1
|
Dalton GL, Daly ID, Floresco SB. Valence-dependent contribution by the basolateral amygdala to active but not inhibitory avoidance and reward-seeking. Behav Brain Res 2025; 484:115503. [PMID: 39986615 DOI: 10.1016/j.bbr.2025.115503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 02/14/2025] [Accepted: 02/19/2025] [Indexed: 02/24/2025]
Abstract
The basolateral amygdala (BLA) is integral for promoting instrumental actions to avoid aversive events, and also contributes to certain aspects of reward-seeking. However, this sometimes requires discriminating between stimuli to ascertain whether it is more appropriate to initiate or suppress actions to obtain these goals. The present study examined BLA involvement in different avoidance strategies in male and female rats well-trained on different lever-press avoidance and reward-seeking tasks. Active/inhibitory avoidance required discrimination between tones presented pseudorandomly in a session that signaled shocks could be avoided by making or withholding a press on a lever inserted coincidentally with tone presentation. BLA inactivation (via infusion of GABA agonists) reduced active avoidance while slightly enhancing inhibitory avoidance in the same session. Similarly, on a dual-cued appetitive go/no-go task, BLA inactivation also impaired active, but not inhibitory reward-seeking. These treatments also disrupted performance in rats trained on a simpler, single-cue active avoidance task with no inhibitory component. However, rats trained on a single-cue reward task were impervious to the effects of BLA inactivation. Few sex differences were observed. These data reveal a fundamental contribution by the BLA in promoting actions to avoid punishments or secure rewards when an actor must discriminate between different stimuli to ascertain whether actions should be made or withheld, and may attenuate inhibitory avoidance when active strategies are sometimes required. Yet, under more rudimentary conditions where a single stimulus provokes actions, the valence of the pursued goal biases BLA involvement, as it remains critical for instrumental avoidance, but not reward-seeking.
Collapse
Affiliation(s)
- Gemma L Dalton
- Department of Psychology and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2136 West Mall, Vancouver, BC V6T 1Z4, Canada
| | - Ian D Daly
- Department of Psychology and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2136 West Mall, Vancouver, BC V6T 1Z4, Canada
| | - Stan B Floresco
- Department of Psychology and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2136 West Mall, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
2
|
Munguba H, Srivastava I, Gutzeit VA, Singh A, Vijay A, Kristt M, Arefin A, Thukral S, Broichhagen J, Stujenske JM, Liston C, Levitz J. Projection-targeted photopharmacology reveals distinct anxiolytic roles for presynaptic mGluR2 in prefrontal- and insula-amygdala synapses. Neuron 2025; 113:912-930.e6. [PMID: 39879977 PMCID: PMC11925682 DOI: 10.1016/j.neuron.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 10/11/2024] [Accepted: 01/03/2025] [Indexed: 01/31/2025]
Abstract
Dissecting how membrane receptors regulate neural circuits is critical for deciphering principles of neuromodulation and mechanisms of drug action. Here, we use a battery of optical approaches to determine how presynaptic metabotropic glutamate receptor 2 (mGluR2) in the basolateral amygdala (BLA) controls anxiety-related behavior in mice. Using projection-specific photopharmacological activation, we find that mGluR2-mediated presynaptic inhibition of ventromedial prefrontal cortex (vmPFC)-BLA, but not posterior insular cortex (pIC)-BLA, connections produces a long-lasting decrease in spatial avoidance. In contrast, presynaptic inhibition of pIC-BLA connections decreases social avoidance and novelty-induced hypophagia without impairing working memory, establishing this projection as a novel target for the treatment of anxiety disorders. Fiber photometry and viral mapping reveal distinct activity patterns and anatomical organization of vmPFC-BLA and pIC-BLA circuits. Together, this work reveals new aspects of BLA neuromodulation with therapeutic implications while establishing a powerful approach for optical mapping of drug action.
