1
|
Capuano R, Ciotti M, Catini A, Bernardini S, Di Natale C. Clinical applications of volatilomic assays. Crit Rev Clin Lab Sci 2025; 62:45-64. [PMID: 39129534 DOI: 10.1080/10408363.2024.2387038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/23/2024] [Accepted: 07/29/2024] [Indexed: 08/13/2024]
Abstract
The study of metabolomics is revealing immense potential for diagnosis, therapy monitoring, and understanding of pathogenesis processes. Volatilomics is a subcategory of metabolomics interested in the detection of molecules that are small enough to be released in the gas phase. Volatile compounds produced by cellular processes are released into the blood and lymph, and can reach the external environment through different pathways, such as the blood-air interface in the lung that are detected in breath, or the blood-water interface in the kidney that leads to volatile compounds detected in urine. Besides breath and urine, additional sources of volatile compounds such as saliva, blood, feces, and skin are available. Volatilomics traces its roots back over fifty years to the pioneering investigations in the 1970s. Despite extensive research, the field remains in its infancy, hindered by a lack of standardization despite ample experimental evidence. The proliferation of analytical instrumentations, sample preparations and methods of volatilome sampling still make it difficult to compare results from different studies and to establish a common standard approach to volatilomics. This review aims to provide an overview of volatilomics' diagnostic potential, focusing on two key technical aspects: sampling and analysis. Sampling poses a challenge due to the susceptibility of human samples to contamination and confounding factors from various sources like the environment and lifestyle. The discussion then delves into targeted and untargeted approaches in volatilomics. Some case studies are presented to exemplify the results obtained so far. Finally, the review concludes with a discussion on the necessary steps to fully integrate volatilomics into clinical practice.
Collapse
Affiliation(s)
- Rosamaria Capuano
- Department of Electronic Engineering, University of Rome Tor Vergata, Roma, Italy
- Interdepartmental Center for Volatilomics, "A. D'Amico", University of Rome Tor Vergata, Rome, Italy
| | - Marco Ciotti
- Department of Laboratory Medicine, University Hospital Tor Vergata, Rome, Italy
| | - Alexandro Catini
- Department of Electronic Engineering, University of Rome Tor Vergata, Roma, Italy
- Interdepartmental Center for Volatilomics, "A. D'Amico", University of Rome Tor Vergata, Rome, Italy
| | - Sergio Bernardini
- Interdepartmental Center for Volatilomics, "A. D'Amico", University of Rome Tor Vergata, Rome, Italy
- Department of Laboratory Medicine, University Hospital Tor Vergata, Rome, Italy
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Corrado Di Natale
- Department of Electronic Engineering, University of Rome Tor Vergata, Roma, Italy
- Interdepartmental Center for Volatilomics, "A. D'Amico", University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
2
|
Tian L, Wei Y, Shi Y, Zhao Y, Chen J, Liu X, Lin B. Accuracy of breath tests for colorectal neoplasms diagnosis: a meta-analysis. Eur J Cancer Prev 2024:00008469-990000000-00193. [PMID: 39718217 DOI: 10.1097/cej.0000000000000943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Early noninvasive and rapid screening for colorectal cancer critically influences treatment outcomes. Breath testing, as an emerging screening technology, allows for noninvasive and convenient screening for different biomarkers and is a reliable screening method for various diseases. In this study, a meta-analysis of the accuracy and current status of volatile organic compounds present in exhaled breath for colorectal cancer detection was performed. PubMed, Cochrane Library, and CNKI were searched for relevant studies. The quality of the studies was assessed using the QUADAS-2 criteria, and meta-analysis was performed using RevMan 5.3 and Stata 16. The pooled sensitivity is 90% [95% confidence interval (CI), 85-94%], the pooled specificity is 86% (95% CI, 72-93%), the pooled positive likelihood ratio is 6.3 (95% CI, 3.1-12.6), the negative likelihood ratio is 0.11 (95% CI, 0.07-0.17), and the diagnostic odds ratio is 56 (95% CI, 23-133). Summary receiver operating characteristic analysis revealed an area under the curve of 0.94 (95% CI, 0.91-0.95). The alteration of specific components of exhaled breath is associated with colorectal cancer development, and the selection of biomarkers and detection instruments influence the diagnostic value. What this paper adds to the literature: this meta-analysis provides a comprehensive evaluation of the diagnostic accuracy of volatile organic compounds in breath tests for colorectal cancer, highlighting the influence of biomarker selection and detection methods on screening efficacy.
Collapse
Affiliation(s)
- Lei Tian
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin
| | - Yizhe Wei
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin
- School of Public Health, Binzhou Medical University, Yantai, China
| | - Yue Shi
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin
| | - Yiming Zhao
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin
| | - Jiang Chen
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin
| | - Xuan Liu
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin
| | - Bencheng Lin
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin
| |
Collapse
|
3
|
Barbosa JMG, Filho NRA. The human volatilome meets cancer diagnostics: past, present, and future of noninvasive applications. Metabolomics 2024; 20:113. [PMID: 39375265 DOI: 10.1007/s11306-024-02180-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/22/2024] [Indexed: 10/09/2024]
Abstract
BACKGROUND Cancer is a significant public health problem, causing dozens of millions of deaths annually. New cancer screening programs are urgently needed for early cancer detection, as this approach can improve treatment outcomes and increase patient survival. The search for affordable, noninvasive, and highly accurate cancer detection methods revealed a valuable source of tumor-derived metabolites in the human metabolome through the exploration of volatile organic compounds (VOCs) in noninvasive biofluids. AIM OF REVIEW This review discusses volatilomics-based approaches for cancer detection using noninvasive biomatrices (breath, saliva, skin secretions, urine, feces, and earwax). We presented the historical background, the latest approaches, and the required stages for clinical validation of volatilomics-based methods, which are still lacking in terms of making noninvasive methods available and widespread to the population. Furthermore, insights into the usefulness and challenges of volatilomics in clinical implementation steps for each biofluid are highlighted. KEY SCIENTIFIC CONCEPTS OF REVIEW We outline the methodologies for using noninvasive biomatrices with up-and-coming clinical applications in cancer diagnostics. Several challenges and advantages associated with the use of each biomatrix are discussed, aiming at encouraging the scientific community to strengthen efforts toward the necessary steps to speed up the clinical translation of volatile-based cancer detection methods, as well as discussing in favor of (i) hybrid applications (i.e., using more than one biomatrix) to describe metabolite modulations that can be "cancer volatile fingerprints" and (ii) in multi-omics approaches integrating genomics, transcriptomics, and proteomics into the volatilomic data, which might be a breakthrough for diagnostic purposes, onco-pathway assessment, and biomarker validations.
Collapse
Affiliation(s)
- João Marcos G Barbosa
- Laboratório de Métodos de Extração E Separação (LAMES), Instituto de Química (IQ), Universidade Federal de Goiás (UFG), Campus II - Samambaia, Goiânia, GO, 74690-900, Brazil.
| | - Nelson R Antoniosi Filho
- Laboratório de Métodos de Extração E Separação (LAMES), Instituto de Química (IQ), Universidade Federal de Goiás (UFG), Campus II - Samambaia, Goiânia, GO, 74690-900, Brazil.
| |
Collapse
|
4
|
Lamy E, Roquencourt C, Zhou B, Salvator H, Moine P, Annane D, Devillier P, Bardin E, Grassin-Delyle S. Combination of real-time and hyphenated mass spectrometry for improved characterisation of exhaled breath biomarkers in clinical research. Anal Bioanal Chem 2024; 416:4929-4939. [PMID: 38980330 DOI: 10.1007/s00216-024-05421-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/10/2024]
Abstract
Exhaled breath volatilomics is a powerful non-invasive tool for biomarker discovery in medical applications, but compound annotation is essential for pathophysiological insights and technology transfer. This study was aimed at investigating the interest of a hybrid approach combining real-time proton transfer reaction-time-of-flight mass spectrometry (PTR-TOF-MS) with comprehensive thermal desorption-two-dimensional gas chromatography coupled to time-of-flight mass spectrometry (TD-GCxGC-TOF-MS) to enhance the analysis and characterization of VOCs in clinical research, using COVID-19 as a use case. VOC biomarker candidates were selected from clinical research using PTR-TOF-MS fingerprinting in patients with COVID-19 and matched to the Human Breathomic Database. Corresponding analytical standards were analysed using both a liquid calibration unit coupled to PTR-TOF-MS and TD-GCxGC-TOF-MS, together with confirmation on new clinical samples with TD-GCxGC-TOF-MS. From 26 potential VOC biomarkers, 23 were successfully detected with PTR-TOF-MS. All VOCs were successfully detected using TD-GCxGC-TOF-MS, providing effective separation of highly chemically related compounds, including isomers, and enabling high-confidence annotation based on two-dimensional chromatographic separation and mass spectra. Four VOCs were identified with a level 1 annotation in the clinical samples. For future applications, the combination of real-time PTR-TOF-MS and comprehensive TD-GCxGC-TOF-MS, at least on a subset of samples from a whole study, would enhance the performance of VOC annotation, offering potential advancements in biomarker discovery for clinical research.
Collapse
Affiliation(s)
- Elodie Lamy
- Département de Biotechnologie de la Santé UFR Simone Veil - Santé, Université Paris-Saclay, UVSQ, INSERM, Infection et Inflammation (2I), U1173, 2 avenue de la source de la Bièvre, 78180, Montigny le Bretonneux, France
- FHU SEPSIS (Saclay and Paris Seine Nord Endeavour to PerSonalize Interventions for Sepsis) and IHU PROMETHEUS, Garches, France
| | | | - Bingqing Zhou
- Département de Biotechnologie de la Santé UFR Simone Veil - Santé, Université Paris-Saclay, UVSQ, INSERM, Infection et Inflammation (2I), U1173, 2 avenue de la source de la Bièvre, 78180, Montigny le Bretonneux, France
- FHU SEPSIS (Saclay and Paris Seine Nord Endeavour to PerSonalize Interventions for Sepsis) and IHU PROMETHEUS, Garches, France
| | - Hélène Salvator
- Exhalomics®, Hôpital Foch, Suresnes, France
- Pneumologie, Hôpital Foch, Suresnes, France
- Laboratoire de recherche en Pharmacologie Respiratoire - VIM Suresnes, UMR 0892, Université Paris-Saclay, UVSQ, Suresnes, France
| | - Pierre Moine
- Département de Biotechnologie de la Santé UFR Simone Veil - Santé, Université Paris-Saclay, UVSQ, INSERM, Infection et Inflammation (2I), U1173, 2 avenue de la source de la Bièvre, 78180, Montigny le Bretonneux, France
- FHU SEPSIS (Saclay and Paris Seine Nord Endeavour to PerSonalize Interventions for Sepsis) and IHU PROMETHEUS, Garches, France
- Réanimation médicale, Hôpital Raymond Poincaré, Assistance Publique-Hôpitaux de Paris, Garches, France
| | - Djillali Annane
- Département de Biotechnologie de la Santé UFR Simone Veil - Santé, Université Paris-Saclay, UVSQ, INSERM, Infection et Inflammation (2I), U1173, 2 avenue de la source de la Bièvre, 78180, Montigny le Bretonneux, France
- FHU SEPSIS (Saclay and Paris Seine Nord Endeavour to PerSonalize Interventions for Sepsis) and IHU PROMETHEUS, Garches, France
- Réanimation médicale, Hôpital Raymond Poincaré, Assistance Publique-Hôpitaux de Paris, Garches, France
| | - Philippe Devillier
- FHU SEPSIS (Saclay and Paris Seine Nord Endeavour to PerSonalize Interventions for Sepsis) and IHU PROMETHEUS, Garches, France
- Exhalomics®, Hôpital Foch, Suresnes, France
- Laboratoire de recherche en Pharmacologie Respiratoire - VIM Suresnes, UMR 0892, Université Paris-Saclay, UVSQ, Suresnes, France
| | - Emmanuelle Bardin
- Département de Biotechnologie de la Santé UFR Simone Veil - Santé, Université Paris-Saclay, UVSQ, INSERM, Infection et Inflammation (2I), U1173, 2 avenue de la source de la Bièvre, 78180, Montigny le Bretonneux, France
- FHU SEPSIS (Saclay and Paris Seine Nord Endeavour to PerSonalize Interventions for Sepsis) and IHU PROMETHEUS, Garches, France
- Institut Necker-Enfants Malades, Paris, France
| | - Stanislas Grassin-Delyle
- Département de Biotechnologie de la Santé UFR Simone Veil - Santé, Université Paris-Saclay, UVSQ, INSERM, Infection et Inflammation (2I), U1173, 2 avenue de la source de la Bièvre, 78180, Montigny le Bretonneux, France.
- FHU SEPSIS (Saclay and Paris Seine Nord Endeavour to PerSonalize Interventions for Sepsis) and IHU PROMETHEUS, Garches, France.
- Exhalomics®, Hôpital Foch, Suresnes, France.
| |
Collapse
|
5
|
Golfinopoulou R, Hatziagapiou K, Mavrikou S, Kintzios S. Unveiling Colorectal Cancer Biomarkers: Harnessing Biosensor Technology for Volatile Organic Compound Detection. SENSORS (BASEL, SWITZERLAND) 2024; 24:4712. [PMID: 39066110 PMCID: PMC11281049 DOI: 10.3390/s24144712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024]
Abstract
Conventional screening options for colorectal cancer (CRC) detection are mainly direct visualization and invasive methods including colonoscopy and flexible sigmoidoscopy, which must be performed in a clinical setting and may be linked to adverse effects for some patients. Non-invasive CRC diagnostic tests such as computed tomography colonography and stool tests are either too costly or less reliable than invasive ones. On the other hand, volatile organic compounds (VOCs) are potentially ideal non-invasive biomarkers for CRC detection and monitoring. The present review is a comprehensive presentation of the current state-of-the-art VOC-based CRC diagnostics, with a specific focus on recent advancements in biosensor design and application. Among them, breath-based chromatography pattern analysis and sampling techniques are overviewed, along with nanoparticle-based optical and electrochemical biosensor approaches. Limitations of the currently available technologies are also discussed with an outlook for improvement in combination with big data analytics and advanced instrumentation, as well as expanding the scope and specificity of CRC-related volatile biomarkers.
