1
|
Liu H, Ji M, Yang T, Zou S, Qiu X, Zhan F, Chen J, Yan F, Ding F, Li P. Regulation of fibroblast phenotype in osteoarthritis using CDKN1A-loaded copper sulfide nanoparticles delivered by mesenchymal stem cells. Am J Physiol Cell Physiol 2025; 328:C679-C698. [PMID: 39819042 DOI: 10.1152/ajpcell.00573.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/26/2024] [Accepted: 12/12/2024] [Indexed: 01/19/2025]
Abstract
This study aimed to investigate the regulation of fibroblast phenotypes by mesenchymal stem cells (MSCs) delivering copper sulfide (CuS) nanoparticles (NPs) loaded with CDKN1A plasmids and their role in cartilage repair during osteoarthritis (OA). Single-cell RNA sequencing data from the GEO database were analyzed to identify subpopulations within the OA immune microenvironment. Quality control, filtering, principal component analysis (PCA) dimensionality reduction, and tSNE clustering were performed to obtain detailed cell subtypes. Pseudotime analysis was used to understand the developmental trajectory of fibroblasts, and GO/KEGG enrichment analyses highlighted biological processes related to fibroblast function. Transcriptomic data and WGCNA identified CDKN1A as a key regulatory gene. A biomimetic CuS@CDKN1A nanosystem was constructed and loaded into MSCs to create MSCs@CuS@CDKN1A. The characterization of this system confirmed its efficient cellular uptake by fibroblasts. In vitro experiments demonstrated that MSCs@CuS@CDKN1A significantly modulated fibroblast phenotypes and improved the structure, proliferation, reduced apoptosis, and enhanced migration of IL-1β-stimulated chondrocytes. In vivo, an OA mouse model was treated with intra-articular injections of MSCs@CuS@CDKN1A. Micro-CT scans revealed a significant reduction in osteophyte formation and improved joint space compared with control groups. Histological analysis, including H&E, Safranin O-Fast Green, and toluidine blue staining, confirmed improved cartilage integrity, whereas the International Osteoarthritis Research Society (OARSI) scoring indicated reduced disease severity. Immunofluorescence showed upregulated CDKN1A expression, decreased MMP13, and reduced α-SMA expression in fibroblast subtypes. Major organs exhibited no signs of toxicity, confirming the biocompatibility and safety of the treatment. These findings suggest that MSCs@CuS@CDKN1A can effectively regulate fibroblast activity and promote cartilage repair, providing a promising therapeutic strategy for OA treatment.NEW & NOTEWORTHY This study introduces MSCs@CuS@CDKN1A, a nanoengineered MSC platform that targets fibroblast phenotypes in osteoarthritis (OA). By modulating CDKN1A expression, this innovative approach not only enhances cartilage repair but also effectively mitigates fibroblast-driven inflammation, marking a significant advancement in OA therapeutics with demonstrated efficacy and biocompatibility.
Collapse
Affiliation(s)
- Hong Liu
- Department of Orthopedics, Chongqing University Three Gorges Hospital, Chongqing, People's Republic of China
- Chongqing Municipality Clinical Research Center for Geriatric Diseases, Chongqing, People's Republic of China
| | - Ming Ji
- Department of Orthopedics, Chongqing University Three Gorges Hospital, Chongqing, People's Republic of China
- Chongqing Municipality Clinical Research Center for Geriatric Diseases, Chongqing, People's Republic of China
| | - Tao Yang
- Department of Orthopedics, Chongqing University Three Gorges Hospital, Chongqing, People's Republic of China
- Chongqing Municipality Clinical Research Center for Geriatric Diseases, Chongqing, People's Republic of China
| | - Shihua Zou
- Department of Orthopedics, Chongqing University Three Gorges Hospital, Chongqing, People's Republic of China
- Chongqing Municipality Clinical Research Center for Geriatric Diseases, Chongqing, People's Republic of China
| | - Xingan Qiu
- Department of Orthopedics, Chongqing University Three Gorges Hospital, Chongqing, People's Republic of China
- Chongqing Municipality Clinical Research Center for Geriatric Diseases, Chongqing, People's Republic of China
| | - Fangbiao Zhan
- Department of Orthopedics, Chongqing University Three Gorges Hospital, Chongqing, People's Republic of China
- Chongqing Municipality Clinical Research Center for Geriatric Diseases, Chongqing, People's Republic of China
- School of Medicine, Chongqing University, Chongqing, People's Republic of China
| | - Jian Chen
- Department of Orthopedics, Chongqing University Three Gorges Hospital, Chongqing, People's Republic of China
- Chongqing Municipality Clinical Research Center for Geriatric Diseases, Chongqing, People's Republic of China
- School of Medicine, Chongqing University, Chongqing, People's Republic of China
| | - Fei Yan
- Chongqing Municipality Clinical Research Center for Geriatric Diseases, Chongqing, People's Republic of China
- School of Medicine, Chongqing University, Chongqing, People's Republic of China
| | - Fan Ding
- Department of Orthopedics, General Hospital of Central Theater Command, Wuhan, People's Republic of China
| | - Ping Li
- Division of Orthopedics, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| |
Collapse
|
2
|
Zanin A, Meneghetti G, Menilli L, Tesoriere A, Argenton F, Mognato M. Analysis of Radiation Toxicity in Mammalian Cells Stably Transduced with Mitochondrial Stat3. Int J Mol Sci 2023; 24:8232. [PMID: 37175941 PMCID: PMC10179518 DOI: 10.3390/ijms24098232] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/26/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023] Open
Abstract
A coordinated action between nuclear and mitochondrial activities is essential for a proper cellular response to genotoxic stress. Several nuclear transcription factors, including STAT3, translocate to mitochondria to exert mitochondrial function regulation; however, the role of mitochondrial STAT3 (mitoSTAT3) under stressed conditions is still poorly understood. In this study, we examined whether the stable expression of mitoSTAT3 wild-type or mutated at the conserved serine residue (Ser727), which is involved in the mitochondrial function of STAT3, can affect the DNA damage response to UVC radiation. To address this issue, we generated mammalian cells (NIH-3T3 and HCT-116 cells) stably transduced to express the mitochondrial-targeted Stat3 gene in its wild-type or Ser727 mutated forms. Our results show that cell proliferation is enhanced in mitoStat3-transduced cells under both non-stressed and stressed conditions. Once irradiated with UVC, cells expressing wild-type mitoSTAT3 showed the highest cell survival, which was associated with a significant decrease in cell death. Low levels of oxidative stress were detected in UVC-irradiated NIH-3T3 cells expressing mitoSTAT3 wild-type or serine-related dominant active form (Ser727D), confirming a role of mitochondrial STAT3 in minimizing oxidant cellular stress that provides an advantage for cell survival.