Collapse
Affiliation(s)
- Hermany Munguba
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA; Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Ipsit Srivastava
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Vanessa A Gutzeit
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Ashna Singh
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Akshara Vijay
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA; Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Melanie Kristt
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Anisul Arefin
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Sonal Thukral
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Johannes Broichhagen
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Joseph M Stujenske
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA; Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Conor Liston
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Joshua Levitz
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA; Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA.
| |
Collapse
|
3
|
Sun Z, Zhang X, Dong Y, Liu Y, Wang C, Li Y, Ma C, Xu G, Wang S, Yang C, Zhang G, Cong B. Norepinephrine-Activated p38 MAPK Pathway Mediates Stress-Induced Cytotoxic Edema of Basolateral Amygdala Astrocytes. Brain Sci 2024; 14:161. [PMID: 38391735 PMCID: PMC10887202 DOI: 10.3390/brainsci14020161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/24/2024] Open
Abstract
The amygdala is a core region in the limbic system that is highly sensitive to stress. Astrocytes are key players in stress disorders such as anxiety and depression. However, the effects of stress on the morphology and function of amygdala astrocytes and its potential mechanisms remain largely unknown. Hence, we performed in vivo and in vitro experiments using a restraint stress (RS) rat model and stress-induced astrocyte culture, respectively. Our data show that norepinephrine (NE) content increased, cytotoxic edema occurred, and aquaporin-4 (AQP4) expression was up-regulated in the basolateral amygdala (BLA) obtained from RS rats. Additionally, the p38 mitogen-activated protein kinase (MAPK) pathway was also observed to be significantly activated in the BLA of rats subjected to RS. The administration of NE to in vitro astrocytes increased the AQP4 level and induced cell edema. Furthermore, p38 MAPK signaling was activated. The NE inhibitor alpha-methyl-p-tyrosine (AMPT) alleviated cytotoxic edema in astrocytes, inhibited AQP4 expression, and inactivated the p38 MAPK pathway in RS rats. Meanwhile, in the in vitro experiment, the p38 MAPK signaling inhibitor SB203580 reversed NE-induced cytotoxic edema and down-regulated the expression of AQP4 in astrocytes. Briefly, NE-induced activation of the p38 MAPK pathway mediated cytotoxic edema in BLA astrocytes from RS rats. Thus, our data provide novel evidence that NE-induced p38 MAPK pathway activation may be one of the mechanisms leading to cytotoxic edema in BLA under stress conditions, which also could enable the development of an effective therapeutic strategy against cytotoxic edema in BLA under stress and provide new ideas for the treatment of neuropsychiatric diseases.
Collapse
Affiliation(s)
- Zhaoling Sun
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Hebei Medical University, Shijiazhuang 050017, China
| | - Xiaojing Zhang
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Hebei Medical University, Shijiazhuang 050017, China
| | - Yiming Dong
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Hebei Medical University, Shijiazhuang 050017, China
| | - Yichang Liu
- Department of Forensic Medicine, College of Medicine, Nantong University, Nantong 226000, China
| | - Chuan Wang
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Hebei Medical University, Shijiazhuang 050017, China
| | - Yingmin Li
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Hebei Medical University, Shijiazhuang 050017, China
| | - Chunling Ma
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Hebei Medical University, Shijiazhuang 050017, China
| | - Guangming Xu
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Hebei Medical University, Shijiazhuang 050017, China
| | - Songjun Wang
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Hebei Medical University, Shijiazhuang 050017, China
| | - Chenteng Yang
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Hebei Medical University, Shijiazhuang 050017, China
| | - Guozhong Zhang
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Hebei Medical University, Shijiazhuang 050017, China
- Hebei Province Laboratory of Experimental Animal, Shijiazhuang 050017, China
| | - Bin Cong
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Hebei Medical University, Shijiazhuang 050017, China
- Hainan Tropical Forensic Medicine Academician Workstation, Haikou 571199, China
| |
Collapse
|
4
|
Munguba H, Gutzeit VA, Srivastava I, Kristt M, Singh A, Vijay A, Arefin A, Thukral S, Broichhagen J, Stujenske JM, Liston C, Levitz J. Projection-Targeted Photopharmacology Reveals Distinct Anxiolytic Roles for Presynaptic mGluR2 in Prefrontal- and Insula-Amygdala Synapses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.15.575699. [PMID: 38293136 PMCID: PMC10827048 DOI: 10.1101/2024.01.15.575699] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Dissecting how membrane receptors regulate neural circuit function is critical for deciphering basic principles of neuromodulation and mechanisms of therapeutic drug action. Classical pharmacological and genetic approaches are not well-equipped to untangle the roles of specific receptor populations, especially in long-range projections which coordinate communication between brain regions. Here we use viral tracing, electrophysiological, optogenetic, and photopharmacological approaches to determine how presynaptic metabotropic glutamate receptor 2 (mGluR2) activation in the basolateral amygdala (BLA) alters anxiety-related behavior. We find that mGluR2-expressing neurons from the ventromedial prefrontal cortex (vmPFC) and posterior insular cortex (pIC) preferentially target distinct cell types and subregions of the BLA to regulate different forms of avoidant behavior. Using projection-specific photopharmacological activation, we find that mGluR2-mediated presynaptic inhibition of vmPFC-BLA, but not pIC-BLA, connections can produce long-lasting decreases in spatial avoidance. In contrast, presynaptic inhibition of pIC-BLA connections decreased social avoidance, novelty-induced hypophagia, and increased exploratory behavior without impairing working memory, establishing this projection as a novel target for the treatment of anxiety disorders. Overall, this work reveals new aspects of BLA neuromodulation with therapeutic implications while establishing a powerful approach for optical mapping of drug action via photopharmacology.