Collapse
Affiliation(s)
- Rebecca Golfinopoulou
- Laboratory of Cell Technology, Department of Biotechnology, Agricultural University of Athens, EU-CONEXUS European University, 11855 Athens, Greece;
| | - Kyriaki Hatziagapiou
- First Department of Pediatrics, National and Kapodistrian University of Athens, “Aghia Sophia” Children’s Hospital, Thivon 1, 11527 Athens, Greece;
| | - Sophie Mavrikou
- Laboratory of Cell Technology, Department of Biotechnology, Agricultural University of Athens, EU-CONEXUS European University, 11855 Athens, Greece;
- CeBTec, 40 Vatatzi, 11472 Athens, Greece
| | - Spyridon Kintzios
- Laboratory of Cell Technology, Department of Biotechnology, Agricultural University of Athens, EU-CONEXUS European University, 11855 Athens, Greece;
- CeBTec, 40 Vatatzi, 11472 Athens, Greece
| |
Collapse
|
6
|
Zheng W, Min Y, Pang K, Wu D. Sample Collection and Processing in Volatile Organic Compound Analysis for Gastrointestinal Cancers. Diagnostics (Basel) 2024; 14:1563. [PMID: 39061700 PMCID: PMC11276357 DOI: 10.3390/diagnostics14141563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Volatile organic compounds have drawn significant attention in recent years as a novel tool for non-invasive detection of a wide range of diseases, including gastrointestinal cancers, for which the need for effective, affordable, and non-invasive screening methods is substantial. Sample preparation is a fundamental step that greatly influences the quality of results and the feasibility of wide-range applications. This review summarizes sampling methods used in studies aiming at testing the diagnostic value of volatile organic compounds in gastrointestinal cancers, discussing in detail some of the recent advancements in automated sampling techniques. Finally, we propose some directions in which sample collection and processing can improve for VOC analysis to be popularized in clinical settings.
Collapse
Affiliation(s)
- Weiyang Zheng
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Yiyang Min
- 8-yr M.D. Program, Peking Union Medical College, Beijing 100730, China
| | - Ke Pang
- 8-yr M.D. Program, Peking Union Medical College, Beijing 100730, China
| | - Dong Wu
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
7
|
Picciariello A, Dezi A, Vincenti L, Spampinato MG, Zang W, Riahi P, Scott J, Sharma R, Fan X, Altomare DF. Colorectal Cancer Diagnosis through Breath Test Using a Portable Breath Analyzer-Preliminary Data. SENSORS (BASEL, SWITZERLAND) 2024; 24:2343. [PMID: 38610554 PMCID: PMC11014225 DOI: 10.3390/s24072343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 03/28/2024] [Accepted: 04/05/2024] [Indexed: 04/14/2024]
Abstract
Screening methods available for colorectal cancer (CRC) to date are burdened by poor reliability and low patient adherence and compliance. An altered pattern of volatile organic compounds (VOCs) in exhaled breath has been proposed as a non-invasive potential diagnostic tool for distinguishing CRC patients from healthy controls (HC). The aim of this study was to evaluate the reliability of an innovative portable device containing a micro-gas chromatograph in enabling rapid, on-site CRC diagnosis through analysis of patients' exhaled breath. In this prospective trial, breath samples were collected in a tertiary referral center of colorectal surgery, and analysis of the chromatograms was performed by the Biomedical Engineering Department. The breath of patients with CRC and HC was collected into Tedlar bags through a Nafion filter and mouthpiece with a one-way valve. The breath samples were analyzed by an automated portable gas chromatography device. Relevant volatile biomarkers and discriminant chromatographic peaks were identified through machine learning, linear discriminant analysis and principal component analysis. A total of 68 subjects, 36 patients affected by histologically proven CRC with no evidence of metastases and 32 HC with negative colonoscopies, were enrolled. After testing a training set (18 CRC and 18 HC) and a testing set (18 CRC and 14 HC), an overall specificity of 87.5%, sensitivity of 94.4% and accuracy of 91.2% in identifying CRC patients was found based on three VOCs. Breath biopsy may represent a promising non-invasive method of discriminating CRC patients from HC.
Collapse
Affiliation(s)
| | - Agnese Dezi
- Department of Precision and Regenerative Medicine and Ionian Area and Interdepartmental Research Center for Pelvic Floor Diseases (CIRPAP), University Aldo Moro of Bari, 70124 Bari, Italy
| | - Leonardo Vincenti
- Surgical Unit, IRCCS de Bellis, Castellana Grotte, 70013 Bari, Italy;
| | | | - Wenzhe Zang
- Biomedical Engineering Department, University of Michigan, 1101 Beal Ave., Ann Arbor, MI 48109, USA; (W.Z.); (J.S.); (R.S.); (X.F.)
| | - Pamela Riahi
- Biomedical Engineering Department, University of Michigan, 1101 Beal Ave., Ann Arbor, MI 48109, USA; (W.Z.); (J.S.); (R.S.); (X.F.)
| | - Jared Scott
- Biomedical Engineering Department, University of Michigan, 1101 Beal Ave., Ann Arbor, MI 48109, USA; (W.Z.); (J.S.); (R.S.); (X.F.)
| | - Ruchi Sharma
- Biomedical Engineering Department, University of Michigan, 1101 Beal Ave., Ann Arbor, MI 48109, USA; (W.Z.); (J.S.); (R.S.); (X.F.)
| | - Xudong Fan
- Biomedical Engineering Department, University of Michigan, 1101 Beal Ave., Ann Arbor, MI 48109, USA; (W.Z.); (J.S.); (R.S.); (X.F.)
| | - Donato F. Altomare
- Department of Precision and Regenerative Medicine and Ionian Area and Interdepartmental Research Center for Pelvic Floor Diseases (CIRPAP), University Aldo Moro of Bari, 70124 Bari, Italy
| |
Collapse
|
8
|
Kononova E, Mežmale L, Poļaka I, Veliks V, Anarkulova L, Vilkoite I, Tolmanis I, Ļeščinska AM, Stonāns I, Pčolkins A, Mochalski P, Leja M. Breath Fingerprint of Colorectal Cancer Patients Based on the Gas Chromatography-Mass Spectrometry Analysis. Int J Mol Sci 2024; 25:1632. [PMID: 38338911 PMCID: PMC10855950 DOI: 10.3390/ijms25031632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
The human body emits a multitude of volatile organic compounds (VOCs) via tissues and various bodily fluids or exhaled breath. These compounds collectively create a distinctive chemical profile, which can potentially be employed to identify changes in human metabolism associated with colorectal cancer (CRC) and, consequently, facilitate the diagnosis of this disease. The main goal of this study was to investigate and characterize the VOCs' chemical patterns associated with the breath of CRC patients and controls and identify potential expiratory markers of this disease. For this purpose, gas chromatography-mass spectrometry was applied. Collectively, 1656 distinct compounds were identified in the breath samples provided by 152 subjects. Twenty-two statistically significant VOCs (p-xylene; hexanal; 2-methyl-1,3-dioxolane; 2,2,4-trimethyl-1,3-pentanediol diisobutyrate; hexadecane; nonane; ethylbenzene; cyclohexanone; diethyl phthalate; 6-methyl-5-hepten-2-one; tetrahydro-2H-pyran-2-one; 2-butanone; benzaldehyde; dodecanal; benzothiazole; tetradecane; 1-dodecanol; 1-benzene; 3-methylcyclopentyl acetate; 1-nonene; toluene) were observed at higher concentrations in the exhaled breath of the CRC group. The elevated levels of these VOCs in CRC patients' breath suggest the potential for these compounds to serve as biomarkers for CRC.
Collapse
Affiliation(s)
- Elīna Kononova
- Institute of Clinical and Preventive Medicine, University of Latvia, LV-1586 Riga, Latvia; (E.K.); (I.P.); (V.V.); (L.A.); (A.M.Ļ.); (I.S.); (A.P.); (M.L.)
- Faculty of Medicine, Riga Stradins University, LV-1007 Riga, Latvia;
| | - Linda Mežmale
- Institute of Clinical and Preventive Medicine, University of Latvia, LV-1586 Riga, Latvia; (E.K.); (I.P.); (V.V.); (L.A.); (A.M.Ļ.); (I.S.); (A.P.); (M.L.)
- Riga East University Hospital, LV-1038 Riga, Latvia
- Health Centre 4, LV-1012 Riga, Latvia;
| | - Inese Poļaka
- Institute of Clinical and Preventive Medicine, University of Latvia, LV-1586 Riga, Latvia; (E.K.); (I.P.); (V.V.); (L.A.); (A.M.Ļ.); (I.S.); (A.P.); (M.L.)
- Department of Modelling and Simulation, Riga Technical University, LV-1048 Riga, Latvia
| | - Viktors Veliks
- Institute of Clinical and Preventive Medicine, University of Latvia, LV-1586 Riga, Latvia; (E.K.); (I.P.); (V.V.); (L.A.); (A.M.Ļ.); (I.S.); (A.P.); (M.L.)
| | - Linda Anarkulova
- Institute of Clinical and Preventive Medicine, University of Latvia, LV-1586 Riga, Latvia; (E.K.); (I.P.); (V.V.); (L.A.); (A.M.Ļ.); (I.S.); (A.P.); (M.L.)
- Health Centre 4, LV-1012 Riga, Latvia;
- Liepaja Regional Hospital, LV-3414 Liepaja, Latvia
| | - Ilona Vilkoite
- Health Centre 4, LV-1012 Riga, Latvia;
- Department of Doctoral Studies, Riga Stradins University, LV-1007 Riga, Latvia
- Digestive Diseases Centre GASTRO, LV-1079 Riga, Latvia
| | - Ivars Tolmanis
- Faculty of Medicine, Riga Stradins University, LV-1007 Riga, Latvia;
- Digestive Diseases Centre GASTRO, LV-1079 Riga, Latvia
| | - Anna Marija Ļeščinska
- Institute of Clinical and Preventive Medicine, University of Latvia, LV-1586 Riga, Latvia; (E.K.); (I.P.); (V.V.); (L.A.); (A.M.Ļ.); (I.S.); (A.P.); (M.L.)
- Riga East University Hospital, LV-1038 Riga, Latvia
- Digestive Diseases Centre GASTRO, LV-1079 Riga, Latvia
| | - Ilmārs Stonāns
- Institute of Clinical and Preventive Medicine, University of Latvia, LV-1586 Riga, Latvia; (E.K.); (I.P.); (V.V.); (L.A.); (A.M.Ļ.); (I.S.); (A.P.); (M.L.)
| | - Andrejs Pčolkins
- Institute of Clinical and Preventive Medicine, University of Latvia, LV-1586 Riga, Latvia; (E.K.); (I.P.); (V.V.); (L.A.); (A.M.Ļ.); (I.S.); (A.P.); (M.L.)
- Riga East University Hospital, LV-1038 Riga, Latvia
- Faculty of Medicine, University of Latvia, LV-1586 Riga, Latvia
| | - Pawel Mochalski
- Institute for Breath Research, University of Innsbruck, 6020 Innsbruck, Austria;
- Institute of Chemistry, Jan Kochanowski University of Kielce, 25-369 Kielce, Poland
| | - Mārcis Leja
- Institute of Clinical and Preventive Medicine, University of Latvia, LV-1586 Riga, Latvia; (E.K.); (I.P.); (V.V.); (L.A.); (A.M.Ļ.); (I.S.); (A.P.); (M.L.)
- Riga East University Hospital, LV-1038 Riga, Latvia
- Digestive Diseases Centre GASTRO, LV-1079 Riga, Latvia
- Faculty of Medicine, University of Latvia, LV-1586 Riga, Latvia
| |
Collapse
|
9
|
Barbosa JMG, Shokry E, Caetano David L, Pereira NZ, da Silva AR, de Oliveira VF, Fioravanti MCS, da Cunha PHJ, de Oliveira AE, Antoniosi Filho NR. Cancer evaluation in dogs using cerumen as a source for volatile biomarker prospection. Mol Omics 2024; 20:27-36. [PMID: 37751172 DOI: 10.1039/d3mo00147d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Cancer is one of the deadliest diseases in humans and dogs. Nevertheless, most tumor types spread faster in canines, and early cancer detection methods are necessary to enhance animal survival. Here, cerumen (earwax) was tested as a source of potential biomarkers for cancer evaluation in dogs. Earwax samples from dogs were collected from tumor-bearing and clinically healthy dogs, followed by Headspace/Gas Chromatography-Mass Spectrometry (HS/GC-MS) analyses and multivariate statistical workflow. An evolutionary-based multivariate algorithm selected 18 out of 128 volatile metabolites as a potential cancer biomarker panel in dogs. The candidate biomarkers showed a full discrimination pattern between tumor-bearing dogs and cancer-free canines with high accuracy in the test dataset: an accuracy of 95.0% (75.1-99.9), and sensitivity and specificity of 100.0% and 92.9%, respectively. In summary, this work raises a new perspective on cancer diagnosis in dogs, being carried out painlessly and non-invasive, facilitating sample collection and periodic application in a veterinary routine.