Collapse
Affiliation(s)
| | | | | | | | | | - Maddalena Mognato
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35131 Padova, Italy; (A.Z.); (G.M.); (L.M.); (A.T.); (F.A.)
| |
Collapse
|
3
|
Pulmonary Toxicity of Silica Linked to Its Micro- or Nanometric Particle Size and Crystal Structure: A Review. NANOMATERIALS 2022; 12:nano12142392. [PMID: 35889616 PMCID: PMC9318389 DOI: 10.3390/nano12142392] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/10/2022] [Accepted: 07/11/2022] [Indexed: 02/06/2023]
Abstract
Silicon dioxide (SiO2) is a mineral compound present in the Earth’s crust in two mineral forms: crystalline and amorphous. Based on epidemiological and/or biological evidence, the pulmonary effects of crystalline silica are considered well understood, with the development of silicosis, emphysema, chronic bronchitis, or chronic obstructive pulmonary disease. The structure and capacity to trigger oxidative stress are recognized as relevant determinants in crystalline silica’s toxicity. In contrast, natural amorphous silica was long considered nontoxic, and was often used as a negative control in experimental studies. However, as manufactured amorphous silica nanoparticles (or nanosilica or SiNP) are becoming widely used in industrial applications, these paradigms must now be reconsidered at the nanoscale (<100 nm). Indeed, recent experimental studies appear to point towards significant toxicity of manufactured amorphous silica nanoparticles similar to that of micrometric crystalline silica. In this article, we present an extensive review of the nontumoral pulmonary effects of silica based on in vitro and in vivo experimental studies. The findings of this review are presented both for micro- and nanoscale particles, but also based on the crystalline structure of the silica particles.
Collapse
|
4
|
Schneid AC, Ribeiro IR, Galdino FE, Bettini J, Cardoso MB. Degradable and colloidally stable zwitterionic-functionalized silica nanoparticles. Nanomedicine (Lond) 2021; 16:85-96. [PMID: 33463385 DOI: 10.2217/nnm-2020-0257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: This work is focused on obtaining degradable mesoporous silica nanoparticles (DMSNs) which are able to maintain their colloidal stability in complex biological media. Materials & methods: DMSNs were synthesized using different ratios of disulfide organosilane (degradable structural moiety) and further functionalized with sulfobetaine silane (SBS) to enhance colloidal stability and improve biological compatibility. Results: There was a clear trade-off between nanoparticle degradability and colloidal stability, since full optimization of the degradation process generated unstable particles, while enhancing colloidal stability resulted in poor DMSNs degradation. It was also shown that acidic pH improved particle degradation which is commonly triggered by reduction stimulus. Conclusion: A chemical composition window was found where DMSNs presented satisfactory colloidal stability in biologically relevant medium, meaningful degradation profiles and high biocompatibility.
Collapse
Affiliation(s)
- Andressa C Schneid
- Laboratório Nacional de Nanotecnologia (LNNano), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, SP, CEP 13083 970, Brasil.,Laboratório Nacional de Luz Síncrotron (LNLS), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, SP, CEP 13083 970, Brasil
| | - Iris Rs Ribeiro
- Laboratório Nacional de Nanotecnologia (LNNano), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, SP, CEP 13083 970, Brasil.,Laboratório Nacional de Luz Síncrotron (LNLS), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, SP, CEP 13083 970, Brasil.,Instituto de Química (IQ), Universidade Estadual de Campinas (UNICAMP), Caixa Postal 6154, Campinas, SP, CEP 13083 970, Brasil
| | - Flávia E Galdino
- Laboratório Nacional de Nanotecnologia (LNNano), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, SP, CEP 13083 970, Brasil.,Laboratório Nacional de Luz Síncrotron (LNLS), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, SP, CEP 13083 970, Brasil.,Instituto de Química (IQ), Universidade Estadual de Campinas (UNICAMP), Caixa Postal 6154, Campinas, SP, CEP 13083 970, Brasil
| | - Jefferson Bettini
- Laboratório Nacional de Nanotecnologia (LNNano), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, SP, CEP 13083 970, Brasil
| | - Mateus B Cardoso
- Laboratório Nacional de Nanotecnologia (LNNano), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, SP, CEP 13083 970, Brasil.,Laboratório Nacional de Luz Síncrotron (LNLS), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, SP, CEP 13083 970, Brasil.,Instituto de Química (IQ), Universidade Estadual de Campinas (UNICAMP), Caixa Postal 6154, Campinas, SP, CEP 13083 970, Brasil
| |
Collapse
|
5
|
Tajoli F, Dengo N, Mognato M, Dolcet P, Lucchini G, Faresin A, Grunwaldt JD, Huang X, Badocco D, Maggini M, Kübel C, Speghini A, Carofiglio T, Gross S. Microfluidic Crystallization of Surfactant-Free Doped Zinc Sulfide Nanoparticles for Optical Bioimaging Applications. ACS APPLIED MATERIALS & INTERFACES 2020; 12:44074-44087. [PMID: 32876432 PMCID: PMC8011799 DOI: 10.1021/acsami.0c13150] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/02/2020] [Indexed: 05/27/2023]
Abstract
The room-temperature controlled crystallization of monodispersed ZnS nanoparticles (average size of 5 nm) doped with luminescent ions (such as Mn2+, Eu3+, Sm3+, Nd3+, and Yb3+) was achieved via a microfluidic approach. The preparation did not require any stabilizing ligands or surfactants, minimizing potential sources of impurities. The synthesized nanomaterials were characterized from a structural (XRD and XAS at lanthanide L3 edges), morphological (TEM), and compositional (XPS, ICP-MS) perspective, giving complementary information on the materials' features. In view of potential applications in the field of optical bioimaging, the optical emission properties of the doped nanoparticles were assessed, and samples showed strong luminescent properties while being less affected by self-quenching mechanisms. Furthermore, in vitro cytotoxicity experiments were conducted, showing no negative effects and evidencing the appeal of the synthesized materials for potential applications in the field of optical bioimaging.