Collapse
Affiliation(s)
- Hermany Munguba
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Vanessa A. Gutzeit
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Ipsit Srivastava
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Melanie Kristt
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Ashna Singh
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Akshara Vijay
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Anisul Arefin
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Sonal Thukral
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Johannes Broichhagen
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Joseph M. Stujenske
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15219, USA
| | - Conor Liston
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Joshua Levitz
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
5
|
Guzulaitis R, Palmer LM. A thalamocortical pathway controlling impulsive behavior. Trends Neurosci 2023; 46:1018-1024. [PMID: 37778915 DOI: 10.1016/j.tins.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/14/2023] [Accepted: 09/08/2023] [Indexed: 10/03/2023]
Abstract
Planning and anticipating motor actions enables movements to be quickly and accurately executed. However, if anticipation is not properly controlled, it can lead to premature impulsive actions. Impulsive behavior is defined as actions that are poorly conceived and are often risky and inappropriate. Historically, impulsive behavior was thought to be primarily controlled by the frontal cortex and basal ganglia. More recently, two additional brain regions, the ventromedial (VM) thalamus and the anterior lateral motor cortex (ALM), have been shown to have an important role in mice. Here, we explore this newly discovered role of the thalamocortical pathway and suggest cellular mechanisms that may be involved in driving the cortical activity that contributes to impulsive behavior.
Collapse
Affiliation(s)
| | - Lucy M Palmer
- Florey Institute of Neuroscience and Mental Health, Melbourne, VIC 3010, Australia; Florey Department of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC 3010, Australia.
| |
Collapse
|
6
|
Fang Q, Frohlich F. Dissection of neuronal circuits underlying sustained attention with the five-choice serial reaction time task. Neurosci Biobehav Rev 2023; 152:105306. [PMID: 37419229 PMCID: PMC10517644 DOI: 10.1016/j.neubiorev.2023.105306] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/09/2023]
Abstract
Attention deficits are common in psychiatric and neurological disorders. The transdiagnostic nature of impaired attention suggests a common set of underlying neural circuits. Yet, there are no circuit-based treatments such as non-invasive brain stimulation currently available due to the lack of sufficiently delineated network targets. Therefore, to better treat attentional deficits, a comprehensive functional dissection of neural circuits underlying attention is imperative. This can be achieved by taking advantage of preclinical animal models and well-designed behavioral assays of attention. The resulting findings in turn can be translated to the development of novel interventions with the goal of advancing them to clinical practice. Here we show that the five-choice serial reaction time task has greatly facilitated the study of the neural circuits underlying attention in a well-controlled setting. We first introduce the task and then focus on its application in preclinical studies on sustained attention, especially in the context of state-of-the-art neuronal perturbations.