Collapse
Affiliation(s)
- João Marcos G Barbosa
- Laboratório de Métodos de Extração e Separação, Instituto de Química, Universidade Federal de Goiás (UFG), Campus II - Samambaia, 74690-900, Goiânia, GO, Brazil.
| | - Engy Shokry
- Laboratório de Métodos de Extração e Separação, Instituto de Química, Universidade Federal de Goiás (UFG), Campus II - Samambaia, 74690-900, Goiânia, GO, Brazil.
| | - Lurian Caetano David
- Laboratório de Métodos de Extração e Separação, Instituto de Química, Universidade Federal de Goiás (UFG), Campus II - Samambaia, 74690-900, Goiânia, GO, Brazil.
| | - Naiara Z Pereira
- Laboratório de Métodos de Extração e Separação, Instituto de Química, Universidade Federal de Goiás (UFG), Campus II - Samambaia, 74690-900, Goiânia, GO, Brazil.
| | - Adriana R da Silva
- Hospital Veterinário - Escola de Veterinária e Zootecnia da UFG, Rodovia Goiânia - Nova Veneza, km 8 Campus II - Samambaia, 74690-900, Goiânia, GO, Brazil
| | - Vilma F de Oliveira
- Hospital Veterinário - Escola de Veterinária e Zootecnia da UFG, Rodovia Goiânia - Nova Veneza, km 8 Campus II - Samambaia, 74690-900, Goiânia, GO, Brazil
| | - Maria Clorinda S Fioravanti
- Hospital Veterinário - Escola de Veterinária e Zootecnia da UFG, Rodovia Goiânia - Nova Veneza, km 8 Campus II - Samambaia, 74690-900, Goiânia, GO, Brazil
| | - Paulo H Jorge da Cunha
- Hospital Veterinário - Escola de Veterinária e Zootecnia da UFG, Rodovia Goiânia - Nova Veneza, km 8 Campus II - Samambaia, 74690-900, Goiânia, GO, Brazil
| | - Anselmo E de Oliveira
- Laboratório de Química Teórica e Computacional, Instituto de Química, Universidade Federal de Goiás (UFG), Campus II - Samambaia, 74690-900, Goiânia, GO, Brazil
| | - Nelson Roberto Antoniosi Filho
- Laboratório de Métodos de Extração e Separação, Instituto de Química, Universidade Federal de Goiás (UFG), Campus II - Samambaia, 74690-900, Goiânia, GO, Brazil.
| |
Collapse
|
10
|
Bajo-Fernández M, Souza-Silva ÉA, Barbas C, Rey-Stolle MF, García A. GC-MS-based metabolomics of volatile organic compounds in exhaled breath: applications in health and disease. A review. Front Mol Biosci 2024; 10:1295955. [PMID: 38298553 PMCID: PMC10828970 DOI: 10.3389/fmolb.2023.1295955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 12/05/2023] [Indexed: 02/02/2024] Open
Abstract
Exhaled breath analysis, with particular emphasis on volatile organic compounds, represents a growing area of clinical research due to its obvious advantages over other diagnostic tests. Numerous pathologies have been extensively investigated for the identification of specific biomarkers in exhalates through metabolomics. However, the transference of breath tests to clinics remains limited, mainly due to deficiency in methodological standardization. Critical steps include the selection of breath sample types, collection devices, and enrichment techniques. GC-MS is the reference analytical technique for the analysis of volatile organic compounds in exhalates, especially during the biomarker discovery phase in metabolomics. This review comprehensively examines and compares metabolomic studies focusing on cancer, lung diseases, and infectious diseases. In addition to delving into the experimental designs reported, it also provides a critical discussion of the methodological aspects, ranging from the experimental design and sample collection to the identification of potential pathology-specific biomarkers.
Collapse
Affiliation(s)
- María Bajo-Fernández
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - Érica A. Souza-Silva
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
- Departmento de Química, Universidade Federal de São Paulo (UNIFESP), Diadema, Brazil
| | - Coral Barbas
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - Ma Fernanda Rey-Stolle
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - Antonia García
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| |
Collapse
|
11
|
Maiti KS, Fill E, Strittmatter F, Volz Y, Sroka R, Apolonski A. Standard operating procedure to reveal prostate cancer specific volatile organic molecules by infrared spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 304:123266. [PMID: 37657373 DOI: 10.1016/j.saa.2023.123266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/03/2023] [Accepted: 08/15/2023] [Indexed: 09/03/2023]
Abstract
The growing number of prostate cancer cases is a real concern in modern society. Over 1.4 million new cases and about 400 thousand (>26%) deaths were registered worldwide in 2020 due to prostate cancer. The high mortality rate of prostate cancer is due to the lack of reliable early detection of the disease. Till now the most reliable diagnosis of cancer is tissue biopsy, which is an invasive process. A non-invasive or minimally invasive technique could lead to a diagnostic tool that will allow for saving or prolonging the lifespan of millions of lives. Metabolite-based diagnostics may have a better chance of early cancer detection. However, reliable detection techniques need to be developed. Infrared spectroscopy based gaseous-biofluid holds great promise towards the development of non-invasive diagnostics. A pilot study based on breath analysis by infrared spectroscopy showed promising results in distinguishing prostate cancer patients from healthy volunteers. Details of the spectral metabolic analysis are presented.
Collapse
Affiliation(s)
- Kiran Sankar Maiti
- Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching, Germany; Lehrstuhl für Experimental Physik, Ludwig-Maximilians-Universität München, Am Couombwall 1, 85748 Garching, Germany; Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, Garching, 85747, Germany; Department of Anesthesiology and Intensive Care Medicine/Center for Sepsis Control and Care, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany.
| | - Ernst Fill
- Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching, Germany; Lehrstuhl für Experimental Physik, Ludwig-Maximilians-Universität München, Am Couombwall 1, 85748 Garching, Germany
| | - Frank Strittmatter
- Urologische Klinik und Poliklinik des Klinikums der Ludwig-Maximilians- Universität München in Großhadern, 81377 Munich, Germany
| | - Yannic Volz
- Urologische Klinik und Poliklinik des Klinikums der Ludwig-Maximilians- Universität München in Großhadern, 81377 Munich, Germany
| | - Ronald Sroka
- Urologische Klinik und Poliklinik des Klinikums der Ludwig-Maximilians- Universität München in Großhadern, 81377 Munich, Germany; Laser-Forschungslabor, LIFE Center, University Hospital, Ludwig-Maximilians-Universität München, 82152 Planegg, Germany
| | - Alexander Apolonski
- Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching, Germany; Lehrstuhl für Experimental Physik, Ludwig-Maximilians-Universität München, Am Couombwall 1, 85748 Garching, Germany; Institute of Automation and Electrometry SB RAS, 630090 Novosibirsk, Russia
| |
Collapse
|
12
|
Gallos IK, Tryfonopoulos D, Shani G, Amditis A, Haick H, Dionysiou DD. Advancing Colorectal Cancer Diagnosis with AI-Powered Breathomics: Navigating Challenges and Future Directions. Diagnostics (Basel) 2023; 13:3673. [PMID: 38132257 PMCID: PMC10743128 DOI: 10.3390/diagnostics13243673] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023] Open
Abstract
Early detection of colorectal cancer is crucial for improving outcomes and reducing mortality. While there is strong evidence of effectiveness, currently adopted screening methods present several shortcomings which negatively impact the detection of early stage carcinogenesis, including low uptake due to patient discomfort. As a result, developing novel, non-invasive alternatives is an important research priority. Recent advancements in the field of breathomics, the study of breath composition and analysis, have paved the way for new avenues for non-invasive cancer detection and effective monitoring. Harnessing the utility of Volatile Organic Compounds in exhaled breath, breathomics has the potential to disrupt colorectal cancer screening practices. Our goal is to outline key research efforts in this area focusing on machine learning methods used for the analysis of breathomics data, highlight challenges involved in artificial intelligence application in this context, and suggest possible future directions which are currently considered within the framework of the European project ONCOSCREEN.
Collapse
Affiliation(s)
- Ioannis K. Gallos
- Institute of Communication and Computer Systems, National Technical University of Athens, Zografos Campus, 15780 Athens, Greece; (D.T.); (A.A.)
| | - Dimitrios Tryfonopoulos
- Institute of Communication and Computer Systems, National Technical University of Athens, Zografos Campus, 15780 Athens, Greece; (D.T.); (A.A.)
| | - Gidi Shani
- Laboratory for Nanomaterial-Based Devices, Technion—Israel Institute of Technology, Haifa 3200003, Israel; (G.S.); (H.H.)
| | - Angelos Amditis
- Institute of Communication and Computer Systems, National Technical University of Athens, Zografos Campus, 15780 Athens, Greece; (D.T.); (A.A.)
| | - Hossam Haick
- Laboratory for Nanomaterial-Based Devices, Technion—Israel Institute of Technology, Haifa 3200003, Israel; (G.S.); (H.H.)
| | - Dimitra D. Dionysiou
- Institute of Communication and Computer Systems, National Technical University of Athens, Zografos Campus, 15780 Athens, Greece; (D.T.); (A.A.)
| |
Collapse
|
13
|
Vassilenko V, Moura PC, Raposo M. Diagnosis of Carcinogenic Pathologies through Breath Biomarkers: Present and Future Trends. Biomedicines 2023; 11:3029. [PMID: 38002028 PMCID: PMC10669878 DOI: 10.3390/biomedicines11113029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
The assessment of volatile breath biomarkers has been targeted with a lot of interest by the scientific and medical communities during the past decades due to their suitability for an accurate, painless, non-invasive, and rapid diagnosis of health states and pathological conditions. This paper reviews the most relevant bibliographic sources aiming to gather the most pertinent volatile organic compounds (VOCs) already identified as putative cancer biomarkers. Here, a total of 265 VOCs and the respective bibliographic sources are addressed regarding their scientifically proven suitability to diagnose a total of six carcinogenic diseases, namely lung, breast, gastric, colorectal, prostate, and squamous cell (oesophageal and laryngeal) cancers. In addition, future trends in the identification of five other forms of cancer, such as bladder, liver, ovarian, pancreatic, and thyroid cancer, through perspective volatile breath biomarkers are equally presented and discussed. All the results already achieved in the detection, identification, and quantification of endogenous metabolites produced by all kinds of normal and abnormal processes in the human body denote a promising and auspicious future for this alternative diagnostic tool, whose future passes by the development and employment of newer and more accurate collection and analysis techniques, and the certification for utilisation in real clinical scenarios.
Collapse
Affiliation(s)
- Valentina Vassilenko
- Laboratory for Instrumentation, Biomedical Engineering and Radiation Physics (LIBPhys-UNL), Department of Physics, NOVA School of Science and Technology, NOVA University of Lisbon, Campus FCT-UNL, 2829-516 Caparica, Portugal;
| | - Pedro Catalão Moura
- Laboratory for Instrumentation, Biomedical Engineering and Radiation Physics (LIBPhys-UNL), Department of Physics, NOVA School of Science and Technology, NOVA University of Lisbon, Campus FCT-UNL, 2829-516 Caparica, Portugal;
| | | |
Collapse
|
14
|
Liu Q, Li S, Li Y, Yu L, Zhao Y, Wu Z, Fan Y, Li X, Wang Y, Zhang X, Zhang Y. Identification of urinary volatile organic compounds as a potential non-invasive biomarker for esophageal cancer. Sci Rep 2023; 13:18587. [PMID: 37903959 PMCID: PMC10616168 DOI: 10.1038/s41598-023-45989-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/26/2023] [Indexed: 11/01/2023] Open
Abstract
Early diagnosis of esophageal cancer (EC) is extremely challenging. The study presented herein aimed to assess whether urinary volatile organic compounds (VOCs) may be emerging diagnostic biomarkers for EC. Urine samples were collected from EC patients and healthy controls (HCs). Gas chromatography-ion mobility spectrometry (GC-IMS) was next utilised for volatile organic compound detection and predictive models were constructed using machine learning algorithms. ROC curve analysis indicated that an 8-VOCs based machine learning model could aid the diagnosis of EC, with the Random Forests having a maximum AUC of 0.874 and sensitivities and specificities of 84.2% and 90.6%, respectively. Urine VOC analysis aids in the diagnosis of EC.
Collapse
Affiliation(s)
- Qi Liu
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
- Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Shuhai Li
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Yaping Li
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
- Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Longchen Yu
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
- Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Yuxiao Zhao
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
- Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Zhihong Wu
- Department of Traditional Chinese Medicine, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China.
| | - Yingjing Fan
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
- Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Xinyang Li
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
- Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Yifeng Wang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
- Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Xin Zhang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
- Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Yi Zhang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China.
- Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China.
| |
Collapse
|
15
|
Gashimova EM, Temerdashev AZ, Perunov DV, Porkhanov VA, Polyakov IS, Dmitrieva EV. Selectivity of Exhaled Breath Biomarkers of Lung Cancer in Relation to Cancer of Other Localizations. Int J Mol Sci 2023; 24:13350. [PMID: 37686155 PMCID: PMC10488072 DOI: 10.3390/ijms241713350] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/23/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Lung cancer is a leading cause of death worldwide, mostly due to diagnostics in the advanced stage. Therefore, the development of a quick, simple, and non-invasive diagnostic tool to identify cancer is essential. However, the creation of a reliable diagnostic tool is possible only in case of selectivity to other diseases, particularly, cancer of other localizations. This paper is devoted to the study of the variability of exhaled breath samples among patients with lung cancer and cancer of other localizations, such as esophageal, breast, colorectal, kidney, stomach, prostate, cervix, and skin. For this, gas chromatography-mass spectrometry (GC-MS) was used. Two classification models were built. The first model separated patients with lung cancer and cancer of other localizations. The second model classified patients with lung, esophageal, breast, colorectal, and kidney cancer. Mann-Whitney U tests and Kruskal-Wallis H tests were applied to identify differences in investigated groups. Discriminant analysis (DA), gradient-boosted decision trees (GBDT), and artificial neural networks (ANN) were applied to create the models. In the case of classifying lung cancer and cancer of other localizations, average sensitivity and specificity were 68% and 69%, respectively. However, the accuracy of classifying groups of patients with lung, esophageal, breast, colorectal, and kidney cancer was poor.
