1
|
Liu M, Yan L, Lin Z, Wu D, Qiu B, Weng S. CHA-based microarray with Cas12a universal readout for multiple microRNA detection. Mikrochim Acta 2025; 192:293. [PMID: 40214787 DOI: 10.1007/s00604-025-07049-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Accepted: 02/14/2025] [Indexed: 05/11/2025]
Abstract
Hirschsprung's disease (HSCR), a congenital condition characterized by the absence of nerve cells in the intestinal wall, often requires early and accurate diagnosis for optimal patient outcomes. In this study, we developed a novel and ultrasensitive biosensing strategy for the detection of HSCR-related microRNAs (miRNAs) by integrating catalytic hairpin assembly (CHA) with CRISPR-Cas12a technology. A two-stage process consists of array recognition, and a universal readout is designed. In the first stage, target miRNAs are recognized and amplified on a solid-phase microarray, while in the second stage, the accumulated conversion chains which are not related to target sequences, activate Cas12a, leading to the cleavage of reporter DNA and the generation of a fluorescence signal spatially separated from the first stage. The proposed method was validated for the comprehensive detection of HSCR-related miRNAs and demonstrated high sensitivity and specificity. This work represents a significant advancement in miRNA diagnostics and holds potential for broader clinical applications.
Collapse
Affiliation(s)
- Mingkun Liu
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350001, Fujian, China
- General Surgery Department, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Children'S Hospital (Fujian Branch of Shanghai Children'S Medical Center), Fujian Medical University, Fuzhou, Fujian, China
| | - Lei Yan
- General Surgery Department, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Children'S Hospital (Fujian Branch of Shanghai Children'S Medical Center), Fujian Medical University, Fuzhou, Fujian, China
| | - Zhixiong Lin
- General Surgery Department, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Children'S Hospital (Fujian Branch of Shanghai Children'S Medical Center), Fujian Medical University, Fuzhou, Fujian, China
| | - Dianming Wu
- General Surgery Department, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Children'S Hospital (Fujian Branch of Shanghai Children'S Medical Center), Fujian Medical University, Fuzhou, Fujian, China
| | - Bin Qiu
- College of Chemistry, Fuzhou University, Fuzhou, 350108, Fujian, China
| | - Shangeng Weng
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350001, Fujian, China.
| |
Collapse
|
2
|
Yu S, Chen S, Dang Y, Zhou Y, Zhu JJ. An Ultrasensitive Electrochemical Biosensor Integrated by Nicking Endonuclease-Assisted Primer Exchange Reaction Cascade Amplification and DNA Nanosphere-Mediated Electrochemical Signal-Enhanced System for MicroRNA Detection. Anal Chem 2022; 94:14349-14357. [PMID: 36191168 DOI: 10.1021/acs.analchem.2c03015] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Specific and sensitive microRNAs (miRNAs) detection is essential to early cancer diagnosis. The development of these technologies including functional nuclease-mediated target amplification and DNA nanotechnology possesses tremendous potential for the high-performance detection of miRNAs in the accurate diagnosis of disease. In this study, we have established an ultrasensitive electrochemical biosensor by combining nicking endonuclease-assisted primer exchange reaction (PER) cascade amplification with a DNA nanosphere (DNS)-mediated electrochemical signal-enhanced system for the detection of miRNA-21 (miR-21). The cascade amplification is initiated by a nicking endonuclease that can cleave specific DNA substrates and highly amplify translation of the target to single-stranded DNA fragments (sDNA). Then, the PER cascade is powered by strand-displacing polymerase and generates a large amount of nascent single-stranded connector DNA (cDNA) via sDNA triggering of the dumbbell probe (DP), thus achieving the cascade amplification of the target. Finally, the DNS loaded with plenty of electroactive substances can be captured on the electrode via cDNA for further enhancing the electrochemical signal and highly sensitive detection of miR-21. The proposed electrochemical biosensor exhibits a wide detection range of 1 aM to 0.1 nM and a low detection limit of 0.58 aM. The excellent selectivity allows the biosensor to discriminate miR-21 from other miRNAs, even the one base-mismatched sequence. Moreover, the practicability of the biosensor is investigated by analyzing miR-21 in human serum and cancer cell lysate. Therefore, our proposed nicking endonuclease-assisted PER cascade amplification strategy provides a powerful platform for the early detection of miRNA-related disease and molecular diagnosis.
Collapse
Affiliation(s)
- Sha Yu
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, P. R. China
| | - Siyu Chen
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, P. R. China
| | - Yuan Dang
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, P. R. China
| | - Yuanzhen Zhou
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, P. R. China
| | - Jun-Jie Zhu
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, P. R. China.,State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
3
|
Emerging digital PCR technology in precision medicine. Biosens Bioelectron 2022; 211:114344. [DOI: 10.1016/j.bios.2022.114344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/23/2022] [Accepted: 05/03/2022] [Indexed: 12/20/2022]
|
4
|
Treerattrakoon K, Roeksrungruang P, Dharakul T, Japrung D, Faulds K, Graham D, Bamrungsap S. Detection of a miRNA biomarker for cancer diagnosis using SERS tags and magnetic separation. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:1938-1945. [PMID: 35441184 DOI: 10.1039/d2ay00210h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Detection of miR-29a, a biomarker of cancers, using SERS tags and magnetic separation is described. The assay was designed to detect the miR-29a sequence by taking the complementary sequence and splitting it into a capture and detection probe. The SERS tags comprised the highly Raman active molecule 4-mercaptobenzoic acid (4-MBA) and DNA detection probes assembled onto the surface of gold nanorods (AuNRs) through the self-assembly process. The capture DNA conjugated magnetic nanoparticles (MNPs) were applied as capture probes. The detection was based on the hybridisation and sandwich complex formation. The resultant hybridisation-dependent complexes were recovered and enriched from the samples by magnetic separation. The enriched solution containing target miRNA hybridised with capture probes were dropped on a foil-covered slide to form a droplet for SERS analysis. A characteristic spectrum of 4-MBA was observed to indicate the presence of the miR-29a in the samples. The sensitivity of the assay is examined by measuring the SERS signal of the samples containing different concentrations of the miR-29a. The SERS intensity appears to increase with the concentration of miR-29a. The limit of detection (LOD) was found to be 10 pM without any amplification process. In addition, the selectivity and feasibility of the assay in complex media are evaluated with the non-target miRNAs comprising different sequences from the target miR-29a. The system was capable of detecting the target miR-29a specifically with high selectivity. These results suggest that this solution-based SERS platform has a significant capability for simple, sensitive, and selective miR-29a analysis.
Collapse
Affiliation(s)
- Kiatnida Treerattrakoon
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani 12120, Thailand.
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow, UK
| | - Pimporn Roeksrungruang
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani 12120, Thailand.
| | - Tararaj Dharakul
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Deanpen Japrung
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani 12120, Thailand.
| | - Karen Faulds
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow, UK
| | - Duncan Graham
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow, UK
| | - Suwussa Bamrungsap
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani 12120, Thailand.
| |
Collapse
|
5
|
Kitte SA, Bushira FA, Xu C, Wang Y, Li H, Jin Y. Plasmon-Enhanced Nitrogen Vacancy-Rich Carbon Nitride Electrochemiluminescence Aptasensor for Highly Sensitive Detection of miRNA. Anal Chem 2021; 94:1406-1414. [PMID: 34927425 DOI: 10.1021/acs.analchem.1c04726] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The development of biosensors for biologically important substances with ultralow content such as microRNA is of great significance. Herein, a novel surface plasmon-enhanced electrogenerated chemiluminescence-based aptasensor was developed for ultrasensitive sensing of microRNA by using nitrogen vacancy-rich carbon nitride nanosheets as effective luminophores and gold nanoparticles as plasmonic sources. The introduction of nitrogen vacancies improved the electrochemiluminescence behavior due to improved conductance and electrogenerated chemiluminescence activity. The introduction of plasmonic gold nanoparticles increased the electrochemiluminescence signal intensity by more than eightfold. The developed surface plasmon-enhanced electrogenerated chemiluminescence aptasensor exhibited good selectivity, ultrasensitivity, excellent stability, and reproducibility for the determination of microRNA-133a, with a dynamic linear range of 1 aM to 100 pM and a limit of detection about 0.87 aM. Moreover, the surface plasmon-enhanced electrogenerated chemiluminescence sensor obtained a good recovery when detecting the content of microRNA in actual serum.