Collapse
Affiliation(s)
- Francesca Tajoli
- Dipartimento di
Scienze Chimiche, Università degli
Studi di Padova, Via Marzolo 1, 35131 Padova, Italy
- INSTM, UdR di Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Nicola Dengo
- Dipartimento di
Scienze Chimiche, Università degli
Studi di Padova, Via Marzolo 1, 35131 Padova, Italy
- INSTM, UdR di Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Maddalena Mognato
- Dipartimento di Biologia, Università
degli Studi di Padova, Via Bassi 58B, 35131 Padova, Italy
| | - Paolo Dolcet
- Karlsruher Institut für
Technologie (KIT), Institut für Technische
Chemie und Polymerchemie (ITCP), Engesserstr. 20, 76131 Karlsruhe, Germany
| | - Giacomo Lucchini
- NRG, Dipartimento
di Biotecnologie, Università di Verona
and INSTM, RU Verona, Strada Le Grazie 15, 37314 Verona, Italy
| | - Andrea Faresin
- Dipartimento di
Scienze Chimiche, Università degli
Studi di Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Jan-Dierk Grunwaldt
- Karlsruher Institut für
Technologie (KIT), Institut für Technische
Chemie und Polymerchemie (ITCP), Engesserstr. 20, 76131 Karlsruhe, Germany
| | - Xiaohui Huang
- Karlsruher Institut für
Technologie (KIT), Institut für Nanotechnologie
(INT) & Karlsruhe Nano Micro Facility (KNMF), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Denis Badocco
- Dipartimento di
Scienze Chimiche, Università degli
Studi di Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Michele Maggini
- Dipartimento di
Scienze Chimiche, Università degli
Studi di Padova, Via Marzolo 1, 35131 Padova, Italy
- INSTM, UdR di Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Christian Kübel
- Karlsruher Institut für
Technologie (KIT), Institut für Nanotechnologie
(INT) & Karlsruhe Nano Micro Facility (KNMF), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Department of Materials and Earth Sciences, Technical University Darmstadt, Alarich-Weiss-Str. 2, 64287 Darmstadt, Germany
| | - Adolfo Speghini
- NRG, Dipartimento
di Biotecnologie, Università di Verona
and INSTM, RU Verona, Strada Le Grazie 15, 37314 Verona, Italy
| | - Tommaso Carofiglio
- Dipartimento di
Scienze Chimiche, Università degli
Studi di Padova, Via Marzolo 1, 35131 Padova, Italy
- INSTM, UdR di Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Silvia Gross
- Dipartimento di
Scienze Chimiche, Università degli
Studi di Padova, Via Marzolo 1, 35131 Padova, Italy
- INSTM, UdR di Padova, Via Marzolo 1, 35131 Padova, Italy
| |
Collapse
|
6
|
Ultrafine silicon dioxide nanoparticles cause lung epithelial cells apoptosis via oxidative stress-activated PI3K/Akt-mediated mitochondria- and endoplasmic reticulum stress-dependent signaling pathways. Sci Rep 2020; 10:9928. [PMID: 32555254 PMCID: PMC7303152 DOI: 10.1038/s41598-020-66644-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 04/06/2020] [Indexed: 02/06/2023] Open
Abstract
Silicon dioxide nanoparticles (SiO2NPs) are widely applied in industry, chemical, and cosmetics. SiO2NPs is known to induce pulmonary toxicity. In this study, we investigated the molecular mechanisms of SiO2NPs on pulmonary toxicity using a lung alveolar epithelial cell (L2) model. SiO2NPs, which primary particle size was 12 nm, caused the accumulation of intracellular Si, the decrease in cell viability, and the decrease in mRNAs expression of surfactant, including surfactant protein (SP)-A, SP-B, SP-C, and SP-D. SiO2NPs induced the L2 cell apoptosis. The increases in annexin V fluorescence, caspase-3 activity, and protein expression of cleaved-poly (ADP-ribose) polymerase (PARP), cleaved-caspase-9, and cleaved-caspase-7 were observed. The SiO2NPs induced caspase-3 activity was reversed by pretreatment of caspase-3 inhibitor Z-DEVD-FMK. SiO2NPs exposure increased reactive oxygen species (ROS) production, decreased mitochondrial transmembrane potential, and decreased protein and mRNA expression of Bcl-2 in L2 cells. SiO2NPs increased protein expression of cytosolic cytochrome c and Bax, and mRNAs expression of Bid, Bak, and Bax. SiO2NPs could induce the endoplasmic reticulum (ER) stress-related signals, including the increase in CHOP, XBP-1, and phospho-eIF2α protein expressions, and the decrease in pro-caspase-12 protein expression. SiO2NPs increased phosphoinositide 3-kinase (PI3K) activity and AKT phosphorylation. Both ROS inhibitor N-acetyl-l-cysteine (NAC) and PI3K inhibitor LY294002 reversed SiO2NPs-induced signals described above. However, the LY294002 could not inhibit SiO2NPs-induced ROS generation. These findings demonstrated first time that SiO2NPs induced L2 cell apoptosis through ROS-regulated PI3K/AKT signaling and its downstream mitochondria- and ER stress-dependent signaling pathways.
Collapse
|
7
|
Shinto H, Fukasawa T, Yoshisue K, Seto H, Kawano T, Hirohashi Y. Effect of exposure temperature on the cell membrane disruption induced by amorphous silica nanoparticles in erythrocytes, lymphocytes, and malignant melanocytes. ADV POWDER TECHNOL 2020. [DOI: 10.1016/j.apt.2019.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
8
|
Repeated vs. Acute Exposure of RAW264.7 Mouse Macrophages to Silica Nanoparticles: A Bioaccumulation and Functional Change Study. NANOMATERIALS 2020; 10:nano10020215. [PMID: 32012675 PMCID: PMC7074975 DOI: 10.3390/nano10020215] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 01/20/2020] [Accepted: 01/22/2020] [Indexed: 02/07/2023]
Abstract
Synthetic amorphous silica is used in various applications such as cosmetics, food, or rubber reinforcement. These broad uses increase human exposure, and thus the potential risk related to their short- and long-term toxicity for both consumers and workers. These potential risks have to be investigated, in a global context of multi-exposure, as encountered in human populations. However, most of the in vitro research on the effects of amorphous silica has been carried out in an acute exposure mode, which is not the most relevant when trying to assess the effects of occupational exposure. As a first step, the effects of repeated exposure of macrophages to silica nanomaterials have been investigated. The experiments have been conducted on in vitro macrophage cell line RAW264.7 (cell line from an Abelson murine leukemia virus-induced tumor), as this cell type is an important target cell in toxicology of particulate materials. The bioaccumulation of nanomaterials and the persistence of their effects have been studied. The experiments carried out include the viability assay and functional tests (phagocytosis, NO and reactive oxygen species dosages, and production of pro- and anti-inflammatory cytokines) using flow cytometry, microscopy and spectrophotometry. Accumulation of silica nanoparticles (SiO2 NP) was observed in both exposure scenarii. However, differences in the biological effects between the exposure scenarii have also been observed. For phagocytosis, NO production and Tumor Necrosis Factor (TNF) release, repeated exposure tended to induce fewer effects than acute exposure. Nevertheless, repeated exposure still induces alterations in the macrophage responses and thus represents a scenario to be tested in detail.
Collapse
|
9
|
Effect of interfacial serum proteins on the cell membrane disruption induced by amorphous silica nanoparticles in erythrocytes, lymphocytes, malignant melanocytes, and macrophages. Colloids Surf B Biointerfaces 2019; 181:270-277. [PMID: 31153022 DOI: 10.1016/j.colsurfb.2019.05.067] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 05/22/2019] [Accepted: 05/26/2019] [Indexed: 11/22/2022]
Abstract
It is very important to examine carefully the potential adverse effects of engineered nanoparticles (NPs) on human health and environments. In the present study, we have investigated the impact of interfacial serum proteins on the cell membrane disruption induced by silica NPs of primary diameter of 55-68 nm in four types of cells (erythrocytes, Jurkat, B16F10, and J774.1). The silica-induced membranolysis was repressed by addition of 1-2% serum into culture media, where the adhesion amount of the FBS-coated silica NPs onto a cell surface seemed comparable with that of the bare silica NPs. The nonspecific attraction between the bare silica and J774.1 cell membrane surfaces was masked by pretreatment of the silica surface with serum albumin, whereas the serum proteins-coated silica surface exhibited the attractive interactions with the cell membrane due to specific binding between some of adsorbed proteins thereon and the membrane receptors. The difference in silica-cell interaction between the nonspecific and specific attractions would explain the reason why interfacial serum proteins reduced the membranolysis without prevention of silica NPs adhering to cell surfaces.