Collapse
Affiliation(s)
- Elina M. Gashimova
- Department of Analytical Chemistry, Kuban State University, Stavropol’skaya St. 149, Krasnodar 350040, Russia; (A.Z.T.); (E.V.D.)
| | - Azamat Z. Temerdashev
- Department of Analytical Chemistry, Kuban State University, Stavropol’skaya St. 149, Krasnodar 350040, Russia; (A.Z.T.); (E.V.D.)
| | - Dmitry V. Perunov
- Research Institute—Regional Clinical Hospital N° 1 n.a. Prof. S.V. Ochapovsky, 1 May St. 167, Krasnodar 350086, Russia; (D.V.P.); (V.A.P.); (I.S.P.)
| | - Vladimir A. Porkhanov
- Research Institute—Regional Clinical Hospital N° 1 n.a. Prof. S.V. Ochapovsky, 1 May St. 167, Krasnodar 350086, Russia; (D.V.P.); (V.A.P.); (I.S.P.)
| | - Igor S. Polyakov
- Research Institute—Regional Clinical Hospital N° 1 n.a. Prof. S.V. Ochapovsky, 1 May St. 167, Krasnodar 350086, Russia; (D.V.P.); (V.A.P.); (I.S.P.)
| | - Ekaterina V. Dmitrieva
- Department of Analytical Chemistry, Kuban State University, Stavropol’skaya St. 149, Krasnodar 350040, Russia; (A.Z.T.); (E.V.D.)
| |
Collapse
|
16
|
Chemoresistive Nanosensors Employed to Detect Blood Tumor Markers in Patients Affected by Colorectal Cancer in a One-Year Follow Up. Cancers (Basel) 2023; 15:cancers15061797. [PMID: 36980683 PMCID: PMC10046137 DOI: 10.3390/cancers15061797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/07/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023] Open
Abstract
Colorectal cancer (CRC) represents 10% of the annual tumor diagnosis and deaths occurring worldwide. Given the lack of specific symptoms, which could determine a late diagnosis, the research for specific CRC biomarkers and for innovative low-invasive methods to detect them is crucial. Therefore, on the basis of previously published results, some volatile organic compounds (VOCs), detectable through gas sensors, resulted in particularly promising CRC biomarkers, making these sensors suitable candidates to be employed in CRC screening devices. A new device was employed here to analyze the exhalations of blood samples collected from CRC-affected patients at different stages of their pre- and post-surgery therapeutic path, in order to assess the sensor’s capability for discriminating among these samples. The stages considered were: the same day of the surgical treatment (T1); before the hospital discharge (T2); after one month and after 10–12 months from surgery (T3 and T4, respectively). This device, equipped with four different sensors based on different metal–oxide mixtures, enabled a distinction between T1 and T4 with a sensitivity and specificity of 93% and 82%, respectively, making it suitable for clinical follow-up protocols, patient health status monitoring and to detect possible post-treatment relapses.
Collapse
|
17
|
Identification and validation of volatile organic compounds in bile for differential diagnosis of perihilar cholangiocarcinoma. Clin Chim Acta 2023; 541:117235. [PMID: 36716909 DOI: 10.1016/j.cca.2023.117235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/12/2023] [Accepted: 01/24/2023] [Indexed: 01/29/2023]
Abstract
Early and differential diagnosis of perihilar cholangiocarcinoma (PHCCA) is highly challenging. This study aimed to evaluate whether volatile organic compounds (VOCs) in bile samples could be emerging diagnostic biomarkers for PHCCA. We collected 200 bile samples from patients with PHCCA and benign biliary diseases (BBD), including a 140-patient training cohort and an 60-patient test cohort. Gas chromatography-ion mobility spectrometry (GC-IMS) was used for VOCs detection. The predictive models were constructed using machine learning algorithms. Our analysis detected 19 VOC substances using GC-IMS in the bile samples and resulted in the identification of three new VOCs, 2-methoxyfuran, propyl isovalerate, and diethyl malonate that were found in bile. Unsupervised hierarchical clustering analysis supported that VOCs detected in the bile could distinguish PHCCA from BBD. Twelve VOCs defined according to 32 signal peaks had significant statistical significance between BBD and PHCCA, including four up-regulated VOCs in PHCCA, such as 2-ethyl-1-hexanol, propyl isovalerate, cyclohexanone, and acetophenone, while the rest eight VOCs were down-regulated. ROC curve analysis revealed that machine learning models based on VOCs could help diagnosing PHCCA. Among them, SVM provided the highest AUC of 0·966, with a sensitivity and specificity of 93·1% and 100%, respectively. The diagnostic model based on different VOC spectra could be a feasible method for the differential diagnosis of PHCCA.
Collapse
|
18
|
GC-MS Techniques Investigating Potential Biomarkers of Dying in the Last Weeks with Lung Cancer. Int J Mol Sci 2023; 24:ijms24021591. [PMID: 36675106 PMCID: PMC9867309 DOI: 10.3390/ijms24021591] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 12/27/2022] [Accepted: 01/06/2023] [Indexed: 01/15/2023] Open
Abstract
Predicting when a patient with advanced cancer is dying is a challenge and currently no prognostic test is available. We hypothesised that a dying process from cancer is associated with metabolic changes and specifically with changes in volatile organic compounds (VOCs). We analysed urine from patients with lung cancer in the last weeks of life by headspace gas chromatography mass spectrometry. Urine was acidified or alkalinised before analysis. VOC changes in the last weeks of life were identified using univariate, multivariate and linear regression analysis; 12 VOCs increased (11 from the acid dataset, 2 from the alkali dataset) and 25 VOCs decreased (23 from the acid dataset and 3 from the alkali dataset). A Cox Lasso prediction model using 8 VOCs predicted dying with an AUC of 0.77, 0.78 and 0.85 at 30, 20 and 10 days and stratified patients into a low (median 10 days), medium (median 50 days) or high risk of survival. Our data supports the hypothesis there are specific metabolic changes associated with the dying. The VOCs identified are potential biomarkers of dying in lung cancer and could be used as a tool to provide additional prognostic information to inform expert clinician judgement and subsequent decision making.
Collapse
|
19
|
Systematic Review: Contribution of the Gut Microbiome to the Volatile Metabolic Fingerprint of Colorectal Neoplasia. Metabolites 2022; 13:metabo13010055. [PMID: 36676980 PMCID: PMC9865897 DOI: 10.3390/metabo13010055] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/16/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022] Open
Abstract
Colorectal cancer (CRC) has been associated with changes in volatile metabolic profiles in several human biological matrices. This enables its non-invasive detection, but the origin of these volatile organic compounds (VOCs) and their relation to the gut microbiome are not yet fully understood. This systematic review provides an overview of the current understanding of this topic. A systematic search using PubMed, Embase, Medline, Cochrane Library, and the Web of Science according to PRISMA guidelines resulted in seventy-one included studies. In addition, a systematic search was conducted that identified five systematic reviews from which CRC-associated gut microbiota data were extracted. The included studies analyzed VOCs in feces, urine, breath, blood, tissue, and saliva. Eight studies performed microbiota analysis in addition to VOC analysis. The most frequently reported dysregulations over all matrices included short-chain fatty acids, amino acids, proteolytic fermentation products, and products related to the tricarboxylic acid cycle and Warburg metabolism. Many of these dysregulations could be related to the shifts in CRC-associated microbiota, and thus the gut microbiota presumably contributes to the metabolic fingerprint of VOC in CRC. Future research involving VOCs analysis should include simultaneous gut microbiota analysis.
Collapse
|
20
|
Cheng HR, van Vorstenbosch RW, Pachen DM, Meulen LW, Straathof JWA, Dallinga JW, Jonkers DM, Masclee AA, van Schooten FJ, Mujagic Z, Smolinska A. Detecting Colorectal Adenomas and Cancer Using Volatile Organic Compounds in Exhaled Breath: A Proof-of-Principle Study to Improve Screening. Clin Transl Gastroenterol 2022; 13:e00518. [PMID: 35981245 PMCID: PMC10476860 DOI: 10.14309/ctg.0000000000000518] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 05/16/2022] [Accepted: 06/30/2022] [Indexed: 01/31/2023] Open
Abstract
INTRODUCTION Early detection of colorectal cancer (CRC) by screening programs is crucial because survival rates worsen at advanced stages. However, the currently used screening method, the fecal immunochemical test (FIT), suffers from a high number of false-positives and is insensitive for detecting advanced adenomas (AAs), resulting in false-negatives for these premalignant lesions. Therefore, more accurate, noninvasive screening tools are needed. In this study, the utility of analyzing volatile organic compounds (VOCs) in exhaled breath in a FIT-positive population to detect the presence of colorectal neoplasia was studied. METHODS In this multicenter prospective study, breath samples were collected from 382 FIT-positive patients with subsequent colonoscopy participating in the national Dutch bowel screening program (n = 84 negative controls, n = 130 non-AAs, n = 138 AAs, and n = 30 CRCs). Precolonoscopy exhaled VOCs were analyzed using thermal desorption-gas chromatography-mass spectrometry, and the data were preprocessed and analyzed using machine learning techniques. RESULTS Using 10 discriminatory VOCs, AAs could be distinguished from negative controls with a sensitivity and specificity of 79% and 70%, respectively. Based on this biomarker profile, CRC and AA combined could be discriminated from controls with a sensitivity and specificity of 77% and 70%, respectively, and CRC alone could be discriminated from controls with a sensitivity and specificity of 80% and 70%, respectively. Moreover, the feasibility to discriminate non-AAs from controls and AAs was shown. DISCUSSION VOCs in exhaled breath can detect the presence of AAs and CRC in a CRC screening population and may improve CRC screening in the future.
Collapse
Affiliation(s)
- Hao Ran Cheng
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, Maastricht University Medical Center+, Maastricht, the Netherlands;
- Department of Gastroenterology and Hepatology, Máxima Medical Center, Veldhoven, the Netherlands;
- GROW, School for Oncology and Reproduction, Maastricht University, Maastricht, the Netherlands;
| | - Robert W.R. van Vorstenbosch
- NUTRIM, School of Nutrition & Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands;
- Department of Pharmacology and Toxicology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands.
| | - Daniëlle M. Pachen
- NUTRIM, School of Nutrition & Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands;
- Department of Pharmacology and Toxicology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands.
| | - Lonne W.T. Meulen
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, Maastricht University Medical Center+, Maastricht, the Netherlands;
- GROW, School for Oncology and Reproduction, Maastricht University, Maastricht, the Netherlands;
| | - Jan Willem A. Straathof
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, Maastricht University Medical Center+, Maastricht, the Netherlands;
- Department of Gastroenterology and Hepatology, Máxima Medical Center, Veldhoven, the Netherlands;
| | - Jan W. Dallinga
- NUTRIM, School of Nutrition & Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands;
- Department of Pharmacology and Toxicology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands.
| | - Daisy M.A.E. Jonkers
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, Maastricht University Medical Center+, Maastricht, the Netherlands;
- NUTRIM, School of Nutrition & Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands;
| | - Ad A.M. Masclee
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, Maastricht University Medical Center+, Maastricht, the Netherlands;
- NUTRIM, School of Nutrition & Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands;
| | - Frederik-Jan van Schooten
- NUTRIM, School of Nutrition & Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands;
- Department of Pharmacology and Toxicology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands.
| | - Zlatan Mujagic
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, Maastricht University Medical Center+, Maastricht, the Netherlands;
- NUTRIM, School of Nutrition & Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands;
| | - Agnieszka Smolinska
- NUTRIM, School of Nutrition & Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands;
- Department of Pharmacology and Toxicology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
21
|
Zhang X, Gui X, Zhang Y, Liu Q, Zhao L, Gao J, Ji J, Zhang Y. A Panel of Bile Volatile Organic Compounds Servers as a Potential Diagnostic Biomarker for Gallbladder Cancer. Front Oncol 2022; 12:858639. [PMID: 35433420 PMCID: PMC9006947 DOI: 10.3389/fonc.2022.858639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
As no reliable diagnostic methods are available, gallbladder cancer (GBC) is often diagnosed until advanced stages, resulting in a poor prognosis. In the present study, we assessed whether volatile organic compounds (VOCs) could be used as a diagnostic tool for GBC. The VOCs in bile samples collected from 32 GBC patients were detected by gas chromatography-ion mobility spectrometry (GC-IMS), and 54 patients with benign gallbladder diseases (BGD) were used as controls. Both principal component analysis and unsupervised hierarchical clustering analysis gave a clear separation of GBC and BGD based on the bile VOC data collected from GC-IMS. A total of 12 differentially expressed VOCs were identified, including four upregulated (cyclohexanone, 2-ethyl-1-hexanol, acetophenone, and methyl benzoate) and eight downregulated [methyl acetate, (E)-hept-2-enal, hexanal, (E)-2-hexenal, (E)-2-pentenal, pentan-1-ol, 1-octen-3-one, and (E)-2-octenal] in GBC compared with BGD. ROC analysis demonstrated a 12-VOC panel con-structed by four machine learning algorithms, which was superior to the traditional tumor marker, CA19-9. Among them, support vector machines and linear discriminant analysis provided the highest AUCs of 0.972, with a sensitivity of 100% and a specificity of 94.4% in the diagnosis of GBC. Collectively, VOCs might be used as a potential tool for the diagnosis of GBC.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Shandong University, Jinan, China
| | - Xinru Gui
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Shandong University, Jinan, China
| | - Yanli Zhang
- Department of Clinical Laboratory, Shandong Provincial Third Hospital, Jinan, China
| | - Qi Liu
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Shandong University, Jinan, China
| | - Liqiang Zhao
- Department of Research and Development, Hanon Advanced Technology Group Co., Ltd, Jinan, China
| | - Jingxian Gao
- Department of Research and Development, Hanon Advanced Technology Group Co., Ltd, Jinan, China
| | - Jian Ji
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Shandong University, Jinan, China
| | - Yi Zhang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Shandong University, Jinan, China
| |
Collapse
|
22
|
Astolfi M, Rispoli G, Benedusi M, Zonta G, Landini N, Valacchi G, Malagù C. Chemoresistive Sensors for Cellular Type Discrimination Based on Their Exhalations. NANOMATERIALS 2022; 12:nano12071111. [PMID: 35407231 PMCID: PMC9000844 DOI: 10.3390/nano12071111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 12/03/2022]
Abstract
The detection of volatile organic compounds (VOCs) exhaled by human body fluids is a recent and promising method to reveal tumor formations. In this feasibility study, a patented device, based on nanostructured chemoresistive gas sensors, was employed to explore the gaseous exhalations of tumoral, immortalized, and healthy cell lines, with the aim of distinguishing their VOC patterns. The analysis of the device output to the cell VOCs, emanated at different incubation times and initial plating concentrations, was performed to evaluate the device suitability to identify the cell types and to monitor their growth. The sensors ST25 (based on tin and titanium oxides), STN (based on tin, titanium, and niobium oxides), and TiTaV (based on titanium, tantalum and vanadium oxides) used here, gave progressively increasing responses upon the cell density increase and incubation time; the sensor W11 (based on tungsten oxide) gave instead unreliable responses to all cell lines. All sensors (except for W11) gave large and consistent responses to RKO and HEK293 cells, while they were less responsive to CHO, A549, and CACO-2 ones. The encouraging results presented here, although preliminary, foresee the development of sensor arrays capable of identifying tumor presence and its type.
Collapse
Affiliation(s)
- Michele Astolfi
- Department of Physics and Earth Sciences, University of Ferrara, 44122 Ferrara, Italy; (G.Z.); (N.L.); (C.M.)
