1
|
Contreras KM, Buzzi B, Vaughn J, Caillaud M, Altarifi AA, Olszewski E, Walentiny DM, Beardsley PM, Damaj MI. Characterization and validation of a spontaneous acute and protracted oxycodone withdrawal model in male and female mice. Pharmacol Biochem Behav 2024; 242:173795. [PMID: 38834159 PMCID: PMC11283946 DOI: 10.1016/j.pbb.2024.173795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/27/2024] [Accepted: 05/30/2024] [Indexed: 06/06/2024]
Abstract
Opioid use disorder (OUD) is a serious health problem that may lead to physical dependence, in addition to affective disorders. Preclinical models are essential for studying the neurobiology of and developing pharmacotherapies to treat these problems. Historically, chronic morphine injections have most often been used to produce opioid-dependent animals, and withdrawal signs indicative of dependence were precipitated by administering an opioid antagonist. In the present studies, we have developed and validated a model of dependence on oxycodone (a widely prescribed opioid) during spontaneous withdrawal in male and female C57BL/6J mice. Dependence was induced by chronically administering oxycodone through osmotic minipumps at different doses for 7 days. Somatic withdrawal signs were measured after 3, 6, 24, and 48 h following minipump removal. Additionally, sensitivity to mechanical, thermal, and cold stimuli, along with anxiety-like behavior, were also measured. Our results indicated that spontaneous withdrawal following discontinuation of oxycodone produced an increase in total withdrawal signs after 60 and 120 mg/kg/day regimens of oxycodone administration. These signs were reversed by the administration of clinically approved medications for OUD. In general, both female and male mice showed similar profiles of somatic signs of spontaneous withdrawal. Spontaneous withdrawal also resulted in mechanical and cold hypersensitivity lasting for 24 and 14 days, respectively, and produced anxiety-like behaviors after 2 and 3 weeks following oxycodone removal. These results help validate a new model of oxycodone dependence, including the temporally distinct emergence of somatic, hyperalgesic, and anxiety-like behaviors, potentially useful for mechanistic and translational studies of opioid dependence.
Collapse
Affiliation(s)
- Katherine M Contreras
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Belle Buzzi
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Julian Vaughn
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Martial Caillaud
- Nantes Université, INSERM, UMR1235-TENS, The Enteric Nervous System in Gut and Brain Diseases, Nantes, France
| | - Ahmad A Altarifi
- Department of Pharmacology, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Emily Olszewski
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - D Matthew Walentiny
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Patrick M Beardsley
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA; Center for Biomarker Research & Precision Medicine, Virginia Commonwealth University School of Pharmacy, Richmond, VA, USA
| | - M Imad Damaj
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA; Translational Research Initiative for Pain and Neuropathy at Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
2
|
Morgan MM, Nguyen KKD. Diurnal sex differences in morphine withdrawal revealed by continuous assessment of voluntary home cage wheel running in the rat. Behav Brain Res 2024; 472:115169. [PMID: 39074589 DOI: 10.1016/j.bbr.2024.115169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 07/31/2024]
Abstract
Animal studies modeling recreational opioid use show more severe withdrawal symptoms in male compared to female rats, whereas our study modeling opioid use for pain showed a greater withdrawal-induced decrease in wheel running in female rats. The objective of this experiment was to determine whether sex differences in spontaneous morphine withdrawal are caused by differences in assessment method (i.e., wheel running vs. somatic symptoms). Twice daily injections of morphine (5 - 20 mg/kg, s.c.) for 5 days produced a dose and time dependent decrease in wheel running that was greater in male compared to female rats. Termination of morphine administration resulted in an overall decrease in running and a decrease in the amount of running during the dark phase of the light cycle from 95 % to approximately 75 %. In male rats, this decrease in the percent of dark running was caused by a large decrease in dark phase running, whereas female rats had a slightly higher increase in light phase running. Withdrawal also reduced maximal running speed and caused a decrease in body weight that was larger in male than female rats. Withdrawal symptoms were greatest on the day following the last morphine injection, but persisted for all 3 days of assessment. Morphine withdrawal produced a greater decrease in dark phase wheel running and body weight in male rats and a greater increase in light phase running in female rats. Voluntary home cage wheel running provides a continuous measure of opioid withdrawal that is consistent with other measures of opioid withdrawal.