Collapse
|
10
|
Effect of SiO2 on co-impregnated V2O5/WO3/TiO2 catalysts for the selective catalytic reduction of NO with NH3. Catal Today 2019. [DOI: 10.1016/j.cattod.2017.11.037] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
De Fazio AF, Morgese G, Mognato M, Piotto C, Pedron D, Ischia G, Causin V, Rosenboom JG, Benetti EM, Gross S. Robust and Biocompatible Functionalization of ZnS Nanoparticles by Catechol-Bearing Poly(2-methyl-2-oxazoline)s. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:11534-11543. [PMID: 30170495 DOI: 10.1021/acs.langmuir.8b02287] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Zinc sulfide (ZnS) nanoparticles (NPs) are particularly interesting materials for their electronic and luminescent properties. Unfortunately, their robust and stable functionalization and stabilization, especially in aqueous media, has represented a challenging and not yet completely accomplished task. In this work, we report the synthesis of colloidally stable, photoluminescent and biocompatible core-polymer shell ZnS and ZnS:Tb NPs by employing a water-in-oil miniemulsion (ME) process combined with surface functionalization via catechol-bearing poly-2-methyl-2-oxazoline (PMOXA) of various molar masses. The strong binding of catechol anchors to the metal cations of the ZnS surface, coupled with the high stability of PMOXA against chemical degradation, enable the formation of suspensions presenting excellent colloidal stability. This feature, combined with the assessed photoluminescence and biocompatibility, make these hybrid NPs suitable for optical bioimaging.
Collapse
Affiliation(s)
- Angela Federica De Fazio
- Dipartimento di Scienze Chimiche , Università degli Studi di Padova , via Marzolo 1 , 35131 Padova , Italy
- Physics and Astronomy , University of Southampton, Highfield Campus SO17 1BJ , Southampton , United Kingdom
| | - Giulia Morgese
- Polymer Surfaces Group, Laboratory for Surface Science and Technology , ETH Zürich , Vladimir-Prelog-Weg 5 , 8093-CH Zürich , Switzerland
| | - Maddalena Mognato
- Dipartimento di Biologia , Università degli Studi di Padova , via U. Bassi 58/B , 35131 Padova , Italy
| | - Celeste Piotto
- Dipartimento di Biologia , Università degli Studi di Padova , via U. Bassi 58/B , 35131 Padova , Italy
| | - Danilo Pedron
- Dipartimento di Scienze Chimiche , Università degli Studi di Padova , via Marzolo 1 , 35131 Padova , Italy
| | - Gloria Ischia
- Dipartimento di Ingegneria Industriale , Università di Trento , via Sommarive 9 , 38122 Trento , Italy
| | - Valerio Causin
- Dipartimento di Scienze Chimiche , Università degli Studi di Padova , via Marzolo 1 , 35131 Padova , Italy
| | - Jan-Georg Rosenboom
- Department of Chemistry and Applied Biosciences, Institute of Chemical and Bioengineering , ETH Zürich , Vladimir-Prelog-Weg 1-5/10 8093 Zürich , Switzerland
| | - Edmondo M Benetti
- Polymer Surfaces Group, Laboratory for Surface Science and Technology , ETH Zürich , Vladimir-Prelog-Weg 5 , 8093-CH Zürich , Switzerland
| | - Silvia Gross
- Dipartimento di Scienze Chimiche , Università degli Studi di Padova , via Marzolo 1 , 35131 Padova , Italy
| |
Collapse
|
12
|
Braun K, Stürzel CM, Biskupek J, Kaiser U, Kirchhoff F, Lindén M. Comparison of different cytotoxicity assays for in vitro evaluation of mesoporous silica nanoparticles. Toxicol In Vitro 2018; 52:214-221. [PMID: 29940343 DOI: 10.1016/j.tiv.2018.06.019] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 06/19/2018] [Accepted: 06/22/2018] [Indexed: 10/28/2022]
Abstract
Colorimetric or luminogenic cytotoxicity assays are typically applied for in vitro cytotoxicity evaluations due to their easy handling and low cost. However, the results may be strongly assay-dependent. Furthermore, when applied to nanoparticle toxicity screening, nanoparticle-specific interferences can occur. Therefore, it is important to evaluate the assays for different classes of nanoparticles. Mesoporous silica nanoparticles (MSNs) have emerged as a promising platform for both diagnostic and therapeutic applications but a comparison between the commonly employed colorimetric formazan-dependent MTT and WST-1 and luminescent ATP-dependent cytotoxicity assays is still missing. In this work, we evaluated the applicability of four different in vitro cell viability assays for the cytotoxicity analysis of three differently functionalized mesoporous silica nanoparticles towards TZM-bl indicator cells. The results derived from the colorimetric measurements of cell-viability were compared with results obtained by cell count experiments, flow cytometry, and optical microscopy. The correlation between the viability assay results and the viable cell count was observed to be both assay and particle dependent. The MTT assay generally overestimated the cytotoxicity of the mesoporous silica particles, while the WST-1 assay sometimes clearly underestimated their cytotoxicity and even suggested a viability exceeding 100%. Of the two ATP-based assays, the CellTiterGlo assay gave the best correlation with cell count data, although some particle-dependent effects were observed. In conclusion, ATP-based assays seem most suitable for in vitro cytotoxicity evaluation of MSNs.
Collapse
Affiliation(s)
- Katharina Braun
- Institute of Inorganic Chemistry II, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany.
| | - Christina Martina Stürzel
- Institute of Molecular Virology, Ulm University Medical Centre, Meyerhofstraße 1, 89081 Ulm, Germany.
| | - Johannes Biskupek
- Electron microscopy group of material science, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany.
| | - Ute Kaiser
- Electron microscopy group of material science, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany.
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Centre, Meyerhofstraße 1, 89081 Ulm, Germany.
| | - Mika Lindén
- Institute of Inorganic Chemistry II, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany.
| |
Collapse
|
13
|
Sanchez A, Alvarez JL, Demydenko K, Jung C, Alpizar YA, Alvarez-Collazo J, Cokic SM, Valverde MA, Hoet PH, Talavera K. Silica nanoparticles inhibit the cation channel TRPV4 in airway epithelial cells. Part Fibre Toxicol 2017; 14:43. [PMID: 29100528 PMCID: PMC5670529 DOI: 10.1186/s12989-017-0224-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 10/27/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Silica nanoparticles (SiNPs) have numerous beneficial properties and are extensively used in cosmetics and food industries as anti-caking, densifying and hydrophobic agents. However, the increasing exposure levels experienced by the general population and the ability of SiNPs to penetrate cells and tissues have raised concerns about possible toxic effects of this material. Although SiNPs are known to affect the function of the airway epithelium, the molecular targets of these particles remain largely unknown. Given that SiNPs interact with the plasma membrane of epithelial cells we hypothesized that they may affect the function of Transient Receptor Potential Vanilloid 4 (TRPV4), a cation-permeable channel that regulates epithelial barrier function. The main aims of this study were to evaluate the effects of SiNPs on the activation of TRPV4 and to determine whether these alter the positive modulatory action of this channel on the ciliary beat frequency in airway epithelial cells. RESULTS Using fluorometric measurements of intracellular Ca2+ concentration ([Ca2+]i) we found that SiNPs inhibit activation of TRPV4 by the synthetic agonist GSK1016790A in cultured human airway epithelial cells 16HBE and in primary cultured mouse tracheobronchial epithelial cells. Inhibition of TRPV4 by SiNPs was confirmed in intracellular Ca2+ imaging and whole-cell patch-clamp experiments performed in HEK293T cells over-expressing this channel. In addition to these effects, SiNPs were found to induce a significant increase in basal [Ca2+]i, but in a TRPV4-independent manner. SiNPs enhanced the activation of the capsaicin receptor TRPV1, demonstrating that these particles have a specific inhibitory action on TRPV4 activation. Finally, we found that SiNPs abrogate the increase in ciliary beat frequency induced by TRPV4 activation in mouse airway epithelial cells. CONCLUSIONS Our results show that SiNPs inhibit TRPV4 activation, and that this effect may impair the positive modulatory action of the stimulation of this channel on the ciliary function in airway epithelial cells. These findings unveil the cation channel TRPV4 as a primary molecular target of SiNPs.
