliation(s)
- Jiahao Li
- Department of Neurology, The First Affiliated Hospital, Dalian Medical University, No. 222 Zhongshan Road, Dalian 116011, China
| | - Feng Zhang
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Li Zhao
- Department of Neurology, The First Affiliated Hospital, Dalian Medical University, No. 222 Zhongshan Road, Dalian 116011, China
| | - Chunbo Dong
- Department of Neurology, The First Affiliated Hospital, Dalian Medical University, No. 222 Zhongshan Road, Dalian 116011, China
| |
Collapse
|
9
|
Haussmann R, Donix M. Pharmacologic treatment of depression in Alzheimer's disease. Int Clin Psychopharmacol 2023; 38:81-88. [PMID: 36719337 DOI: 10.1097/yic.0000000000000439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Major depressive disorder and Alzheimer's disease are common among older people, frequently co-occur and severely impact the quality of life. Unfortunately, data on the efficacy of pharmacologic treatment of depressive symptoms in patients with the neurodegenerative disease remain inconclusive. The heterogeneity of treatment study designs, from varying diagnostic specificity to diverse outcome measures, contributes to conflicting evidence across single trials and meta-analyses. In this literature review, we focus on commercially available products for antidepressant treatment in demented individuals and show how insights from randomized controlled trials could still guide and be aligned with common clinical practice.
Collapse
Affiliation(s)
- Robert Haussmann
- Department of Psychiatry, University Hospital Carl Gustav Carus, Technische Universität Dresden
| | - Markus Donix
- Department of Psychiatry, University Hospital Carl Gustav Carus, Technische Universität Dresden
- German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany
| |
Collapse
|
10
|
Intranasal interferon-beta alleviates anxiety and depressive-like behaviors by modulating microglia polarization in an Alzheimer's disease model. Neurosci Lett 2023; 792:136968. [PMID: 36396023 DOI: 10.1016/j.neulet.2022.136968] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/30/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022]
Abstract
Alzheimer's disease (AD) patients frequently experience neuropsychiatric symptoms (NPS), which are linked to a lower quality of life and a faster rate of disease progression. A growing body of research indicates that several microglial phenotypes control the inflammatory response and are crucial in the pathophysiology of AD-related NPS. Given the crucial role played by inflammatory mediators produced by microglia in developing of NPS, interferon-beta (IFNβ), a cytokine with anti-inflammatory capabilities, maybe a successful treatment for NPS caused by AD. In this investigation, using a rat model of AD, we examined the impact of intranasal treatment of IFNβ on anxious/depressive-like behavior and microglial M1/M2 polarization. The rat hippocampus was bilaterally injected with lentiviruses harboring mutant human amyloid precursor protein. Rats were given recombinant IFNβ1a (68,000 IU/rat) via the intranasal route, starting on day 23 following viral infection and continuing until day 49. On days 47-49, the elevated plus maze, forced swim, and tail suspension tests were applied to measure anxiety- and depressive-like behavior. Additionally, qPCR was utilized to quantify the expression of M1 markers (CD68, CD86, and CD40) and M2 markers (Ym1, CD206, Arg1, GDNF, BDNF, and SOCS1). Our findings demonstrated that decreased M2 marker expression is accompanied by anxious/depressive-like behavior when the mutant human APP gene is overexpressed in the hippocampus. In the rat model of AD, IFNβ therapy reduces anxious/depressive-like behaviors, at least in part by polarizing microglia towards M2. Therefore, IFNβ may be a viable therapeutic drug for reducing NPS in the context of AD.
Collapse
|
11
|
Chunduri A, Reddy SDM, Jahanavi M, Reddy CN. Gut-Brain Axis, Neurodegeneration and Mental Health: A Personalized Medicine Perspective. Indian J Microbiol 2022; 62:505-515. [PMID: 36458229 PMCID: PMC9705676 DOI: 10.1007/s12088-022-01033-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 07/26/2022] [Indexed: 11/05/2022] Open
Abstract
Neurological conditions such as neurodegenerative diseases and mental health disorders are a result of multifactorial underpinnings, leading to individual-based complex phenotypes. Demystification of these multifactorial connections will promote disease diagnosis and treatment. Personalized treatment rather than a one-size-fits-all approach would enable us to cater to the unmet healthcare needs based on protein-protein and gene-environment interactions. Gut-brain axis, as the name suggests, is a two-way biochemical communication pathway between the central nervous system (CNS) and enteric nervous system (ENS), enabling a mutual influence between brain and peripheral intestinal functions. The gut microbiota is a major component of this bidirectional communication, the composition of which is varied depending on the age, and disease conditions, among other factors. Gut microbiota profile is typically unique and personalized therapeutic intervention can aid in treating or delaying neurodegeneration and mental health conditions. Besides, research on the gut microbial influence on these conditions is gaining attention, and a better understanding of this concept can lead to identification of novel targeted therapies. Graphical Abstract
Collapse
Affiliation(s)
- Alisha Chunduri
- Department of Biotechnology, Chaitanya Bharathi Institute of Technology, Hyderabad, Telangana 500075 India
| | - S. Deepak Mohan Reddy
- Department of Biotechnology, Chaitanya Bharathi Institute of Technology, Hyderabad, Telangana 500075 India
| | - M. Jahanavi
- Department of Biotechnology, Chaitanya Bharathi Institute of Technology, Hyderabad, Telangana 500075 India
| | - C. Nagendranatha Reddy
- Department of Biotechnology, Chaitanya Bharathi Institute of Technology, Hyderabad, Telangana 500075 India
| |
Collapse
|
12
|
Serna-Rodríguez MF, Bernal-Vega S, de la Barquera JAOS, Camacho-Morales A, Pérez-Maya AA. The role of damage associated molecular pattern molecules (DAMPs) and permeability of the blood-brain barrier in depression and neuroinflammation. J Neuroimmunol 2022; 371:577951. [PMID: 35994946 DOI: 10.1016/j.jneuroim.2022.577951] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 08/03/2022] [Accepted: 08/13/2022] [Indexed: 10/15/2022]
Abstract
Depression is a heterogeneous mental disorder characterized by feelings of sadness and loss of interest that render the subject unable to handle basic daily activities such as sleeping, eating, or working. Neurobiological traits leading to depression include genetic background, early life abuse, life stressors, and systemic and central inflammatory profiles. Several clinical and preclinical reports documented that depression shows an increase in pro-inflammatory markers such as interleukin (IL-)1β, IL-6, IL-12, tumor necrosis factor (TNF), and interferon (IFN)-γ; and a decrease in anti-inflammatory IL-4, IL-10, and transforming growth factor (TGF)-β species. Inflammatory activation may trigger and maintain depression. Dynamic crosstalk between the peripheral immune system and the central nervous system (CNS) such as activated endothelial cells, monocytes, monocyte-derived dendritic cells, macrophages, T cells, and microglia has been proposed as a leading cause of neuroinflammation. Notably, pro-inflammatory cytokines disrupt the hypothalamic-pituitary-adrenal (HPA) axis and serotonergic, noradrenergic, dopaminergic, and glutamatergic neurotransmission. While still under investigation, peripheral cytokines can engage brain pathways and affect the central synthesis of HPA hormones and neurotransmitters through several mechanisms such as activation of the vagus nerve, increasing the permeability of the blood-brain barrier (BBB), altered cytokines transport systems, and engaging toll-like receptors (TLRs) by pathogen-associated molecular patterns (PAMPs) or damage-associated molecular patterns (DAMPs). However, physiological mechanisms that favor time-dependent central inflammation before or during illness are not totally understood. This review will provide preclinical and clinical evidence of DAMPs and the BBB permeability as contributors to depression and neuroinflammation. We will also discuss pharmacologic approaches that could potentially modulate DAMPs and BBB permeability for future interventions against major depression.