Collapse
Affiliation(s)
- Shimeles Addisu Kitte
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.,Department of Chemistry, College of Natural Sciences, Jimma University, P.O. Box 378, Jimma 378, Ethiopia
| | - Fuad Abduro Bushira
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.,Department of Chemistry, College of Natural Sciences, Jimma University, P.O. Box 378, Jimma 378, Ethiopia.,University of Science and Technology of China, Hefei 230026, P. R. China
| | - Chen Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.,University of Science and Technology of China, Hefei 230026, P. R. China
| | - Yong Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.,University of Science and Technology of China, Hefei 230026, P. R. China
| | - Haijuan Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.,University of Science and Technology of China, Hefei 230026, P. R. China
| | - Yongdong Jin
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.,University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
6
|
Cui J, Guan Q, Lv H, Fu K, Fu R, Feng Z, Chen F, Zhang G. Three-dimensional nanorod array for label-free surface-enhanced Raman spectroscopy analysis of microRNA pneumoconiosis biomarkers. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 261:120015. [PMID: 34098483 DOI: 10.1016/j.saa.2021.120015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/12/2021] [Accepted: 05/22/2021] [Indexed: 06/12/2023]
Abstract
Novel approaches are required to overcome the challenges associated with conventional microRNA (miRNA) detection methods and realize the early diagnosis of diseases. This work describes a novel label-free surface-enhanced Raman spectroscopy (SERS) method for the detection of the miRNA biomarkers for pneumoconiosis on a three-dimensional Au-coated ZnO nanorod array (Au-ZnO NRA). The Au-ZnO NRA substrate, which was fabricated via a modified seeding method combined with ion sputtering, provided a high enhancement factor and good spatial uniformity of the signal. With the Au-ZnO NRA, the SERS spectra of miRNAs were obtained in 30 s without labeling at room temperature. Density functional theory calculations were performed to understand the structural fingerprints of the miRNAs. Principal component analysis was carried out to identify the pneumoconiosis biomarkers based on their fingerprint SERS signals. Dual-logarithm linear relationships between the SERS intensity and the miRNA concentration were proposed for quantitative analysis. The label-free SERS method has limits of detection on the femtomolar level, which is much lower than the concentrations of the miRNA biomarkers for pneumoconiosis in lung fibroblasts.
Collapse
Affiliation(s)
- Jingcheng Cui
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, Shandong, China
| | - Qingxiang Guan
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, Shandong, China
| | - Han Lv
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, Shandong, China
| | - Kaifang Fu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, Shandong, China
| | - Rao Fu
- School of Information and Electrical Engineering, Shandong Jianzhu University, Jinan 250101, Shandong, China; Department of Electrical Engineering, SUNY at Buffalo, Buffalo 14228, NY, USA
| | - Zhenyu Feng
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Feiyong Chen
- Research Institute of Resources and Environmental Innovation, Shandong Jianzhu University, Jinan 250101, China
| | - Guiqin Zhang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, Shandong, China.
| |
Collapse
|
7
|
Optimizing surface modification of silicon nanowire field-effect transistors by polyethylene glycol for MicroRNA detection. Colloids Surf B Biointerfaces 2021; 209:112142. [PMID: 34666283 DOI: 10.1016/j.colsurfb.2021.112142] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/24/2021] [Accepted: 09/25/2021] [Indexed: 11/22/2022]
Abstract
MicroRNA (miRNA) sensing plays an essential role in the diagnosis of several diseases, especially cancers, for appropriate intervention and treatment. However, quantifying miRNA demands highly sensitive and selective assays which can distinguish analogous sequences with low abundance in bio-samples and determine wide range of concentrations. In this report, we present a novel technique satisfying all those requirements by modifying silicon nanowire field-effect transistors (SiNWFETs) with 2-component mixed self-assembled monolayers (mSAMs) of polyethylene glycol (PEG) at different ratios (silane-PEG-NH2:silane-PEG-OH = 1:1, 1:3, and 1:5) and glutaraldehyde to immobilize DNA probes for miRNA-21 detection, a biomarker in several types of cancers. Empirical results reveal that all the fabricated PEG-SiNWFET DNA biosensors could quantify miRNA-21 within 1 fM - 10 pM. Especially, the ones modified with silane-PEG-NH2:silane-PEG-OH = 1:3 exhibited an outstanding performance to recognize miRNA-21 at an ultra-low concentration of 10 aM in the dynamic range up to 6 orders of magnitude (10 aM - 10 pM). This approach is more convenient, analytical competitive, and cost-effective in comparison with currently used methods for nucleic acid testing because of label- and amplification-free characteristics. It is therefore not only feasible for miRNA detection by SiNWFET-based biosensors but also potential for clinical applications of disease diagnosis with oligonucleotide biomarkers.
Collapse
|
8
|
Kaysheva AL, Isaeva AI, Pleshakova TO, Shumov ID, Valueva AA, Ershova MO, Ivanova IA, Ziborov VS, Iourov IY, Vorsanova SG, Ryabtsev SV, Archakov AI, Ivanov YD. Detection of Circulating Serum microRNA/Protein Complexes in ASD Using Functionalized Chips for an Atomic Force Microscope. Molecules 2021; 26:5979. [PMID: 34641523 PMCID: PMC8512613 DOI: 10.3390/molecules26195979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/17/2021] [Accepted: 09/29/2021] [Indexed: 11/17/2022] Open
Abstract
MicroRNAs, which circulate in blood, are characterized by high diagnostic value; in biomedical research, they can be considered as candidate markers of various diseases. Mature microRNAs of glial cells and neurons can cross the blood-brain barrier and can be detected in the serum of patients with autism spectrum disorders (ASD) as components of macrovesicles, macromolecular protein and low-density lipoprotein particles. In our present study, we have proposed an approach, in which microRNAs in protein complexes can be concentrated on the surface of AFM chips with oligonucleotide molecular probes, specific against the target microRNAs. MicroRNAs, associated with the development of ASD in children, were selected as targets. The chips with immobilized molecular probes were incubated in serum samples of ASD patients and healthy volunteers. By atomic force microscopy (AFM), objects on the AFM chip surface have been revealed after incubation in the serum samples. The height of these objects amounted to 10 nm and 6 nm in the case of samples of ASD patients and healthy volunteers, respectively. MALDI-TOF-MS analysis of protein components on the chip surface allowed us to identify several cell proteins. These proteins are involved in the binding of nucleic acids (GBG10, RT24, RALYL), in the organization of proteasomes and nucleosomes (PSA4, NP1L4), and participate in the functioning of the channel of active potassium transport (KCNE5, KCNV2).