- SCENT S.r.l., Via Quadrifoglio 11, 44124 Ferrara, Italy
- Correspondence: (M.A.); (G.R.)
| | - Giorgio Rispoli
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy;
- Correspondence: (M.A.); (G.R.)
| | - Mascia Benedusi
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy;
| | - Giulia Zonta
- Department of Physics and Earth Sciences, University of Ferrara, 44122 Ferrara, Italy; (G.Z.); (N.L.); (C.M.)
- SCENT S.r.l., Via Quadrifoglio 11, 44124 Ferrara, Italy
| | - Nicolò Landini
- Department of Physics and Earth Sciences, University of Ferrara, 44122 Ferrara, Italy; (G.Z.); (N.L.); (C.M.)
- SCENT S.r.l., Via Quadrifoglio 11, 44124 Ferrara, Italy
| | - Giuseppe Valacchi
- Department of Environmental Science and Prevention, University of Ferrara, 44121 Ferrara, Italy;
- Plants for Human Health Institute, NC State University, Kannapolis, NC 28081, USA
- Department of Food and Nutrition, Kyung Hee University, Seoul 130-701, Korea
| | - Cesare Malagù
- Department of Physics and Earth Sciences, University of Ferrara, 44122 Ferrara, Italy; (G.Z.); (N.L.); (C.M.)
- SCENT S.r.l., Via Quadrifoglio 11, 44124 Ferrara, Italy
| |
Collapse
|
23
|
Biomarkers to Detect Early-Stage Colorectal Cancer. Biomedicines 2022; 10:biomedicines10020255. [PMID: 35203465 PMCID: PMC8869393 DOI: 10.3390/biomedicines10020255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/17/2022] [Accepted: 01/20/2022] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer is a leading cause of mortality worldwide. The high incidence and the acceleration of incidence in younger people reinforces the need for better techniques of early detection. The use of noninvasive biomarkers has potential to more accurately inform how patients are prioritised for clinical investigation, which, in turn, may ultimately translate into improved survival for those subsequently found to have curable-stage CRC. This review surveys a wide range of CRC biomarkers that may (alone or in combination) identify symptomatic patients presenting in primary care who should be progressed for clinical investigation.
Collapse
|
24
|
Novel Diagnostic Biomarkers in Colorectal Cancer. Int J Mol Sci 2022; 23:ijms23020852. [PMID: 35055034 PMCID: PMC8776048 DOI: 10.3390/ijms23020852] [Citation(s) in RCA: 124] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 12/27/2021] [Accepted: 01/03/2022] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is still a leading cause of cancer death worldwide. Less than half of cases are diagnosed when the cancer is locally advanced. CRC is a heterogenous disease associated with a number of genetic or somatic mutations. Diagnostic markers are used for risk stratification and early detection, which might prolong overall survival. Nowadays, the widespread use of semi-invasive endoscopic methods and feacal blood tests characterised by suboptimal accuracy of diagnostic results has led to the detection of cases at later stages. New molecular noninvasive tests based on the detection of CRC alterations seem to be more sensitive and specific then the current methods. Therefore, research aiming at identifying molecular markers, such as DNA, RNA and proteins, would improve survival rates and contribute to the development of personalized medicine. The identification of “ideal” diagnostic biomarkers, having high sensitivity and specificity, being safe, cheap and easy to measure, remains a challenge. The purpose of this review is to discuss recent advances in novel diagnostic biomarkers for tumor tissue, blood and stool samples in CRC patients.
Collapse
|
25
|
Nannini G, Meoni G, Tenori L, Ringressi MN, Taddei A, Niccolai E, Baldi S, Russo E, Luchinat C, Amedei A. Fecal metabolomic profiles: A comparative study of patients with colorectal cancer vs adenomatous polyps. World J Gastroenterol 2021; 27:6430-6441. [PMID: 34720532 PMCID: PMC8517777 DOI: 10.3748/wjg.v27.i38.6430] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/17/2021] [Accepted: 08/25/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC), the third most common cause of death in both males and females worldwide, shows a positive response to therapy and usually a better prognosis when detected at an early stage. However, the survival rate declines when the diagnosis is late and the tumor spreads to other organs. Currently, the measures widely used in the clinic are fecal occult blood test and evaluation of serum tumor markers, but the lack of sensitivity and specificity of these markers restricts their use for CRC diagnosis. Due to its high sensitivity and precision, colonoscopy is currently the gold-standard screening technique for CRC, but it is a costly and invasive procedure. Therefore, the implementation of custom-made methodologies including those with minimal invasiveness, protection, and reproducibility is highly desirable. With regard to other screening methods, the screening of fecal samples has several benefits, and metabolomics is a successful method to classify the metabolite shift in living systems as a reaction to pathophysiological influences, genetic modifications, and environmental factors. AIM To characterize the variation groups and potentially recognize some diagnostic markers, we compared with healthy controls (HCs) the fecal nuclear magnetic resonance (NMR) metabolomic profiles of patients with CRC or adenomatous polyposis (AP). METHODS Proton nuclear magnetic resonance spectroscopy was used in combination with multivariate and univariate statistical approaches, to define the fecal metabolic profiles of 32 CRC patients, 16 AP patients, and 38 HCs well matched in age, sex, and body mass index. RESULTS NMR metabolomic analyses revealed that fecal sample profiles differed among CRC patients, AP patients, and HCs, and some discriminatory metabolites including acetate, butyrate, propionate, 3-hydroxyphenylacetic acid, valine, tyrosine and leucine were identified. CONCLUSION In conclusion, we are confident that our data can be a forerunner for future studies on CRC management, especially the diagnosis and evaluation of the effectiveness of treatments.
Collapse
Affiliation(s)
- Giulia Nannini
- Department of Clinical and Experimental Medicine, University of Florence, Florence 50134, Italy
| | - Gaia Meoni
- Department of Chemistry “Ugo Schiff”, University of Florence, Florence 50134, Italy
| | - Leonardo Tenori
- Department of Chemistry “Ugo Schiff”, University of Florence, Florence 50134, Italy
| | - Maria Novella Ringressi
- Department of Clinical and Experimental Medicine, University of Florence, Florence 50134, Italy
| | - Antonio Taddei
- Department of Clinical and Experimental Medicine, University of Florence, Florence 50134, Italy
| | - Elena Niccolai
- Department of Clinical and Experimental Medicine, University of Florence, Florence 50134, Italy
| | - Simone Baldi
- Department of Clinical and Experimental Medicine, University of Florence, Florence 50134, Italy
| | - Edda Russo
- Department of Clinical and Experimental Medicine, University of Florence, Florence 50134, Italy
| | - Claudio Luchinat
- Department of Chemistry & Magnetic Resonance Center (CERM), University of Florence, Florence 50134, Italy
| | - Amedeo Amedei
- Department of Clinical and Experimental Medicine, University of Florence, Florence 50134, Italy
| |
Collapse
|
26
|
Gonzalez M, Palacios-Rodriguez P, Hernandez-Restrepo J, González-Santoro M, Amézquita A, Brunetti AE, Carazzone C. First characterization of toxic alkaloids and volatile organic compounds (VOCs) in the cryptic dendrobatid Silverstoneia punctiventris. Front Zool 2021; 18:39. [PMID: 34446035 PMCID: PMC8390233 DOI: 10.1186/s12983-021-00420-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/14/2021] [Indexed: 11/24/2022] Open
Abstract
Background Poison frogs are known for the outstanding diversity of alkaloid-based chemical defences with promising therapeutic applications. However, current knowledge about chemical defences in Dendrobatoidea superfamily has two sources of bias. First, cryptic, brown-colored species have been neglected in comparison to those conspicuously colored, and second, there has been little interest in characterizing metabolites other than alkaloids mediating defensive functions. In an effort to contribute to fill the gap of knowledge about cryptic species and broadening the spectrum of compounds analyzed we have applied head-space solid phase microextraction coupled to gas chromatography and mass spectrometry (HS-SPME/GC-MS) for extracting amphibian alkaloids and volatile organic compounds (VOCs) from Silverstoneia punctiventris. Results Using the skin from 8 specimens in 4 biological replicates we have found 33 different compounds. Twenty of them were classified as VOCs into 15 chemical classes including alkanes, alcohols, carbonyl compounds, methylpyridines, benzothiazoles, N-alkylpyrrolidines, pyrazines, and sesquiterpenoids, some of which were previously reported as repellents, defence compounds or defence pheromones in other organisms, and as sex pheromones in a treefrog. Interestingly, six of the remaining compounds were identified as alkaloids previously reported in other toxic/unpalatable dendrobatid frogs. Conclusions This is the first report of alkaloids and VOCs found in the Silverstoneia genus, which has been assumed for decades as non-chemically defended. This study establishes HS-SPME/GC-MS as a new application for a simultaneous approach to amphibian alkaloids and VOCs in poison frogs while opens up new research questions to assess the co-occurrence of both type of compounds and to investigate the evolutionary significance of a defence gradient that includes olfactory avoidance, unpalatability, and toxicity in dendrobatids. In addition, our results show that amphibian alkaloids could have a dual function (olfactory at distance, taste by contact) never explored before neither in Silverstonaeia nor in any other dendrobatid species. Supplementary Information The online version contains supplementary material available at 10.1186/s12983-021-00420-1.
Collapse
Affiliation(s)
- Mabel Gonzalez
- Department of Chemistry, Universidad de los Andes, Bogotá, AA, 4976, Colombia
| | | | | | | | - Adolfo Amézquita
- Department of Biological Sciences, Universidad de los Andes, Bogotá, AA, 4976, Colombia
| | - Andrés E Brunetti
- Laboratorio de Genética Evolutiva, Instituto de Biología Subtropical (CONICET - UNaM), Facultad de Ciencias Exactas, Universidad Nacional de Misiones, N3300, Posadas, Argentina.,Departamento de Ciências Biomoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, 14040-903, Ribeirão Preto, SP, Brazil
| | - Chiara Carazzone
- Department of Chemistry, Universidad de los Andes, Bogotá, AA, 4976, Colombia.
| |
Collapse
|
27
|
Li Z, Li Y, Zhan L, Meng L, Huang X, Wang T, Li Y, Nie Z. Point-of-Care Test Paper for Exhaled Breath Aldehyde Analysis via Mass Spectrometry. Anal Chem 2021; 93:9158-9165. [PMID: 34162204 DOI: 10.1021/acs.analchem.1c01011] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Volatile organic compounds (VOCs) from exhaled breath (EB) are considered to be promising biomarkers for lung diseases. A convenient and sensitive point-of-care (POC) testing method for EB VOCs is essential. Here, we developed a POC test paper for the analysis of EB aldehydes, which are potential biomarkers for lung cancer. A probe molecule, 4-aminothiophenol (4-ATP), was anchored on a paper substrate to specifically capture gas-phase aldehydes through the Schiff base reaction. Meanwhile, thin-film reaction acceleration was utilized to increase capture efficiency. By directly coupling the test paper to a mass spectrometer through paper spray, high sensitivity (0.1 ppt) and a wide quantification linear range (from 10 ppt to 1 ppm) were obtained. Analysis of EB from lung cancer patients with the test paper showed a significant increase in several reported aldehyde markers compared to EB from healthy volunteers, indicating the potential of this method for sensitive, low-cost, and convenient lung cancer screening and diagnosis.
Collapse
Affiliation(s)
- Zhengzhou Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuze Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingpeng Zhan
- Institute of Cell Analysis, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Lingwei Meng
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xi Huang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Tie Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yafeng Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Zongxiu Nie
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
28
|
The New Approach to a Pattern Recognition of Volatile Compounds: The Inflammation Markers in Nasal Mucus Swabs from Calves Using the Gas Sensor Array. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9060116] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This paper discusses the application of two approaches (direct and inverse) to the identification of volatile substances by means of a gas sensor array in a headspace over nasal mucus swab samples taken from calves with differing degrees of respiratory damage. We propose a unique method to visualize sensor array data for quality analysis, based on the spectra of cross mass sensitivity parameters. The traditional method, which requires an initial sensor array trained on the vapors of the individual substances (database accumulation)—with their further identification in the analyzed bio-samples through the comparison of the analysis results to the database—has shown unsatisfactory performance. The proposed inverse approach is more informative for the pattern recognition of volatile substances in the headspace of mucus samples. The projection of the calculated parameters of the sensor array for individual substances in the principal component space, acquired while processing the sensor array output from nasal swab samples, has allowed us to divide animals into groups according to the clinical diagnosis of their lung condition (healthy respiratory system, bronchitis, or bronchopneumonia). The substances detected in the gas phase of the nasal swab samples (cyclohexanone, butanone-2,4-methyl-2-pentanone) were correlated with the clinical state of the animals, and were consistent with the reference data on disease markers in exhaled air established for destructive organism processes.
Collapse
|
29
|
Are Volatile Organic Compounds Accurate Markers in the Assessment of Colorectal Cancer and Inflammatory Bowel Diseases? A Review. Cancers (Basel) 2021; 13:cancers13102361. [PMID: 34068419 PMCID: PMC8153598 DOI: 10.3390/cancers13102361] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/05/2021] [Accepted: 05/10/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Early diagnosis is crucial for reducing colorectal cancer-related mortality in both the general population and inflammatory bowel disease. Volatile organic compound (VOC) analysis is a promising alternative to the gold standard procedure, endoscopy, for early detection and surveillance of colorectal diseases. This review aimed to provide a general overview of the most recent evidence in this area on VOC testing in breath, stool, and urine samples. Abstract Colorectal cancer (CRC) is one of the leading causes of cancer-related death in the Western world. Early detection decreases incidence and mortality. Screening programs based on fecal occult blood testing help identify patients requiring endoscopic examination, but accuracy is far from optimal. Among the alternative strategies, volatile organic compounds (VOCs) represent novel potentially useful biomarkers of colorectal cancer. They also represent a promising tool for the screening of both intestinal inflammation and related CRC. The review is focused on the diagnostic potential of VOCs in sporadic CRC and in inflammatory bowel diseases (IBD), which increase the risk of CRC, analyzing future clinical applications. Despite limitations related to inadequate strength of evidence, differing analytical platforms identify different VOCs, and this unconventional approach for diagnosing colorectal cancer is promising. Some VOC profiles, besides identifying inflammation, seem disease-specific in inflammatory bowel diseases. Thus, breath, urine, and fecal VOCs provide a new and promising clinical approach to differential diagnosis, evaluation of the inflammatory status, and possibly the assessment of treatment efficacy in IBD. Conversely, specific VOC patterns correlating inflammatory bowel disease and cancer risk are still lacking, and studies focused on this issue are strongly encouraged. No prospective studies have assessed the risk of CRC development by using VOCs in samples collected before the onset of disease, both in the general population and in patients with IBD.