Collapse
Affiliation(s)
- María Fernanda Serna-Rodríguez
- Universidad Autónoma de Nuevo León, Facultad de Medicina, Departamento de Bioquímica y Medicina Molecular. Monterrey CP. 64460, Nuevo Leon, Mexico
| | - Sofía Bernal-Vega
- Universidad Autónoma de Nuevo León, Facultad de Medicina, Departamento de Bioquímica y Medicina Molecular. Monterrey CP. 64460, Nuevo Leon, Mexico
| | | | - Alberto Camacho-Morales
- Universidad Autónoma de Nuevo León, Facultad de Medicina, Departamento de Bioquímica y Medicina Molecular. Monterrey CP. 64460, Nuevo Leon, Mexico.
| | - Antonio Alí Pérez-Maya
- Universidad Autónoma de Nuevo León, Facultad de Medicina, Departamento de Bioquímica y Medicina Molecular. Monterrey CP. 64460, Nuevo Leon, Mexico.
| |
Collapse
|
13
|
Motaghinejad M, Motevalian M. Neuroprotective Properties of Minocycline Against Methylphenidate-Induced Neurodegeneration: Possible Role of CREB/BDNF and Akt/GSK3 Signaling Pathways in Rat Hippocampus. Neurotox Res 2022; 40:689-713. [PMID: 35446003 DOI: 10.1007/s12640-021-00454-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/17/2021] [Accepted: 11/29/2021] [Indexed: 12/19/2022]
Abstract
Neurodegeneration is a side effect of methylphenidate (MPH), and minocycline possesses neuroprotective properties. This study aimed to investigate the neuroprotective effects of minocycline against methylphenidate-induced neurodegeneration mediated by signaling pathways of CREB/BDNF and Akt/GSK3. Seven groups of seventy male rats were randomly distributed in seven groups (n = 10). Group 1 received 0.7 ml/rat of normal saline (i.p.), and group 2 was treated with MPH (10 mg/kg, i.p.). Groups 3, 4, 5, and 6 were simultaneously administered MPH (10 mg/kg) and minocycline (10, 20, 30, and 40 mg/kg, i.p.) for 21 days. Minocycline alone (40 mg/kg, i.p.) was administrated to group 7. Open field test (OFT) (on day 22), forced swim test (FST) (on day 24), and elevated plus maze (on day 26) were conducted to analyze the mood-related behaviors; hippocampal oxidative stress, inflammatory, and apoptotic parameters, as well as the levels of protein kinase B (Akt-1), glycogen synthase kinase 3 (GSK3), cAMP response element-binding protein (CREB), and brain-derived neurotrophic factor (BDNF), were also assessed. Furthermore, localization of total CREB, Akt, and GSK3 in the DG and CA1 areas of the hippocampus were measured using immunohistochemistry (IHC). Histological changes in the mentioned areas were also evaluated. Minocycline treatment inhibited MPH-induced mood disorders and decreased lipid peroxidation, oxidized form of glutathione (GSSG), interleukin 1 beta (IL-1β), alpha tumor necrosis factor (TNF-α), Bax, and GSK3 levels. In the contrary, it increased the levels of reduced form of glutathione (GSH), Bcl-2, CREB, BDNF, and Akt-1 and superoxide dismutase (SOD), glutathione peroxidase (GPx), and glutathione reductase (GR) activities in the experimental animals' hippocampus. IHC data showed that minocycline also improved the localization and expression of CREB and Akt positive cells and decreased the GSK3 positive cells in the DG and CA1 regions of the hippocampus of MPH-treated rats. Minocycline also inhibited MPH-induced changes of hippocampal cells' density and shape in both DG and CA1 areas of the hippocampus. According to obtained data, it can be concluded that minocycline probably via activation of the P-CREB/BDNF or Akt/GSK3 signaling pathway can confer its neuroprotective effects against MPH-induced neurodegeneration.
Collapse
Affiliation(s)
- Majid Motaghinejad
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Shahid Hemmat High way, Iran Univ. Med. Sci., P.O. Box 14496-14525, Tehran, Iran.
| | - Manijeh Motevalian
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Shahid Hemmat High way, Iran Univ. Med. Sci., P.O. Box 14496-14525, Tehran, Iran.
- Department of Pharmacology, School of Medicine, Tehran, Iran University of Medical Sciences, Shahid Hemmat High way, Iran Univ. Med. Sci., P.O. Box 14496-14525, Tehran, Iran.
| |
Collapse
|
14
|
Markulin I, Matasin M, Turk VE, Salković-Petrisic M. Challenges of repurposing tetracyclines for the treatment of Alzheimer's and Parkinson's disease. J Neural Transm (Vienna) 2022; 129:773-804. [PMID: 34982206 DOI: 10.1007/s00702-021-02457-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/20/2021] [Indexed: 12/13/2022]
Abstract
The novel antibiotic-exploiting strategy in the treatment of Alzheimer's (AD) and Parkinson's (PD) disease has emerged as a potential breakthrough in the field. The research in animal AD/PD models provided evidence on the antiamyloidogenic, anti-inflammatory, antioxidant and antiapoptotic activity of tetracyclines, associated with cognitive improvement. The neuroprotective effects of minocycline and doxycycline in animals initiated investigation of their clinical efficacy in AD and PD patients which led to inconclusive results and additionally to insufficient safety data on a long-standing doxycycline and minocycline therapy in these patient populations. The safety issues should be considered in two levels; in AD/PD patients (particularly antibiotic-induced alteration of gut microbiota and its consequences), and as a world-wide threat of development of bacterial resistance to these antibiotics posed by a fact that AD and PD are widespread incurable diseases which require daily administered long-lasting antibiotic therapy. Recently proposed subantimicrobial doxycycline doses should be thoroughly explored for their effectiveness and long-term safety especially in AD/PD populations. Keeping in mind the antibacterial activity-related far-reaching undesirable effects both for the patients and globally, further work on repurposing these drugs for a long-standing therapy of AD/PD should consider the chemically modified tetracycline compounds tailored to lack antimicrobial but retain (or introduce) other activities effective against the AD/PD pathology. This strategy might reduce the risk of long-term therapy-related adverse effects (particularly gut-related ones) and development of bacterial resistance toward the tetracycline antibiotic agents but the therapeutic potential and desirable safety profile of such compounds in AD/PD patients need to be confirmed.
Collapse
Affiliation(s)
- Iva Markulin
- Community Health Centre Zagreb-Centre, Zagreb, Croatia
| | | | - Viktorija Erdeljic Turk
- Division of Clinical Pharmacology, Department of Medicine, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Melita Salković-Petrisic
- Department of Pharmacology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Salata 11, 10 000, Zagreb, Croatia.
| |
Collapse
|
15
|
Wei T, Guo Z, Wang Z, Li C, Zhu W, Zheng Y, Yin Y, Mi Y, Xia X, Hou H, Tang Y. Five Major Psychiatric Disorders and Alzheimer's Disease: A Bidirectional Mendelian Randomization Study. J Alzheimers Dis 2022; 87:675-684. [PMID: 35367968 DOI: 10.3233/jad-220010] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Extensive studies put forward the association between Alzheimer's disease (AD) and psychiatric disorders; however, it remains unclear whether these associations are causal. OBJECTIVE We aimed to assess the potential causal relationship between major psychiatric disorders and AD. METHODS A bidirectional two-sample Mendelian randomization (MR) was applied to evaluate potential causality between five psychiatric disorders and AD by selecting the single-nucleotide polymorphisms from the genome-wide association studies as instrumental variables. Inverse-variance weighted (IVW) method was used as the main analyzing approach to estimate possible causal effects, alternative methods including MR-Egger, the MR pleiotropy residual sum and outlier, and leave-one-out analysis method were implemented as sensitivity analyzing approaches to ensure the robustness of results. RESULTS All forward and reverse MR analyses consistently suggested absent causal relations between psychiatric disorders and AD risk [forward IVW: ORADHD, 1.030, 95% CI, 0.908-1.168, p = 0.674; ORanxiety disorders, 0.904, 95% CI, 0.722-1.131, p = 0.377; ORASD, 0.973, 95% CI, 0.746-1.272, p = 0.846; ORBIP, 1.033, 95% CI, 0.925-1.153, p = 0.564; and ORschizophrenia, 1.039, 95% CI, 0.986-1.095, p = 0.156; reverse IVW: ORADHD, 0.993, 95% CI, 0.954-1.034, p = 0.746; ORanxiety disorders, 1.000, 95% CI, 0.999-1.000, p = 0.898; ORASD, 1.001, 95% CI, 0.962-1.042, p = 0.949; ORBIP, 0.997, 95% CI, 0.966-1.028, p = 0.831; and ORschizophrenia, 1.013, 95% CI, 0.978-1.051, p = 0.466]. CONCLUSION There is no significant evidence supporting the causal association between the five major psychiatric disorders and AD.