Collapse
Affiliation(s)
- Anna L. Kaysheva
- Laboratory of Nanobiotechnology, Institute of Biomedical Chemistry, Pogodinskaya St. 10/8, 119121 Moscow, Russia; (A.L.K.); (T.O.P.); (I.D.S.); (A.A.V.); (M.O.E.); (I.A.I.); (V.S.Z.); (A.I.A.); (Y.D.I.)
| | - Arina I. Isaeva
- Laboratory of Nanobiotechnology, Institute of Biomedical Chemistry, Pogodinskaya St. 10/8, 119121 Moscow, Russia; (A.L.K.); (T.O.P.); (I.D.S.); (A.A.V.); (M.O.E.); (I.A.I.); (V.S.Z.); (A.I.A.); (Y.D.I.)
| | - Tatyana O. Pleshakova
- Laboratory of Nanobiotechnology, Institute of Biomedical Chemistry, Pogodinskaya St. 10/8, 119121 Moscow, Russia; (A.L.K.); (T.O.P.); (I.D.S.); (A.A.V.); (M.O.E.); (I.A.I.); (V.S.Z.); (A.I.A.); (Y.D.I.)
| | - Ivan D. Shumov
- Laboratory of Nanobiotechnology, Institute of Biomedical Chemistry, Pogodinskaya St. 10/8, 119121 Moscow, Russia; (A.L.K.); (T.O.P.); (I.D.S.); (A.A.V.); (M.O.E.); (I.A.I.); (V.S.Z.); (A.I.A.); (Y.D.I.)
| | - Anastasia A. Valueva
- Laboratory of Nanobiotechnology, Institute of Biomedical Chemistry, Pogodinskaya St. 10/8, 119121 Moscow, Russia; (A.L.K.); (T.O.P.); (I.D.S.); (A.A.V.); (M.O.E.); (I.A.I.); (V.S.Z.); (A.I.A.); (Y.D.I.)
| | - Maria O. Ershova
- Laboratory of Nanobiotechnology, Institute of Biomedical Chemistry, Pogodinskaya St. 10/8, 119121 Moscow, Russia; (A.L.K.); (T.O.P.); (I.D.S.); (A.A.V.); (M.O.E.); (I.A.I.); (V.S.Z.); (A.I.A.); (Y.D.I.)
| | - Irina A. Ivanova
- Laboratory of Nanobiotechnology, Institute of Biomedical Chemistry, Pogodinskaya St. 10/8, 119121 Moscow, Russia; (A.L.K.); (T.O.P.); (I.D.S.); (A.A.V.); (M.O.E.); (I.A.I.); (V.S.Z.); (A.I.A.); (Y.D.I.)
| | - Vadim S. Ziborov
- Laboratory of Nanobiotechnology, Institute of Biomedical Chemistry, Pogodinskaya St. 10/8, 119121 Moscow, Russia; (A.L.K.); (T.O.P.); (I.D.S.); (A.A.V.); (M.O.E.); (I.A.I.); (V.S.Z.); (A.I.A.); (Y.D.I.)
- Laboratory of Shock Wave Impacts, Joint Institute for High Temperatures of the Russian Academy of Sciences, Izhorskaya St. 13 Bd.2, 125412 Moscow, Russia
| | | | - Svetlana G. Vorsanova
- Veltischev Research and Clinical Institute for Pediatrics, Pirogov Russian National Research Medical University, Ministry of Health of Russian Federation, Taldomskaya St. 2, 125412 Moscow, Russia;
| | | | - Alexander I. Archakov
- Laboratory of Nanobiotechnology, Institute of Biomedical Chemistry, Pogodinskaya St. 10/8, 119121 Moscow, Russia; (A.L.K.); (T.O.P.); (I.D.S.); (A.A.V.); (M.O.E.); (I.A.I.); (V.S.Z.); (A.I.A.); (Y.D.I.)
| | - Yuri D. Ivanov
- Laboratory of Nanobiotechnology, Institute of Biomedical Chemistry, Pogodinskaya St. 10/8, 119121 Moscow, Russia; (A.L.K.); (T.O.P.); (I.D.S.); (A.A.V.); (M.O.E.); (I.A.I.); (V.S.Z.); (A.I.A.); (Y.D.I.)
| |
Collapse
|
9
|
Mathew R, Mattei V, Al Hashmi M, Tomei S. Updates on the Current Technologies for microRNA Profiling. Microrna 2021; 9:17-24. [PMID: 31264553 DOI: 10.2174/2211536608666190628112722] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/16/2019] [Accepted: 05/31/2019] [Indexed: 12/21/2022]
Abstract
MicroRNAs are RNA molecules of ~22 nt length that regulate gene expression posttranscriptionally. The role of miRNAs has been reported in many cellular processes including apoptosis, cell differentiation, development and proliferation. The dysregulated expression of miRNAs has been proposed as a biomarker for the diagnosis, onset and prognosis of human diseases. The utility of miRNA profiles to identify and discriminate patients from healthy individuals is highly dependent on the sensitivity and specificity of the technologies used for their detection and the quantity and quality of starting material. In this review, we present an update of the current technologies for the extraction, QC assessment and detection of miRNAs with special focus to the most recent methods, discussing their advantages as well as their shortcomings.
Collapse
Affiliation(s)
- Rebecca Mathew
- Omics Core and Biorepository, Sidra Medicine, Out Patient Clinic, Doha, Qatar
| | - Valentina Mattei
- Omics Core and Biorepository, Sidra Medicine, Out Patient Clinic, Doha, Qatar
| | - Muna Al Hashmi
- Omics Core and Biorepository, Sidra Medicine, Out Patient Clinic, Doha, Qatar
| | - Sara Tomei
- Omics Core and Biorepository, Sidra Medicine, Out Patient Clinic, Doha, Qatar
| |
Collapse
|
10
|
Cui MR, Gao F, Shu ZY, Ren SK, Zhu D, Chao J. Nucleic Acids-based Functional Nanomaterials for Bioimaging. JOURNAL OF ANALYSIS AND TESTING 2021. [DOI: 10.1007/s41664-021-00169-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
11
|
Tran HV, Piro B. Recent trends in application of nanomaterials for the development of electrochemical microRNA biosensors. Mikrochim Acta 2021; 188:128. [PMID: 33740140 DOI: 10.1007/s00604-021-04784-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/10/2021] [Indexed: 01/10/2023]
Abstract
The biology of the late twentieth century was marked by the discovery in 1993 of a new class of small non-coding ribonucleic acids (RNAs) which play major roles in regulating the translation and degradation of messenger RNAs. These small RNAs (18-25 nucleotides), called microRNAs (miRNAs), are implied in several biological processes such as differentiation, metabolic homeostasis, or cellular apoptosis and proliferation. The discovery in 2008 that the presence of miRNAs in body fluids could be correlated with cancer (prostate, breast, colon, lung, etc.) or other diseases (diabetes, heart diseases, etc.) has made them new key players as biomarkers. Therefore, miRNA detection is of considerable significance in both disease diagnosis and in the study of miRNA function. Until these days, more than 1200 miRNAs have been identified. However, traditional methods developed for conventional DNA does not apply satisfactorily for miRNA, in particular due to the low expression level of these miRNA in biofluids, and because they are very short strands. Electrochemical biosensors can provide this sensitivity and also offer the advantages of mass fabrication, low-cost, and potential decentralized analysis, which has wide application for microRNAs sensing, with many promising results already reported. The present review summarizes some newly developed electrochemical miRNA detection methods.
Collapse
Affiliation(s)
- Hoang Vinh Tran
- School of Chemical Engineering, Hanoi University of Science and Technology (HUST), 1st Dai Co Viet Road, Hanoi, Vietnam.
| | - Benoit Piro
- ITODYS, CNRS, Université de Paris, F-75006, Paris, France
| |
Collapse
|
12
|
Bidar N, Oroojalian F, Baradaran B, Eyvazi S, Amini M, Jebelli A, Hosseini SS, Pashazadeh-Panahi P, Mokhtarzadeh A, de la Guardia M. Monitoring of microRNA using molecular beacons approaches: Recent advances. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.116021] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
13
|
Sánchez-Visedo A, Gallego B, Royo LJ, Soldado A, Valledor M, Ferrero FJ, Campo JC, Costa-Fernández JM, Fernández-Argüelles MT. Visual detection of microRNA146a by using RNA-functionalized gold nanoparticles. Mikrochim Acta 2020; 187:192. [PMID: 32124045 DOI: 10.1007/s00604-020-4148-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 01/26/2020] [Indexed: 01/07/2023]
Abstract
Gold nanoparticles of different sizes have been synthesized and surface-functionalized with selected RNA probes in order to develop a rapid, low-cost and sensitive method for detection of microRNA146a (miR146a). The strategy is based on the change of colour that can be observed visually after aggregation of the RNA modified-gold nanoparticles (AuNPs) in presence of miR146a. Experimental conditions have been carefully selected in order to obtain a good sensitivity that allows to perform visual detection of microRNA at the nM level, achieving a detection limit of 5 nM. Good repeatability and selectivity versus other sequences that only differ from miR146a in 3 bases was achieved. miR146a has been described as one of the main microRNA involved in the immune response of bovine mastitis, being expressed in tissue, blood and milk samples. The method was successfully applied to the detection of miR146a in raw cow milk samples. The present scheme constitutes a rapid and low-cost alternative to perform highly sensitive detection of microRNA without the need of instrumentation and amplification steps for the early detection of bovine mastitis in the agrofood industry. Graphical abstract Schematic representation of the assay based on aggregation of RNA-modified gold nanoparticles (blue) in presence of microRNA146a generating a dark blue spot onto a solid support, versus a pink spot observed in absence of miR146a due to dispersed gold nanoparticles (red).