Collapse
Affiliation(s)
- Qi Fang
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
| | - Flavio Frohlich
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA; Carolina Center for Neurostimulation, University of North Carolina, Chapel Hill, NC, USA; Neuroscience Center, University of North Carolina, Chapel Hill, NC, USA; Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA; Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC, USA; Department of Neurology, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
7
|
Yin F, Zhang J, Liu Y, Zhai Y, Luo D, Yan X, Feng Y, Lai J, Zheng H, Wei S, Wang Y. Basolateral Amygdala SIRT1/PGC-1α Mitochondrial Biogenesis Pathway Mediates Morphine Withdrawal-Associated Anxiety in Mice. Int J Neuropsychopharmacol 2022; 25:774-785. [PMID: 35797010 PMCID: PMC9515130 DOI: 10.1093/ijnp/pyac040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 06/08/2022] [Accepted: 07/06/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Anxiety is a negative emotion that contributes to craving and relapse during drug withdrawal. Sirtuins 1 (SIRT1) has been reported to be critical in both negative emotions and drug addiction. However, it remains incompletely elucidated whether SIRT1 is involved in morphine withdrawal-associated anxiety. METHODS We established a mouse model of anxiety-like behaviors induced by morphine withdrawal and then detected neuronal activity with immunofluorescence and mitochondrial morphology with electron microscopy, mitochondrial DNA contents with quantitative real-time PCR, and mitochondrial function with the ATP content detection kit and the Mitochondrial Complex IV Activity Kit in the basolateral amygdala (BLA). The mitochondrial molecules were detected by western blot. Then we used virus-mediated downregulation and overexpression of SIRT1 in BLA to investigate the effect of SIRT1 on anxiety and mitochondrial function. Finally, we examined the effects of pharmacological inhibition of SIRT1 on anxiety and mitochondrial function. RESULTS We found that BLA neuronal activity, mitochondrial function, and mtDNA content were significantly higher in morphine withdrawal mice. Furthermore, the expression levels of mitochondrial molecules increased in BLA cells. Virus-mediated downregulation of SIRT1 in BLA prevented anxiety-like behaviors in morphine withdrawal mice, whereas overexpression of SIRT1 in BLA facilitated anxiety-like behaviors in untreated mice through the SIRT1/ peroxisome proliferator activated receptor gamma coactivator 1-alpha pathway. Intra-BLA infusion of selective SIRT1 antagonist EX527 effectively ameliorated anxiety-like behaviors and mitochondrial dysfunction in mice with morphine withdrawal. CONCLUSION Our results implicate a causal role for SIRT1 in the regulation of anxiety through actions on mitochondrial biogenesis. Inhibitors targeting SIRT1 may have therapeutic potential for the treatment of opioid withdrawal-associated anxiety.
Collapse
Affiliation(s)
- Fangyuan Yin
- College of Forensic Science, School of Medicine, Xi’an Jiaotong University, China
| | - Jinyu Zhang
- College of Forensic Science, School of Medicine, Xi’an Jiaotong University, China
| | - Yige Liu
- College of Forensic Science, School of Medicine, Xi’an Jiaotong University, China
| | - Yifang Zhai
- Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Danlei Luo
- Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xinyue Yan
- College of Forensic Science, School of Medicine, Xi’an Jiaotong University, China
| | - Yue Feng
- College of Forensic Science, School of Medicine, Xi’an Jiaotong University, China
| | - Jianghua Lai
- College of Forensic Science, School of Medicine, Xi’an Jiaotong University, China
| | - Haibo Zheng
- College of Forensic Science, School of Medicine, Xi’an Jiaotong University, China
| | | | - Yunpeng Wang
- Correspondence: Shuguang Wei, PhD, College of Forensic Science, Xi’an Jiaotong University, Xi’an, China or Yunpeng Wang, PhD, Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China ()
| |
Collapse
|
8
|
Vantrease JE, Avonts B, Padival M, DeJoseph MR, Urban JH, Rosenkranz JA. Sex Differences in the Activity of Basolateral Amygdalar Neurons That Project to the Bed Nucleus of the Stria Terminalis and Their Role in Anticipatory Anxiety. J Neurosci 2022; 42:4488-4504. [PMID: 35477901 PMCID: PMC9172066 DOI: 10.1523/jneurosci.1499-21.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 03/22/2022] [Accepted: 04/19/2022] [Indexed: 11/21/2022] Open
Abstract
Abnormal fear and anxiety can manifest as psychiatric disorders. The bed nucleus of the stria terminalis (BNST) is implicated in sustained responding to, or anticipation of, an aversive event which can be expressed as anticipatory anxiety. The BLA is also active during anticipatory anxiety and sends projections to the BNST. However, little is known about the role for BLA neurons that project to BNST (BLA-BNST) in anticipatory anxiety in rodents. To address this, we tested whether chemogenetic inactivation of the BLA-BNST pathway attenuates sustained conditioned responses produced by anticipation of an aversive stimulus. For comparison, we also assessed BLA-BNST inactivation during social interaction, which is sensitive to unlearned anxiety. We found that BLA-BNST inactivation reduced conditioned sustained freezing and increased social