Collapse
Affiliation(s)
- Tao Wei
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical
| | - Zheng Guo
- Centre for Precision Health, School of Medical and Health Sciences, Edith Cowan University, Perth, 8 Australia
| | - Zhibin Wang
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical
| | - Cancan Li
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian China
| | - Wei Zhu
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical
| | - Yulu Zheng
- Centre for Precision Health, School of Medical and Health Sciences, Edith Cowan University, Perth, 8 Australia
| | - Yunsi Yin
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical
| | - Yingxin Mi
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical
| | - Xinyi Xia
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical
| | - Haifeng Hou
- Centre for Precision Health, School of Medical and Health Sciences, Edith Cowan University, Perth, 8 Australia
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian China
| | - Yi Tang
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical
- Neurodegenerative Laboratory of Ministry of Education of the People's Republic of China, Beijing, China
| |
Collapse
|
16
|
Dhapola R, Hota SS, Sarma P, Bhattacharyya A, Medhi B, Reddy DH. Recent advances in molecular pathways and therapeutic implications targeting neuroinflammation for Alzheimer's disease. Inflammopharmacology 2021; 29:1669-1681. [PMID: 34813026 PMCID: PMC8608577 DOI: 10.1007/s10787-021-00889-6] [Citation(s) in RCA: 212] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 10/31/2021] [Indexed: 01/11/2023]
Abstract
Alzheimer's disease (AD) is a major contributor of dementia leading to the degeneration of neurons in the brain with major symptoms like loss of memory and learning. Many evidences suggest the involvement of neuroinflammation in the pathology of AD. Cytokines including TNF-α and IL-6 are also found increasing the BACE1 activity and expression of NFκB resulting in generation of Aβ in AD brain. Following the interaction of Aβ with microglia and astrocytes, other inflammatory molecules also get translocated to the site of inflammation by chemotaxis and exaggerate neuroinflammation. Various pathways like NFκB, p38 MAPK, Akt/mTOR, caspase, nitric oxide and COX trigger microglia to release inflammatory cytokines. PPARγ agonists like pioglitazone increases the phagocytosis of Aβ and reduces inflammatory cytokine IL-1β. Celecoxib and roficoxib like selective COX-2 inhibitors also ameliorate neuroinflammation. Non-selective COX inhibitor indomethacin is also potent inhibitor of inflammatory mediators released from microglia. Mitophagy process is considered quite helpful in reducing inflammation due to microglia as it promotes the phagocytosis of over activated microglial cells and other inflammatory cells. Mitophagy induction is also beneficial in the removal of damaged mitochondria and reduction of infiltration of inflammatory molecules at the site of accumulation of the damaged mitochondria. Targeting these pathways and eventually ameliorating the activation of microglia can mitigate neuroinflammation and come out as a better therapeutic option for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Rishika Dhapola
- Department of Pharmacology, Central University of Punjab, Bathinda, 151 401, India
| | | | - Phulen Sarma
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160 012, India
| | - Anusuya Bhattacharyya
- Department of Ophthalmology, Government Medical College & Hospital, Chandigarh, 160 032, India
| | - Bikash Medhi
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160 012, India
| | | |
Collapse
|
17
|
Mosaferi B, Jand Y, Salari AA. Gut microbiota depletion from early adolescence alters anxiety and depression-related behaviours in male mice with Alzheimer-like disease. Sci Rep 2021; 11:22941. [PMID: 34824332 PMCID: PMC8617202 DOI: 10.1038/s41598-021-02231-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 11/12/2021] [Indexed: 12/13/2022] Open
Abstract
The gut-microbiota-brain axis plays an important role in stress-related disorders, and dysfunction of this complex bidirectional system is associated with Alzheimer's disease. This study aimed to assess the idea that whether gut microbiota depletion from early adolescence can alter anxiety- and depression-related behaviours in adult mice with or without Alzheimer-like disease. Male C57BL/6 mice were treated with an antibiotic cocktail from weaning to adulthood. Adult mice received an intracerebroventricular injection of amyloid-beta (Aβ)1-42, and were subjected to anxiety and depression tests. We measured, brain malondialdehyde and glutathione following anxiety tests, and assessed brain oxytocin and the hypothalamic-pituitary-adrenal (HPA) axis function by measuring adrenocorticotrophic hormone (ACTH) and corticosterone following depression tests. Healthy antibiotic-treated mice displayed significant decreases in anxiety-like behaviours, whereas they did not show any alterations in depression-like behaviours and HPA axis function. Antibiotic treatment from early adolescence prevented the development of anxiety- and depression-related behaviours, oxidative stress and HPA axis dysregulation in Alzheimer-induced mice. Antibiotic treatment increased oxytocin in the brain of healthy but not Alzheimer-induced mice. Taken together, these findings suggest that gut microbiota depletion following antibiotic treatment from early adolescence might profoundly affect anxiety- and depression-related behaviours, and HPA axis function in adult mice with Alzheimer-like disease.
Collapse
Affiliation(s)
- Belal Mosaferi
- Department of Basic Sciences, School of Nursing and Midwifery, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Yahya Jand
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali-Akbar Salari
- Salari Institute of Cognitive and Behavioral Disorders (SICBD), P.O. Box 31396-45999, Karaj, Alborz, Iran.
| |
Collapse
|
18
|
Naghibi S, Shariatzadeh Joneydi M, Barzegari A, Davoodabadi A, Ebrahimi A, Eghdami E, Fahimpour N, Ghorbani M, Mohammadikia E, Rostami M, Salari AA. Treadmill exercise sex-dependently alters susceptibility to depression-like behaviour, cytokines and BDNF in the hippocampus and prefrontal cortex of rats with sporadic Alzheimer-like disease. Physiol Behav 2021; 241:113595. [PMID: 34536437 DOI: 10.1016/j.physbeh.2021.113595] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 12/15/2022]
Abstract
Alzheimer's disease (AD) is associated with increased depression-related behaviours. Previous studies have reported a greater risk of AD and depression in women. In recent years, we and others have provided evidence that exercise during life could be used as a therapeutic strategy for stress-related disorders such as depression. The main goal of the current study was to determine whether treadmill exercise during life can reduce depression-related behaviours in male and female Wistar rats with sporadic Alzheimer-like disease (ALD). Animals were subjected to treadmill exercise eight weeks before and four weeks after ALD induction by streptozocin (STZ). We measured body weight, food intake, and depression-related symptoms in rats using five behavioural tests. We measured brain-derived-neurotrophic factor (BDNF), tumour-necrosis factor (TNF)-α, and interleukin (IL)-10 levels in the hippocampus and prefrontal cortex of animals. Our findings showed that exercise but not ALD induction decreased body weight and food intake in male and female rats. ALD induction increased depression-related symptoms and hippocampal TNF-α in male and female rats. Besides, treadmill exercise alone decreased depression-related behaviours and increased hippocampal BDNF in females but not males. We also found that treadmill exercise decreased depression-related behaviours and TNF-α in the hippocampus and prefrontal cortex, and increased IL-10 in the prefrontal cortex and BDNF in the hippocampus of female ALD-induced rats. However, treadmill exercise only reduced anhedonia-like behaviour and hippocampal TNF-α in male ALD-induced rats. Overall, the evidence from this study suggests that treadmill exercise alters depression-related behaviours, brain BDNF and cytokines in a sex-dependant manner in rats with sporadic Alzheimer-like disease.