Collapse
Affiliation(s)
- Adrián Sánchez-Visedo
- Department of Physical and Analytical Chemistry, University of Oviedo, Avenida Julian Clavería 8, 33006, Oviedo (Asturias), Spain
| | - Borja Gallego
- Department of Physical and Analytical Chemistry, University of Oviedo, Avenida Julian Clavería 8, 33006, Oviedo (Asturias), Spain
| | - Luis José Royo
- Department of Animal Nutrition, Grassland and Forages, Regional Institute for Research and Agro-Food Development (SERIDA), Carretera Oviedo S/N, 33300, Villaviciosa (Asturias), Spain.
| | - Ana Soldado
- Department of Animal Nutrition, Grassland and Forages, Regional Institute for Research and Agro-Food Development (SERIDA), Carretera Oviedo S/N, 33300, Villaviciosa (Asturias), Spain
| | - Marta Valledor
- Department of Electrical, Electronic, Computers and Systems Engineering, University of Oviedo, Campus Gijón, 33204, Gijón, Spain
| | - Francisco Javier Ferrero
- Department of Electrical, Electronic, Computers and Systems Engineering, University of Oviedo, Campus Gijón, 33204, Gijón, Spain
| | - Juan Carlos Campo
- Department of Electrical, Electronic, Computers and Systems Engineering, University of Oviedo, Campus Gijón, 33204, Gijón, Spain
| | - José Manuel Costa-Fernández
- Department of Physical and Analytical Chemistry, University of Oviedo, Avenida Julian Clavería 8, 33006, Oviedo (Asturias), Spain
| | - María Teresa Fernández-Argüelles
- Department of Physical and Analytical Chemistry, University of Oviedo, Avenida Julian Clavería 8, 33006, Oviedo (Asturias), Spain.
| |
Collapse
|
14
|
Peng H, Newbigging AM, Reid MS, Uppal JS, Xu J, Zhang H, Le XC. Signal Amplification in Living Cells: A Review of microRNA Detection and Imaging. Anal Chem 2019; 92:292-308. [DOI: 10.1021/acs.analchem.9b04752] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Hanyong Peng
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, 10-102 Clinical
Sciences Building, Edmonton, Alberta T6G 2G3, Canada
| | - Ashley M. Newbigging
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, 10-102 Clinical
Sciences Building, Edmonton, Alberta T6G 2G3, Canada
| | - Michael S. Reid
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, 10-102 Clinical
Sciences Building, Edmonton, Alberta T6G 2G3, Canada
| | - Jagdeesh S. Uppal
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, 10-102 Clinical
Sciences Building, Edmonton, Alberta T6G 2G3, Canada
| | - Jingyang Xu
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, 10-102 Clinical
Sciences Building, Edmonton, Alberta T6G 2G3, Canada
| | - Hongquan Zhang
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, 10-102 Clinical
Sciences Building, Edmonton, Alberta T6G 2G3, Canada
| | - X. Chris Le
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, 10-102 Clinical
Sciences Building, Edmonton, Alberta T6G 2G3, Canada
| |
Collapse
|
15
|
Azab SM, Elhakim HK, Fekry AM. The strategy of nanoparticles and the flavone chrysin to quantify miRNA-let 7a in zepto-molar level: Its application as tumor marker. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.06.111] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
16
|
Yaralı E, Kanat E, Erac Y, Erdem A. Ionic Liquid Modified Single‐use Electrode Developed for Voltammetric Detection of miRNA‐34a and its Application to Real Samples. ELECTROANAL 2019. [DOI: 10.1002/elan.201900353] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Ece Yaralı
- Department of Analytical Chemistry, Faculty of PharmacyEge University, Bornova 35100 Izmir Turkey
- Department of Materials Science and Engineering, Graduate School of Natural and Applied ScienceEge University Izmir Turkey
| | - Erkin Kanat
- Department of Analytical Chemistry, Faculty of PharmacyEge University, Bornova 35100 Izmir Turkey
- Department of Biotechnology, Graduate School of Natural and Applied ScienceEge University Izmir Turkey
| | - Yasemin Erac
- Department of Pharmacology, Faculty of PharmacyEge University Izmir Turkey
| | - Arzum Erdem
- Department of Analytical Chemistry, Faculty of PharmacyEge University, Bornova 35100 Izmir Turkey
- Department of Materials Science and Engineering, Graduate School of Natural and Applied ScienceEge University Izmir Turkey
- Department of Biotechnology, Graduate School of Natural and Applied ScienceEge University Izmir Turkey
| |
Collapse
|
17
|
Huang J, Shangguan J, Guo Q, Ma W, Wang H, Jia R, Ye Z, He X, Wang K. Colorimetric and fluorescent dual-mode detection of microRNA based on duplex-specific nuclease assisted gold nanoparticle amplification. Analyst 2019; 144:4917-4924. [PMID: 31313769 DOI: 10.1039/c9an01013k] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
MicroRNAs (miRNAs) are attractive candidates for biomarkers for early cancer diagnosis, and play vital roles in physiological and pathological processes. In this work, we developed a colorimetric and fluorescent dual-mode sensor for miRNA detection based on the optical properties of gold nanoparticles (AuNPs) and the duplex-specific nuclease (DSN)-assisted signal amplification technique. In brief, FAM labelled hairpin probes (HPs) were immobilized on AuNPs, and fluorescence was efficiently quenched by the vicinity of the fluorophores to the AuNPs surface. In the presence of target miRNAs, the HPs could specifically hybridize with miRNAs and the DNA strand in the DNA/RNA heteroduplexes could be subsequently hydrolyzed by DSN. As a result, numbers of fluorophores were released into the solution, resulting in obvious fluorescence signal recovery. Meanwhile, the target miRNAs were able to participate in other hybridization reactions. With the DSN-assisted signal amplification technique, lots of gold nanoparticles were produced with short-chain DNA on their surface, which could aggregate in salt solution and result in a colorimetric detection. The proposed dual-mode strategy offers a sensitive, accurate and selective detection method for miRNAs. One reason is that the stem of the HPs was elaborately designed to avoid hydrolyzation by DSN under optimal conditions, which ensures a relatively low background and high sensitivity. The other is that the dual-mode strategy is more beneficial for enhancing the accuracy and reproducibility of the measurements. Moreover, the unique selective-cutting ability and single-base mismatch differentiation capability of the DSN also give rise to a satisfactory selectivity. This demonstrated that the developed method could quantitatively detect miR-21 down to 50 pM with a linear calibration range from 50 pM to 1 nM, and the analytical assay of target miRNAs in cell lysate samples revealed its great potential for application in biomedical research and clinical diagnostics.
Collapse
Affiliation(s)
- Jin Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China.
| | - Jingfang Shangguan
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China.
| | - Qiuping Guo
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China.
| | - Wenjie Ma
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China.
| | - Huizhen Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China.
| | - Ruichen Jia
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China.
| | - Zi Ye
- High School of Yali, Changsha, Hunan 410007, China
| | - Xiaoxiao He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China.