Collapse
Affiliation(s)
- Michael M Morgan
- Department of Psychology, Washington State University Vancouver, 14204 NE Salmon Creek Ave, Vancouver, WA 98686, United States.
| | - Keziah-Khue Diem Nguyen
- Department of Psychology, Washington State University Vancouver, 14204 NE Salmon Creek Ave, Vancouver, WA 98686, United States
| |
Collapse
|
3
|
Morgan MM, Hilgendorf TN, Kandasamy R. Continuous fentanyl administration and spontaneous withdrawal decreases home cage wheel running in rats with and without hindpaw inflammation. Physiol Behav 2023; 272:114376. [PMID: 37820887 DOI: 10.1016/j.physbeh.2023.114376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/30/2023] [Accepted: 10/08/2023] [Indexed: 10/13/2023]
Abstract
Fentanyl is a potent analgesic with a rapid onset and short half-life that make it a useful treatment for pain and a lethal drug of abuse. The present study used voluntary home cage wheel running to assess the effect of hindpaw inflammation, fentanyl administration, and spontaneous fentanyl withdrawal. Fentanyl (0.32 or 1.0 mg/kg/day) or placebo osmotic pumps were implanted subcutaneously and rats received an intraplantar injection of Complete Freund's Adjuvant (CFA) or saline. Rats with hindpaw inflammation caused by CFA administration were less active than rats injected with saline into the hindpaw. The antinociceptive effect of 0.32 mg/kg/day of fentanyl was evident as a recovery of wheel running in these rats. Administration of 1 mg/kg/day of fentanyl almost completely inhibited wheel running during the first day in rats with and without hindpaw inflammation. Wheel running increased each subsequent day until the pumps were surgically removed after day 3. Withdrawal from 0.32 or 1 mg/kg/day of fentanyl caused a decrease in wheel running that lasted 2 days in rats without hindpaw inflammation. In contrast, withdrawal was only evident following termination of 1 mg/kg/day of fentanyl in rats with hindpaw inflammation. This decrease in running seemed to persist beyond the 3 days of assessment. These data demonstrate that fentanyl can either depress or restore activity depending on the dose and pain condition. Moreover, termination of 3 days of continuous fentanyl administration resulted in a dose and time dependent decrease in wheel running consistent with opioid withdrawal.
Collapse
Affiliation(s)
- Michael M Morgan
- Department of Psychology, Washington State University Vancouver, 14204 NE Salmon Creek Ave. Vancouver, WA 98686, USA.
| | - Tammy N Hilgendorf
- Department of Psychology, Washington State University Vancouver, 14204 NE Salmon Creek Ave. Vancouver, WA 98686, USA
| | - Ram Kandasamy
- Department of Psychology, California State University, East Bay 25800 Carlos Bee Blvd. Hayward, CA 94542, USA
| |
Collapse
|
4
|
Morgan MM, Ataras K. Sex differences in the impact of pain, morphine administration and morphine withdrawal on quality of life in rats. Pharmacol Biochem Behav 2022; 219:173451. [PMID: 35995262 DOI: 10.1016/j.pbb.2022.173451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/27/2022] [Accepted: 08/17/2022] [Indexed: 11/17/2022]
Abstract
The disruptive effects of pain on quality of life are greater in men than in women, but the disruptive effects of opioid administration and withdrawal tend to be greater in women. These sex differences in pain, acute opioid effects, and opioid withdrawal tend to be opposite to sex differences reported in laboratory rats. We hypothesized that sex differences in humans and rats would more closely align if animal research measured quality of life as opposed to traditional evoked behaviors of pain (e.g., nociceptive reflexes) and opioid withdrawal (e.g., wet dog shakes). The present study assessed quality of life in adult female and male rats by measuring voluntary wheel running in the rat's home cage. Hindpaw inflammation induced by administration of Complete Freund's Adjuvant (CFA) into the right hindpaw caused a greater depression of wheel running in male compared to female rats. Twice daily injections of high morphine doses (5-20 mg/kg) and the subsequent morphine withdrawal caused a greater depression of wheel running in female compared to male rats. These sex differences are consistent with human data that shows the impact of pain on quality of life is greater in men than women, but the negative effects of opioid administration and withdrawal are greater in women. The present data indicate that the clinical significance of animal research would be enhanced by shifting the endpoint from pain and opioid evoked behaviors to measures of quality of life such as voluntary wheel running.
Collapse
Affiliation(s)
- Michael M Morgan
- Department of Psychology, Washington State University Vancouver, 14204 NE Salmon Creek Ave., Vancouver, WA 98686, United States of America.
| | - Kristin Ataras
- Department of Psychology, Washington State University Vancouver, 14204 NE Salmon Creek Ave., Vancouver, WA 98686, United States of America.
| |
Collapse
|