Collapse
Affiliation(s)
- Saeed Naghibi
- Department of Exercise Physiology, Payame Noor University (PNU), Tehran, Iran
| | | | - Ali Barzegari
- Department of Exercise Physiology, Payame Noor University (PNU), Tehran, Iran
| | - Azam Davoodabadi
- Department of Exercise Physiology, Payame Noor University (PNU), Tehran, Iran
| | | | - Elham Eghdami
- Department of Exercise Physiology, Payame Noor University (PNU), Tehran, Iran
| | - Narges Fahimpour
- Department of Exercise Physiology, Payame Noor University (PNU), Tehran, Iran
| | - Mahmood Ghorbani
- Department of Exercise Physiology, Payame Noor University (PNU), Tehran, Iran
| | - Ehsan Mohammadikia
- Department of Exercise Physiology, Payame Noor University (PNU), Tehran, Iran
| | - Mozhgan Rostami
- Department of Exercise Physiology, Payame Noor University (PNU), Tehran, Iran
| | - Ali-Akbar Salari
- Salari Institute of Cognitive and Behavioral Disorders (SICBD), Karaj, Alborz, Iran.
| |
Collapse
|
19
|
Gilak-Dalasm M, Peeri M, Azarbayjani MA. Swimming exercise decreases depression-like behaviour and inflammatory cytokines in a mouse model of type 2 diabetes. Exp Physiol 2021; 106:1981-1991. [PMID: 34347905 DOI: 10.1113/ep089501] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 07/30/2021] [Indexed: 12/14/2022]
Abstract
NEW FINDINGS What is the central question of this study? Can swimming exercise decrease depression-like behaviour and inflammation in type 2 diabetic mice? What is the main finding and its importance? Swimming exercise decreased depression-like behaviour by reducing inflammation in type 2 diabetic mice. Swimming exercise might be useful for the treatment of depression-related disorders in patients with type 2 diabetes. ABSTRACT Clinical and experimental studies have shown that type 2 diabetes is associated with depression-related disorders. Inflammation has been identified as a common mechanism in both type 2 diabetes and depression. Several studies have suggested that swimming exercise might be able to reduce depression-related symptoms. The present study aimed to explore whether swimming exercise can decrease depression-like behaviour in type 2 diabetic mice. To induce type 2 diabetes, male C57BL6 mice were treated with a high-fat diet and streptozocin. Type 2 diabetic animals were subjected to swimming exercise for 4 weeks. Then, depression-like behaviours were evaluated by sucrose preference, novelty-suppressed feeding, social interaction and tail suspension tests. We also measured levels of glucose, insulin and pro-inflammatory cytokines such as interleukin-1β and tumour necrosis factor-α in the serum of animals. The results indicated that type 2 diabetes significantly increased anhedonia- and depression-like behaviours in mice. We also found significant increases in glucose, insulin and inflammatory cytokines in diabetic mice. Moreover, swimming exercise reduced anhedonia- and depression-like behaviour in type 2 diabetic mice. Swimming exercise also decreased glucose and inflammatory cytokines in the serum of mice with type 2 diabetes. Collectively, this study demonstrates that swimming exercise decreased depression-like behaviour by reducing inflammation in type 2 diabetic mice. Further clinical studies are needed to validate these findings in patients with type 2 diabetes.
Collapse
Affiliation(s)
- Mohadeseh Gilak-Dalasm
- Department of Exercise Physiology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Maghsoud Peeri
- Department of Exercise Physiology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | | |
Collapse
|
20
|
Hayley S, Hakim AM, Albert PR. Depression, dementia and immune dysregulation. Brain 2021; 144:746-760. [PMID: 33279966 DOI: 10.1093/brain/awaa405] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 06/26/2020] [Accepted: 09/20/2020] [Indexed: 12/17/2022] Open
Abstract
Major depression is a prevalent illness that increases the risk of several neurological conditions. These include stroke, cardiovascular disease, and dementia including Alzheimer's disease. In this review we ask whether certain types of depression and associated loneliness may be a harbinger of cognitive decline and possibly even dementia. We propose that chronic stress and inflammation combine to compromise vascular and brain function. The resulting increases in proinflammatory cytokines and microglial activation drive brain pathology leading to depression and mild cognitive impairment, which may progress to dementia. We present evidence that by treating the inflammatory changes, depression can be reversed in many cases. Importantly, there is evidence that anti-inflammatory and antidepressant treatments may reduce or prevent dementia in people with depression. Thus, we propose a model in which chronic stress and inflammation combine to increase brain permeability and cytokine production. This leads to microglial activation, white matter damage, neuronal and glial cell loss. This is first manifest as depression and mild cognitive impairment, but can eventually evolve into dementia. Further research may identify clinical subgroups with inflammatory depression at risk for dementia. It would then be possible to address in clinical trials whether effective treatment of the depression can delay the onset of dementia.
Collapse
Affiliation(s)
- Shawn Hayley
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| | - Antoine M Hakim
- Ottawa Hospital Research Institute (Neuroscience), uOttawa Brain and Mind Research Institute, Ottawa, ON, Canada
| | - Paul R Albert
- Ottawa Hospital Research Institute (Neuroscience), uOttawa Brain and Mind Research Institute, Ottawa, ON, Canada
| |
Collapse
|
21
|
Mosaferi B, Jand Y, Salari AA. Antibiotic-induced gut microbiota depletion from early adolescence exacerbates spatial but not recognition memory impairment in adult male C57BL/6 mice with Alzheimer-like disease. Brain Res Bull 2021; 176:8-17. [PMID: 34391822 DOI: 10.1016/j.brainresbull.2021.08.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 08/05/2021] [Accepted: 08/09/2021] [Indexed: 12/16/2022]
Abstract
Gut microbiota dysbiosis is associated with cognitive dysfunctions and Alzheimer's disease (AD). This study set out to better understand the relationship between gut microbiota depletion and cognitive abilities in mice with or without Alzheimer-like disease. Male C57BL/6 mice from early adolescence received an antibiotic cocktail, and then in adulthood, animals were subjected to a stereotaxic surgery to induce Alzheimer-like disease using amyloid-beta (Aβ) 1-42 microinjection. To assess cognitive functions in mice, three behavioural tests including the Y maze, object recognition, and Morris water maze were used. We also measured brain-derived-neurotrophic factor (BDNF), tumour-necrosis factor (TNF)-α, interleukin (IL)-6, and Aβ42 in the brain. Our findings showed that antibiotics treatment impaired object recognition memory, whereas did not alter spatial memory in healthy mice. Antibiotics treatment in mice significantly exacerbated spatial memory impairment following the induction of AD in both the Y maze and Morris water maze test. There were significant correlations between these behavioural tests. In addition, healthy animals treated with antibiotics displayed a significant reduction in brain IL-6. We observed that antibiotics treatment significantly decreased both cytokines TNF-α and IL-6 in the brain of AD-induced mice. However, no alterations were found in brain BDNF levels following both antibiotics treatment and AD induction. These findings show that antibiotic-induced gut microbiota depletion from early adolescence to adulthood can impair cognitive abilities in mice with or without Alzheimer-like disease. Overall, this study suggests that gut microbiota manipulation from early adolescence to adulthood may adversely affect the normal development of cognitive functions.
Collapse
Affiliation(s)
- Belal Mosaferi
- Department of Basic Sciences, School of Nursing and Midwifery, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Yahya Jand
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali-Akbar Salari
- Salari Institute of Cognitive and Behavioral Disorders (SICBD), Karaj, Alborz, Iran.
| |
Collapse
|
22
|
Komysheva NP, Shishkina GT. [Prospects for the use of drugs with anti-inflammatory properties for the treatment of depression]. Zh Nevrol Psikhiatr Im S S Korsakova 2021; 121:124-131. [PMID: 34283542 DOI: 10.17116/jnevro2021121061124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The review briefly summarizes experimental and preclinical data of the role of pro-inflammatory cytokines in triggering pathophysiological changes associated with depression, primarily major depressive disorder (MDD), as well as the possibility of using anti-inflammatory drugs as antidepressants.