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China.
| |
Collapse
|
18
|
Dual-SERS biosensor for one-step detection of microRNAs in exosome and residual plasma of blood samples for diagnosing pancreatic cancer. Biosens Bioelectron 2019; 130:204-213. [DOI: 10.1016/j.bios.2019.01.039] [Citation(s) in RCA: 185] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/07/2019] [Accepted: 01/20/2019] [Indexed: 12/19/2022]
|
19
|
Advanced methods for microRNA biosensing: a problem-solving perspective. Anal Bioanal Chem 2019; 411:4425-4444. [PMID: 30710205 DOI: 10.1007/s00216-019-01621-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/07/2019] [Accepted: 01/16/2019] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRNAs) present several features that make them more difficult to analyze than DNA and RNA. For this reason, efforts have been made in recent years to develop innovative platforms for the efficient detection of microRNAs. The aim of this review is to provide an overview of the sensing strategies able to deal with drawbacks and pitfalls related to microRNA detection. With a critical perspective of the field, we identify the main challenges to be overcome in microRNA sensing, and describe the areas where several innovative approaches are likely to come for managing those issues that put limits on improvement to the performances of the current methods. Then, in the following sections, we critically discuss the contribution of the most promising approaches based on the peculiar properties of nanomaterials or nanostructures and other hybrid strategies which are envisaged to support the adoption of these new methods useful for the detection of miRNA as biomarkers of practical clinical utility. Graphical abstract ᅟ.
Collapse
|
20
|
Ouyang T, Liu Z, Han Z, Ge Q. MicroRNA Detection Specificity: Recent Advances and Future Perspective. Anal Chem 2019; 91:3179-3186. [DOI: 10.1021/acs.analchem.8b05909] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Tinglan Ouyang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Zhiyu Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Zhiyi Han
- Department of Liver Diseases, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen 518033, China
| | - Qinyu Ge
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
21
|
Boriachek K, Umer M, Islam MN, Gopalan V, Lam AK, Nguyen NT, Shiddiky MJA. An amplification-free electrochemical detection of exosomal miRNA-21 in serum samples. Analyst 2019; 143:1662-1669. [PMID: 29512659 DOI: 10.1039/c7an01843f] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Recent evidence suggests that small non-coding RNAs such as microRNA (miRNA) encapsulated in exosomes represent an important mechanism of communication between the cells. Exosomal miRNAs play an important role in carcinogenesis via enhancing the cell to cell communication and targeting the cell growth molecular pathways which in turn facilitate metastasis in cancers. Despite progressive advances, the current methods for the exosomal miRNA detection mostly rely on labor-intensive sequencing approaches which are often prone to amplification bias and require costly and bulky equipment. Herein, we report an electrochemical approach for the detection of cancer-derived exosomal miRNAs in human serum samples by selectively isolating the target miRNA using magnetic beads pre-functionalized with capture probes and then directly adsorbing the targets onto a gold electrode surface. The level of adsorbed miRNA is detected electrochemically in the presence of an [Fe(CN)6]4-/3- redox system. This method enabled an excellent detection sensitivity of 1.0 pM with a relative standard deviation (%RSD) of <5.5% in cancer cells and serum samples (n = 8) collected from patients with colorectal adenocarcinoma (CRC). We believe that our approach could be useful in clinical settings for the quantification of exosomal miRNA in cancer patients.
Collapse
Affiliation(s)
- Kseniia Boriachek
- School of Environment and Science, Griffith University, Nathan Campus, QLD 4111, Australia.
| | | | | | | | | | | | | |
Collapse
|
22
|
Leonetti A, Assaraf YG, Veltsista PD, El Hassouni B, Tiseo M, Giovannetti E. MicroRNAs as a drug resistance mechanism to targeted therapies in EGFR-mutated NSCLC: Current implications and future directions. Drug Resist Updat 2019; 42:1-11. [PMID: 30544036 DOI: 10.1016/j.drup.2018.11.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 11/23/2018] [Accepted: 11/24/2018] [Indexed: 12/20/2022]
Abstract
The introduction of EGFR-tyrosine kinase inhibitors (TKIs) has revolutionized the treatment and prognosis of non-small cell lung cancer (NSCLC) patients harboring epidermal growth factor receptor (EGFR) mutations. However, these patients display disease progression driven by the onset of acquired mechanisms of drug resistance that limit the efficacy of EGFR-TKI to no longer than one year. Moreover, a small fraction of EGFR-mutated NSCLC patients does not benefit from this targeted treatment due to primary (i.e. intrinsic) mechanisms of resistance that preexist prior to TKI drug treatment. Research efforts are focusing on deciphering the distinct molecular mechanisms underlying drug resistance, which should prompt the development of novel antitumor agents that surmount such chemoresistance modalities. The capability of microRNAs (miRNAs) to regulate the expression of many oncogenic pathways and their central role in lung cancer progression, provided new directions for research on prognostic biomarkers, as well as innovative tools for predicting patients' response to systemic therapies. Recent evidence suggests that modulation of key miRNAs may also reverse oncogenic signaling pathways, and potentiate the cytotoxic effect of anti-cancer therapies. In this review, we focus on the putative emerging role of miRNAs in modulating drug resistance to EGFR-TKI treatment in EGFR-mutated NSCLC. Moreover, we discuss the current implications of miRNAs analyses in the clinical setting, using both tissue and liquid biopsies, as well as the future potential use of miRNA-based therapies in overcoming resistance to targeted agents like TKIs.
Collapse
Affiliation(s)
- Alessandro Leonetti
- Medical Oncology Unit, University Hospital of Parma, 43126, Parma, Italy; Department of Medical Oncology, Amsterdam University Medical Center, VU University, 1081 HV Amsterdam, the Netherlands
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa, 3200000, Israel
| | - Paraskevi D Veltsista
- Department of Medical Oncology, Amsterdam University Medical Center, VU University, 1081 HV Amsterdam, the Netherlands
| | - Btissame El Hassouni
- Department of Medical Oncology, Amsterdam University Medical Center, VU University, 1081 HV Amsterdam, the Netherlands
| | - Marcello Tiseo
- Medical Oncology Unit, University Hospital of Parma, 43126, Parma, Italy
| | - Elisa Giovannetti
- Department of Medical Oncology, Amsterdam University Medical Center, VU University, 1081 HV Amsterdam, the Netherlands; Cancer Pharmacology Lab, AIRC Start-Up Unit, University of Pisa and Fondazione Pisana per la Scienza, 56100 Pisa, Italy.