Collapse
Affiliation(s)
- Alicia Sanchez
- Department of Cellular and Molecular Medicine, Laboratory of Ion Channel Research, KU Leuven; VIB Center for Brain & Disease Research, Leuven, Belgium
| | - Julio L Alvarez
- Department of Cellular and Molecular Medicine, Laboratory of Ion Channel Research, KU Leuven; VIB Center for Brain & Disease Research, Leuven, Belgium
| | - Kateryna Demydenko
- Department of Cellular and Molecular Medicine, Laboratory of Ion Channel Research, KU Leuven; VIB Center for Brain & Disease Research, Leuven, Belgium.,Present address: Department of Cardiovascular Sciences, Laboratory of Experimental Cardiology, Leuven, KU, Belgium
| | - Carole Jung
- Department of Experimental and Health Sciences, Laboratory of Molecular Physiology and Channelopathies, Universitat Pompeu Fabra, Barcelona, Spain
| | - Yeranddy A Alpizar
- Department of Cellular and Molecular Medicine, Laboratory of Ion Channel Research, KU Leuven; VIB Center for Brain & Disease Research, Leuven, Belgium
| | - Julio Alvarez-Collazo
- Department of Cellular and Molecular Medicine, Laboratory of Ion Channel Research, KU Leuven; VIB Center for Brain & Disease Research, Leuven, Belgium
| | - Stevan M Cokic
- KU Leuven BIOMAT, Department of Oral Health Sciences, KU Leuven & Dentistry University Hospitals Leuven, Leuven, Belgium
| | - Miguel A Valverde
- Department of Experimental and Health Sciences, Laboratory of Molecular Physiology and Channelopathies, Universitat Pompeu Fabra, Barcelona, Spain
| | - Peter H Hoet
- Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Karel Talavera
- Department of Cellular and Molecular Medicine, Laboratory of Ion Channel Research, KU Leuven; VIB Center for Brain & Disease Research, Leuven, Belgium.
| |
Collapse
|
14
|
Khattabi AM, Talib WH, Alqdeimat DA. A targeted drug delivery system of anti-cancer agents based on folic acid-cyclodextrin-long polymer functionalized silica nanoparticles. J Drug Deliv Sci Technol 2017. [DOI: 10.1016/j.jddst.2017.07.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
15
|
Murugadoss S, Lison D, Godderis L, Van Den Brule S, Mast J, Brassinne F, Sebaihi N, Hoet PH. Toxicology of silica nanoparticles: an update. Arch Toxicol 2017; 91:2967-3010. [PMID: 28573455 PMCID: PMC5562771 DOI: 10.1007/s00204-017-1993-y] [Citation(s) in RCA: 290] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 05/18/2017] [Indexed: 12/18/2022]
Abstract
Large-scale production and use of amorphous silica nanoparticles (SiNPs) have increased the risk of human exposure to SiNPs, while their health effects remain unclear. In this review, scientific papers from 2010 to 2016 were systematically selected and sorted based on in vitro and in vivo studies: to provide an update on SiNPs toxicity and to address the knowledge gaps indicated in the review of Napierska (Part Fibre Toxicol 7:39, 2010). Toxicity of SiNPs in vitro is size, dose, and cell type dependent. SiNPs synthesized by wet route exhibited noticeably different biological effects compared to thermal route-based SiNPs. Amorphous SiNPs (particularly colloidal and stöber) induced toxicity via mechanisms similar to crystalline silica. In vivo, route of administration and physico-chemical properties of SiNPs influences the toxicokinetics. Adverse effects were mainly observed in acutely exposed animals, while no significant signs of toxicity were noted in chronically dosed animals. The correlation between in vitro and in vivo toxicity remains less well established mainly due to improper-unrealistic-dosing both in vitro and in vivo. In conclusion, notwithstanding the multiple studies published in recent years, unambiguous linking of physico-chemical properties of SiNPs types to toxicity, bioavailability, or human health effects is not yet possible.
Collapse
Affiliation(s)
- Sivakumar Murugadoss
- Unit for Lung Toxicology, Katholieke Universiteit Leuven, Herestraat 49, O&N1, Room: 07.702, box 706, 3000 Louvain, Belgium
| | - Dominique Lison
- Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Université Catholique de Louvain, Avenue E. Mounier 52/B1.52.12, 1200 Brussels, Belgium
| | - Lode Godderis
- Department of Occupational, Environmental and Insurance Medicine, Katholieke Universiteit Leuven, Kapucijnenvoer 35 block d, box 7001, 3000 Louvain, Belgium
| | - Sybille Van Den Brule
- Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Université Catholique de Louvain, Avenue E. Mounier 52/B1.52.12, 1200 Brussels, Belgium
| | - Jan Mast
- EM-unit, Center for Veterinary and Agrochemical Studies and Research (CODA-CERVA), Groeselenberg 99, Uccle, 1180 Brussels, Belgium
| | - Frederic Brassinne
- EM-unit, Center for Veterinary and Agrochemical Studies and Research (CODA-CERVA), Groeselenberg 99, Uccle, 1180 Brussels, Belgium
| | - Noham Sebaihi
- General Quality and Safety, Metrology Department, National Standards, North Gate-Office 2A29, Bd du Roi Albert II, 16, 1000 Brussels, Belgium
| | - Peter H. Hoet
- Unit for Lung Toxicology, Katholieke Universiteit Leuven, Herestraat 49, O&N1, Room: 07.702, box 706, 3000 Louvain, Belgium
| |
Collapse
|
16
|
Corrà S, Salvadori R, Bee L, Barbieri V, Mognato M. Analysis of DNA-damage response to ionizing radiation in serum-shock synchronized human fibroblasts. Cell Biol Toxicol 2017; 33:373-388. [PMID: 28466226 PMCID: PMC5493713 DOI: 10.1007/s10565-017-9394-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 04/20/2017] [Indexed: 12/31/2022]
Abstract
Many aspects of cellular physiology, including cellular response to genotoxic stress, are related to the circadian rhythmicity induced by the molecular clock. The current study investigated if the cellular response to DNA damage is in relation to endogenous expression levels of the PER2 protein, a key component of the molecular regulatory system that confers rhythmicity in mammalian cells. Human normal fibroblasts (CCD-34Lu) were subjected to serum shock to induce circadian oscillations of the PER2 protein and then irradiated with γ- rays at times corresponding to the trough and peak expression of the PER2 protein. To better examine cellular response to DNA damage, the experiments performed in this study were carried out in non-proliferating CCD-34Lu fibroblasts in order to maintain the cell and circadian cycles separated while they were being exposed to genotoxic stress. Study results demonstrated that clonogenic cell survival, double-strand break repair kinetics, and TP53 protein levels were affected in the cells irradiated at the trough than in those irradiated at peak expression of the PER2 protein.
