1
|
Johzuka J, Ona T, Nomura M. One Hour In Vivo-like Phenotypic Screening System for Anti-cancer Drugs Using a High Precision Surface Plasmon Resonance Device. ANAL SCI 2018; 34:1189-1194. [PMID: 30305596 DOI: 10.2116/analsci.18p013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In anti-cancer drug (candidate) screening, there is the need for evaluation at physiological concentrations similar to in vivo. This is often performed by three-dimensionally (3D) cultured cells; however, it requires a long culture period of 2 - 4 weeks with tedious experimental procedures. Here, we report on a high precision surface plasmon resonance (HP-SPR)-3D system. We developed the system with average fluctuation of 50 ndeg s-1 using two-dimensionally cultured cells attached onto a sensor chip by applying collagen on the top to change their activity into in vivo-like conditions without cell division. It allowed in vivo-like phenotypic screening for anti-cancer drugs within 1 h of drug addition. The data were collected as the stable linear signal change parts for at least 5 min after 25 min following drug addition. The results provided compatibility to clinically related chemosensitivity test for anti-cancer (P <0.001) using two cell lines of pancreatic cancer and three anti-cancer drugs to represent differences in individual gene expression and drug mode of action.
Collapse
Affiliation(s)
- Junko Johzuka
- O'Atari, Inc.,Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Global Innovation Center, Kyushu University
| | - Toshihiro Ona
- O'Atari, Inc.,Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Global Innovation Center, Kyushu University
| | - Masatoshi Nomura
- Department of Endocrine and Metabolic Diseases/Diabetes Mellitus, Kyushu University Hospital
| |
Collapse
|
2
|
Lundstrom K. Cell-impedance-based label-free technology for the identification of new drugs. Expert Opin Drug Discov 2017; 12:335-343. [PMID: 28276704 DOI: 10.1080/17460441.2017.1297419] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Drug discovery has progressed from relatively simple binding or activity screening assays to high-throughput screening of sophisticated compound libraries with emphasis on miniaturization and automation. The development of functional assays has enhanced the success rate in discovering novel drug molecules. Many technologies, originally based on radioactive labeling, have sequentially been replaced by methods based on fluorescence labeling. Recently, the focus has switched to label-free technologies in cell-based screening assays. Areas covered: Label-free, cell-impedance-based methods comprise of different technologies including surface plasmon resonance, mass spectrometry and biosensors applied for screening of anticancer drugs, G protein-coupled receptors, receptor tyrosine kinase and virus inhibitors, drug and nanoparticle cytotoxicity. Many of the developed methods have been used for high-throughput screening in cell lines. Cell viability and morphological damage prediction have been monitored in three-dimensional spheroid human HT-29 carcinoma cells and whole Schistosomula larvae. Expert opinion: Progress in label-free, cell-impedance-based technologies has facilitated drug screening and may enhance the discovery of potential novel drug molecules through, and improve target molecule identification in, alternative signal pathways. The variety of technologies to measure cellular responses through label-free cell-impedance based approaches all support future drug development and should provide excellent assets for finding better medicines.
Collapse
|
3
|
Chen Y, Yang L, Hu H, Chen J, Shen B. How to Become a Smart Patient in the Era of Precision Medicine? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1028:1-16. [PMID: 29058213 DOI: 10.1007/978-981-10-6041-0_1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The objective of this paper is to define the definition of smart patients, summarize the existing foundation, and explore the approaches and system participation model of how to become a smart patient. Here a thorough review of the literature was conducted to make theory derivation processes of the smart patient; "data, information, knowledge, and wisdom (DIKW) framework" was performed to construct the model of how smart patients participate in the medical process. The smart patient can take an active role and fully participate in their own health management; DIKW system model provides a theoretical framework and practical model of smart patients; patient education is the key to the realization of smart patients. The conclusion is that the smart patient is attainable and he or she is not merely a patient but more importantly a captain and global manager of one's own health management, a partner of medical practitioner, and also a supervisor of medical behavior. Smart patients can actively participate in their healthcare and assume higher levels of responsibility for their own health and wellness which can facilitate the development of precision medicine and its widespread practice.