| |
Collapse
|
23
|
Elhakim HK, Azab SM, Fekry AM. A novel simple biosensor containing silver nanoparticles/propolis (bee glue) for microRNA let-7a determination. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 92:489-495. [DOI: 10.1016/j.msec.2018.06.063] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 05/16/2018] [Accepted: 06/28/2018] [Indexed: 12/16/2022]
|
24
|
An innovative paradigm of methods in microRNAs detection: highlighting DNAzymes, the illuminators. Biosens Bioelectron 2018; 107:123-144. [DOI: 10.1016/j.bios.2018.02.020] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 01/22/2018] [Accepted: 02/07/2018] [Indexed: 12/15/2022]
|
25
|
Sun J, Pi F, Ji J, Lei H, Gao Z, Zhang Y, Habimana JDD, Li Z, Sun X. Ultrasensitive “FRET-SEF” Probe for Sensing and Imaging MicroRNAs in Living Cells Based on Gold Nanoconjugates. Anal Chem 2018; 90:3099-3108. [DOI: 10.1021/acs.analchem.7b04051] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jiadi Sun
- State Key Laboratory of Food Science and Technology,;School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, People’s Republic of China
| | - Fuwei Pi
- State Key Laboratory of Food Science and Technology,;School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, People’s Republic of China
| | - Jian Ji
- State Key Laboratory of Food Science and Technology,;School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, People’s Republic of China
| | - Hongtao Lei
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, Guangdong Province, People’s Republic of China
| | - Zhixian Gao
- Institute of Hygienic and Environmental Medicine, Tianjin 300050, People’s Republic of China
| | - Yinzhi Zhang
- State Key Laboratory of Food Science and Technology,;School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, People’s Republic of China
| | - Jean de Dieu Habimana
- State Key Laboratory of Food Science and Technology,;School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, People’s Republic of China
| | - Zaijun Li
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, People’s Republic of China
| | - Xiulan Sun
- State Key Laboratory of Food Science and Technology,;School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, People’s Republic of China
| |
Collapse
|
26
|
Kalogianni DP, Kalligosfyri PM, Kyriakou IK, Christopoulos TK. Advances in microRNA analysis. Anal Bioanal Chem 2017; 410:695-713. [DOI: 10.1007/s00216-017-0632-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 08/28/2017] [Accepted: 09/11/2017] [Indexed: 12/14/2022]
|
27
|
Fang CS, Kim KS, Yu B, Jon S, Kim MS, Yang H. Ultrasensitive Electrochemical Detection of miRNA-21 Using a Zinc Finger Protein Specific to DNA-RNA Hybrids. Anal Chem 2017; 89:2024-2031. [PMID: 28208259 DOI: 10.1021/acs.analchem.6b04609] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Both high sensitivity and high specificity are crucial for detection of miRNAs that have emerged as important clinical biomarkers. Just Another Zinc finger proteins (JAZ, ZNF346) bind preferably (but nonsequence-specifically) to DNA-RNA hybrids over single-stranded RNAs, single-stranded DNAs, and double-stranded DNAs. We present an ultrasensitive and highly specific electrochemical method for miRNA-21 detection based on the selective binding of JAZ to the DNA-RNA hybrid formed between a DNA capture probe and a target miRNA-21. This enables us to use chemically stable DNA as a capture probe instead of RNA as well as to apply a standard sandwich-type assay format to miRNA detection. High signal amplification is obtained by (i) enzymatic amplification by alkaline phosphatase (ALP) coupled with (ii) electrochemical-chemical-chemical (ECC) redox cycling involving an ALP product (hydroquinone). Low nonspecific adsorption of ALP-conjugated JAZ is obtained using a polymeric self-assembled-monolayer-modified and casein-treated indium-tin oxide electrode. The detection method can discriminate between target miRNA-21 and nontarget nucleic acids (DNA-DNA hybrid, single-stranded DNA, miRNA-125b, miRNA-155, single-base mismatched miRNA, and three-base mismatched miRNA). The detection limits for miRNA-21 in buffer and 10-fold diluted serum are approximately 2 and 30 fM, respectively, indicating that the detection method is ultrasensitive. This detection method can be readily extended to multiplex detection of miRNAs with only one ALP-conjugated JAZ probe due to its nonsequence-specific binding character. We also believe that the method could offer a promising solution for point-of-care testing of miRNAs in body fluids.
Collapse
Affiliation(s)
- Chiew San Fang
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University , Busan 46241, Korea
| | - Kwang-Sun Kim
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University , Busan 46241, Korea
| | - Byeongjun Yu
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141, Korea
| | - Sangyong Jon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141, Korea
| | - Moon-Soo Kim
- Department of Chemistry, Western Kentucky University , Bowling Green, Kentucky 42101, United States
| | - Haesik Yang
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University , Busan 46241, Korea
| |
Collapse
|
28
|
Toren P, Ozgur E, Bayindir M. Oligonucleotide-based label-free detection with optical microresonators: strategies and challenges. LAB ON A CHIP 2016; 16:2572-2595. [PMID: 27306702 DOI: 10.1039/c6lc00521g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
This review targets diversified oligonucleotide-based biodetection techniques, focusing on the use of microresonators of whispering gallery mode (WGM) type as optical biosensors mostly integrated with lab-on-a-chip systems. On-chip and microfluidics combined devices along with optical microresonators provide rapid, robust, reproducible and multiplexed biodetection abilities in considerably small volumes. We present a detailed overview of the studies conducted so far, including biodetection of various oligonucleotide biomarkers as well as deoxyribonucleic acids (DNAs), ribonucleic acids (RNAs) and proteins. We particularly advert to chemical surface modifications for specific and selective biosensing.
Collapse
Affiliation(s)
- Pelin Toren
- Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey. and UNAM-National Nanotechnology Research Center, Bilkent University, 06800 Ankara, Turkey
| | - Erol Ozgur
- Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey. and UNAM-National Nanotechnology Research Center, Bilkent University, 06800 Ankara, Turkey
| | - Mehmet Bayindir
- Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey. and UNAM-National Nanotechnology Research Center, Bilkent University, 06800 Ankara, Turkey and Department of Physics, Bilkent University, 06800 Ankara, Turkey
| |
Collapse
|
29
|
Schwarzkopf M, Pierce NA. Multiplexed miRNA northern blots via hybridization chain reaction. Nucleic Acids Res 2016; 44:e129. [PMID: 27270083 PMCID: PMC5009741 DOI: 10.1093/nar/gkw503] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Accepted: 05/24/2016] [Indexed: 11/13/2022] Open
Abstract
Northern blots enable detection of a target RNA of interest in a biological sample using standard benchtop equipment. miRNAs are the most challenging targets as they must be detected with a single short nucleic acid probe. With existing approaches, it is cumbersome to perform multiplexed blots in which several RNAs are detected simultaneously, impeding the study of interacting regulatory elements. Here, we address this shortcoming by demonstrating multiplexed northern blotting based on the mechanism of hybridization chain reaction (HCR). With this approach, nucleic acid probes complementary to RNA targets trigger chain reactions in which fluorophore-labeled DNA hairpins self-assemble into tethered fluorescent amplification polymers. The programmability of HCR allows multiple amplifiers to operate simultaneously and independently within a blot, enabling straightforward multiplexing. We demonstrate simultaneous detection of three endogenous miRNAs in total RNA extracted from 293T and HeLa cells. For a given target, HCR signal scales linearly with target abundance, enabling relative and absolute quantitation. Using non-radioactive HCR, sensitive and selective miRNA detection is achieved using 2'OMe-RNA probes. The HCR northern blot protocol takes ∼1.5 days independent of the number of target RNAs.
Collapse
Affiliation(s)
- Maayan Schwarzkopf
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Niles A Pierce
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA Division of Engineering & Applied Science, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
30
|
Affiliation(s)
- Richard M. Graybill
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, IL 61801
| | - Ryan C. Bailey
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, IL 61801
| |
Collapse
|
31
|
Csorba T, Kontra L, Burgyán J. viral silencing suppressors: Tools forged to fine-tune host-pathogen coexistence. Virology 2015; 479-480:85-103. [DOI: 10.1016/j.virol.2015.02.028] [Citation(s) in RCA: 374] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 01/31/2015] [Accepted: 02/16/2015] [Indexed: 12/27/2022]
|
32
|
Ferrier DC, Shaver MP, Hands PJW. Micro- and nano-structure based oligonucleotide sensors. Biosens Bioelectron 2015; 68:798-810. [PMID: 25655465 DOI: 10.1016/j.bios.2015.01.031] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 01/12/2015] [Accepted: 01/13/2015] [Indexed: 12/26/2022]
Abstract
This paper presents a review of micro- and nano-structure based oligonucleotide detection and quantification techniques. The characteristics of such devices make them very attractive for Point-of-Care or On-Site-Testing biosensing applications. Their small scale means that they can be robust and portable, their compatibility with modern CMOS electronics means that they can easily be incorporated into hand-held devices and their suitability for mass production means that, out of the different approaches to oligonucleotide detection, they are the most suitable for commercialisation. This review discusses the advantages of micro- and nano-structure based sensors and covers the various oligonucleotide detection techniques that have been developed to date. These include: Bulk Acoustic Wave and Surface Acoustic Wave devices, micro- and nano-cantilever sensors, gene Field Effect Transistors, and nanowire and nanopore based sensors. Oligonucleotide immobilisation techniques are also discussed.