Collapse
Affiliation(s)
- Samantha Corrà
- Department of Biology, School of Sciences, University of Padova, via U. Bassi 58 B, 35131, Padova, Italy
| | - Riccardo Salvadori
- Department of Biology, School of Sciences, University of Padova, via U. Bassi 58 B, 35131, Padova, Italy
| | - Leonardo Bee
- Department of Biology, School of Sciences, University of Padova, via U. Bassi 58 B, 35131, Padova, Italy.,Menarini Silicon Biosystems, 10355 Science Center Dr #210, San Diego, CA, 92121, USA
| | - Vito Barbieri
- Department of Surgical, Oncological and Gastroenteric Sciences, University of Padova, via Giustiniani 2, Padova, Italy
| | - Maddalena Mognato
- Department of Biology, School of Sciences, University of Padova, via U. Bassi 58 B, 35131, Padova, Italy.
| |
Collapse
|
17
|
Interactions between DPPC as a component of lung surfactant and amorphous silica nanoparticles investigated by HILIC-ESI–MS. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1029-1030:222-229. [DOI: 10.1016/j.jchromb.2016.07.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 07/04/2016] [Accepted: 07/06/2016] [Indexed: 12/27/2022]
|
18
|
Sakai S, Nomura K, Mochizuki K, Taya M. Anchoring PEG-oleate to cell membranes stimulates reactive oxygen species production. Colloids Surf B Biointerfaces 2016; 147:336-342. [PMID: 27544656 DOI: 10.1016/j.colsurfb.2016.08.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 06/27/2016] [Accepted: 08/11/2016] [Indexed: 11/16/2022]
Abstract
Polyethylene glycol (PEG) derivatives possessing oleyl and reactive groups for conjugating functional substrates, such as proteins and quantum dots, are useful materials for cell-surface engineering and cell immobilization onto substrates. The reagent is known as a biocompatible anchor for cell membranes (BAM). Here, BAM-anchoring on cell membranes is reported to stimulate reactive oxygen species (ROS) production in those cells. Significant increases in ROS production and release to the surrounding environment were detected in mouse fibroblast cell line 10T1/2 when soaked in a solution containing BAM conjugated with 1/10mol/mol bovine serum albumin at 1.5μM-protein. ROS production stimulation was confirmed to be independent of the protein crosslinked with BAM and of cell type. Similar stimulation was detected for BAMs conjugated with ovalbumin and casein, in human hepatoma cell line HepG2, and human umbilical vein endothelial cells. Considering the effects of ROS on a variety of cellular processes, these results demonstrated the necessity for focusing attention on the effects of generated and released ROS on the behaviors of cells in the studies applying BAM to cells.
Collapse
Affiliation(s)
- Shinji Sakai
- Division of Chemical Engineering, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-Cho, Toyonaka, Osaka 560-8531, Japan.
| | - Koujiro Nomura
- Division of Chemical Engineering, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-Cho, Toyonaka, Osaka 560-8531, Japan
| | - Kei Mochizuki
- Division of Chemical Engineering, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-Cho, Toyonaka, Osaka 560-8531, Japan
| | - Masahito Taya
- Division of Chemical Engineering, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-Cho, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
19
|
Messerschmidt C, Hofmann D, Kroeger A, Landfester K, Mailänder V, Lieberwirth I. On the pathway of cellular uptake: new insight into the interaction between the cell membrane and very small nanoparticles. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2016; 7:1296-1311. [PMID: 27826504 PMCID: PMC5082453 DOI: 10.3762/bjnano.7.121] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 08/26/2016] [Indexed: 05/04/2023]
Abstract
For any living cell the exchange with its environment is vital. Therefore, many different kinds of cargo are able to enter cells via energy-dependent or -independent routes. Nanoparticles are no exemption. It is known that small silica nanoparticles with a diameter below 50 nm are taken up by cells and that their uptake exerts pronounced toxic effects beyond a certain concentration threshold. However, neither the exact uptake mechanism of these particles nor the actual reason for their toxicity has yet been elucidated. In this study we examined the uptake of silica nanoparticles with a diameter of 7, 12 and 22 nm by means of transmission electron microscopy, accompanied by toxicological assays. We show that for every particle diameter tested a different membrane morphology during uptake can be observed and that the amount of particles entering in one event is different for the three sizes. Silica particles with a diameter of 22 nm show single-particle internalization with a membrane wrapped around the particles in the cytosol, whereas 12 nm particles display row-like multi-particle uptake into elongated membrane structures and those with a diameter of 7 nm or less end up in tubular endocytic structures containing many particles. These membrane morphologies proved to be highly reproducible as we found them in five different cell lines. Additionally, we performed ATP and LDH assays to determine particle toxicity. Exceeding a certain concentration threshold the nanoparticles showed a high toxic potential both in the biochemical assay measurements and from morphological findings. We could not find any hint at the induction of apoptosis, neither morphologically nor biochemically. In this regard we discuss membrane damage and consumption as one possible mechanism of toxicity, linking morphological observations to toxicological findings to bridge the gap in understanding the mechanism of toxicity of small nanoparticles.
Collapse
Affiliation(s)
| | - Daniel Hofmann
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Anja Kroeger
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Ostwestfalen-Lippe University of Applied Sciences, Liebigstr. 87, 32657 Lemgo, Germany
| | - Katharina Landfester
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Volker Mailänder
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Dept. of Medicine III, Hematology, Oncology and Pneumology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55101 Mainz, Germany
| | - Ingo Lieberwirth
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
20
|
Kim IY, Joachim E, Choi H, Kim K. Toxicity of silica nanoparticles depends on size, dose, and cell type. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 11:1407-16. [PMID: 25819884 DOI: 10.1016/j.nano.2015.03.004] [Citation(s) in RCA: 199] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 02/24/2015] [Accepted: 03/11/2015] [Indexed: 01/08/2023]
Abstract
UNLABELLED Monodisperse spherical silica nanoparticles (SNPs) with diameters of 20-200 nm were employed to study size, dose, and cell-type dependent cytotoxicity in A549 and HepG2 epithelial cells and NIH/3T3 fibroblasts. These uniform SNPs of precisely controlled sizes eliminated uncertainties arising from mixed sizes, and uniquely allowed the probing of effects entirely size-dependent. Cell viability, membrane disruption, oxidative stress, and cellular uptake were studied. The extent and mechanism of SNP cytotoxicity were found to be not only size and dose dependent, but also highly cell type dependent. Furthermore, the 60 nm SNPs exhibited highly unusual behavior in comparison to particles of other sizes tested, implying interesting possibilities for controlling cellular activities using nanoparticles. Specifically, the 60 nm SNPs were preferentially endocytosed by cells and, at high doses, caused a disproportionate decrease in cell viability. The present work may help elucidate certain contradictions among existing results on nanoparticle-induced cytotoxicity. FROM THE CLINICAL EDITOR Silica nanoparticles are being investigated in many research areas for their use in clinical applications. Nonetheless, the relationship between particle size and potential toxicity remains to be elucidated. In this article, the authors studied the biological effects of spherical SNPs with precise diameters between 20 and 200 nm on three different cell types and their results should provide more data on safety for better drug design.
