1
|
Herrald AL, Ambrogi EK, Mirica KA. Electrochemical Detection of Gasotransmitters: Status and Roadmap. ACS Sens 2024; 9:1682-1705. [PMID: 38593007 PMCID: PMC11196117 DOI: 10.1021/acssensors.3c02529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Gasotransmitters, including nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S), are a class of gaseous, endogenous signaling molecules that interact with one another in the regulation of critical cardiovascular, immune, and neurological processes. The development of analytical sensing mechanisms for gasotransmitters, especially multianalyte mechanisms, holds vast importance and constitutes a growing area of study. This review provides an overview of electrochemical sensing mechanisms with an emphasis on opportunities in multianalyte sensing. Electrochemical methods demonstrate good sensitivity, adequate selectivity, and the most well-developed potential for the multianalyte detection of gasotransmitters. Future research will likely address challenges with sensor stability and biocompatibility (i.e., sensor lifetime and cytotoxicity), sensor miniaturization, and multianalyte detection in biological settings.
Collapse
Affiliation(s)
- Audrey L Herrald
- Department of Chemistry, Burke Laboratory, Dartmouth College, 41 College Street, Hanover, New Hampshire 03755, United States
| | - Emma K Ambrogi
- Department of Chemistry, Burke Laboratory, Dartmouth College, 41 College Street, Hanover, New Hampshire 03755, United States
| | - Katherine A Mirica
- Department of Chemistry, Burke Laboratory, Dartmouth College, 41 College Street, Hanover, New Hampshire 03755, United States
| |
Collapse
|
2
|
Hassan S, Schreib CC, Zhao X, Duret G, Roman DS, Nair V, Cohen-Karni T, Veiseh O, Robinson JT. Real-Time In Vivo Sensing of Nitric Oxide Using Photonic Microring Resonators. ACS Sens 2022; 7:2253-2261. [PMID: 35938877 DOI: 10.1021/acssensors.2c00756] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Real-time in vivo detection of biomarkers, particularly nitric oxide (NO), is of utmost importance for critical healthcare monitoring, therapeutic dosing, and fundamental understanding of NO's role in regulating many physiological processes. However, detection of NO in a biological medium is challenging due to its short lifetime and low concentration. Here, we demonstrate for the first time that photonic microring resonators (MRRs) can provide real-time, direct, and in vivo detection of NO in a mouse wound model. The MRR encodes the NO concentration information into its transfer function in the form of a resonance wavelength shift. We show that these functionalized MRRs, fabricated using complementary metal oxide semiconductor (CMOS) compatible processes, can achieve sensitive detection of NO (sub-μM) with excellent specificity and no apparent performance degradation for more than 24 h of operation in biological medium. With alternative functionalizations, this compact lab-on-chip optical sensing platform could support real-time in vivo detection of myriad of biochemical species.