Collapse
Affiliation(s)
- Yalan Chen
- Center for Systems Biology, Soochow University, Suzhou, 215006, China.,Department of Medical Informatics, School of Medicine, Nantong University, Nantong, 226001, China
| | - Lan Yang
- Center for Systems Biology, Soochow University, Suzhou, 215006, China
| | - Hai Hu
- Center for Systems Biology, Soochow University, Suzhou, 215006, China
| | - Jiajia Chen
- School of Chemistry, Biology and Material Engineering, Suzhou University of Science and Technology, No1. Kerui road, Suzhou, Jiangsu, 215011, China
| | - Bairong Shen
- Center for Systems Biology, Soochow University, No.1 Shizi Street, Suzhou, Jiangsu, 215006, China.
| |
Collapse
|
4
|
Zanganeh S, Khosravi S, Namdar N, Amiri MH, Gharooni M, Abdolahad M. Electrochemical approach for monitoring the effect of anti tubulin drugs on breast cancer cells based on silicon nanograss electrodes. Anal Chim Acta 2016; 938:72-81. [PMID: 27619088 DOI: 10.1016/j.aca.2016.07.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 07/29/2016] [Accepted: 07/31/2016] [Indexed: 01/04/2023]
Abstract
One of the most interested molecular research in the field of cancer detection is the mechanism of drug effect on cancer cells. Translating molecular evidence into electrochemical profiles would open new opportunities in cancer research. In this manner, applying nanostructures with anomalous physical and chemical properties as well as biocompatibility would be a suitable choice for the cell based electrochemical sensing. Silicon based nanostructure are the most interested nanomaterials used in electrochemical biosensors because of their compatibility with electronic fabrication process and well engineering in size and electrical properties. Here we apply silicon nanograss (SiNG) probing electrodes produced by reactive ion etching (RIE) on silicon wafer to electrochemically diagnose the effect of anticancer drugs on breast tumor cells. Paclitaxel (PTX) and mebendazole (MBZ) drugs have been used as polymerizing and depolymerizing agents of microtubules. PTX would perturb the anodic/cathodic responses of the cell-covered biosensor by binding phosphate groups to deformed proteins due to extracellular signal-regulated kinase (ERK(1/2)) pathway. MBZ induces accumulation of Cytochrome C in cytoplasm. Reduction of the mentioned agents in cytosol would change the ionic state of the cells monitored by silicon nanograss working electrodes (SiNGWEs). By extending the contacts with cancer cells, SiNGWEs can detect minor signal transduction and bio recognition events, resulting in precise biosensing. Effects of MBZ and PTX drugs, (with the concentrations of 2 nM and 0.1 nM, respectively) on electrochemical activity of MCF-7 cells are successfully recorded which are corroborated by confocal and flow cytometry assays.
Collapse
Affiliation(s)
- Somayeh Zanganeh
- Nano Electronic Center of Excellence, Nano Bio Electronic Devices Lab, School of Electrical and Computer Eng, University of Tehran, P.O. Box 14395/515, Tehran, Iran; Nano Electronic Center of Excellence, Thin Film and Nanoelectronic Lab, School of Electrical and Computer Eng, University of Tehran, P.O. Box 14395/515, Tehran, Iran
| | - Safoora Khosravi
- Nano Electronic Center of Excellence, Nano Bio Electronic Devices Lab, School of Electrical and Computer Eng, University of Tehran, P.O. Box 14395/515, Tehran, Iran; Nano Electronic Center of Excellence, Thin Film and Nanoelectronic Lab, School of Electrical and Computer Eng, University of Tehran, P.O. Box 14395/515, Tehran, Iran
| | - Naser Namdar
- Nano Electronic Center of Excellence, Nano Bio Electronic Devices Lab, School of Electrical and Computer Eng, University of Tehran, P.O. Box 14395/515, Tehran, Iran; Nano Electronic Center of Excellence, Thin Film and Nanoelectronic Lab, School of Electrical and Computer Eng, University of Tehran, P.O. Box 14395/515, Tehran, Iran
| | - Morteza Hassanpour Amiri
- Nano Electronic Center of Excellence, Nano Bio Electronic Devices Lab, School of Electrical and Computer Eng, University of Tehran, P.O. Box 14395/515, Tehran, Iran; Nano Electronic Center of Excellence, Thin Film and Nanoelectronic Lab, School of Electrical and Computer Eng, University of Tehran, P.O. Box 14395/515, Tehran, Iran
| | - Milad Gharooni
- Nano Electronic Center of Excellence, Nano Bio Electronic Devices Lab, School of Electrical and Computer Eng, University of Tehran, P.O. Box 14395/515, Tehran, Iran; Nano Electronic Center of Excellence, Thin Film and Nanoelectronic Lab, School of Electrical and Computer Eng, University of Tehran, P.O. Box 14395/515, Tehran, Iran
| | - Mohammad Abdolahad
- Nano Electronic Center of Excellence, Nano Bio Electronic Devices Lab, School of Electrical and Computer Eng, University of Tehran, P.O. Box 14395/515, Tehran, Iran; Nano Electronic Center of Excellence, Thin Film and Nanoelectronic Lab, School of Electrical and Computer Eng, University of Tehran, P.O. Box 14395/515, Tehran, Iran.