behaviors, but surprisingly, only in males. To determine whether sex differences in BLA-BNST neuronal activity contribute to the differences in behavior, we used in vivo and ex vivo electrophysiological approaches. In males, BLA-BNST projection neurons were more active and excitable, which coincided with a smaller after-hyperpolarization current (I AHP) compared with other BLA neurons; whereas in females, BLA-BNST neurons were less excitable and had larger I AHP compared with other BLA neurons. These findings demonstrate that activity of BLA-BNST neurons mediates conditioned anticipatory anxiety-like behavior in males. The lack of a role of BLA-BNST in females in this behavior, possibly because of low excitability of these neurons, also highlights the need for caution when generalizing the role of specific neurocircuits in fear and anxiety.SIGNIFICANCE STATEMENT Anxiety disorders disproportionately affect women. This hints toward sex differences within anxiety neurocircuitry, yet most of our understanding is derived from male rodents. Furthermore, debilitating anticipation of adverse events is among the most severe anxiety symptoms, but little is known about anticipatory anxiety neurocircuitry. Here we demonstrated that BLA-BNST activity is required for anticipatory anxiety to a prolonged aversive cue, but only in males. Moreover, BLA-BNST neurons are hypoactive and less excitable in females. These results uncover BLA-BNST as a key component of anticipatory anxiety circuitry, and cellular differences may explain the sex-dependent role of this circuit. Uncovering this disparity provides evidence that the assumed basic circuitry of an anxiety behavior might not readily transpose from males to females.
Collapse
Affiliation(s)
- Jaime E Vantrease
- Discipline of Cellular and Molecular Pharmacology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois 60064
- Center for the Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University, North Chicago, Illinois 60064
| | - Brittany Avonts
- Discipline of Cellular and Molecular Pharmacology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois 60064
| | - Mallika Padival
- Discipline of Cellular and Molecular Pharmacology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois 60064
- Center for the Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University, North Chicago, Illinois 60064
| | - M Regina DeJoseph
- Discipline of Physiology and Biophysics, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois 60064
- Center for the Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University, North Chicago, Illinois 60064
| | - Janice H Urban
- Discipline of Physiology and Biophysics, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois 60064
- Center for the Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University, North Chicago, Illinois 60064
| | - J Amiel Rosenkranz
- Discipline of Cellular and Molecular Pharmacology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois 60064
- Center for the Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University, North Chicago, Illinois 60064
| |
Collapse
|
9
|
Price ME, McCool BA. Chronic Alcohol Dysregulates Glutamatergic Function in the Basolateral Amygdala in a Projection-and Sex-Specific Manner. Front Cell Neurosci 2022; 16:857550. [PMID: 35496915 PMCID: PMC9050109 DOI: 10.3389/fncel.2022.857550] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
Chronic intermittent ethanol and withdrawal (CIE/WD) produces alcohol dependence, facilitates anxiety-like behavior, and increases post-CIE alcohol intake. The basolateral amygdala (BLA) is one of several brain regions that regulates anxiety-like behavior and alcohol intake through downstream projections to the nucleus accumbens (NAC) and bed nucleus of the stria terminalis (BNST), respectively. Previous studies revealed that CIE/WD induces input- and sex-specific adaptations to glutamatergic function in the BLA. The BLA receives information from two distinct input pathways. Glutamatergic afferents from medial structures like the thalamus and prefrontal cortex enter the BLA through the stria terminalis whereas lateral cortical structures like the anterior insula cortex enter the BLA through the external capsule. CIE/WD increases presynaptic glutamatergic function at stria terminalis synapses and postsynaptic function at external capsule synapses. Previous studies sampled neurons throughout the BLA, but did not distinguish between projection-specific populations. The current study investigated BLA neurons that project to the NAC (BLA-NAC neurons) or the BNST (BLA-BNST neurons) as representative “reward” and “aversion” BLA neurons, and showed that CIE/WD alters glutamatergic function and excitability in a projection- and sex-specific manner. CIE/WD increases glutamate release from stria terminalis inputs only onto BLA-BNST neurons. At external capsule synapses, CIE/WD increases postsynaptic glutamatergic function in male BLA-NAC neurons and female BLA-BNST neurons. Subsequent experiments demonstrated that CIE/WD enhanced the excitability of male BLA-NAC neurons and BLA-BNST neurons in both sexes when glutamatergic but not GABAergic function was intact. Thus, CIE/WD-mediated increased glutamatergic function facilitates hyperexcitability in male BLA-NAC neurons and BLA-BNST neurons of both sexes.