Collapse
|
30
|
Drabińska N, Flynn C, Ratcliffe N, Belluomo I, Myridakis A, Gould O, Fois M, Smart A, Devine T, Costello BDL. A literature survey of all volatiles from healthy human breath and bodily fluids: the human volatilome. J Breath Res 2021; 15. [PMID: 33761469 DOI: 10.1088/1752-7163/abf1d0] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/24/2021] [Indexed: 02/06/2023]
Abstract
This paper comprises an updated version of the 2014 review which reported 1846 volatile organic compounds (VOCs) identified from healthy humans. In total over 900 additional VOCs have been reported since the 2014 review and the VOCs from semen have been added. The numbers of VOCs found in breath and the other bodily fluids are: blood 379, breath 1488, faeces 443, milk 290, saliva 549, semen 196, skin 623 and urine 444. Compounds were assigned CAS registry numbers and named according to a common convention where possible. The compounds have been included in a single table with the source reference(s) for each VOC, an update on our 2014 paper. VOCs have also been grouped into tables according to their chemical class or functionality to permit easy comparison. Careful use of the database is needed, as a number of the identified VOCs only have level 2-putative assignment, and only a small fraction of the reported VOCs have been validated by standards. Some clear differences are observed, for instance, a lack of esters in urine with a high number in faeces and breath. However, the lack of compounds from matrices such a semen and milk compared to breath for example could be due to the techniques used or reflect the intensity of effort e.g. there are few publications on VOCs from milk and semen compared to a large number for breath. The large number of volatiles reported from skin is partly due to the methodologies used, e.g. by collecting skin sebum (with dissolved VOCs and semi VOCs) onto glass beads or cotton pads and then heating to a high temperature to desorb VOCs. All compounds have been included as reported (unless there was a clear discrepancy between name and chemical structure), but there may be some mistaken assignations arising from the original publications, particularly for isomers. It is the authors' intention that this work will not only be a useful database of VOCs listed in the literature but will stimulate further study of VOCs from healthy individuals; for example more work is required to confirm the identification of these VOCs adhering to the principles outlined in the metabolomics standards initiative. Establishing a list of volatiles emanating from healthy individuals and increased understanding of VOC metabolic pathways is an important step for differentiating between diseases using VOCs.
Collapse
Affiliation(s)
- Natalia Drabińska
- Division of Food Sciences, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Tuwima 10, 10-747 Olsztyn, Poland
| | - Cheryl Flynn
- Centre of Research in Biosciences, University of the West of England, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, United Kingdom
| | - Norman Ratcliffe
- Centre of Research in Biosciences, University of the West of England, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, United Kingdom
| | - Ilaria Belluomo
- Department of Surgery and Cancer, Imperial College London, St. Mary's Campus, QEQM Building, London W2 1NY, United Kingdom
| | - Antonis Myridakis
- Department of Surgery and Cancer, Imperial College London, St. Mary's Campus, QEQM Building, London W2 1NY, United Kingdom
| | - Oliver Gould
- Centre of Research in Biosciences, University of the West of England, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, United Kingdom
| | - Matteo Fois
- Centre of Research in Biosciences, University of the West of England, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, United Kingdom
| | - Amy Smart
- Centre of Research in Biosciences, University of the West of England, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, United Kingdom
| | - Terry Devine
- Centre of Research in Biosciences, University of the West of England, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, United Kingdom
| | - Ben De Lacy Costello
- Centre of Research in Biosciences, University of the West of England, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, United Kingdom
| |
Collapse
|
31
|
Hintzen KFH, Grote J, Wintjens AGWE, Lubbers T, Eussen MMM, van Schooten FJ, Bouvy ND, Peeters A. Breath analysis for the detection of digestive tract malignancies: systematic review. BJS Open 2021; 5:6226007. [PMID: 33855362 PMCID: PMC8047095 DOI: 10.1093/bjsopen/zrab013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/27/2020] [Accepted: 02/03/2021] [Indexed: 01/01/2023] Open
Abstract
Background In recent decades there has been growing interest in the use of volatile organic compounds (VOCs) in exhaled breath as biomarkers for the diagnosis of multiple variants of cancer. This review aimed to evaluate the diagnostic accuracy and current status of VOC analysis in exhaled breath for the detection of cancer in the digestive tract. Methods PubMed and the Cochrane Library database were searched for VOC analysis studies, in which exhaled air was used to detect gastro-oesophageal, liver, pancreatic, and intestinal cancer in humans, Quality assessment was performed using the QUADAS-2 criteria. Data on diagnostic performance, VOCs with discriminative power, and methodological information were extracted from the included articles. Results Twenty-three articles were included (gastro-oesophageal cancer n = 14, liver cancer n = 1, pancreatic cancer n = 2, colorectal cancer n = 6). Methodological issues included different modalities of patient preparation and sampling and platform used. The sensitivity and specificity of VOC analysis ranged from 66.7 to 100 per cent and from 48.1 to 97.9 per cent respectively. Owing to heterogeneity of the studies, no pooling of the results could be performed. Of the VOCs found, 32 were identified in more than one study. Nineteen were reported as cancer type-specific, whereas 13 were found in different cancer types. Overall, decanal, nonanal, and acetone were the most frequently identified. Conclusion The literature on VOC analysis has documented a lack of standardization in study designs. Heterogeneity between the studies and insufficient validation of the results make interpretation of the outcomes challenging. To reach clinical applicability, future studies on breath analysis should provide an accurate description of the methodology and validate their findings.
Collapse
Affiliation(s)
- K F H Hintzen
- Department of Surgery, Maastricht University Medical Centre, Maastricht, the Netherlands.,Department of Pharmacology and Toxicology, Maastricht University, Maastricht, the Netherlands
| | - J Grote
- Department of Surgery, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - A G W E Wintjens
- Department of Surgery, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - T Lubbers
- Department of Surgery, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - M M M Eussen
- Department of Surgery, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - F J van Schooten
- Department of Pharmacology and Toxicology, Maastricht University, Maastricht, the Netherlands
| | - N D Bouvy
- Department of Surgery, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - A Peeters
- Department of Clinical Epidemiology and Medical Technology Assessment, Maastricht University Medical Centre, Maastricht, the Netherlands
| |
Collapse
|
32
|
Ferrari A, Neefs I, Hoeck S, Peeters M, Van Hal G. Towards Novel Non-Invasive Colorectal Cancer Screening Methods: A Comprehensive Review. Cancers (Basel) 2021; 13:1820. [PMID: 33920293 PMCID: PMC8070308 DOI: 10.3390/cancers13081820] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/07/2021] [Accepted: 04/07/2021] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is one of the leading cancer-related causes of death in the world. Since the 70s, many countries have adopted different CRC screening programs, which has resulted in a decrease in mortality. However, current screening test options still present downsides. The commercialized stool-based tests present high false-positive rates and low sensitivity, which negatively affects the detection of early stage carcinogenesis. The gold standard colonoscopy has low uptake due to its invasiveness and the perception of discomfort and embarrassment that the procedure may bring. In this review, we collected and described the latest data about alternative CRC screening techniques that can overcome these disadvantages. Web of Science and PubMed were employed as search engines for studies reporting on CRC screening tests and future perspectives. The searches generated 555 articles, of which 93 titles were selected. Finally, a total of 50 studies, describing 14 different CRC alternative tests, were included. Among the investigated techniques, the main feature that could have an impact on CRC screening perception and uptake was the ease of sample collection. Urine, exhaled breath, and blood-based tests promise to achieve good diagnostic performance (sensitivity of 63-100%, 90-95%, and 47-97%, respectively) while minimizing stress and discomfort for the patient.
Collapse
Affiliation(s)
- Allegra Ferrari
- Social Epidemiology and Health Policy, University of Antwerp, 2610 Antwerpen, Belgium; (S.H.); (G.V.H.)
| | - Isabelle Neefs
- Center for Oncological Research (CORE), University of Antwerp and Antwerp University Hospital, 2610 Antwerpen, Belgium; (I.N.); (M.P.)
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, 2610 Antwerpen, Belgium
| | - Sarah Hoeck
- Social Epidemiology and Health Policy, University of Antwerp, 2610 Antwerpen, Belgium; (S.H.); (G.V.H.)
- Center for Cancer Detection, 8000 Bruges, Belgium
| | - Marc Peeters
- Center for Oncological Research (CORE), University of Antwerp and Antwerp University Hospital, 2610 Antwerpen, Belgium; (I.N.); (M.P.)
- Department of Oncology, Antwerp University Hospital (UZA), 2650 Edegem, Belgium
| | - Guido Van Hal
- Social Epidemiology and Health Policy, University of Antwerp, 2610 Antwerpen, Belgium; (S.H.); (G.V.H.)
- Center for Cancer Detection, 8000 Bruges, Belgium
| |
Collapse
|
33
|
Khoubnasabjafari M, Mogaddam MRA, Rahimpour E, Soleymani J, Saei AA, Jouyban A. Breathomics: Review of Sample Collection and Analysis, Data Modeling and Clinical Applications. Crit Rev Anal Chem 2021; 52:1461-1487. [PMID: 33691552 DOI: 10.1080/10408347.2021.1889961] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Metabolomics research is rapidly gaining momentum in disease diagnosis, on top of other Omics technologies. Breathomics, as a branch of metabolomics is developing in various frontiers, for early and noninvasive monitoring of disease. This review starts with a brief introduction to metabolomics and breathomics. A number of important technical issues in exhaled breath collection and factors affecting the sampling procedures are presented. We review the recent progress in metabolomics approaches and a summary of their applications on the respiratory and non-respiratory diseases investigated by breath analysis. Recent reports on breathomics studies retrieved from Scopus and Pubmed were reviewed in this work. We conclude that analyzing breath metabolites (both volatile and nonvolatile) is valuable in disease diagnoses, and therefore believe that breathomics will turn into a promising noninvasive discipline in biomarker discovery and early disease detection in personalized medicine. The problem of wide variations in the reported metabolite concentrations from breathomics studies should be tackled by developing more accurate analytical methods and sophisticated numerical analytical alogorithms.
Collapse
Affiliation(s)
- Maryam Khoubnasabjafari
- Tuberculosis and Lung Diseases Research Center and Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohamad Reza Afshar Mogaddam
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elaheh Rahimpour
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.,Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Soleymani
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.,Liver and Gastrointestinal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Ata Saei
- Department of Medical Biochemistry and Biophysics, Division of Physiological Chemistry I, Karolinska Institutet, Stockholm, Sweden
| | - Abolghasem Jouyban
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
34
|
Xiang L, Wu S, Hua Q, Bao C, Liu H. Volatile Organic Compounds in Human Exhaled Breath to Diagnose Gastrointestinal Cancer: A Meta-Analysis. Front Oncol 2021; 11:606915. [PMID: 33747921 PMCID: PMC7970758 DOI: 10.3389/fonc.2021.606915] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 01/21/2021] [Indexed: 12/11/2022] Open
Abstract
Introduction Human exhaled volatile organic compounds (VOCs) are being extensively studied for the purposes of noninvasive cancer diagnoses. This article was primarily to assess the feasibility of utilizing exhaled VOCs analysis for gastrointestinal cancer (GIC) diagnosis. Methods PRISMA-based system searches were conducted for related studies of exhaled VOCs in GIC diagnosis based on predetermined criteria. Relevant articles on colorectal cancer and gastroesophageal cancer were summarized, and meta analysis was performed on articles providing sensitivity and specificity data. Results From 2,227 articles, 14 were found to meet inclusion criteria, six of which were on colorectal cancer (CRC) and eight on Gastroesophageal cancer(GEC). Five articles could provide specific data of sensitivity and specificity in GEC, which were used for meta-analysis. The pooled sensitivity, specificity, diagnostic odds ratio (DOR), and area under the curve (AUC) were calculated based on the combination of these data, and were 85.0% [95% confidence interval (CI): 79.0%-90.0%], 89.0% (95%CI: 86.0%-91.0%), 41.30 (21.56-79.10), and 0.93, respectively. Conclusion VOCs can distinguish gastrointestinal cancers from other gastrointestinal diseases, opening up a new avenue for the diagnosis and identification of gastrointestinal cancers, and the analysis of VOCs in exhaled breath has potential clinical application in screening. VOCs are promising tumor biomarkers for GIC diagnosis. Furthermore, limitations like the heterogeneity of diagnostic VOCs between studies should be minded.
Collapse
Affiliation(s)
- Lijuan Xiang
- Department of Tumor Biotherapy (5th Ward of the Department of Oncology), Anhui Provincial Cancer Hospital, West District of The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Sihan Wu
- Department of Tumor Biotherapy (5th Ward of the Department of Oncology), Anhui Provincial Cancer Hospital, West District of The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Department of Oncology, Affiliated Provincial Hospital of Anhui Medical University, Hefei, China
| | - Qingling Hua
- Department of Oncology, Yijishan Hospital, Wannan Medical College, Wuhu, China
| | - Chuyang Bao
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hu Liu
- Department of Tumor Biotherapy (5th Ward of the Department of Oncology), Anhui Provincial Cancer Hospital, West District of The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
35
|
Politi L, Monasta L, Rigressi MN, Princivalle A, Gonfiotti A, Camiciottoli G, Perbellini L. Discriminant Profiles of Volatile Compounds in the Alveolar Air of Patients with Squamous Cell Lung Cancer, Lung Adenocarcinoma or Colon Cancer. Molecules 2021; 26:molecules26030550. [PMID: 33494458 PMCID: PMC7866040 DOI: 10.3390/molecules26030550] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/15/2021] [Accepted: 01/15/2021] [Indexed: 12/18/2022] Open
Abstract
The objective of the present work was to analyze volatile compounds in alveolar air in patients with squamous cell lung cancer, lung adenocarcinoma or colon cancer, to prepare algorithms able to discriminate such specific pathological conditions. The concentration of 95 volatile compounds was measured in the alveolar air of 45 control subjects, 36 patients with lung adenocarcinoma, 25 patients with squamous cell lung cancer and 52 patients with colon cancer. Volatile compounds were measured with ion molecule reaction mass spectrometry (IMR-MS). An iterated least absolute shrinkage and selection operator multivariate logistic regression model was used to generate specific algorithms and discriminate control subjects from patients with different kinds of cancer. The final predictive models reached the following performance: by using 11 compounds, patients with lung adenocarcinoma were identified with a sensitivity of 86% and specificity of 84%; nine compounds allowed us to identify patients with lung squamous cell carcinoma with a sensitivity of 88% and specificity of 84%; patients with colon adenocarcinoma could be identified with a sensitivity of 96% and a specificity of 73% using a model comprising 13 volatile compounds. The different alveolar profiles of volatile compounds, obtained from patients with three different kinds of cancer, suggest dissimilar biological–biochemistry conditions; each kind of cancer has probably got a specific alveolar profile.