Collapse
Affiliation(s)
- Sakib Hassan
- Electrical & Computer Engineering, Rice University, Houston, Texas 77005, United States
| | - Christian C Schreib
- Department of Bioengineering, Rice University, Houston, Texas 77005, United States
| | - Xuan Zhao
- Applied Physics Graduate Program, Smalley-Curl Institute, Rice University, Houston, Texas 77005, United States
| | - Guillaume Duret
- Electrical & Computer Engineering, Rice University, Houston, Texas 77005, United States
| | - Daniel S Roman
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Vishnu Nair
- Rice Neuroengineering Initiative, Rice University, Houston, Texas 77005, United States
| | - Tzahi Cohen-Karni
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Omid Veiseh
- Department of Bioengineering, Rice University, Houston, Texas 77005, United States
| | - Jacob T Robinson
- Electrical & Computer Engineering, Rice University, Houston, Texas 77005, United States.,Department of Bioengineering, Rice University, Houston, Texas 77005, United States.,Rice Neuroengineering Initiative, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
3
|
Jiang M, Wang C, Zhang X, Cai C, Ma Z, Chen J, Xie T, Huang X, Chen D. A cellular nitric oxide sensor based on porous hollow fiber with flow-through configuration. Biosens Bioelectron 2021; 191:113442. [PMID: 34157599 DOI: 10.1016/j.bios.2021.113442] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 05/29/2021] [Accepted: 06/13/2021] [Indexed: 11/15/2022]
Abstract
Nitric oxide plays important transmission and regulation roles in the human body, but its in-vitro concentration is extremely low with a short half-life. In this work, we developed a three-dimensional 'flow-through' configuration based on polysulfone hollow fiber (PHF) for efficient detection of cell released NO. The PHF served as the substrate for cell culture as well as the base layer of the working electrode. The carbon nanotubes-gold nanoparticles (CNT-AuNPs) composites uniformly wrapped around the PHF as the sensing layer. The CNT provided a large specific surface area, which allowed uniform distribution and high loading of AuNPs, thus enhancing the electrocatalytic activity synergistically. Compared with the conventional flow-by configuration, such configuration resulted in a higher surface area per unit volume and enhanced NO molecule capture efficiency. The CNT-AuNPs PHF sensor showed a low detection limit (91 nM), high stability, selectivity, and biocompatibility. We utilized it for real-time in-situ detection of NO released by human lung cancer cell H1299 under drug stimulation. Furthermore, owing to the unique PHF structure, we performed long-term monitoring of NO release under the treatment of Lipopolysaccharide, Nitroglycerin and Aminoguanidine, which helps to understand the kinetic process of cellular drug response.
Collapse
Affiliation(s)
- Min Jiang
- College of Pharmacy, Hangzhou Normal University, China
| | | | - Xinran Zhang
- College of Pharmacy, Hangzhou Normal University, China
| | - Chengsong Cai
- College of Pharmacy, Hangzhou Normal University, China
| | - Zhen Ma
- College of Pharmacy, Hangzhou Normal University, China; VivaChek Biotech (Hangzhou) Co., Ltd, China
| | - Jianxiang Chen
- College of Pharmacy, Hangzhou Normal University, China; Key Laboratory of Elemene Class Anti-Cancer Medicines, Hangzhou Normal University, China
| | - Tian Xie
- College of Pharmacy, Hangzhou Normal University, China; Key Laboratory of Elemene Class Anti-Cancer Medicines, Hangzhou Normal University, China.
| | - Xiaojun Huang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, China
| | - Dajing Chen
- College of Pharmacy, Hangzhou Normal University, China; Key Laboratory of Elemene Class Anti-Cancer Medicines, Hangzhou Normal University, China.
| |
Collapse
|
4
|
Brown MD, Schoenfisch MH. Electrochemical Nitric Oxide Sensors: Principles of Design and Characterization. Chem Rev 2019; 119:11551-11575. [DOI: 10.1021/acs.chemrev.8b00797] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Micah D. Brown
- Department of Chemistry, University of North Carolina at Chapel Hill, CB 3290, Chapel Hill, North Carolina 27599, United States
| | - Mark H. Schoenfisch
- Department of Chemistry, University of North Carolina at Chapel Hill, CB 3290, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
5
|
Brown MD, Schoenfisch MH. Selective and Sensocompatible Electrochemical Nitric Oxide Sensor with a Bilaminar Design. ACS Sens 2019; 4:1766-1773. [PMID: 31244005 PMCID: PMC6759084 DOI: 10.1021/acssensors.9b00170] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Macrophages mediate mammalian inflammation in part by the release of the gasotransmitter, nitric oxide (NO). Electrochemical methods represent the best means of direct, continuous measurement of NO, but monitoring continuous release from immunostimulated macrophages remains analytically challenging. Long release durations necessitate consistent sensor performance (i.e., sensitivity and selectivity for NO) in proteinaceous media. Herein, we describe the fabrication of an electrochemical sensor modified by an electropolymerized 5-amino-1-naphthol (poly(5A1N)) film in conjunction with a fluorinated xerogel topcoat. The unique combination of these membranes ensures selective detection of NO that is maintained over extended periods of use (>24 h) in biological media without performance deterioration. The hydrophobic xerogel topcoat protects the underlying NO-selective poly(5A1N) film from hydration-induced desorption. The bilaminar sensor is then readily adapted for measurement of the temporal NO-release profiles from immunostimulated macrophages.