Collapse
Affiliation(s)
- N P Komysheva
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - G T Shishkina
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
23
|
Maciejewska K, Czarnecka K, Szymański P. A review of the mechanisms underlying selected comorbidities in Alzheimer's disease. Pharmacol Rep 2021; 73:1565-1581. [PMID: 34121170 PMCID: PMC8599320 DOI: 10.1007/s43440-021-00293-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/27/2021] [Accepted: 05/31/2021] [Indexed: 11/30/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder of the central nervous system (CNS) leading to mental deterioration and devastation, and eventually a fatal outcome. AD affects mostly the elderly. AD is frequently accompanied by hypercholesterolemia, hypertension, atherosclerosis, and diabetes mellitus, and these are significant risk factors of AD. Other conditions triggered by the progression of AD include psychosis, sleep disorders, epilepsy, and depression. One important comorbidity is Down’s syndrome, which directly contributes to the severity and rapid progression of AD. The development of new therapeutic strategies for AD includes the repurposing of drugs currently used for the treatment of comorbidities. A better understanding of the influence of comorbidities on the pathogenesis of AD, and the medications used in its treatment, might allow better control of disease progression, and more effective pharmacotherapy.
Collapse
Affiliation(s)
- Karolina Maciejewska
- Department of Pharmaceutical Chemistry, Drug Analyses and Radiopharmacy, Faculty of Pharmacy, Medical University of Lodz, Muszynskiego 1, 90-151, Lodz, Poland
| | - Kamila Czarnecka
- Department of Pharmaceutical Chemistry, Drug Analyses and Radiopharmacy, Faculty of Pharmacy, Medical University of Lodz, Muszynskiego 1, 90-151, Lodz, Poland
- Department of Radiobiology and Radiation Protection, Military Institute of Hygiene and Epidemiology, 4 Kozielska St, 01-163, Warsaw, Poland
| | - Paweł Szymański
- Department of Pharmaceutical Chemistry, Drug Analyses and Radiopharmacy, Faculty of Pharmacy, Medical University of Lodz, Muszynskiego 1, 90-151, Lodz, Poland.
- Department of Radiobiology and Radiation Protection, Military Institute of Hygiene and Epidemiology, 4 Kozielska St, 01-163, Warsaw, Poland.
| |
Collapse
|
24
|
Rampa A, Gobbi S, Belluti F, Bisi A. Tackling Alzheimer's Disease with Existing Drugs: A Promising Strategy for Bypassing Obstacles. Curr Med Chem 2021; 28:2305-2327. [PMID: 32867634 DOI: 10.2174/0929867327666200831140745] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/22/2020] [Accepted: 08/08/2020] [Indexed: 11/22/2022]
Abstract
The unmet need for the development of effective drugs to treat Alzheimer 's disease has been steadily growing, representing a major challenge in drug discovery. In this context, drug repurposing, namely the identification of novel therapeutic indications for approved or investigational compounds, can be seen as an attractive attempt to obtain new medications reducing both the time and the economic burden usually required for research and development programs. In the last years, several classes of drugs have evidenced promising beneficial effects in neurodegenerative diseases, and for some of them, preliminary clinical trials have been started. This review aims to illustrate some of the most recent examples of drugs reprofiled for Alzheimer's disease, considering not only the finding of new uses for existing drugs but also the new hypotheses on disease pathogenesis that could promote previously unconsidered therapeutic regimens. Moreover, some examples of structural modifications performed on existing drugs in order to obtain multifunctional compounds will also be described.
Collapse
Affiliation(s)
- Angela Rampa
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, I-40126 Bologna, Italy
| | - Silvia Gobbi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, I-40126 Bologna, Italy
| | - Federica Belluti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, I-40126 Bologna, Italy
| | - Alessandra Bisi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, I-40126 Bologna, Italy
| |
Collapse
|
25
|
Liu L, Wang EQ, Du C, Chen HS, Lv Y. Minocycline alleviates Gulf War Illness rats via altering gut microbiome, attenuating neuroinflammation and enhancing hippocampal neurogenesis. Behav Brain Res 2021; 410:113366. [PMID: 34000339 DOI: 10.1016/j.bbr.2021.113366] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 03/16/2021] [Accepted: 05/12/2021] [Indexed: 01/26/2023]
Abstract
Accumulating evidences suggest that deficits in neurogenesis, chronic inflammation and gut microbiome dysregulation contribute to the pathophysiology of Gulf War Illness (GWI). Minocycline has been demonstrated to be a potent neuroprotective agent and could regulate neuroinflammation. The present study intends to investigate whether the treatment of minocycline maintains better cognition and mood function in a rat model of GWI and the potential mechanism. Rats received 28 days of GWI-related chemical exposure and restraint stress, along with daily minocycline or vehicle treatment. Cognitive and mood function, neuroinflammation, neurogenesis and gut microbiota were detected. We found that minocycline treatment induces better cognitive and mood function in the GWI rat model, as indicated by open-field test, elevated plus maze test, novel object recognition test and forced swim test. Moreover, minocycline treatment reversed the altered gut microbiome, neuroinflammation and the decreased hippocampal neurogenesis of rats with GWI. Taken together, our study indicated that minocycline treatment exerts better cognitive and mood function in GWI rat model, which is possibly related to gut microbiota remodeling, restrained inflammation and enhanced hippocampal neurogenesis. These results may establish minocycline as a potential prophylactic or therapeutic agent for the treatment of GWI.
Collapse
Affiliation(s)
- Liang Liu
- Department of Neurology, The General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| | - Er-Qiang Wang
- Department of Neurology, Hospital of Fuqing City, Fuqing, Fujian, China
| | - Cheng Du
- Department of Neurology, The General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| | - Hui-Sheng Chen
- Department of Neurology, The General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| | - Yan Lv
- Department of Neurology, The General Hospital of Northern Theater Command, Shenyang, Liaoning, China.
| |
Collapse
|
26
|
Zheng J, Cai W, Lu X, He W, Li D, Zhong H, Yang L, Li S, Li H, Rafee S, Zhao Z, Wang Q, Pan H. Chronic stress accelerates the process of gastric precancerous lesions in rats. J Cancer 2021; 12:4121-4133. [PMID: 34093815 PMCID: PMC8176425 DOI: 10.7150/jca.52658] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 04/23/2021] [Indexed: 02/06/2023] Open
Abstract
Background: Gastrointestinal cancers account for 20% of all deaths worldwide. Gastric cancer (GC) patients are susceptible to psychological change, especially depression which is commonly induced by chronic stress. Gastric precancerous lesions (GPL) is an important prodromal stage in the occurrence of gastric cancer. Chronic stress influences the prognosis of GC and may influence the process of GPL as well. Methods: Sixty SD rats were randomly divided into a control group, GPL group, and GPL+CUMS group. In the GPL group, 200μg/mL N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) free drinking method combined with intermittent fasting was applied to establish the GPL animal model. Based on this, we combined the GPL rats with chronic unpredicted mild stress (CUMS) to establish a comprehensive model. We then evaluated their behavior by open field tests and sucrose preference tests. We tested the IL-6, IL-10, TNF-α, Ghrelin, Leptin and Somatostatin (SS) levels in serum and observed the expression of Ghrelin and Gastrokine 2(GKN2) in the gastric mucosa of rats with tumors by immunofluorescence. Results: Our results showed that GPL and GPL+CUMS rats all displayed a significantly decreased total distance and mean velocity traveled in the open field test. The percentages of sucrose preference were significantly decreased in the GPL+CUMS group compared to the control group. In addition, IL-6 and TNF-α were significantly increased in both the GPL and GPL+CUMS groups. Furthermore, the GPL+CUMS group showed significantly increased TNF-α levels in serum compared to the GPL rats. Our results showed that the expression of NF-κB, p53, and BCL-2 were significantly increased while BAX was reduced in the GPL and GPL+CUMS groups. Moreover, Ghrelin and Leptin levels in serum were significantly decreased in the GPL and GPL+CUMS groups. SS levels in serum were significantly increased in the GPL+CUMS group. Additionally, we found that the GPL+CUMS rats with tumors not only had strong expression of GKN2 on the luminal side and the lamina propria of the gastric mucosa and tumor, but also had expression of Ghrelin on the luminal side of the gastric mucosa. The areas that showed strong expression of GKN2 and Ghrelin, are all located around the blood vessels in the tumor. Conclusions: GPL rats under chronic stress would aggravate the conditions of GPL, shorten the process of GPL, and increase the risk of tumorigenesis. In addition, the close monitoring of the mental health of cancer survivors and precancerous lesion patients is suggested to be of great significance in the prevention and treatment of cancer.