Collapse
Affiliation(s)
- David C Ferrier
- School of Engineering, University of Edinburgh, Edinburgh EH9 3JL, UK
| | - Michael P Shaver
- School of Chemistry, David Brewster Road, University of Edinburgh, Edinburgh EH9 3FJ, UK
| | - Philip J W Hands
- School of Engineering, University of Edinburgh, Edinburgh EH9 3JL, UK.
| |
Collapse
|
33
|
Labib M, Khan N, Berezovski MV. Protein electrocatalysis for direct sensing of circulating microRNAs. Anal Chem 2014; 87:1395-403. [PMID: 25495265 DOI: 10.1021/ac504331c] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
MicroRNAs (miRNAs) are potentially useful biomarkers for diagnosis, classification, and prognosis of many diseases, including cancer. Herein, we developed a protein-facilitated electrocatalytic quadroprobe sensor (Sens(PEQ)) for detection of miRNA signature of chronic lymphocytic leukemia (CLL) in human serum. The developed signal-ON sensor provides a compatible combination of two DNA adaptor strands modified with four methylene blue molecules and electrocatalysis using glucose oxidase in order to enhance the overall signal gain. This enhanced sensitivity provided the response necessary to detect the low-abundant serum miRNAs without preamplification. The developed Sens(PEQ) is exquisitely sensitive to subtle π-stack perturbations and capable of distinguishing single base mismatches in the target miRNA. Furthermore, the developed sensor was employed for profiling of three endogenous miRNAs characteristic to CLL, including hsa-miR-16-5p, hsa-miR-21-5p, and hsa-miR-150-5p in normal healthy serum, chronic lymphocytic leukemia Rai stage 1 (CLL-1), and stage 3 (CLL-3) sera, using a non-human cel-miR-39-3p as an internal standard. The sensor results were verified by conventional SYBR green-based quantitative reverse-transcription polymerase chain reaction (RT-qPCR) analysis.
Collapse
Affiliation(s)
- Mahmoud Labib
- Department of Chemistry, University of Ottawa , 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| | | | | |
Collapse
|
34
|
Kilic T, Erdem A, Erac Y, Seydibeyoglu MO, Okur S, Ozsoz M. Electrochemical Detection of a Cancer Biomarker mir‐21 in Cell Lysates Using Graphene Modified Sensors. ELECTROANAL 2014. [DOI: 10.1002/elan.201400518] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Tugba Kilic
- Izmir Katip Celebi University, Faculty of Engineering and Architecture, Department of Biomedical Engineering, 35620, Cigli, Turkey
| | - Arzum Erdem
- Ege University, Faculty of Pharmacy, Department of Analytical Chemistry, 35100 Bornova, Turkey tel: +90 (232) 311 5131
| | - Yasemin Erac
- Ege University, Faculty of Pharmacy, Department of Pharmacology, 35100 Bornova, Turkey
| | - M. Ozgur Seydibeyoglu
- Izmir Katip Celebi University, Faculty of Engineering and Architecture, Department of Materials Science and Engineering, 35620, Cigli, Turkey
| | - Salih Okur
- Izmir Katip Celebi University, Faculty of Engineering and Architecture, Department of Materials Science and Engineering, 35620, Cigli, Turkey
| | - Mehmet Ozsoz
- Gediz University, Faculty of Engineering and Architecture, Department of Biomedical Engineering, 35665, Seyrek, Turkey tel: +90 (232) 355 23 20
| |
Collapse
|
35
|
de Bang TC, Shah P, Cho SK, Yang SW, Husted S. Multiplexed microRNA detection using lanthanide-labeled DNA probes and laser ablation inductively coupled plasma mass spectrometry. Anal Chem 2014; 86:6823-6. [PMID: 24945747 DOI: 10.1021/ac5017166] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In the past decade, microRNAs (miRNAs) have drawn increasing attention due to their role in regulation of gene expression. Especially, their potential as biomarkers in disease diagnostics has motivated miRNA research, including the development of simple, accurate, and sensitive detection methods. The narrow size range of miRNAs (20-24 nucleotides) combined with the chemical properties of conventional reporter tags has hampered the development of multiplexed miRNA assays. In this study, we have used lanthanide-labeled DNA probes for the detection of miRNAs on membranes using laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS). Three miRNAs from Arabidopsis thaliana were analyzed simultaneously with high specificity, and the sensitivity of the method was comparable to radioactive detection (low femtomol range). The perspective of the developed method is highly multiplexed and quantitative miRNA analysis with high specificity and sensitivity.
Collapse
Affiliation(s)
- Thomas Christian de Bang
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen , Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | | | | | | | | |
Collapse
|
36
|
Cheng Y, Lei J, Chen Y, Ju H. Highly selective detection of microRNA based on distance-dependent electrochemiluminescence resonance energy transfer between CdTe nanocrystals and Au nanoclusters. Biosens Bioelectron 2014; 51:431-6. [DOI: 10.1016/j.bios.2013.08.014] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 08/07/2013] [Accepted: 08/08/2013] [Indexed: 12/24/2022]
|
37
|
Label-free and reagentless electrochemical detection of microRNAs using a conducting polymer nanostructured by carbon nanotubes: Application to prostate cancer biomarker miR-141. Biosens Bioelectron 2013; 49:164-9. [DOI: 10.1016/j.bios.2013.05.007] [Citation(s) in RCA: 145] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 04/12/2013] [Accepted: 05/02/2013] [Indexed: 01/27/2023]
|
38
|
Tran HV, Piro B, Reisberg S, Anquetin G, Duc HT, Pham MC. An innovative strategy for direct electrochemical detection of microRNA biomarkers. Anal Bioanal Chem 2013; 406:1241-4. [PMID: 23963573 DOI: 10.1007/s00216-013-7292-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 07/24/2013] [Accepted: 08/05/2013] [Indexed: 01/10/2023]
Abstract
We report an electrochemical method for direct, reagentless, and label-free detection of microRNA, based on a conjugated copolymer, poly(5-hydroxy-1,4-naphthoquinone-co-5-hydroxy-2-carboxyethyl-1,4-naphthoquinone), acting as hybridization transducer. Hybridization between the oligonucleotide capture probe and a microRNA target of 22 base pairs generates an increase in the redox current ("signal-on"), which is evidenced by square wave voltammetry. Selectivity is good, with little hybridization for non-complementary targets, and the limit of detection reaches 650 fM. It is also evidenced that this sensitivity benefits from the high affinity of DNA for RNA.
Collapse
Affiliation(s)
- H V Tran
- Univ. Paris Diderot, Sorbonne Paris Cité, ITODYS, UMR 7086 CNRS, 15 rue J-A de Baïf, 75205, Paris Cedex 13, France
| | | | | | | | | | | |
Collapse
|
39
|
Dong H, Lei J, Ding L, Wen Y, Ju H, Zhang X. MicroRNA: Function, Detection, and Bioanalysis. Chem Rev 2013; 113:6207-33. [PMID: 23697835 DOI: 10.1021/cr300362f] [Citation(s) in RCA: 892] [Impact Index Per Article: 74.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Haifeng Dong
- Research Center for Bioengineering and Sensing Technology, University of Science & Technology Beijing, Beijing 100083, P. R. China
| | - Jianping Lei
- State Key Laboratory of Analytical
Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
| | - Lin Ding
- State Key Laboratory of Analytical
Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
| | - Yongqiang Wen
- Research Center for Bioengineering and Sensing Technology, University of Science & Technology Beijing, Beijing 100083, P. R. China
| | - Huangxian Ju
- State Key Laboratory of Analytical
Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
| | - Xueji Zhang
- Research Center for Bioengineering and Sensing Technology, University of Science & Technology Beijing, Beijing 100083, P. R. China
| |
Collapse
|
40
|
Tomaselli S, Panera N, Gallo A, Alisi A. Circulating miRNA profiling to identify biomarkers of dysmetabolism. Biomark Med 2013; 6:729-42. [PMID: 23227838 DOI: 10.2217/bmm.12.91] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
During the last two decades, numerous efforts have been made to identify reliable and predictive noninvasive biomarkers to detect the early signs of metabolic disorders due to deregulation of lipid and glucose homeostasis. Several studies demonstrate that miRNAs--small noncoding RNAs involved in the regulation of gene expression--may play crucial roles in the control of metabolism. Alterations of miRNA levels often occur in metabolic disorders, both in specific tissues and plasma. Therefore, it is conceivable that the analysis of circulating miRNA profiles may improve not only the knowledge of miRNA-mediated mechanisms and effects in metabolism, but may also offer an alternative diagnostic tool. In the first part of this review we provide an overview of miRNA biogenesis and regulation, and experimental approaches for studying their expression levels. Afterwards, we discuss recent data regarding altered intracellular and circulating miRNAs associated with specific metabolic disorders.