Collapse
Affiliation(s)
- Micah D. Brown
- Department of Chemistry, University of North Carolina at Chapel Hill, CB 3290, Chapel Hill, North Carolina 27599, United States
| | - Mark H. Schoenfisch
- Department of Chemistry, University of North Carolina at Chapel Hill, CB 3290, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
6
|
Suhag D, Sharma AK, Patni P, Garg SK, Rajput SK, Chakrabarti S, Mukherjee M. Hydrothermally functionalized biocompatible nitrogen doped graphene nanosheet based biomimetic platforms for nitric oxide detection. J Mater Chem B 2016; 4:4780-4789. [PMID: 32263252 DOI: 10.1039/c6tb01150k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Hydrothermal synthesis of nanocomposites is of significant importance, as it affords facile, biocompatible, nontoxic, and economic fabrication. Herein, we report a hitherto unexplored cytocompatible and reusable biomimetic electrochemical sensor based on pyridyl porphyrin functionalized nitrogen doped graphene nanosheets. The porphyrin functionalized nitrogen doped graphene nanosheets (PFNGS) were prepared by a low temperature hydrothermal method via non-covalent strategies with a minimal impact on their physicochemical properties. Owing to their exceptional attributes like operational ease, low cost, portability, and sensitivity, the as-synthesized PFNGS, formed by π-π interactions, were employed for sensing nitric oxide (NO), which is a key regulator of diverse biological processes. Compared to porphyrin and nitrogen doped graphene nanosheets alone, PFNGS exhibited exceptional sensitivity (3.6191 μA μM-1) and remarkable electrocatalytic properties (0.61 V). This clearly outperforms the previously reported modified electrode materials for the electrochemical detection of NO. Cyclic voltammetry (CV) data also suggested that the PFNGS modified electrode possessed an increased reactive surface area, which results in an increase in the number of reactive sites and low charge transfer resistance. These results also demonstrated that the PFNGS modified electrode showed high stability and reproducibility, the limit of detection (LOD) (S/N = 3) of which was estimated to be 1 nM. Our PFNGS were found to be highly biocompatible and could also detect NO released from macrophage cells. This blend of biocompatibility, electrode stability, electrocatalytic activity along with enhanced sensitivity and selectivity makes PFNGS a powerful and reliable nanomaterial for various biomedical applications in complex biological systems.
Collapse
Affiliation(s)
- Deepa Suhag
- Biomimetic and Nanostructured Materials Research Laboratory, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Sector 125, Noida, India.
| | | | | | | | | | | | | |
Collapse
|
7
|
Rawson FJ, Hicks J, Dodd N, Abate W, Garrett D, Yip N, Fejer G, Downard AJ, Baronian KHR, Jackson SK, Mendes PM. Fast, Ultrasensitive Detection of Reactive Oxygen Species Using a Carbon Nanotube Based-Electrocatalytic Intracellular Sensor. ACS APPLIED MATERIALS & INTERFACES 2015; 7:23527-23537. [PMID: 26438964 PMCID: PMC4654508 DOI: 10.1021/acsami.5b06493] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 10/06/2015] [Indexed: 05/30/2023]
Abstract
Herein, we report a highly sensitive electrocatalytic sensor-cell construct that can electrochemically communicate with the internal environment of immune cells (e.g., macrophages) via the selective monitoring of a particular reactive oxygen species (ROS), hydrogen peroxide. The sensor, which is based on vertically aligned single-walled carbon nanotubes functionalized with an osmium electrocatalyst, enabled the unprecedented detection of a local intracellular "pulse" of ROS on a short second time scale in response to bacterial endotoxin (lipopolysaccharide-LPS) stimulation. Our studies have shown that this initial pulse of ROS is dependent on NADPH oxidase (NOX) and toll like receptor 4 (TLR4). The results suggest that bacteria can induce a rapid intracellular pulse of ROS in macrophages that initiates the classical innate immune response of these cells to infection.