Collapse
Affiliation(s)
- Jiayi Zheng
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Institute of Gastroenterology, Guangzhou University of Chinese Medicine, China
| | - Weiwu Cai
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xuen Lu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Clinical Medical College of Acupuncture Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wei He
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ding Li
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Haoyu Zhong
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Clinical Medical College of Acupuncture Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Liangjun Yang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Institute of Gastroenterology, Guangzhou University of Chinese Medicine, China
| | - Siyi Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Haishan Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Second Clinical Medical College of Guangzhou university of Chinese Medicine
| | - Sereen Rafee
- Rutgers University Graduate School of Biomedical Sciences, Newark, NJ, USA
| | - Ziming Zhao
- Guangdong Province Engineering Technology Research Institute of Traditional Chinese Medicine, Guangzhou, China
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huafeng Pan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Institute of Gastroenterology, Guangzhou University of Chinese Medicine, China.,Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
27
|
Li S, Liao Y, Dong Y, Li X, Li J, Cheng Y, Cheng J, Yuan Z. Microglial deletion and inhibition alleviate behavior of post-traumatic stress disorder in mice. J Neuroinflammation 2021; 18:7. [PMID: 33402212 PMCID: PMC7786489 DOI: 10.1186/s12974-020-02069-9] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 12/23/2020] [Indexed: 12/11/2022] Open
Abstract
Background Alteration of immune status in the central nervous system (CNS) has been implicated in the development of post-traumatic stress disorder (PTSD). However, the nature of overall changes in brain immunocyte landscape in PTSD condition remains unclear. Methods We constructed a mouse PTSD model by electric foot-shocks followed by contextual reminders and verified the PTSD-related symptoms by behavior test (including contextual freezing test, open-field test, and elevated plus maze test). We examined the immunocyte panorama in the brains of the naïve or PTSD mice by using single-cell mass cytometry. Microglia number and morphological changes in the hippocampus, prefrontal cortex, and amygdala were analyzed by histopathological methods. The gene expression changes of those microglia were detected by quantitative real-time PCR. Genetic/pharmacological depletion of microglia or minocycline treatment before foot-shocks exposure was performed to study the role of microglia in PTSD development and progress. Results We found microglia are the major brain immune cells that respond to PTSD. The number of microglia and ratio of microglia to immunocytes was significantly increased on the fifth day of foot-shock exposure. Furthermore, morphological analysis and gene expression profiling revealed temporal patterns of microglial activation in the hippocampus of the PTSD brains. Importantly, we found that genetic/pharmacological depletion of microglia or minocycline treatment before foot-shock exposure alleviated PTSD-associated anxiety and contextual fear. Conclusion Our results demonstrated a critical role for microglial activation in PTSD development and a potential therapeutic strategy for the clinical treatment of PTSD in the form of microglial inhibition. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-020-02069-9.
Collapse
Affiliation(s)
- Shuoshuo Li
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, No. 27 Taiping Road, Haidian District, Beijing, 100850, China
| | - Yajin Liao
- Center on Translational Neuroscience, College of Life & Environmental Science, Minzu University of China, Beijing, 100081, China
| | - Yuan Dong
- Department of Biochemistry, Medical College, Qingdao University, Qingdao, 266071, Shandong, China
| | - Xiaoheng Li
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, No. 27 Taiping Road, Haidian District, Beijing, 100850, China
| | - Jun Li
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China
| | - Yong Cheng
- Center on Translational Neuroscience, College of Life & Environmental Science, Minzu University of China, Beijing, 100081, China
| | - Jinbo Cheng
- Center on Translational Neuroscience, College of Life & Environmental Science, Minzu University of China, Beijing, 100081, China.
| | - Zengqiang Yuan
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, No. 27 Taiping Road, Haidian District, Beijing, 100850, China. .,Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
28
|
Feng YS, Tan ZX, Wu LY, Dong F, Zhang F. The involvement of NLRP3 inflammasome in the treatment of Alzheimer's disease. Ageing Res Rev 2020; 64:101192. [PMID: 33059089 DOI: 10.1016/j.arr.2020.101192] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/04/2020] [Accepted: 10/05/2020] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative diseases, and it is characterised by progressive deterioration in cognitive and memory abilities, which can severely influence the elderly population's daily living abilities. Although researchers have made great efforts in the field of AD, there are still no well-established strategies to prevent and treat this disease. Therefore, better clarification of the molecular mechanisms associated with the onset and progression of AD is critical to provide a theoretical basis for the establishment of novel preventive and therapeutic strategies. Currently, it is generally believed that neuroinflammation plays a key role in the pathogenesis of AD. Inflammasome, a multiprotein complex, is involved in the innate immune system, and it can mediate inflammatory responses and pyroptosis, which lead to neurodegeneration. Among the various types of inflammasomes, the NLRP3 inflammasome is the most characterised in neurodegenerative diseases, especially in AD. The activation of the NLRP3 inflammasome causes the generation of caspase-1-mediated interleukin (IL)-1β and IL-18 in microglia cells, where neuroinflammation is involved in the development and progression of AD. Thus, the NLRP3 inflammasome is likely to be a crucial therapeutic molecular target for AD via regulating neuroinflammation. In this review, we summarise the current knowledge on the role and regulatory mechanisms of the NLRP3 inflammasome in the pathogenic mechanisms of AD. We also focus on a series of potential therapeutic treatments targeting NLRP3 inflammasome for AD. Further clarification of the regulatory mechanisms of the NLRP3 inflammasome in AD may provide more useful clues to develop novel AD treatment strategies.
Collapse
|
29
|
Swimming exercise improves cognitive and behavioral disorders in male NMRI mice with sporadic Alzheimer-like disease. Physiol Behav 2020; 223:113003. [DOI: 10.1016/j.physbeh.2020.113003] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/16/2020] [Accepted: 06/04/2020] [Indexed: 12/11/2022]
|
30
|
Ding X, Yang W, Ren Q, Hu J, Yang S, Han W, Wang J, Wang X, Wang H. Serum IgG-induced microglial activation enhances neuronal cytolysis via the NO/sGC/PKG pathway in children with opsoclonus-myoclonus syndrome and neuroblastoma. J Neuroinflammation 2020; 17:190. [PMID: 32546235 PMCID: PMC7298801 DOI: 10.1186/s12974-020-01839-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 05/11/2020] [Indexed: 12/14/2022] Open
Abstract
Background Opsoclonus-myoclonus syndrome (OMS) is a rare neurological disease. Some children with OMS also have neuroblastoma (NB). We and others have previously documented that serum IgG from children with OMS and NB induces neuronal cytolysis and activates several signaling pathways. However, the mechanisms underlying OMS remain unclear. Here, we investigated whether nitric oxide (NO) from activated microglias and its cascade contribute to neuronal cytolysis in pediatric OMS. Methods The activation of cultured cerebral cortical and cerebellar microglias incubated with sera or IgG isolated from sera of children with OMS and NB was measured by the expression of the activation marker, cytokines, and NO. Neuronal cytolysis was determined after exposing to IgG-treated microglia-conditioned media. Using inhibitors and activators, the effects of NO synthesis and its intracellular cascade, namely soluble guanylyl cyclase (sGC) and protein kinase G (PKG), on neuronal cytolysis were evaluated. Results Incubation with sera or IgG from children with OMS and NB increased the activation of cerebral cortical and cerebellar microglias, but not the activation of astrocytes or the cytolysis of glial cells. Moreover, the cytolysis of neurons was elevated by conditioned media from microglias incubated with IgG from children with OMS and NB. Furthermore, the expression of NO, sGC, and PKG was increased. Neuronal cytolysis was relieved by the inhibitors of NO signaling, while neuronal cytolysis was exacerbated by the activators of NO signaling but not proinflammatory cytokines. The cytolysis of neurons was suppressed by pretreatment with the microglial inhibitor minocycline, a clinically tested drug. Finally, increased microglial activation did not depend on the Fab fragment of serum IgG. Conclusions Serum IgG from children with OMS and NB potentiates microglial activation, which induces neuronal cytolysis through the NO/sGC/PKG pathway, suggesting an applicability of microglial inhibitor as a therapeutic candidate.