Collapse
Affiliation(s)
- Michaela E. Price
- Neuroscience and Alcohol Research Training Programs, Wake Forest School of Medicine, Winston-Salem, NC, United States
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Brian A. McCool
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, United States
- *Correspondence: Brian A. McCool,
| |
Collapse
|
10
|
Guo H, Deji C, Peng H, Zhang J, Chen Y, Zhang Y, Wang Y. The role of SIRT1 in the basolateral amygdala in depression-like behaviors in mice. GENES BRAIN AND BEHAVIOR 2021; 20:e12765. [PMID: 34355499 DOI: 10.1111/gbb.12765] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 07/31/2021] [Accepted: 08/04/2021] [Indexed: 01/25/2023]
Abstract
Previous investigations have implicated the basolateral amygdala (BLA) epigenetic mechanisms in the pathophysiology of depression. SIRT1 is a NAD+-dependent class III histone deacetylase, widely expresses in BLA. However, epigenetic mechanisms in the BLA under the regulation of SIRT1 in the depression are largely uncharacterized. Under the chronic unpredictable chronic mild stress (CUMS) mouse model, we used adeno-associated viral vectors (AAV) that encoded SIRT1-shRNA or SIRT1 to specifically knockdown or overexpress SIRT1 in BLA neurons, respectively. CUMS procedure induced significant depression symptoms including the decreased sucrose preference, the less bodyweight gained, the decreased immobile latency and the increased immobile time both in forced swim test (FST) and tail suspension test (TST). Knockdown of SIRT1 in BLA glutamatergic neurons reversed these depression-like behaviors and restored the synaptic abnormalities. Overexpression of SIRT1 in BLA glutamatergic neurons induced depression-like behaviors in non-stressed control mice. The result of protein expressions and ultrastructural changes were consistent with the behavioral results. Our study suggested that downregulation of SIRT1 in BLA has certain beneficial effect on CUMS-induced depression-like behaviors such as anorexia, anhedonia, hopelessness and despair. In addition, the increased expression of SIRT1 may be the immediate cause of depressive-like symptoms. The abnormal expression of SIRT1 may affect the transcriptional regulation mechanism and signaling protein acetylation, affecting neuroplasticity and ultimately contribute to MDD. In the stress-susceptible mice, these two mechanisms may co-exist, but the specific mechanism needs further research.