Collapse
Affiliation(s)
- Frankie J. Rawson
- Laboratory of Biophysics and Surface Analysis,
School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Jacqueline Hicks
- Laboratory of Biophysics and Surface Analysis,
School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Nicholas Dodd
- Centre
for Biomedical Research, School of Biomedical and Healthcare Science, Plymouth University,
Drake Circus, Plymouth, Devon PL4 8AA, United Kingdom
| | - Wondwossen Abate
- Centre
for Biomedical Research, School of Biomedical and Healthcare Science, Plymouth University,
Drake Circus, Plymouth, Devon PL4 8AA, United Kingdom
| | - David
J. Garrett
- School of Physics, The University of Melbourne, Victoria 3010, Australia
| | - Nga Yip
- School
of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Gyorgy Fejer
- Centre
for Biomedical Research, School of Biomedical and Healthcare Science, Plymouth University,
Drake Circus, Plymouth, Devon PL4 8AA, United Kingdom
| | - Alison J. Downard
- Department of Chemistry, School of Biological Sciences, University of Canterbury, Private Bag
4800, Christchurch, New Zealand
| | - Kim H. R. Baronian
- Department of Chemistry, School of Biological Sciences, University of Canterbury, Private Bag
4800, Christchurch, New Zealand
| | - Simon K. Jackson
- Centre
for Biomedical Research, School of Biomedical and Healthcare Science, Plymouth University,
Drake Circus, Plymouth, Devon PL4 8AA, United Kingdom
| | - Paula M. Mendes
- School
of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
8
|
Pekarova M, Lojek A. The crucial role of l-arginine in macrophage activation: What you need to know about it. Life Sci 2015; 137:44-8. [PMID: 26188591 DOI: 10.1016/j.lfs.2015.07.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 07/07/2015] [Accepted: 07/11/2015] [Indexed: 11/19/2022]
Abstract
Nowadays, it is well recognized that amino acids are powerful molecules responsible for regulatory control over fundamental cellular processes. However, our understanding of the signaling cascades involved in amino acid sensing in organisms, as well as signal initiation, is largely limited. This is also the case of semi-essential amino acid l-arginine, which has multiple metabolic fates, and it is considered as one of the most versatile amino acids. Recently, some new and important facts have been published considering the role of l-arginine in the regulation of inflammatory processes in several human and mouse models, mediated also via the regulation of macrophage activation. Therefore, this mini review focuses on the actual summarization of information about (i) l-arginine bioavailability in organism, (ii) l-arginine-dependent regulation of nitric oxide synthase expression and nitric oxide production, and importantly (iii) its role in the activation of intracellular signaling pathways and G-protein-coupled receptors in macrophages.
Collapse
Affiliation(s)
- Michaela Pekarova
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 65 Brno, Czech Republic.
| | - Antonin Lojek
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 65 Brno, Czech Republic
| |
Collapse
|
9
|
Keum DH, Jung HS, Wang T, Shin MH, Kim YE, Kim KH, Ahn GO, Hahn SK. Microneedle biosensor for real-time electrical detection of nitric oxide for in situ cancer diagnosis during endomicroscopy. Adv Healthc Mater 2015; 4:1153-8. [PMID: 25728402 DOI: 10.1002/adhm.201500012] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 02/04/2015] [Indexed: 01/07/2023]
Abstract
A dual-diagnostic system of endom-icroscope and microneedle sensor is developed to demonstrate high-resolution imaging combined with electrical real-time detection of NO released from cancer tissues. The dual-diagnostic system can be a new platform for facile, precise, rapid, and accurate detection of cancers in various biomedical applications.