Collapse
Affiliation(s)
- In-Yong Kim
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Elizabeth Joachim
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Hyungsoo Choi
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| | - Kyekyoon Kim
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
21
|
Guichard Y, Fontana C, Chavinier E, Terzetti F, Gaté L, Binet S, Darne C. Cytotoxic and genotoxic evaluation of different synthetic amorphous silica nanomaterials in the V79 cell line. Toxicol Ind Health 2015; 32:1639-50. [PMID: 25757481 DOI: 10.1177/0748233715572562] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The nature of occupational risks and hazards in industries that produce or use synthetic amorphous silica (SAS) nanoparticles is still under discussion. Manufactured SAS occur in amorphous form and can be divided into two main types according to the production process, namely, pyrogenic silica (powder) and precipitated silica (powder, gel or colloid). The physical and chemical properties of SAS may vary in terms of particle size, surface area, agglomeration state or purity, and differences in their toxicity potential might therefore be expected. The aim of this study was to compare the cytotoxicity and genotoxicity of representative manufactured SAS samples in Chinese hamster lung fibroblasts (V79 cells). Five samples from industrial SAS producers were evaluated, that is, two pyrogenic SAS powders (with primary particle sizes of 20 nm and 25/70 nm), one precipitated SAS powder (20 nm) and two precipitated SAS colloids (15 and 40/80 nm). V79 cell cultures were treated with different concentrations of SAS pre-dispersed in bovine serum albumin -water medium. Pyr (pyrogenic) 20, Pre (precipitated) 20 and Col (colloid) 15 significantly decreased the cell viability after 24 h of exposure, whilst Pyr 25/70 and Col 40/80 had negligible effects. The cytotoxicity of Pyr 20, Pre 20 and Col 15 was revealed by the induction of apoptosis, and Pyr 20 and Col 15 also produced DNA damage. However, none of the SAS samples generated intracellular reactive oxidative species, micronuclei or genomic mutations in V79 cells after 24 h of exposure. Overall, the results of this study show that pyrogenic, precipitated and colloidal manufactured SAS of around 20 nm primary particle size can produce significant cytotoxic and genotoxic effects in V79 cells. In contrast, the coarser-grained pyrogenic and colloid SAS (approximately 50 nm) yielded negligible toxicity, despite having been manufactured by same processes as their finer-grained equivalents. To explain these differences, the influence of particle agglomeration and oxidative species formation is discussed.
Collapse
Affiliation(s)
- Y Guichard
- Institut National de Recherche et de Sécurité (INRS), Vandoeuvre Cedex, France
| | - C Fontana
- Institut National de Recherche et de Sécurité (INRS), Vandoeuvre Cedex, France
| | - E Chavinier
- Institut National de Recherche et de Sécurité (INRS), Vandoeuvre Cedex, France
| | - F Terzetti
- Institut National de Recherche et de Sécurité (INRS), Vandoeuvre Cedex, France
| | - L Gaté
- Institut National de Recherche et de Sécurité (INRS), Vandoeuvre Cedex, France
| | - S Binet
- Institut National de Recherche et de Sécurité (INRS), Vandoeuvre Cedex, France
| | - C Darne
- Institut National de Recherche et de Sécurité (INRS), Vandoeuvre Cedex, France
| |
Collapse
|
22
|
Case Study – Characterization of Nanomaterials in Food Products. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/b978-0-08-099948-7.00009-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
|
23
|
Evaluation of gold nanoparticles toxicity towards human endothelial cells under static and flow conditions. Microvasc Res 2014; 97:147-55. [PMID: 25446009 DOI: 10.1016/j.mvr.2014.10.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 10/12/2014] [Accepted: 10/27/2014] [Indexed: 01/19/2023]
Abstract
A new in vitro model system, adding advection and shear stress associated with a flowing medium, is proposed for the investigation of nanoparticles uptake and toxicity towards endothelial cells, since these processes are normally present when nanoparticles formulations are intravenously administered. In this model system, mechanical forces normally present in vivo, such as advection and shear stress were applied and carefully controlled by growing human umbilical vein endothelial cells inside a microfluidic device and continuously infusing gold nanoparticle (Au NPs) solution in the device. The tests performed in the microfluidic device were also run in multiwells, where no flow is present, so as to compare the two model systems and evaluate if gold nanoparticles toxicity differs under static and flow culture conditions. Full characterization of Au NPs in water and in culture medium was accomplished by standard methods. Two-photon fluorescence correlation spectroscopy was also employed to map the flow speed of Au NPs in the microfluidic device and characterize Au NPs before and after interactions with the cells. Au NPs uptake in both in vitro systems was investigated through electron and fluorescence microscopy and ICP-AES, and NPs toxicity measured through standard bio-analytical tests. Comparison between experiments run in multiwells and in microfluidic device plays a pivotal role for the investigation of nanoparticle-cell interaction and toxicity assessment: our work showed that administration of equal concentrations of Au NPs under flow conditions resulted in a reduced sedimentation of nanoparticle aggregates onto the cells and lower cytotoxicity with respect to experiments run in ordinary static conditions (multiwells).
Collapse
|
24
|
Shinto H, Fukasawa T, Yoshisue K, Tezuka M, Orita M. Cell membrane disruption induced by amorphous silica nanoparticles in erythrocytes, lymphocytes, malignant melanocytes, and macrophages. ADV POWDER TECHNOL 2014. [DOI: 10.1016/j.apt.2014.09.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
25
|
Altered gene transcription in human cells treated with Ludox® silica nanoparticles. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2014; 11:8867-90. [PMID: 25170680 PMCID: PMC4198995 DOI: 10.3390/ijerph110908867] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 07/08/2014] [Accepted: 08/05/2014] [Indexed: 12/13/2022]
Abstract
Silica (SiO2) nanoparticles (NPs) have found extensive applications in industrial manufacturing, biomedical and biotechnological fields. Therefore, the increasing exposure to such ultrafine particles requires studies to characterize their potential cytotoxic effects in order to provide exhaustive information to assess the impact of nanomaterials on human health. The understanding of the biological processes involved in the development and maintenance of a variety of pathologies is improved by genome-wide approaches, and in this context, gene set analysis has emerged as a fundamental tool for the interpretation of the results. In this work we show how the use of a combination of gene-by-gene and gene set analyses can enhance the interpretation of results of in vitro treatment of A549 cells with Ludox® colloidal amorphous silica nanoparticles. By gene-by-gene and gene set analyses, we evidenced a specific cell response in relation to NPs size and elapsed time after treatment, with the smaller NPs (SM30) having higher impact on inflammatory and apoptosis processes than the bigger ones. Apoptotic process appeared to be activated by the up-regulation of the initiator genes TNFa and IL1b and by ATM. Moreover, our analyses evidenced that cell treatment with Ludox® silica nanoparticles activated the matrix metalloproteinase genes MMP1, MMP10 and MMP9. The information derived from this study can be informative about the cytotoxicity of Ludox® and other similar colloidal amorphous silica NPs prepared by solution processes.