Collapse
Affiliation(s)
- Xu Ding
- Laboratory of Nutrition and Development, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No. 56 Nan-li-shi Road, Xi-Cheng District, Beijing, 100045, China.
| | - Wei Yang
- Department of Surgical Oncology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Qinghua Ren
- Department of Surgical Oncology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Jiajian Hu
- Department of Surgical Oncology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Shen Yang
- Department of Surgical Oncology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Wei Han
- Department of Surgical Oncology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Jing Wang
- Department of Neurobiology, School of Basic Medical Sciences, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China
| | - Xu Wang
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Huanmin Wang
- Department of Surgical Oncology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China.
| |
Collapse
|
31
|
Guo R. Minocycline Protects Against the Degeneration of Retinal Neurons in Mice. JOURNAL OF EXPLORATORY RESEARCH IN PHARMACOLOGY 2020; 000:1-12. [DOI: 10.14218/jerp.2020.00015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
32
|
Kotagale N, Deshmukh R, Dixit M, Fating R, Umekar M, Taksande B. Agmatine ameliorates manifestation of depression-like behavior and hippocampal neuroinflammation in mouse model of Alzheimer's disease. Brain Res Bull 2020; 160:56-64. [PMID: 32344125 DOI: 10.1016/j.brainresbull.2020.04.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 04/13/2020] [Accepted: 04/19/2020] [Indexed: 12/14/2022]
Abstract
Extensive clinical and experimental studies established that depression and mood disorders are highly prevalent neuropsychiatric conditions in Alzheimer's disease (AD). However, its neurochemical basis is not clearly understood. Thus, understanding the neural mechanisms involved in mediating the co-morbidity of depression and AD may be crucial in exploring new pharmacological treatments for this condition. The present study investigated the role of the agmatinergic system in β-amyloid (Aββ1-42) peptide-induced depression using forced swim test (FST) in mice. Following the 28th days of its administration, Aβ1-42 peptide produced depression-like behavior in mice as evidenced by increased immobility time in FST and increased expression of pro-inflammatory cytokines like IL-6 and TNF-α compared to the control animals. The Aβ1-42 peptide-induced depression and neuroinflammatory markers were significantly inhibited by agmatine -, moxonidine, 2-BFI and l-arginine by once-daily administration during day 8-27 of the protocol. The antidepressant-like effect of agmatine in Aβ1-42 peptide in mice was potentiated by imidazoline receptor I1 agonist, moxonidine and imidazoline receptor I2 agonist 2-BFI at their sub-effective doses. On the other hand, it was completely blocked by imidazoline receptor I1 antagonist, efaroxan and imidazoline receptor I2 antagonist, idazoxan Also, agmatine levels were significantly reduced in brain samples of β-amyloid injected mice as compared to the control animals. In conclusion, the present study suggests the importance of endogenous agmatinergic system and imidazoline receptors system in β-amyloid induced a depressive-like behavior in mice. The data projects agmatine as a potential therapeutic target for the AD-associated depression and comorbidities.
Collapse
Affiliation(s)
- Nandkishor Kotagale
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, Maharashtra 441 002, India; Government College of Pharmacy, Amravati, Maharashtra 444 604, India
| | - Rupali Deshmukh
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, Maharashtra 441 002, India
| | - Madhura Dixit
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, Maharashtra 441 002, India
| | - Rajshree Fating
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, Maharashtra 441 002, India
| | - Milind Umekar
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, Maharashtra 441 002, India
| | - Brijesh Taksande
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, Maharashtra 441 002, India.
| |
Collapse
|
33
|
Enayati M, Mosaferi B, Homberg JR, Diniz DM, Salari AA. Prenatal maternal stress alters depression-related symptoms in a strain - and sex-dependent manner in rodent offspring. Life Sci 2020; 251:117597. [PMID: 32243926 DOI: 10.1016/j.lfs.2020.117597] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 12/13/2022]
Abstract
Stress during pregnancy adversely affects foetal development and leads to later behavioural outcomes in offspring. Preclinical studies have reported conflicting effects of prenatal stress on depression-related symptoms in rodent offspring. This study aimed to study the combined effect of strain and sex on prenatal stress outcomes in a single study. To this end, male and female offspring from outbred Wistar and inbred Lewis rats, and outbred NMRI and inbred C57BL6 mice were compared. As outcomes we focussed on depression-related behaviour and related molecular and neurochemical parameters. Prenatally stressed and non-stressed offspring were subjected to the sucrose preference, novelty-suppressed feeding, tail suspension, and forced swim tests. We measured basal and stress-induced corticosterone levels in the serum, and brain-derived-neurotrophic-factor (BDNF), interleukin-1β, tumor necrosis factor-α, glutamate and serotonin in the brain to determine changes in hypothalamic-pituitary-adrenal-(HPA)-axis function, neuroplasticity, neuroinflammation, and neurotransmission. Our findings revealed that prenatal stress increases depression-like behaviour, HPA-axis (re) activity, pro-inflammatory cytokines and glutamate levels, and decreases BDNF and serotonin levels in a strain and sex-dependent manner in rodent offspring. Overall, male and female Lewis rats, female Wistar rats, male NMRI mice and female C57BL6 mice were found to be most responsive to prenatal stress. Based on these results, we conclude that genetic background and sex contribute to the great diversity in the effects of prenatal maternal stress in rodents.
Collapse
Affiliation(s)
- Mohsen Enayati
- Salari Institute of Cognitive and Behavioral Disorders (SICBD), Alborz, Karaj, Iran; Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Belal Mosaferi
- Department of Basic Sciences, School of Nursing and Midwifery, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Judith R Homberg
- Department of Cognitive Neuroscience, Centre for Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | - Danielle Mendes Diniz
- Department of Cognitive Neuroscience, Centre for Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | - Ali-Akbar Salari
- Salari Institute of Cognitive and Behavioral Disorders (SICBD), Alborz, Karaj, Iran.
| |
Collapse
|
34
|
Esmaeili MH, Enayati M, Khabbaz Abkenar F, Ebrahimian F, Salari AA. Glibenclamide mitigates cognitive impairment and hippocampal neuroinflammation in rats with type 2 diabetes and sporadic Alzheimer-like disease. Behav Brain Res 2020; 379:112359. [PMID: 31733313 DOI: 10.1016/j.bbr.2019.112359] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 10/23/2019] [Accepted: 11/13/2019] [Indexed: 12/20/2022]
|
35
|
Wang X, Zhao J. Neuroprotective effect of CPCGI on Alzheimer's disease and its mechanism. Mol Med Rep 2020; 21:115-122. [PMID: 31939621 PMCID: PMC6896362 DOI: 10.3892/mmr.2019.10835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 09/19/2019] [Indexed: 12/27/2022] Open
Abstract
Alzheimer's disease (AD) is a multifactorial neurodegenerative disorder causing progressive memory loss and cognitive impairment. The aberrant accumulation of amyloid‑β (Aβ) and neuroinflammation are two major events in AD. Aβ‑induced neurotoxicity and oxidative stress are also involved in the pathogenesis of AD. The purpose of the current study was to investigate the effect of compound porcine cerebroside and ganglioside injection (CPCGI) on the progression of AD, and to explore the molecular mechanism. In vivo and in vitro models of AD were established and treated with CPCGI. Aβ40 and Aβ42 protein levels were detected using western blotting. Production of pro‑inflammatory factors [tumor necrosis factor (TNF)‑α and interleukin (IL)‑1β] and oxidative stress markers [malondialdehyde (MDA), superoxide dismutase (SOD)] and reactive oxygen species (ROS) production were determined. Cell viability and apoptosis were detected using 3‑(4,5‑dimethyl‑2‑thiazolyl)‑2,5‑diphenyl‑2‑H‑tetrazolium bromide assay and flow cytometry analysis respectively. Results demonstrated that CPCGI administration reduced Aβ40 and Aβ42 accumulation, and inhibited inflammatory response and oxidative stress in the in vivo rat model of AD, evidenced by decreased Aβ40 and Aβ42 protein expression, reduced levels of TNF‑α and IL‑1β, reduced MDA content, enhanced SOD activity, and reduced ROS level. It was found that CPCGI enhanced cell viability and reduced cell apoptosis of Aβ25‑35 induced PC12 cells. In addition, the mitogen‑activated protein kinase/NF‑κB pathway was involved in the protective effect of CPCGI on AD. Taken together, the data demonstrated that CPCGI exerted a protective effect on AD by reducing Aβ accumulation, inhibiting inflammatory response and oxidative stress, In addition to preventing neuronal apoptosis.