Collapse
Affiliation(s)
- Do Hee Keum
- Department of Materials Science and Engineering; Pohang University of Science and Technology (POSTECH); San 31, Hyoja-dong, Nam-gu Pohang Kyungbuk 790-784 Korea
| | - Ho Sang Jung
- Department of Materials Science and Engineering; Pohang University of Science and Technology (POSTECH); San 31, Hyoja-dong, Nam-gu Pohang Kyungbuk 790-784 Korea
| | - Taejun Wang
- Department of Integrative Biosciences and Biotechnology; POSTECH; 77 Cheongam-ro, Nam-gu Pohang Kyungbuk 790-784 Korea
| | - Myeong Hwan Shin
- Department of Materials Science and Engineering; Pohang University of Science and Technology (POSTECH); San 31, Hyoja-dong, Nam-gu Pohang Kyungbuk 790-784 Korea
| | - Young-Eun Kim
- Department of Integrative Biosciences and Biotechnology; POSTECH; 77 Cheongam-ro, Nam-gu Pohang Kyungbuk 790-784 Korea
| | - Ki Hean Kim
- Department of Integrative Biosciences and Biotechnology; POSTECH; 77 Cheongam-ro, Nam-gu Pohang Kyungbuk 790-784 Korea
| | - G-One Ahn
- Department of Integrative Biosciences and Biotechnology; POSTECH; 77 Cheongam-ro, Nam-gu Pohang Kyungbuk 790-784 Korea
| | - Sei Kwang Hahn
- Department of Materials Science and Engineering; Pohang University of Science and Technology (POSTECH); San 31, Hyoja-dong, Nam-gu Pohang Kyungbuk 790-784 Korea
| |
Collapse
|
10
|
Biological activities of selected polyphenol-rich fruits related to immunity and gastrointestinal health. Food Chem 2014; 157:37-44. [DOI: 10.1016/j.foodchem.2014.02.022] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 01/07/2014] [Accepted: 02/05/2014] [Indexed: 11/17/2022]
|
11
|
Jiang S, Cheng R, Wang X, Xue T, Liu Y, Nel A, Huang Y, Duan X. Real-time electrical detection of nitric oxide in biological systems with sub-nanomolar sensitivity. Nat Commun 2014; 4:2225. [PMID: 23887829 DOI: 10.1038/ncomms3225] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 06/28/2013] [Indexed: 12/23/2022] Open
Abstract
Real-time monitoring of nitric oxide concentrations is of central importance for probing the diverse roles of nitric oxide in neurotransmission, cardiovascular systems and immune responses. Here we report a new design of nitric oxide sensors based on hemin-functionalized graphene field-effect transistors. With its single atom thickness and the highest carrier mobility among all materials, graphene holds the promise for unprecedented sensitivity for molecular sensing. The non-covalent functionalization through π-π stacking interaction allows reliable immobilization of hemin molecules on graphene without damaging the graphene lattice to ensure the highly sensitive and specific detection of nitric oxide. Our studies demonstrate that the graphene-hemin sensors can respond rapidly to nitric oxide in physiological environments with a sub-nanomolar sensitivity. Furthermore, in vitro studies show that the graphene-hemin sensors can be used for the detection of nitric oxide released from macrophage cells and endothelial cells, demonstrating their practical functionality in complex biological systems.