Collapse
Affiliation(s)
- Hao Guo
- College of Forensic Science, Xi'an Jiaotong University, Shaanxi, China.,School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Cuola Deji
- College of Forensic Science, Xi'an Jiaotong University, Shaanxi, China
| | - Han Peng
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Jinyu Zhang
- College of Forensic Science, Xi'an Jiaotong University, Shaanxi, China
| | - Yuanyuan Chen
- College of Forensic Science, Xi'an Jiaotong University, Shaanxi, China
| | - Yulei Zhang
- College of Forensic Science, Xi'an Jiaotong University, Shaanxi, China
| | - Yunpeng Wang
- College of Forensic Science, Xi'an Jiaotong University, Shaanxi, China
| |
Collapse
|
11
|
Parent MB, Ferreira-Neto HC, Kruemmel AR, Althammer F, Patel AA, Keo S, Whitley KE, Cox DN, Stern JE. Heart failure impairs mood and memory in male rats and down-regulates the expression of numerous genes important for synaptic plasticity in related brain regions. Behav Brain Res 2021; 414:113452. [PMID: 34274373 DOI: 10.1016/j.bbr.2021.113452] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 05/21/2021] [Accepted: 07/08/2021] [Indexed: 12/01/2022]
Abstract
Chronic heart failure (HF) is a serious disorder that afflicts more than 26 million patients worldwide. HF is comorbid with depression, anxiety and memory deficits that have serious implications for quality of life and self-care in patients who have HF. Still, there are few studies that have assessed the effects of severely reduced ejection fraction (≤40 %) on cognition in non-human animal models. Moreover, limited information is available regarding the effects of HF on genetic markers of synaptic plasticity in brain areas critical for memory and mood regulation. We induced HF in male rats and tested mood and anxiety (sucrose preference and elevated plus maze) and memory (spontaneous alternation and inhibitory avoidance) and measured the simultaneous expression of 84 synaptic plasticity-associated genes in dorsal (DH) and ventral hippocampus (VH), basolateral (BLA) and central amygdala (CeA) and prefrontal cortex (PFC). We also included the hypothalamic paraventricular nucleus (PVN), which is implicated in neurohumoral activation in HF. Our results show that rats with severely reduced ejection fraction recapitulate behavioral symptoms seen in patients with chronic HF including, increased anxiety and impaired memory in both tasks. HF also downregulated several synaptic-plasticity genes in PFC and PVN, moderate decreases in DH and CeA and minimal effects in BLA and VH. Collectively, these findings identify candidate brain areas and molecular mechanisms underlying HF-induced disturbances in mood and memory.
Collapse
Affiliation(s)
- Marise B Parent
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | | | | | | | - Atit A Patel
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | - Sreinick Keo
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | | | - Daniel N Cox
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | - Javier E Stern
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA.
| |
Collapse
|
12
|
Yang SS, Mack NR, Shu Y, Gao WJ. Prefrontal GABAergic Interneurons Gate Long-Range Afferents to Regulate Prefrontal Cortex-Associated Complex Behaviors. Front Neural Circuits 2021; 15:716408. [PMID: 34322002 PMCID: PMC8313241 DOI: 10.3389/fncir.2021.716408] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 06/14/2021] [Indexed: 01/11/2023] Open
Abstract
Prefrontal cortical GABAergic interneurons (INs) and their innervations are essential for the execution of complex behaviors such as working memory, social behavior, and fear expression. These behavior regulations are highly dependent on primary long-range afferents originating from the subcortical structures such as mediodorsal thalamus (MD), ventral hippocampus (vHPC), and basolateral amygdala (BLA). In turn, the regulatory effects of these inputs are mediated by activation of parvalbumin-expressing (PV) and/or somatostatin expressing (SST) INs within the prefrontal cortex (PFC). Here we review how each of these long-range afferents from the MD, vHPC, or BLA recruits a subset of the prefrontal interneuron population to exert precise control of specific PFC-dependent behaviors. Specifically, we first summarize the anatomical connections of different long-range inputs formed on prefrontal GABAergic INs, focusing on PV versus SST cells. Next, we elaborate on the role of prefrontal PV- and SST- INs in regulating MD afferents-mediated cognitive behaviors. We also examine how prefrontal PV- and SST- INs gate vHPC afferents in spatial working memory and fear expression. Finally, we discuss the possibility that prefrontal PV-INs mediate fear conditioning, predominantly driven by the BLA-mPFC pathway. This review will provide a broad view of how multiple long-range inputs converge on prefrontal interneurons to regulate complex behaviors and novel future directions to understand how PFC controls different behaviors.