Collapse
Affiliation(s)
- Leonardo Politi
- Department of Clinical and Experimental Medicine, Careggi University Hospital, 50134 Florence, Italy; (L.P.); (M.N.R.); (A.G.); (G.C.)
| | - Lorenzo Monasta
- Institute for Maternal and Child Health—IRCCS Burlo Garofolo, 34137 Trieste, Italy
- Correspondence:
| | - Maria Novella Rigressi
- Department of Clinical and Experimental Medicine, Careggi University Hospital, 50134 Florence, Italy; (L.P.); (M.N.R.); (A.G.); (G.C.)
| | - Andrea Princivalle
- Occupational Medicine, Department of Diagnostics and Public Health, University of Verona, 37134 Verona, Italy; (A.P.); (L.P.)
| | - Alessandro Gonfiotti
- Department of Clinical and Experimental Medicine, Careggi University Hospital, 50134 Florence, Italy; (L.P.); (M.N.R.); (A.G.); (G.C.)
| | - Gianna Camiciottoli
- Department of Clinical and Experimental Medicine, Careggi University Hospital, 50134 Florence, Italy; (L.P.); (M.N.R.); (A.G.); (G.C.)
| | - Luigi Perbellini
- Occupational Medicine, Department of Diagnostics and Public Health, University of Verona, 37134 Verona, Italy; (A.P.); (L.P.)
| |
Collapse
|
36
|
A Review of GC-Based Analysis of Non-Invasive Biomarkers of Colorectal Cancer and Related Pathways. J Clin Med 2020; 9:jcm9103191. [PMID: 33019642 PMCID: PMC7601558 DOI: 10.3390/jcm9103191] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/27/2020] [Accepted: 09/30/2020] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is the third most commonly diagnosed cancer in the world. In Europe, it is the second most common cause of cancer-related deaths. With the advent of metabolomics approaches, studies regarding the investigation of metabolite profiles related to CRC have been conducted, aiming to serve as a tool for early diagnosis. In order to provide further information about the current status of this field of research, 21 studies were systematically reviewed, regarding their main findings and analytical aspects. A special focus was given to the employment of matrices obtained non-invasively and the use of gas chromatography as the analytical platform. The relationship between the reported volatile and non-volatile biomarkers and CRC-related metabolic alterations was also explored, demonstrating that many of these metabolites are connected with biochemical pathways proven to be involved in carcinogenesis. The most commonly reported CRC indicators were hydrocarbons, aldehydes, amino acids and short-chain fatty acids. These potential biomarkers can be associated with both human and bacterial pathways and the analysis based on such species has the potential to be applied in the clinical practice as a low-cost screening method.
Collapse
|
37
|
Altomare DF, Picciariello A, Rotelli MT, De Fazio M, Aresta A, Zambonin CG, Vincenti L, Trerotoli P, De Vietro N. Chemical signature of colorectal cancer: case-control study for profiling the breath print. BJS Open 2020; 4:1189-1199. [PMID: 32990407 PMCID: PMC8444279 DOI: 10.1002/bjs5.50354] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 08/18/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Effective screening for colorectal cancer can reduce mortality by early detection of tumours and colonic polyps. An altered pattern of volatile organic compounds (VOCs) in exhaled breath has been proposed as a potential non-invasive diagnostic tool for detection of cancer. The aim of this study was to evaluate the reliability of breath-testing for colorectal cancer screening and early diagnosis using an advanced breath sampler. METHODS The exhaled breath of patients with colorectal cancer and non-cancer controls with negative findings on colonoscopy was collected using the ReCIVA® Breath Sampler. This portable device is able to capture the alveolar breath fraction without environmental contamination. VOCs were desorbed thermally and analysed by gas chromatography-mass spectrometry. The discriminatory ability of VOCs in detecting colorectal cancer was evaluated by receiver operating characteristic (ROC) curve analysis for each VOC, followed by cross-validation by the leave-one-out method, and by applying stepwise logistic regression analysis. RESULTS The study included 83 patients with colorectal cancer and 90 non-cancer controls. Fourteen VOCs were found to have significant discriminatory ability in detecting patients with colorectal cancer. The model with the diagnosis of cancer versus no cancer resulted in a statistically significant likelihood of discrimination of 173·45 (P < 0·001), with an area under the ROC curve of 0·979. Cross-validation of the model resulted in a true predictive value for colorectal cancer of 93 per cent overall. Reliability of the breath analysis was maintained irrespective of cancer stage. CONCLUSION This study demonstrated that analysis of exhaled VOCs can discriminate patients with colorectal cancer from those without. This finding may eventually lead to the creation of a smart online sensory device, capable of providing a binary answer (cancer/no cancer) and directing to further screening.
Collapse
Affiliation(s)
- D. F. Altomare
- Surgical Unit ‘M. Rubino’, Department of Emergency and Organ TransplantationBariItaly
- Apulian Breath Analysis Centre (CeRBA)Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Tumori Giovanni Paolo IIBariItaly
| | - A. Picciariello
- Surgical Unit ‘M. Rubino’, Department of Emergency and Organ TransplantationBariItaly
| | - M. T. Rotelli
- Surgical Unit ‘M. Rubino’, Department of Emergency and Organ TransplantationBariItaly
| | - M. De Fazio
- Surgical Unit ‘M. Rubino’, Department of Emergency and Organ TransplantationBariItaly
| | - A. Aresta
- Department of ChemistryUniversity Aldo Moro of BariBariItaly
| | - C. G. Zambonin
- Department of ChemistryUniversity Aldo Moro of BariBariItaly
| | - L. Vincenti
- Surgical UnitAzienda Ospedaliero‐Universitaria Policlinico BariBariItaly
| | - P. Trerotoli
- Statistical Unit, Department of Biomedical Sciences and Human OncologyBariItaly
| | - N. De Vietro
- Department of ChemistryUniversity Aldo Moro of BariBariItaly
| |
Collapse
|
38
|
Little LD, Carolan VA, Allen KE, Cole LM, Haywood-Small SL. Headspace analysis of mesothelioma cell lines differentiates biphasic and epithelioid sub-types. J Breath Res 2020; 14:046011. [PMID: 32731209 DOI: 10.1088/1752-7163/abaaff] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Malignant mesothelioma (MM) is an incurable cancer. MM is often misdiagnosed, with a poor 5-year survival and limited treatment options. The discovery of endogenous volatile organic compounds (VOCs) is required in order to accelerate the development of a breath test as an alternative to conventional MM diagnosis. For the first time, this study used solid-phase microextraction and gas chromatography-mass spectrometry to identify VOCs released directly from the biphasic MM cell line MSTO-211H and the epithelioid MM cell line NCI-H28 as well as the non-malignant mesothelial cell line MET-5A. Multivariate statistical analysis showed separation between MSTO-211H, NCI-H28 and MET-5A results. 2-ethyl-1-hexanol was significantly increased in both MSTO-211H and NCI-H28 cells compared to MET-5A controls. In addition, ethyl propionate and cyclohexanol were significantly increased in MSTO-211H cells and dodecane was significantly increased in NCI-H28 cells. This is the first study reporting headspace analysis of these MM cell lines and the first to consider the effects of mesothelioma sub-type on VOC profile. Current results further highlight the potential for a diagnostic mesothelioma breath test as well as providing proof of concept for the differentiation between biphasic and epithelioid mesothelioma based on VOC profiles.
Collapse
Affiliation(s)
- Liam David Little
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, United Kingdom
| | | | | | | | | |
Collapse
|
39
|
Arakawa T, Aota T, Iitani K, Toma K, Iwasaki Y, Mitsubayashi K. Skin ethanol gas measurement system with a biochemical gas sensor and gas concentrator toward monitoring of blood volatile compounds. Talanta 2020; 219:121187. [PMID: 32887105 DOI: 10.1016/j.talanta.2020.121187] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/16/2020] [Accepted: 05/16/2020] [Indexed: 02/08/2023]
Abstract
We developed a biochemical gas sensor (bio-sniffer) using the enzymatic reaction of alcohol dehydrogenase (ADH) to target ethanol in skin gas. By introducing a gas concentrator using liquid nitrogen, we constructed a highly sensitive system for skin gas measurements. The ethanol bio-sniffer was built from an optical-fiber probe employing an ADH enzyme membrane, an UV-LED light source for excitation, and a photomultiplier tube. Ethanol was measured by detecting the autofluorescence of the coenzyme NADH due to the enzymatic reaction of ADH. We established a system for measuring concentrated gases by connecting the sensor with a gas concentrator and introducing concentrated skin gas to the sensing surface. This suppressed diffusion of the concentrated gases to achieve maximum fluorescence intensity by optimizing the measurement system. The calibration curve from obtained peak values showed ethanol gas can be measured over 1-3100 ppb, which included skin gas concentrations during alcohol consumption. Finally, when applied to measurements of ethanol in skin gas following alcohol consumption, the output was found to be dependent on concentration, similarly to using standard gases. Consecutive measurements were possible using periodic sampling with 6-min intervals for 180 min of monitoring. Skin ethanol concentrations rose from 20 min after consuming the alcohol, exhibited a peak value of 25 ppb skin gas ethanol at around 60 min, and gradually declined. Thus, the system can be used for non-invasive percutaneous evaluation of human volatile organic chemicals in blood.
Collapse
Affiliation(s)
- Takahiro Arakawa
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan.
| | - Takashi Aota
- Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kenta Iitani
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan; Postdoctoral Research Fellow PD, Japan Society for the Promotion of Science, 5-3-1 Kojimatchi, Chiyoda-ku, Tokyo 102-0083, Japan
| | - Koji Toma
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yasuhiko Iwasaki
- Faculty of Chemistry, Materials and Bioengineering, Kansai University, Osaka, Japan
| | - Kohji Mitsubayashi
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan; Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.
| |
Collapse
|
40
|
Zhang F, Li C, Deng K, Wang Z, Zhao W, Yang K, Yang C, Rong Z, Cao L, Lu Y, Huang Y, Han P, Li K. Metabolic phenotyping to monitor chronic enteritis canceration. Metabolomics 2020; 16:29. [PMID: 32095917 DOI: 10.1007/s11306-020-1651-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 02/12/2020] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Colorectal cancer (CRC) remains an incurable disease. Previous metabolomic studies show that metabolic signatures in plasma distinguish CRC patients from healthy controls. Chronic enteritis (CE) represents a risk factor for CRC, with a 20 fold greater incidence than in healthy individuals. However, no studies have performed metabolomic profiling to investigate CRC biomarkers in CE. OBJECTIVE Our aims were to identify metabolomic signatures in CRC and CE and to search for blood-derived metabolite biomarkers distinguishing CRC from CE, especially early-stage biomarkers. METHODS In this case-control study, 612 subjects were prospectively recruited between May 2015 and May 2016, and including 539 CRC patients (stage I, 102 cases; stage II, 259 cases; stage III, 178 cases) and 73 CE patients. Untargeted metabolomics was performed to identify CRC-related metabolic signatures in CE. RESULTS Five pathways were significantly enriched based on 153 differential metabolites between CRC and CE. 16 biomarkers were identified for diagnosis of CRC from CE and for guiding CRC staging. The AUC value for CRC diagnosis in the external validation set was 0.85. Good diagnostic performances were also achieved for early-stage CRC (stage I and stage II), with an AUC value of 0.84. The biomarker panel could also stage CRC patients, with an AUC of 0.72 distinguishing stage I from stage II CRC and AUC of 0.74 distinguishing stage II from stage III CRC. CONCLUSIONS The identified metabolic biomarkers exhibit promising properties for CRC monitoring in CE patients and are superior to commonly used clinical biomarkers (CEA and CA19-9).