Collapse
Affiliation(s)
- Shan Jiang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA
| | | | | | | | | | | | | | | |
Collapse
|
12
|
On the molecular pharmacology of resveratrol on oxidative burst inhibition in professional phagocytes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:706269. [PMID: 24672638 PMCID: PMC3942095 DOI: 10.1155/2014/706269] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 12/12/2013] [Accepted: 12/17/2013] [Indexed: 01/15/2023]
Abstract
Resveratrol—3,5,4′-trihydroxystilbene—possesses antioxidant activities in vitro. It dose-dependently inhibited the generation of peroxyl, hydroxyl, peroxides, and lipid peroxidation products in cell free systems. Oxidative burst of whole human blood stimulated with PMA, fMLP, OpZ, and A23187 was inhibited in a concentration-dependent way, indicating suppression of both receptor and nonreceptor activated chemiluminescence by resveratrol. Results from isolated human neutrophils revealed that resveratrol was active extracellularly as well as intracellularly in inhibiting the generation of reactive oxygen species. Liberation of ATP and analysis of apoptosis showed that in the concentration of 100 μM, resveratrol did not change the viability and integrity of isolated neutrophils. Western blot analysis documented that resveratrol in concentrations of 10 and 100 μM significantly decreased PMA-induced phosphorylation of PKC α/βII. Dose-dependent inhibition of nitrite production and iNOS protein expression in RAW 264.7 cells indicated possible interference of resveratrol with reactive nitrogen radical generation in professional phagocytes. The results suggest that resveratrol represents an effective naturally occurring substance with potent pharmacological effect on oxidative burst of human neutrophils and nitric oxide production by macrophages. It should be further investigated for its pharmacological activity against oxidative stress in ischaemia reperfusion, inflammation, and other pathological conditions, particularly neoplasia.
Collapse
|
13
|
Nikolova M, Ambrozova G, Kratchanova M, Denev P, Kussovski V, Ciz M, Lojek A. Effects of pectic polysaccharides isolated from leek on the production of reactive oxygen and nitrogen species by phagocytes. J Med Food 2013; 16:711-8. [PMID: 23905651 DOI: 10.1089/jmf.2012.0234] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The current survey investigates the effect of four polysaccharides isolated from fresh leek or alcohol insoluble substances (AIS) of leek on the production of reactive oxygen species (ROS) and reactive nitrogen species (RNS) from phagocytes. The ability of the polysaccharides to activate serum complement was also investigated. Despite the lack of antioxidant activity, the pectic polysaccharides significantly decreased the production of ROS by human neutrophils. Polysaccharides isolated from AIS markedly activated RAW 264.7 macrophages for RNS production in a concentration-dependent manner. The Western blot analysis revealed that this effect was due to the stimulation of the inducible nitric oxide synthase protein expression of macrophages. The polysaccharides extracted from AIS with water showed the ability to fix serum complement, especially through the alternative pathway. It was found that the polysaccharide that has the highest complement-fixing effect is characterized by the highest content of uronic acids and the highest molecular weight.
Collapse
Affiliation(s)
- Mariana Nikolova
- Center of Phytochemistry, Institute of Organic Chemistry, Bulgarian Academy of Sciences, Plovdiv, Bulgaria
| | | | | | | | | | | | | |
Collapse
|
14
|
“Off–on” red-emitting fluorescent probes with large Stokes shifts for nitric oxide imaging in living cells. Anal Bioanal Chem 2013; 405:7447-56. [DOI: 10.1007/s00216-013-7177-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 05/11/2013] [Accepted: 06/25/2013] [Indexed: 11/26/2022]
|
15
|
Pekarova M, Kubala L, Martiskova H, Bino L, Twarogova M, Klinke A, Rudolph TK, Kuchtova Z, Kolarova H, Ambrozova G, Kuchta R, Kadlec J, Lojek A. Asymmetric dimethylarginine regulates the lipopolysaccharide-induced nitric oxide production in macrophages by suppressing the activation of NF-kappaB and iNOS expression. Eur J Pharmacol 2013; 713:68-77. [PMID: 23665490 DOI: 10.1016/j.ejphar.2013.05.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 04/17/2013] [Accepted: 05/02/2013] [Indexed: 01/29/2023]