| |
Collapse
|
5
|
Deng S, Yu X, Liu R, Chen W, Wang P. A two-compartment microfluidic device for long-term live cell detection based on surface plasmon resonance. BIOMICROFLUIDICS 2016; 10:044109. [PMID: 27570574 PMCID: PMC4975751 DOI: 10.1063/1.4960487] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 07/25/2016] [Indexed: 06/06/2023]
Abstract
A two-compartment microfluidic device integrated with a surface plasmon resonance (SPR) interferometric imaging system has been developed for long-term and real-time cell detection. The device uses a porous membrane sandwiched between two chambers to obtain an exact medium exchange rate and minimal fluid shear stress for cell culture. The two-compartment device was optimized by COMSOL simulations and fabricated using Poly (dimethylsiloxane) elastomer replica molding methods. To confirm the capability of the microfluidic device to maintain the cell physiological environment over long intervals, HeLa cells were cultured in the device for up to 48 h. The cell proliferation process was monitored by both SPR and microscopic time-lapse imaging. The SPR response showed four phases with different growth rates, and agreed well with the time-lapse imaging. Furthermore, real-time detection of cell behaviors under different doses of Paclitaxel and Cisplatin was performed. The SPR responses revealed dose-dependent inhibitions of cell proliferation, with distinct drug action kinetics.
Collapse
Affiliation(s)
- Shijie Deng
- State Key Laboratory of Precision Measurement Technology and Instruments, Tsinghua University , Beijing 100084, People's Republic of China
| | - Xinglong Yu
- State Key Laboratory of Precision Measurement Technology and Instruments, Tsinghua University , Beijing 100084, People's Republic of China
| | - Ran Liu
- Department of Biomedical Engineering, School of Medicine, Tsinghua University , Beijing 100084, People's Republic of China
| | - Weixing Chen
- Department of Biomedical Engineering, School of Medicine, Tsinghua University , Beijing 100084, People's Republic of China
| | - Peng Wang
- State Key Laboratory of Precision Measurement Technology and Instruments, Tsinghua University , Beijing 100084, People's Republic of China
| |
Collapse
|
6
|
Silicon nanowire based biosensing platform for electrochemical sensing of Mebendazole drug activity on breast cancer cells. Biosens Bioelectron 2016; 85:363-370. [PMID: 27196254 DOI: 10.1016/j.bios.2016.04.081] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 04/23/2016] [Accepted: 04/25/2016] [Indexed: 01/05/2023]
Abstract
Electrochemical approaches have played crucial roles in bio sensing because of their Potential in achieving sensitive, specific and low-cost detection of biomolecules and other bio evidences. Engineering the electrochemical sensing interface with nanomaterials tends to new generations of label-free biosensors with improved performances in terms of sensitive area and response signals. Here we applied Silicon Nanowire (SiNW) array electrodes (in an integrated architecture of working, counter and reference electrodes) grown by low pressure chemical vapor deposition (LPCVD) system with VLS procedure to electrochemically diagnose the presence of breast cancer cells as well as their response to anticancer drugs. Mebendazole (MBZ), has been used as antitubulin drug. It perturbs the anodic/cathodic response of the cell covered biosensor by releasing Cytochrome C in cytoplasm. Reduction of cytochrome C would change the ionic state of the cells monitored by SiNW biosensor. By applying well direct bioelectrical contacts with cancer cells, SiNWs can detect minor signal transduction and bio recognition events, resulting in precise biosensing. Our device detected the trace of MBZ drugs (with the concentration of 2nM) on electrochemical activity MCF-7 cells. Also, experimented biological analysis such as confocal and Flowcytometry assays confirmed the electrochemical results.