Collapse
Affiliation(s)
- Sara Tomaselli
- RNA-Editing Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | | | | |
Collapse
|
41
|
A new insight into electrochemical microRNA detection: a molecular caliper, p19 protein. Biosens Bioelectron 2013; 48:165-71. [PMID: 23680935 DOI: 10.1016/j.bios.2013.04.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 03/28/2013] [Accepted: 04/08/2013] [Indexed: 11/21/2022]
Abstract
microRNA (miRNA) has drawn a great attention in biomedical research due to its functions on biological processes. Detection of miRNAs is a big challenge since the amount present in real samples is very low and the length of them is short. In this study, for the first time an electrochemical biosensor for detection of mir21 using the oxidation signal of protein 19 (p19) as a molecular caliper was designed. The proposed method enables detection of mir21 in direct, rapid, sensitive, inexpensive and label-free way. Binding specificity of the p19 to 20-23 base pair length double stranded RNA (dsRNA) and direct/water-mediated intermolecular contacts between the fusion protein and miRNA allows detection of miRNA-antimiRNA hybrid structure. The detection of mir21 was achieved in picomole sensitivity through the changes of intrinsic p19 oxidation signals observed at +0.80 V with Differential Pulse Voltammetry (DPV) and the specifity of the designed sensor was proved by control studies.
Collapse
|
42
|
Taylor SK, Wang J, Kostic N, Stojanovic MN. Monovalent Streptavidin that Senses Oligonucleotides. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201209948] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
43
|
Taylor SK, Wang J, Kostic N, Stojanovic MN. Monovalent streptavidin that senses oligonucleotides. Angew Chem Int Ed Engl 2013; 52:5509-12. [PMID: 23606329 DOI: 10.1002/anie.201209948] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 02/06/2013] [Indexed: 11/07/2022]
Affiliation(s)
- Steven K Taylor
- Department of Medicine, Division of Experimental Therapeutics, Columbia University, 630 W. 168th St., Box 84, New York, NY 10032, USA.
| | | | | | | |
Collapse
|
44
|
Hamidi-Asl E, Palchetti I, Hasheminejad E, Mascini M. A review on the electrochemical biosensors for determination of microRNAs. Talanta 2013; 115:74-83. [PMID: 24054564 DOI: 10.1016/j.talanta.2013.03.061] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 03/22/2013] [Accepted: 03/26/2013] [Indexed: 12/15/2022]
Abstract
MicroRNAs (miRNAs) are a family of non-protein-coding, endogenous, small RNAs. They are a group of gene regulators that function mainly by binding the 3' untranslated regions of specific target messenger RNA (mRNA) leading to gene inactivation by repression of mRNA transcription or induction of mRNA. Mature miRNAs are short molecules approximately 22 nucleotides in length. They regulate a wide range of biological functions from cell proliferation and death to cancer progression. Cellular miRNA expression levels can be used as biomarkers for the onset of disease states and in gene therapy for genetic disorders. Methods for detection of miRNA mainly include northern blotting, microarray, polymerase chain reaction (PCR). This review focuses on the use of electrochemical biosensors for the detection of microRNA.
Collapse
Affiliation(s)
- Ezat Hamidi-Asl
- Eletroanalytical Chemistry Research Laboratory, Department of Analytical Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran; Università degli Studi di Firenze, Dipartimento di Chimica, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy.
| | | | | | | |
Collapse
|
45
|
Danielson DC, Pezacki JP. Studying the RNA silencing pathway with the p19 protein. FEBS Lett 2013; 587:1198-205. [PMID: 23376479 DOI: 10.1016/j.febslet.2013.01.036] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 01/17/2013] [Accepted: 01/18/2013] [Indexed: 01/05/2023]
Abstract
The origins of the RNA silencing pathway are in defense against invading viruses and in response, viruses have evolved counter-measures to interfere with the host pathway. The p19 protein is expressed by tombusviruses as a suppressor of RNA silencing and functions to sequester small RNA duplexes, thereby preventing induction of the pathway. p19 exhibits size-specific and sequence-independent binding of its small RNA ligands, binding with high affinity to duplexes 20-22 nucleotides long. p19's binding specificity and its ability to sequester small RNAs has made it a unique protein-based tool for probing the molecular mechanisms of the highly complex RNA silencing pathway in a variety of systems. Furthermore, protein engineering of this 'molecular caliper' promises novel applications in biotechnology and medicine where small RNA molecules are of remarkable interest given their potent gene regulatory abilities.
Collapse
Affiliation(s)
- Dana C Danielson
- Department of Biochemistry, Microbiology & Immunology, University of Ottawa, 451 Smyth Road, Ottawa, Canada K1H 8M5
| | | |
Collapse
|
46
|
Hernandez R, Orbay H, Cai W. Molecular imaging strategies for in vivo tracking of microRNAs: a comprehensive review. Curr Med Chem 2013; 20:3594-603. [PMID: 23745564 PMCID: PMC3749288 DOI: 10.2174/0929867311320290005] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 03/06/2013] [Accepted: 03/06/2013] [Indexed: 12/18/2022]
Abstract
MicroRNAs (miRNAs) are single-stranded non-coding RNAs of ~22 nucleotides, which can negatively regulate gene expression through induction of mRNA degradation and/or post-transcriptional gene silencing. MiRNAs are key factors in the regulation of many biological processes such as cell proliferation, differentiation, and death. Since miRNAs are known to be in close association with cancer development, non-invasive imaging of miRNA expression and/or activity is of critical importance, for which conventional molecular biology techniques are not suitable or applicable. Over the last several years, various molecular imaging techniques have been investigated for imaging of miRNAs. In this review article, we summarize the current state-of-the-art imaging of miRNAs, which are typically based on fluorescent proteins, bioluminescent enzymes, molecular beacons, and/or various nanoparticles. Non-invasive imaging of miRNA expression and/or biological activity is still at its infancy. Future research on more clinically relevant, non-toxic techniques is required to move the field of miRNA imaging into clinical applications. Non-invasive imaging of miRNA is an invaluable method that can not only significantly advance our understandings of a wide range of human diseases, but also lead to new and more effective treatment strategies for these diseases.
Collapse
Affiliation(s)
- Reinier Hernandez
- Department of Medical Physics, University of Wisconsin - Madison, WI, USA
| | - Hakan Orbay
- Department of Radiology, University of Wisconsin - Madison, WI, USA
| | - Weibo Cai
- Department of Medical Physics, University of Wisconsin - Madison, WI, USA
- Department of Radiology, University of Wisconsin - Madison, WI, USA
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| |
Collapse
|
47
|
Abstract
The technique of nucleic acid in situ hybridization is an effective method for identifying the existence and abundance of nucleic acids in tissue sections or cytological preparations. Such a method has the advantage of keeping morphological relationships intact while identifying changes at the molecular level. As a noncoding regulatory RNA, microRNA has been found to intricately control many physiological and pathological conditions. We provide here a representative fluorescence in situ hybridization protocol for microRNA detection, and note commonly used alternatives, and some troubleshooting points. The method described is based on formalin-fixed paraffin-embedded oral cancer tissues but should be broadly applicable to similarly processed tissues of other types of cancer.
Collapse
|
48
|
Wu X, Chai Y, Yuan R, Su H, Han J. A novel label-free electrochemical microRNA biosensor using Pd nanoparticles as enhancer and linker. Analyst 2013; 138:1060-6. [DOI: 10.1039/c2an36506e] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
49
|
Yao L, Wang Y, Xu S. Label-free microRNA detection based on exchange-induced remnant magnetization. Chem Commun (Camb) 2013; 49:5183-5. [DOI: 10.1039/c3cc40830b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
50
|
Morales-Prieto D, Chaiwangyen W, Ospina-Prieto S, Schneider U, Herrmann J, Gruhn B, Markert U. MicroRNA expression profiles of trophoblastic cells. Placenta 2012; 33:725-34. [DOI: 10.1016/j.placenta.2012.05.009] [Citation(s) in RCA: 169] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Revised: 05/09/2012] [Accepted: 05/18/2012] [Indexed: 12/16/2022]
|