Abstract
Two major effector systems are frequently implicated in the immune and endothelial cell alternations associated with inflammation. They include the enhanced production of reactive oxygen species and diminished bioavailability of nitric oxide (NO). Importantly, these processes can be regulated by endogenously produced methylarginines, inhibitors for NO derived from macrophages and endothelial cells. Therefore, the aim of this study was to show the potential pharmacological intervention of methylarginines (N(G)-methyl-L-arginine, L-NMMA; N(G), N(G)'-dimethyl-L-arginine-symmetric dimethylarginine, SDMA; and N(G), N(G)-dimethyl-L-arginine-asymmetric dimethylarginine, ADMA) in activation of murine peritoneal (RAW 264.7) and alveolar (MHS) macrophages with lipopolysaccharide from Gram-negative bacteria (LPS). The data presented in this study clearly declare that L-NMMA (1-50μM) and ADMA (10-50 μM) significantly inhibited the LPS-induced NO production from macrophages in a concentration-dependent manner. It was demonstrated, for the first time, that the ADMA- and L-NMMA-induced down regulation of NO production was accompanied by reduced expression of mRNA and protein for inducible NO synthase as well as decreased activation of nuclear factor-κB. Importantly, we found a negative correlation between the ADMA-dependent reduction of NO production and ADMA-increased superoxide formation, which indicates that ADMA can negatively affect the balance in LPS-induced macrophage-derived production of reactive mediators. The only effect of SDMA was observed for LPS-triggered superoxide production, which was significantly decreased in its highest concentration (50 μM). In summary, L-NMMA and ADMA can mediate their effects on macrophage activation via regulation of intracellular signaling pathways, which can affect critical functions in activated macrophages.
Collapse
Affiliation(s)
- Michaela Pekarova
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 65 Brno, Czech Republic.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Pekarova M, Lojek A, Martiskova H, Vasicek O, Bino L, Klinke A, Lau D, Kuchta R, Kadlec J, Vrba R, Kubala L. New role for L-arginine in regulation of inducible nitric-oxide-synthase-derived superoxide anion production in raw 264.7 macrophages. ScientificWorldJournal 2011; 11:2443-57. [PMID: 22219714 PMCID: PMC3246759 DOI: 10.1100/2011/321979] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 11/07/2011] [Indexed: 02/07/2023] Open
Abstract
Dietary supplementation with L-arginine was shown to improve immune responses in various inflammatory models. However, the molecular mechanisms underlying L-arginine effects on immune cells remain unrecognized. Herein, we tested the hypothesis that a limitation of L-arginine could lead to the uncoupled state of murine macrophage inducible nitric oxide synthase and, therefore, increase inducible nitric-oxide-synthase-derived superoxide anion formation. Importantly, we demonstrated that L-arginine dose- and time dependently potentiated superoxide anion production in bacterial endotoxin-stimulated macrophages, although it did not influence NADPH oxidase expression and activity. Detailed analysis of macrophage activation showed the time dependence between LPS-induced iNOS expression and increased O(2)(∙-) formation. Moreover, downregulation of macrophage iNOS expression, as well as the inhibition of iNOS activity by NOS inhibitors, unveiled an important role of this enzyme in controlling O(2)(∙-) and peroxynitrite formation during macrophage stimulation. In conclusion, our data demonstrated that simultaneous induction of NADPH oxidase, together with the iNOS enzyme, can result in the uncoupled state of iNOS resulting in the production of functionally important levels of O(2)(∙-) soon after macrophage activation with LPS. Moreover, we demonstrated, for the first time that increased concentrations of L-arginine further potentiate iNOS-dependent O(2) (∙-) formation in inflammatory macrophages.