Collapse
|
7
|
Weiss D, Brischwein M, Grothe H, Wolf B, Wiest J. Label-free monitoring of whole cell vitality. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2015; 2013:1607-10. [PMID: 24110010 DOI: 10.1109/embc.2013.6609823] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The Intelligent Mobile Lab (IMOLA) delivers metabolic and morphological parameters of living cells in a label-free and real time way. It represents a key technology for the development of new cell-based assays. Electrochemical microsensors are used to measure the extracellular acidification (pH), cellular respiration (pO2), changes in cell number and morphology (electric impedance) in a controlled environment. These parameters are closely linked to the intracellular signaling network of the living cells. They are thus likely to respond sensitively to changes in cellular vitality. A wide spectrum of cell types can be tested with the system, including adherent and suspended cells, continuous cell lines, primary cells or tissue samples. The platform is described in detail and applications in the field's oncology, toxicology and environmental monitoring are shown.
Collapse
|
8
|
Karabudak E. Micromachined silicon attenuated total reflectance infrared spectroscopy: An emerging detection method in micro/nanofluidics. Electrophoresis 2013; 35:236-44. [DOI: 10.1002/elps.201300248] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 09/30/2013] [Accepted: 10/01/2013] [Indexed: 11/10/2022]
Affiliation(s)
- Engin Karabudak
- Mesoscale Chemical Systems Group (MCS); MESA+ Institute for Nanotechnology; University of Twente; The Netherlands
| |
Collapse
|
9
|
Primiceri E, Chiriacò MS, Rinaldi R, Maruccio G. Cell chips as new tools for cell biology--results, perspectives and opportunities. LAB ON A CHIP 2013; 13:3789-802. [PMID: 23912640 DOI: 10.1039/c3lc50550b] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Cell culture technologies were initially developed as research tools for studying cell functions, but nowadays they are essential for the biotechnology industry, with rapidly expanding applications requiring more and more advancements with respect to traditional tools. Miniaturization and integration of sensors and microfluidic components with cell culture techniques open the way to the development of cellomics as a new field of research targeting innovative analytic platforms for high-throughput studies. This approach enables advanced cell studies under controllable conditions by providing inexpensive, easy-to-operate devices. Thanks to their numerous advantages cell-chips have become a hotspot in biosensors and bioelectronics fields and have been applied to very different fields. In this review exemplary applications will be discussed, for cell counting and detection, cytotoxicity assays, migration assays and stem cell studies.
Collapse
Affiliation(s)
- Elisabetta Primiceri
- CNR Istituto Nanoscienze - NNL and Dipartimento di Matematica e Fisica "Ennio De Giorgi", Università del Salento, Lecce, Italy.
| | | | | | | |
Collapse
|
10
|
Honarparvar B, Govender T, Maguire GEM, Soliman MES, Kruger HG. Integrated Approach to Structure-Based Enzymatic Drug Design: Molecular Modeling, Spectroscopy, and Experimental Bioactivity. Chem Rev 2013; 114:493-537. [DOI: 10.1021/cr300314q] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Bahareh Honarparvar
- Catalysis
and Peptide Research Unit and ‡School of Health Sciences, University of KwaZulu Natal, Durban 4001, South Africa
| | - Thavendran Govender
- Catalysis
and Peptide Research Unit and ‡School of Health Sciences, University of KwaZulu Natal, Durban 4001, South Africa
| | - Glenn E. M. Maguire
- Catalysis
and Peptide Research Unit and ‡School of Health Sciences, University of KwaZulu Natal, Durban 4001, South Africa
| | - Mahmoud E. S. Soliman
- Catalysis
and Peptide Research Unit and ‡School of Health Sciences, University of KwaZulu Natal, Durban 4001, South Africa
| | - Hendrik G. Kruger
- Catalysis
and Peptide Research Unit and ‡School of Health Sciences, University of KwaZulu Natal, Durban 4001, South Africa
| |
Collapse
|
11
|
Troubleshooting and deconvoluting label-free cell phenotypic assays in drug discovery. J Pharmacol Toxicol Methods 2013; 67:69-81. [PMID: 23340025 DOI: 10.1016/j.vascn.2013.01.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 12/10/2012] [Accepted: 01/04/2013] [Indexed: 01/04/2023]
Abstract