Collapse
|
26
|
PEGylation of ORMOSIL nanoparticles differently modulates the in vitro toxicity toward human lung cells. Arch Toxicol 2014; 89:607-20. [DOI: 10.1007/s00204-014-1273-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 05/13/2014] [Indexed: 12/17/2022]
|
27
|
Su Z, Xing L, Chen Y, Xu Y, Yang F, Zhang C, Ping Q, Xiao Y. Lactoferrin-Modified Poly(ethylene glycol)-Grafted BSA Nanoparticles as a Dual-Targeting Carrier for Treating Brain Gliomas. Mol Pharm 2014; 11:1823-34. [DOI: 10.1021/mp500238m] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Zhigui Su
- Department
of Pharmaceutics,
State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Lei Xing
- Department
of Pharmaceutics,
State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Yinan Chen
- Department
of Pharmaceutics,
State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Yurui Xu
- Department
of Pharmaceutics,
State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Feifei Yang
- Department
of Pharmaceutics,
State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Can Zhang
- Department
of Pharmaceutics,
State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Qineng Ping
- Department
of Pharmaceutics,
State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Yanyu Xiao
- Department
of Pharmaceutics,
State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| |
Collapse
|
28
|
Irfan A, Cauchi M, Edmands W, Gooderham NJ, Njuguna J, Zhu H. Assessment of Temporal Dose-Toxicity Relationship of Fumed Silica Nanoparticle in Human Lung A549 Cells by Conventional Cytotoxicity and 1H-NMR-Based Extracellular Metabonomic Assays. Toxicol Sci 2014; 138:354-64. [DOI: 10.1093/toxsci/kfu009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
29
|
Rampazzo E, Voltan R, Petrizza L, Zaccheroni N, Prodi L, Casciano F, Zauli G, Secchiero P. Proper design of silica nanoparticles combines high brightness, lack of cytotoxicity and efficient cell endocytosis. NANOSCALE 2013; 5:7897-905. [PMID: 23851463 DOI: 10.1039/c3nr02563b] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Silica-based luminescent nanoparticles (SiNPs) show promising prospects in nanomedicine in light of their chemical properties and versatility. In this study, we have characterized silica core-PEG shell SiNPs derivatized with PEG moieties (NP-PEG), with external amino- (NP-PEG-amino) or carboxy-groups (NP-PEG-carbo), both in cell cultures as well as in animal models. By using different techniques, we could demonstrate that these SiNPs were safe and did not exhibit appreciable cytotoxicity in different relevant cell models, of normal or cancer cell types, growing either in suspension (JVM-2 leukemic cell line and primary normal peripheral blood mononuclear cells) or in adherence (human hepatocarcinoma Huh7 and umbilical vein endothelial cells). Moreover, by multiparametric flow cytometry, we could demonstrate that the highest efficiency of cell uptake and entry was observed with NP-PEG-amino, with a stable persistence of the fluorescence signal associated with SiNPs in the loaded cell populations both in vitro and in vivo settings suggesting this as an innovative method for cell traceability and detection in whole organisms. Finally, experiments performed with the endocytosis inhibitor Genistein clearly suggested the involvement of a caveolae-mediated pathway in SiNP endocytosis. Overall, these data support the safe use of these SiNPs for diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Enrico Rampazzo
- Department of Chemistry G. Ciamician, University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Stanca L, Petrache SN, Serban AI, Staicu AC, Sima C, Munteanu MC, Zărnescu O, Dinu D, Dinischiotu A. Interaction of silicon-based quantum dots with gibel carp liver: oxidative and structural modifications. NANOSCALE RESEARCH LETTERS 2013; 8:254. [PMID: 23718202 PMCID: PMC3680243 DOI: 10.1186/1556-276x-8-254] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 04/18/2013] [Indexed: 05/07/2023]
Abstract
Quantum dots (QDs) interaction with living organisms is of central interest due to their various biological and medical applications. One of the most important mechanisms proposed for various silicon nanoparticle-mediated toxicity is oxidative stress. We investigated the basic processes of cellular damage by oxidative stress and tissue injury following QD accumulation in the gibel carp liver after intraperitoneal injection of a single dose of 2 mg/kg body weight Si/SiO2 QDs after 1, 3, and 7 days from their administration.QDs gradual accumulation was highlighted by fluorescence microscopy, and subsequent histological changes in the hepatic tissue were noted. After 1 and 3 days, QD-treated fish showed an increased number of macrophage clusters and fibrosis, while hepatocyte basophilia and isolated hepatolytic microlesions were observed only after substantial QDs accumulation in the liver parenchyma, at 7 days after IP injection.Induction of oxidative stress in fish liver was revealed by the formation of malondialdehyde and advanced oxidation protein products, as well as a decrease in protein thiol groups and reduced glutathione levels. The liver enzymatic antioxidant defense was modulated to maintain the redox status in response to the changes initiated by Si/SiO2 QDs. So, catalase and glutathione peroxidase activities were upregulated starting from the first day after injection, while the activity of superoxide dismutase increased only after 7 days. The oxidative damage that still occurred may impair the activity of more sensitive enzymes. A significant inhibition in glucose-6-phosphate dehydrogenase and glutathione-S-transferase activity was noted, while glutathione reductase remained unaltered.Taking into account that the reduced glutathione level had a deep decline and the level of lipid peroxidation products remained highly increased in the time interval we studied, it appears that the liver antioxidant defense of Carassius gibelio does not counteract the oxidative stress induced 7 days after silicon-based QDs exposure in an efficient manner.
Collapse
Affiliation(s)
- Loredana Stanca
- Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Splaiul Independentei, Bucharest, 050095, Romania
| | - Sorina Nicoleta Petrache
- Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Splaiul Independentei, Bucharest, 050095, Romania
| | - Andreea Iren Serban
- Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Splaiul Independentei, Bucharest, 050095, Romania
- Department of Preclinical Sciences, University of Agricultural Sciences and Veterinary Medicine, 105 Splaiul Independentei, Bucharest, 050097, Romania
| | - Andrea Cristina Staicu
- Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Splaiul Independentei, Bucharest, 050095, Romania
| | - Cornelia Sima
- Laser Department, National Institute of Laser, Plasma and Radiation Physics, 409 Atomistilor, Bucharest-Magurele, 077125, Romania
| | - Maria Cristina Munteanu
- Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Splaiul Independentei, Bucharest, 050095, Romania
| | - Otilia Zărnescu
- Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Splaiul Independentei, Bucharest, 050095, Romania
| | - Diana Dinu
- Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Splaiul Independentei, Bucharest, 050095, Romania
| | - Anca Dinischiotu
- Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Splaiul Independentei, Bucharest, 050095, Romania
| |
Collapse
|
31
|
Orts-Gil G, Natte K, Österle W. Multi-parametric reference nanomaterials for toxicology: state of the art, future challenges and potential candidates. RSC Adv 2013. [DOI: 10.1039/c3ra42112k] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|