Collapse
Affiliation(s)
- Xiaopeng Wang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Jing Zhao
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| |
Collapse
|
36
|
Park HJ, Kwon H, Lee JH, Cho E, Lee YC, Moon M, Jun M, Kim DH, Jung JW. β-Amyrin Ameliorates Alzheimer's Disease-Like Aberrant Synaptic Plasticity in the Mouse Hippocampus. Biomol Ther (Seoul) 2020; 28:74-82. [PMID: 31357749 PMCID: PMC6939697 DOI: 10.4062/biomolther.2019.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 06/13/2019] [Accepted: 06/17/2019] [Indexed: 01/26/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive and most frequently diagnosed neurodegenerative disorder. However, there is still no drug preventing the progress of this disorder. β-Amyrin, an ingredient of the surface wax of tomato fruit and dandelion coffee, is previously reported to ameliorate memory impairment induced by cholinergic dysfunction. Therefore, we tested whether β-amyrin can prevent AD-like pathology. β-Amyrin blocked amyloid β (Aβ)-induced long-term potentiation (LTP) impairment in the hippocampal slices. Moreover, β-amyrin improved Aβ-induced suppression of phosphatidylinositol-3-kinase (PI3K)/Akt signaling. LY294002, a PI3K inhibitor, blocked the effect of β-amyrin on Aβ-induced LTP impairment. In in vivo experiments, we observed that β-amyrin ameliorated object recognition memory deficit in Aβ-injected AD mice model. Moreover, neurogenesis impairments induced by Aβ was improved by β-amyrin treatment. Taken together, β-amyrin might be a good candidate of treatment or supplement for AD patients.
Collapse
Affiliation(s)
- Hye Jin Park
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan 49315, Republic of Korea
| | - Huiyoung Kwon
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan 49315, Republic of Korea
| | - Ji Hye Lee
- Division of Endocrinology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Eunbi Cho
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan 49315, Republic of Korea
| | - Young Choon Lee
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan 49315, Republic of Korea.,Institute of Convergence Bio-Health, Dong-A University, Busan 49315, Republic of Korea
| | - Minho Moon
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea
| | - Mira Jun
- Institute of Convergence Bio-Health, Dong-A University, Busan 49315, Republic of Korea.,Department of Food Science and Nutrition, College of Health Sciences, Dong-A University, Busan 49315, Republic of Korea
| | - Dong Hyun Kim
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan 49315, Republic of Korea.,Institute of Convergence Bio-Health, Dong-A University, Busan 49315, Republic of Korea
| | - Ji Wook Jung
- Department of Herbal Medicinal Pharmacology, College of Herbal Bio-industry, Daegu Haany University, Kyungsan 38610, Republic of Korea
| |
Collapse
|
37
|
NMDA receptor in the hippocampus alters neurobehavioral phenotypes through inflammatory cytokines in rats with sporadic Alzheimer-like disease. Physiol Behav 2019; 202:52-61. [DOI: 10.1016/j.physbeh.2019.01.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/06/2019] [Accepted: 01/09/2019] [Indexed: 12/28/2022]
|
38
|
Kosari-Nasab M, Shokouhi G, Azarfarin M, Bannazadeh Amirkhiz M, Mesgari Abbasi M, Salari AA. Serotonin 5-HT1A receptors modulate depression-related symptoms following mild traumatic brain injury in male adult mice. Metab Brain Dis 2019; 34:575-582. [PMID: 30607822 DOI: 10.1007/s11011-018-0366-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 12/10/2018] [Indexed: 01/11/2023]
Abstract
Traumatic brain injury is a complex phenomenon leading to neurological diseases and persistent disability that currently affects millions of people worldwide. Increasing evidence shows that a wide range of patients with mild traumatic brain injury (mTBI) suffer from depression during the initial stages of injury and the post-acute stages of recovery. However, the underlying mechanisms involved in depression following mTBI are still not fully understood. The aim of this study was to determine whether serotonin 5-hydroxytryptamine-1A (5-HT1A) receptor is involved in the regulation of depression-related behaviors following mild traumatic brain injury in mice. Mice with or without mTBI received intracerebroventricular injections of 5-HT1A receptor agonist (8-OH-DPAT) or antagonist (WAY-100635) for 5 days, then animals were subjected to behavioral tests. Four behavioral tests including novelty-suppressed feeding test, forced swim test, sucrose preference test and tail suspension test were used to evaluate depression-related symptoms in animals. Our results indicated that mTBI induction increased depression-like symptoms through altering serotonin 5-HT1A receptor activity in the brain. Activation of 5-HT1A receptor by a subthreshold dose of 8-OH-DPAT led to a significant decrease in depression-like behaviors, whereas blockade of 5-HT1A receptor by a subthreshold dose of WAY-100635 resulted in a considerable increase in depression-like phenotypes in mTBI-induced mice. The major strength of the present study is that depression-related symptoms were assessed in four behavioral tests. The present study supports the idea that disturbances in the function of serotonergic system in the brain following mTBI can play an important role in the regulation of depression-related behaviors.
Collapse
Affiliation(s)
- Morteza Kosari-Nasab
- Drug Applied Research Center, Tabriz University of Medical Sciences, P.O. Box 51656-65811, Tabriz, Iran
| | - Ghaffar Shokouhi
- Drug Applied Research Center, Tabriz University of Medical Sciences, P.O. Box 51656-65811, Tabriz, Iran
- Department of Neurosurgery, Tabriz University of Medical Sciences, Tabriz, Iran
- Neuroscience Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Mehran Mesgari Abbasi
- Drug Applied Research Center, Tabriz University of Medical Sciences, P.O. Box 51656-65811, Tabriz, Iran
| | - Ali-Akbar Salari
- Drug Applied Research Center, Tabriz University of Medical Sciences, P.O. Box 51656-65811, Tabriz, Iran.
- Salari Institute of Cognitive and Behavioral Disorders (SICBD), Alborz, Iran.
| |
Collapse
|
39
|
Novel Approaches for the Treatment of Alzheimer's and Parkinson's Disease. Int J Mol Sci 2019; 20:ijms20030719. [PMID: 30743990 PMCID: PMC6386829 DOI: 10.3390/ijms20030719] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 01/18/2019] [Accepted: 02/03/2019] [Indexed: 12/19/2022] Open
Abstract
Neurodegenerative disorders affect around one billion people worldwide. They can arise from a combination of genomic, epigenomic, metabolic, and environmental factors. Aging is the leading risk factor for most chronic illnesses of old age, including Alzheimer’s and Parkinson’s diseases. A progressive neurodegenerative process and neuroinflammation occur, and no current therapies can prevent, slow, or halt disease progression. To date, no novel disease-modifying therapies have been shown to provide significant benefit for patients who suffer from these devastating disorders. Therefore, early diagnosis and the discovery of new targets and novel therapies are of upmost importance. Neurodegenerative diseases, like in other age-related disorders, the progression of pathology begins many years before the onset of symptoms. Many efforts in this field have led to the conclusion that exits some similar events among these diseases that can explain why the aging brain is so vulnerable to suffer neurodegenerative diseases. This article reviews the current knowledge about these diseases by summarizing the most common features of major neurodegenerative disorders, their causes and consequences, and the proposed novel therapeutic approaches.
Collapse
|