INTRODUCTION Central to drug discovery and development is to comprehend the target(s), potency, efficacy and safety of drug molecules using pharmacological assays. Owing to their ability to provide a holistic view of drug actions in native cells, label-free biosensor-enabled cell phenotypic assays have been emerging as new generation phenotypic assays for drug discovery. Despite the benefits associated with wide pathway coverage, high sensitivity, high information content, non-invasiveness and real-time kinetics, label-free cell phenotypic assays are often viewed to be a blackbox in the era of target-centric drug discovery. METHODS This article first reviews the biochemical and biological complexity of drug-target interactions, and then discusses the key characteristics of label-free cell phenotypic assays and presents a five-step strategy to troubleshooting and deconvoluting the label-free cell phenotypic profiles of drugs. RESULTS Drug-target interactions are intrinsically complicated. Label-free cell phenotypic signatures of drugs mirror the innate complexity of drug-target interactions, and can be effectively deconvoluted using the five-step strategy. DISCUSSION The past decades have witnessed dramatic expansion of pharmacological assays ranging from molecular to phenotypic assays, which is coincident with the realization of the innate complexity of drug-target interactions. The clinical features of a drug are defined by how it operates at the system level and by its distinct polypharmacology, ontarget, phenotypic and network pharmacology. Approaches to examine the biochemical, cellular and molecular mechanisms of action of drugs are essential to increase the efficiency of drug discovery and development. Label-free cell phenotypic assays and the troubleshooting and deconvoluting approach presented here may hold great promise in drug discovery and development.
Collapse
|
12
|
Deng H, Wang C, Fang Y. Label-free cell phenotypic assessment of the molecular mechanism of action of epidermal growth factor receptor inhibitors. RSC Adv 2013; 3:10370. [DOI: 10.1039/c3ra40426a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025] Open
|
13
|
Mining the Potential of Label-Free Biosensors for Seven-Transmembrane Receptor Drug Discovery. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 115:123-42. [DOI: 10.1016/b978-0-12-394587-7.00003-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
14
|
Cell-Based Biosensors: Electrical Sensing in Microfluidic Devices. Diagnostics (Basel) 2012; 2:83-96. [PMID: 26859401 PMCID: PMC4665553 DOI: 10.3390/diagnostics2040083] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 11/13/2012] [Accepted: 12/03/2012] [Indexed: 01/08/2023] Open
Abstract
Cell-based biosensors provide new horizons for medical diagnostics by adopting complex recognition elements such as mammalian cells in microfluidic devices that are simple, cost efficient and disposable. This combination renders possible a new range of applications in the fields of diagnostics and personalized medicine. The review looks at the most recent developments in cell-based biosensing microfluidic systems with electrical and electrochemical transduction, and relevance to medical diagnostics.
Collapse
|
15
|
da Mota MF, Benfica PL, Batista AC, Martins FS, de Paula JR, Valadares MC. Investigation of Ehrlich ascites tumor cell death mechanisms induced by Synadenium umbellatum Pax. JOURNAL OF ETHNOPHARMACOLOGY 2012; 139:319-329. [PMID: 21549815 DOI: 10.1016/j.jep.2011.04.055] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 04/18/2011] [Accepted: 04/19/2011] [Indexed: 05/30/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Synadenium umbellatum Pax. is widely found in South America and empirically used in Brazil for the treatment of several diseases, mainly cancer. The aim of the study was to investigate cell death mechanisms induced by Synadenium umbellatum Pax. using Ehrlich ascites tumor (EAT) cells, as well as the myelotoxicity potential of this plant. MATERIALS AND METHODS S. umbellatum cytotoxicity was evaluated in EAT cells by trypan blue exclusion and MTT reduction test and the mechanisms involved in EAT cell death were investigated by light and fluorescence microscopy, flow cytometry and immunocytochemistry. Investigation of S. umbellatum myelotoxicity was performed by clonogenic assay of colony forming unit- granulocyte macrophage (CFU-GM). RESULTS