Collapse
Affiliation(s)
- Sha-Sha Yang
- Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, PA, United States
- Institute for Translational Brain Research, Fudan University, Shanghai, China
| | - Nancy R. Mack
- Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, PA, United States
| | - Yousheng Shu
- Institute for Translational Brain Research, Fudan University, Shanghai, China
| | - Wen-Jun Gao
- Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, PA, United States
| |
Collapse
|
13
|
Xie L, Hu Y, Yan D, McQuillan P, Liu Y, Zhu S, Zhu Z, Jiang Y, Hu Z. The relationship between exposure to general anesthetic agents and the risk of developing an impulse control disorder. Pharmacol Res 2021; 165:105440. [PMID: 33493656 DOI: 10.1016/j.phrs.2021.105440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/13/2021] [Accepted: 01/16/2021] [Indexed: 12/18/2022]
Abstract
Most studies examining the effect of extended exposure to general anesthetic agents (GAAs) have demonstrated that extended exposure induces both structural and functional changes in the central nervous system. These changes are frequently accompanied by neurobehavioral changes that include impulse control disorders that are generally characterized by deficits in behavioral inhibition and executive function. In this review, we will.
Collapse
Affiliation(s)
- Linghua Xie
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuhan Hu
- Department of Cell Biology, Yale University, New Haven, CT, USA
| | - Dandan Yan
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - P McQuillan
- Department of Anesthesiology, Penn State Hershey Medical Centre, Penn State College of Medicine, Hershey, PA, USA
| | - Yue Liu
- Department of Anesthesiology, The Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shengmei Zhu
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhirui Zhu
- Department of Anesthesiology, The Children Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yilei Jiang
- Department of Anesthesiology, The Children Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhiyong Hu
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
14
|
Wang S, Shi W, Zhang G, Zhang X, Ma C, Zhao K, Cong B, Li Y. Endoplasmic Reticulum Stress-Mediated Basolateral Amygdala GABAergic Neuron Injury Is Associated With Stress-Induced Mental Disorders in Rats. Front Cell Neurosci 2019; 13:511. [PMID: 31798418 PMCID: PMC6874131 DOI: 10.3389/fncel.2019.00511] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 10/29/2019] [Indexed: 12/25/2022] Open
Abstract
The amygdala is an important center of fear learning and memory and plays a critical role in regulating stress disorders. Previous studies have shown that changes in the amygdala caused by stress are an important cause of mental disorders including anxiety, but the specific mechanism remains unclear. Therefore, the purpose of this study was to investigate whether mental disorders induced by stress are related to γ-aminobutyric acid (GABA)ergic neuron damage in the basolateral amygdala (BLA) and whether endoplasmic reticulum stress (ERS) is involved in the injury process. Rat models of different durations of stress were established by restraint and forced ice-water swimming. Behavioral tests and high-performance liquid chromatography (HPLC) were used to detect anxiety in rats and changes in neurotransmitter levels in the BLA. Morphological approaches and microscopy-based multicolor tissue cytometry (MMTC) were used to detect the damage-induced changes in GABAergic neurons in the BLA. Immunofluorescence double labeling was used to detect the expression of ERS-related proteins before and after the inhibition of protein kinase R-like endoplasmic reticulum kinase (PERK) pathway. Stress resulted in damage to GABAergic neurons in the BLA, decreased GABA and increased glutamic acid (GLU) levels, perturbation of the excitation/inhibition (E/I) ratio in the BLA, and obvious anxiety disorders in rats. Moreover, ERS-mediated GABAergic neuron injury was an important cause of neurotransmitter level changes in the BLA. These results suggested that ERS-mediated GABAergic neuron injury in the BLA may be an important cause of stress-induced mental disorders.
Collapse
Affiliation(s)
- Songjun Wang
- Hebei Key Laboratory of Forensic Medicine, Department of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, Shijiazhuang, China
| | - Weibo Shi
- Hebei Key Laboratory of Forensic Medicine, Department of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, Shijiazhuang, China
| | - Guozhong Zhang
- Hebei Key Laboratory of Forensic Medicine, Department of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, Shijiazhuang, China
| | - Xiaojing Zhang
- Hebei Key Laboratory of Forensic Medicine, Department of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, Shijiazhuang, China
| | - Chunling Ma
- Hebei Key Laboratory of Forensic Medicine, Department of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, Shijiazhuang, China
| | - Kai Zhao
- Hebei Key Laboratory of Forensic Medicine, Department of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, Shijiazhuang, China
| | - Bin Cong
- Hebei Key Laboratory of Forensic Medicine, Department of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, Shijiazhuang, China
| | - Yingmin Li
- Hebei Key Laboratory of Forensic Medicine, Department of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|