Collapse
Affiliation(s)
- Michaela Pekarova
- Institute of Biophysics, The Academy of Sciences of Czech Republic, Kralovopolska 135, 612 65 Brno, Czech Republic.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Modulation of metabolic activity of phagocytes by antihistamines. Interdiscip Toxicol 2011; 4:15-9. [PMID: 21577279 PMCID: PMC3090049 DOI: 10.2478/v10102-011-0004-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 03/10/2011] [Accepted: 03/13/2011] [Indexed: 11/20/2022] Open
Abstract
The purpose of the study was to investigate the effects of H(1)-antihistamines of the 1(st) generation (antazoline, bromadryl, brompheniramine, dithiaden, cyclizine, chlorcyclizine, chlorpheniramine, clemastine) and the 2(nd) generation (acrivastine, ketotifen, and loratadine) on the respiratory burst of phagocytes. Reactive oxygen species generation in neutrophils isolated from rat blood was measured using luminol-enhanced chemiluminescence. Changes in nitrite formation and iNOS protein expression by RAW 264.7 macrophages were analysed using Griess reaction and Western blotting. The antioxidative properties of drugs in cell-free systems were detected spectrophotometrically, luminometrically, fluorimetrically, and amperometrically. The majority of the H(1)-antihistamines tested (bromadryl, brompheniramine, chlorcyclizine, chlorpheniramine, clemastine, dithiaden, and ketotifen) exhibited a significant inhibitory effect on the chemiluminescence activity of phagocytes. H(1)-antihistamines did not show significant scavenging properties against superoxide anion and hydroxyl radical, thus this could not contribute to the inhibition of chemiluminescence. H(1)-antihistamines had a different ability to modulate nitric oxide production by LPS-stimulated macrophages. Bromadryl, clemastine, and dithiaden were the most effective since they inhibited iNOS expression, which was followed by a significant reduction in nitrite levels. H(1)-antihistamines had no scavenging activity against nitric oxide. It can be concluded that the effects observed in the H(1)-antihistamines tested are not mediated exclusively via H(1)-receptor pathway or by direct antioxidative properties. Based on our results, antihistamines not interfering with the microbicidal mechanisms of leukocytes (antazoline, acrivastine and cyclizine) could be used preferentially in infections. Other antihistamines should be used, under pathological conditions accompanied by the overproduction of reactive oxygen species.
Collapse
|
18
|
Denev P, Ciz M, Ambrozova G, Lojek A, Yanakieva I, Kratchanova M. Solid-phase extraction of berries’ anthocyanins and evaluation of their antioxidative properties. Food Chem 2010. [DOI: 10.1016/j.foodchem.2010.05.061] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
19
|
Ambrozova G, Pekarova M, Lojek A. The effect of lipid peroxidation products on reactive oxygen species formation and nitric oxide production in lipopolysaccharide-stimulated RAW 264.7 macrophages. Toxicol In Vitro 2010; 25:145-52. [PMID: 20940037 DOI: 10.1016/j.tiv.2010.10.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Revised: 10/05/2010] [Accepted: 10/06/2010] [Indexed: 01/28/2023]
Abstract
Lipid peroxidation induced by oxidants leads to the formation of highly reactive metabolites. These can affect various immune functions, including reactive oxygen species (ROS) and nitric oxide (NO) production. The aim of the present study was to investigate the effects of lipid peroxidation products (LPPs) - acrolein, 4-hydroxynonenal, and malondialdehyde - on ROS and NO production in RAW 264.7 macrophages and to compare these effects with the cytotoxic properties of LPPs. Macrophages were stimulated with lipopolysaccharide (0.1 μg/ml) and treated with selected LPPs (concentration range: 0.1-100 μM). ATP test, luminol-enhanced chemiluminescence, Griess reaction, Western blotting analysis, amperometric and total peroxyl radical-trapping antioxidant parameter assay were used for determining the LPPs cytotoxicity, ROS and NO production, inducible nitric oxide synthase expression, NO scavenging, and antioxidant properties of LPPs, respectively. Our study shows that the cytotoxic action of acrolein and 4-hydroxynonenal works in a dose- and time-dependent manner. Further, our results imply that acrolein, 4-hydroxynonenal, and malondialdehyde can inhibit, to a different degree, ROS and NO production in stimulated macrophages, partially independently of their toxic effect. Also, changes in enzymatic pathways (especially NADPH-oxidase and nitric oxide synthase inhibition) and NO scavenging properties are included in the downregulation of reactive species formation.
Collapse
Affiliation(s)
- Gabriela Ambrozova
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | | | | |
Collapse
|