AND CONCLUSION Our results demonstrated that S. umbellatum decreased the viability of EAT cells using both methods. Morphological analyses revealed that S. umbellatum-treatment induced EAT cell death by apoptotic pathway. We demonstrated the occurrence of reactive oxygen species (ROS) overgeneration, increased intracellular Ca(2+) concentration, alteration in mitochondrial membrane potential, phosphatydylserine externalization, and activation of caspases 3, 8, and 9. However, S. umbellatum produced myelotoxicity in bone marrow cells in a concentration-dependent manner. In comparison to EAT cells, the effects of S. umbellatum in bone marrow cells were 8-fold lower. Taken together, our results showed that S. umbellatum induced apoptosis in EAT cells at several levels and seems more toxic to tumor cells than to normal bone marrow cells.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents, Phytogenic/pharmacology
- Antineoplastic Agents, Phytogenic/toxicity
- Apoptosis/drug effects
- Calcium/metabolism
- Carcinoma, Ehrlich Tumor/metabolism
- Carcinoma, Ehrlich Tumor/pathology
- Caspase 3/metabolism
- Caspase 8/metabolism
- Caspase 9/metabolism
- Cell Cycle/drug effects
- Cell Shape/drug effects
- Cell Survival/drug effects
- Chromatography, High Pressure Liquid
- Dose-Response Relationship, Drug
- Euphorbiaceae
- Flow Cytometry
- Granulocyte-Macrophage Progenitor Cells/drug effects
- Granulocyte-Macrophage Progenitor Cells/pathology
- Immunohistochemistry
- Membrane Potential, Mitochondrial/drug effects
- Mice
- Microscopy, Fluorescence
- Oxidative Stress/drug effects
- Phosphatidylserines/metabolism
- Plant Components, Aerial
- Plants, Medicinal
- Reactive Oxygen Species/metabolism
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Mariana Flavia da Mota
- Laboratório de Farmacologia e Toxicologia Celular, Faculdade de Farmácia, Universidade Federal de Goiás, UFG, Goiânia, GO, Brazil
| | | | | | | | | | | |
Collapse
|
16
|
Halai R, Cooper MA. Using label-free screening technology to improve efficiency in drug discovery. Expert Opin Drug Discov 2012; 7:123-31. [DOI: 10.1517/17460441.2012.651121] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
17
|
Kiilerich-Pedersen K, Poulsen CR, Jain T, Rozlosnik N. Polymer based biosensor for rapid electrochemical detection of virus infection of human cells. Biosens Bioelectron 2011; 28:386-92. [PMID: 21840702 DOI: 10.1016/j.bios.2011.07.053] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 07/18/2011] [Accepted: 07/21/2011] [Indexed: 01/31/2023]
Abstract
The demand in the field of medical diagnostics for simple, cost efficient and disposable devices is growing. Here, we present a label free, all-polymer electrochemical biosensor for detection of acute viral disease. The dynamics of a viral infection in human cell culture was investigated in a micro fluidic system on conductive polymer PEDOT:TsO microelectrodes by electrochemical impedance spectroscopy and video time lapse microscopy. Employing this sensitive, real time electrochemical technique, we could measure the immediate cell response to cytomegalovirus, and detect an infection within 3h, which is several hours before the cytopathic effect is apparent with conventional imaging techniques. Atomic force microscopy and scanning ion conductance microscopy imaging consolidate the electrochemical measurements by demonstrating early virus induced changes in cell morphology of apparent programmed cell death.
Collapse
Affiliation(s)
- Katrine Kiilerich-Pedersen
- Technical University of Denmark, Department of Micro- and Nanotechnology, Oersteds Plads 345 East, DK-2800 Kongens Lyngby, Denmark
| | | | | | | |
Collapse
|
18
|
Abstract
Label-free biosensors for studying cell biology have finally come of age. Recent developments have advanced the biosensors from low throughput and high maintenance research tools to high throughput and low maintenance screening platforms. In parallel, the biosensors have evolved from an analytical tool solely for molecular interaction analysis to powerful platforms for studying cell biology at the whole cell level. This paper presents historical development, detection principles, and applications in cell biology of label-free biosensors. Future perspectives are also discussed.
Collapse
Affiliation(s)
- Ye Fang
- Biochemical Technologies, Science and Technology Division, Corning Inc., Corning, NY 14831, USA
| |
Collapse
|