Collapse
Affiliation(s)
- Fan Zhang
- Laboratory of Hematology Center, The First Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Chunbo Li
- Department of Colorectal Surgery, The Affiliated Tumor Hospital of Harbin Medical University, Harbin, 150086, China
| | - Kui Deng
- Department of Epidemiology and Biostatistics, School of Public Health, Harbin Medical University, Harbin, 150086, China
| | - Zhuozhong Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Harbin Medical University, Harbin, 150086, China
| | - Weiwei Zhao
- Department of Epidemiology and Biostatistics, School of Public Health, Harbin Medical University, Harbin, 150086, China
| | - Kai Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Harbin Medical University, Harbin, 150086, China
| | - Chunyan Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Harbin Medical University, Harbin, 150086, China
| | - Zhiwei Rong
- Department of Epidemiology and Biostatistics, School of Public Health, Harbin Medical University, Harbin, 150086, China
| | - Lei Cao
- Department of Epidemiology and Biostatistics, School of Public Health, Harbin Medical University, Harbin, 150086, China
| | - Yaxin Lu
- Department of Epidemiology and Biostatistics, School of Public Health, Harbin Medical University, Harbin, 150086, China
| | - Yue Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Harbin Medical University, Harbin, 150086, China
| | - Peng Han
- Department of Colorectal Surgery, The Affiliated Tumor Hospital of Harbin Medical University, Harbin, 150086, China.
| | - Kang Li
- Department of Epidemiology and Biostatistics, School of Public Health, Harbin Medical University, Harbin, 150086, China.
| |
Collapse
|
41
|
Relationship between cancer tissue derived and exhaled volatile organic compound from colorectal cancer patients. Preliminary results. J Pharm Biomed Anal 2020; 180:113055. [DOI: 10.1016/j.jpba.2019.113055] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/16/2019] [Accepted: 12/18/2019] [Indexed: 01/08/2023]
|
42
|
van Keulen KE, Jansen ME, Schrauwen RWM, Kolkman JJ, Siersema PD. Volatile organic compounds in breath can serve as a non-invasive diagnostic biomarker for the detection of advanced adenomas and colorectal cancer. Aliment Pharmacol Ther 2020; 51:334-346. [PMID: 31858615 PMCID: PMC7003780 DOI: 10.1111/apt.15622] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/03/2019] [Accepted: 12/04/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Colorectal cancer (CRC) is the third most common cancer diagnosis in the Western world. AIM To evaluate exhaled volatile organic compounds (VOCs) as a non-invasive biomarker for the detection of CRC and precursor lesions using an electronic nose. METHODS In this multicentre study adult colonoscopy patients, without inflammatory bowel disease or (previous) malignancy, were invited for breath analysis. Two-thirds of the breath tests were randomly assigned to develop training models which were used to predict the diagnosis of the remaining patients (external validation). In the end, all data were used to develop final-disease models to further improve the discriminatory power of the algorithms. RESULTS Five hundred and eleven breath samples were collected. Sixty-four patients were excluded due to an inadequate breath test (n = 51), incomplete colonoscopy (n = 8) or colitis (n = 5). Classification was based on the most advanced lesion found; CRC (n = 70), advanced adenomas (AAs) (n = 117), non-advanced adenoma (n = 117), hyperplastic polyp (n = 15), normal colonoscopy (n = 125). Training models for CRC and AAs had an area under the curve (AUC) of 0.76 and 0.71 and blind validation resulted in an AUC of 0.74 and 0.61 respectively. Final models for CRC and AAs yielded an AUC of 0.84 (sensitivity 95% and specificity 64%) and 0.73 (sensitivity and specificity 79% and 59%) respectively. CONCLUSIONS This study suggests that exhaled VOCs could potentially serve as a non-invasive biomarker for the detection of CRC and AAs. Future studies including more patients could further improve the discriminatory potential of VOC analysis for the detection of (pre-)malignant colorectal lesions. (https://clinicaltrials.gov Identifier NCT03488537).
Collapse
Affiliation(s)
- Kelly E. van Keulen
- Department of Gastroenterology and HepatologyRadboud University Medical CenterNijmegenThe Netherlands
| | - Maud E. Jansen
- Department of Gastroenterology and HepatologyMedisch Spectrum TwenteEnschedeThe Netherlands,University Medical Center GroningenGroningenThe Netherlands
| | | | - Jeroen J. Kolkman
- Department of Gastroenterology and HepatologyMedisch Spectrum TwenteEnschedeThe Netherlands,University Medical Center GroningenGroningenThe Netherlands
| | - Peter D. Siersema
- Department of Gastroenterology and HepatologyRadboud University Medical CenterNijmegenThe Netherlands
| |
Collapse
|
43
|
Losurdo P, Giacca M, Biloslavo A, Fracon S, Sereni E, Giudici F, Generali D, de Manzini N. Colorectal cancer-screening program improves both short- and long-term outcomes: a single-center experience in Trieste. Updates Surg 2020; 72:89-96. [PMID: 31965546 DOI: 10.1007/s13304-020-00703-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 01/02/2020] [Indexed: 02/06/2023]
Abstract
Screening programs (SC) have been proven to reduce both incidence and mortality of CRC. We retrospectively analyzed patients who underwent surgical treatment for CRC between 01/2011 and 01/2017. The current screening program in our region collects patients aged from 50 to 69. For this reason, out of a total of 600 patients, we compared 125 patients with CRC founded during the SC to 162 patients who presented with symptoms and were diagnosed between 50-69 years old (NO-SC). 45% patients in the SC group were diagnosed as AJCC stage I vs 27% patients in the NO-SC group; 14% vs 20% were stage II, 14% vs 26% were stage III, and 3% vs 14% were stage IV (p 0.002). We found a significant difference in surgical approach: 89% SC vs 56% NO-SC patients had laparoscopic surgery (p 0.002). In the NO-SC group, 16% patients underwent resection in an emergency setting. Only 5% patients in the SC group had postoperative complications vs 14% patients in the NO-SC group (p 0.03). We had a 2-year OS of 86%, being 95% in the SC group and 80% in the NO-SC group (p 0.002). Likewise, the whole 2-year DFS was 77%, whereas it was 90% in the SC group and 66% in the NO-SC group (p 0.002). Screening significantly improves early diagnosis and accelerated surgical treatment. We obtained earlier stages at diagnosis, a less invasive surgical approach, and lower rates of complications and emergency surgery, all this leading to an improvement in both OS and DFS.
Collapse
Affiliation(s)
- Pasquale Losurdo
- Division of General Surgery, Department of Medical and Surgical Sciences, Hospital of Cattinara, University of Trieste, Strada di Fiume 447, 34149, Trieste, Italy.
| | - Massimo Giacca
- Division of General Surgery, Department of Medical and Surgical Sciences, Hospital of Cattinara, University of Trieste, Strada di Fiume 447, 34149, Trieste, Italy
| | - Alan Biloslavo
- Division of General Surgery, Department of Medical and Surgical Sciences, Hospital of Cattinara, University of Trieste, Strada di Fiume 447, 34149, Trieste, Italy
| | - Stefano Fracon
- Division of General Surgery, Department of Medical and Surgical Sciences, Hospital of Cattinara, University of Trieste, Strada di Fiume 447, 34149, Trieste, Italy
| | - Elisabetta Sereni
- Division of General Surgery, Department of Medical and Surgical Sciences, Hospital of Cattinara, University of Trieste, Strada di Fiume 447, 34149, Trieste, Italy
| | - Fabiola Giudici
- Breast Unit Azienda Sanitaria Universitaria Integrata di Trieste-ASUITS¸ Division of General Surgery, Department of Medical and Surgical Sciences, Hospital of Cattinara, University of Trieste, Trieste, Italy
| | - Daniele Generali
- Division of General Surgery, Department of Medical and Surgical Sciences, Hospital of Cattinara, University of Trieste, Strada di Fiume 447, 34149, Trieste, Italy
| | - Nicolo' de Manzini
- Division of General Surgery, Department of Medical and Surgical Sciences, Hospital of Cattinara, University of Trieste, Strada di Fiume 447, 34149, Trieste, Italy
| |
Collapse
|
44
|
Takke A, Shende P. Non-invasive Biodiversified Sensors: A Modernized Screening Technology for Cancer. Curr Pharm Des 2019; 25:4108-4120. [DOI: 10.2174/1381612825666191022162232] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 10/14/2019] [Indexed: 01/30/2023]
Abstract
Background:
Biological sensors revolutionize the method of diagnoses of diseases from early to final
stages using the biomarkers present in the body. Biosensors are advantageous due to the involvement of minimal
sample collection with improved specificity and sensitivity for the detection of biomarkers.
Methods:
Conventional biopsies restrict problems like patient non-compliance, cross-infection and high cost and to
overcome these issues biological samples like saliva, sweat, urine, tears and sputum progress into clinical and diagnostic
research for the development of non-invasive biosensors. This article covers various non-invasive measurements
of biological samples, optical-based, mass-based, wearable and smartphone-based biosensors for the detection
of cancer.
Results:
The demand for non-invasive, rapid and economic analysis techniques escalated due to the modernization
of the introduction of self-diagnostics and miniature forms of devices. Biosensors have high sensitivity and
specificity for whole cells, microorganisms, enzymes, antibodies, and genetic materials.
Conclusion:
Biosensors provide a reliable early diagnosis of cancer, which results in faster therapeutic outcomes
with in-depth fundamental understanding of the disease progression.
Collapse
Affiliation(s)
- Anjali Takke
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, India
| | - Pravin Shende
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, India
| |
Collapse
|
45
|
Mametov R, Ratiu IA, Monedeiro F, Ligor T, Buszewski B. Evolution and Evaluation of GC Columns. Crit Rev Anal Chem 2019; 51:150-173. [PMID: 31820658 DOI: 10.1080/10408347.2019.1699013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A chromatographic column is the fundamental element required for gas-chromatographic analysis. The separation of components coming from complex mixtures, prior to their detection was leading to a prominent revolution in different areas of science. Moreover, current advances in gas chromatographic (GC) columns technology and development have been providing almost unlimited possibilities for analysis employing diverse matrices. We aim through this review article to describe the evolution of chromatographic columns, by pointing the most important stages, as well as the new trends and future perspectives predicted for the new generation of GC columns. Furthermore, it was in our scope to present the main fundamentals regarding the theoretical relationships that describe the chromatographic separation, to introduce concepts related to columns selection in accordance with the required application as well as to discuss the available evaluation parameters for columns efficiency. Consequently, the early stages of first columns preparation up to the development of GC capillary columns used nowadays, together with examples of their applications are also reported and described in detail.
Collapse
Affiliation(s)
- Radik Mametov
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Toruń, Poland.,Interdisciplinary Centre for Modern Technologies, Nicolaus Copernicus University, Toruń, Poland
| | - Ileana-Andreea Ratiu
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Toruń, Poland.,Interdisciplinary Centre for Modern Technologies, Nicolaus Copernicus University, Toruń, Poland.,Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, Cluj-Napoca, Romania
| | - Fernanda Monedeiro
- Interdisciplinary Centre for Modern Technologies, Nicolaus Copernicus University, Toruń, Poland
| | - Tomasz Ligor
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Toruń, Poland.,Interdisciplinary Centre for Modern Technologies, Nicolaus Copernicus University, Toruń, Poland
| | - Bogusław Buszewski
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Toruń, Poland.,Interdisciplinary Centre for Modern Technologies, Nicolaus Copernicus University, Toruń, Poland
| |
Collapse
|
46
|
Wu G, Liu JG, Huang XL, Wei CY, Jeen PC F, Xie WS, Chen SM, Zhang CQ, Tang WZ. A nomogram for preoperative prediction of lymphatic infiltration in colorectal cancer: A personalized approach to clinical decision making. Medicine (Baltimore) 2019; 98:e18498. [PMID: 31876737 PMCID: PMC6946444 DOI: 10.1097/md.0000000000018498] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Lymphatic infiltration (LI) is a key factor affecting the treatment of patients with colorectal cancer (CRC). Thus, the aim of this study was to develop and validate a nomogram for individual preoperative prediction of LI in patients with CRC.We conducted a retrospective analysis of 664 patients who received their initial diagnosis of CRC at our center. Those patients were allocated to a training dataset (n = 468) and a validation dataset (n = 196). The least absolute shrinkage and selection operator regression model was used for data dimension reduction and feature selection. The nomogram was constructed from the training dataset and internally verified using the concordance index (C-index), calibration, area under the receiver operating characteristic curve and decision curve analysis (DCA).The enhancement computed tomography reported N1/N2 classification, preoperative tumor differentiation, elevated carcinoembryonic antigen, and carbohydrate antigen19-9 level were selected as variables for the prediction nomogram. Encouragingly, the nomogram showed favorable calibration with C-index 0.757 in the training cohort and 0.725 in validation cohort. The DCA signified that the nomogram was clinically useful. The Kaplan-Meier survival curve showed that patients with LI had a worse prognosis and could benefit from postoperative adjuvant chemotherapy.Use common clinicopathologic factors, a non-invasive scale for individualized preoperative forecasting of LI was established conveniently. LI prediction has great significance for risk stratification of prognosis and treatment of resectable CRC.
Collapse
Affiliation(s)
- Guo Wu
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital
- Guangxi Clinical Research Center for Colorectal Cancer, Nanning, Guangxi Zhuang Autonomous Region, P.R. China
| | - Jun-Gang Liu
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital
- Guangxi Clinical Research Center for Colorectal Cancer, Nanning, Guangxi Zhuang Autonomous Region, P.R. China
| | - Xiao-Liang Huang
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital
- Guangxi Clinical Research Center for Colorectal Cancer, Nanning, Guangxi Zhuang Autonomous Region, P.R. China
| | - Chun-Yin Wei
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital
- Guangxi Clinical Research Center for Colorectal Cancer, Nanning, Guangxi Zhuang Autonomous Region, P.R. China
| | - Franco Jeen PC
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital
- Guangxi Clinical Research Center for Colorectal Cancer, Nanning, Guangxi Zhuang Autonomous Region, P.R. China
| | - Wei-Shun Xie
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital
- Guangxi Clinical Research Center for Colorectal Cancer, Nanning, Guangxi Zhuang Autonomous Region, P.R. China
| | - Shao-Mei Chen
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital
- Guangxi Clinical Research Center for Colorectal Cancer, Nanning, Guangxi Zhuang Autonomous Region, P.R. China
| | - Chu-Qiao Zhang
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital
- Guangxi Clinical Research Center for Colorectal Cancer, Nanning, Guangxi Zhuang Autonomous Region, P.R. China
| | - Wei-Zhong Tang
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital
- Guangxi Clinical Research Center for Colorectal Cancer, Nanning, Guangxi Zhuang Autonomous Region, P.R. China
| |
Collapse
|
47
|
Gorbunov IS, Gubal’ AR, Ganeev AA, Rodinkov OV, Kartsova LA, Bessonova EA, Arsen’ev AI, Nefedov AO, Kraeva LA. Optimization of the Conditions of Analysis of Exhaled Air by Gas Chromatography–Mass Spectrometry for the Noninvasive Diagnostics of Lung Cancer. JOURNAL OF ANALYTICAL CHEMISTRY 2019. [DOI: 10.1134/s1061934819110042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
48
|
Huang S, Chen G, Ye N, Kou X, Zhu F, Shen J, Ouyang G. Solid-phase microextraction: An appealing alternative for the determination of endogenous substances - A review. Anal Chim Acta 2019; 1077:67-86. [PMID: 31307724 DOI: 10.1016/j.aca.2019.05.054] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 02/07/2023]
Abstract
The determination of endogenous substances is of great significance for obtaining important biotic information such as biological components, metabolic pathways and disease biomarkers in different living organisms (e.g. plants, insects, animals and humans). However, due to the complex matrix and the trace concentrations of target analytes, the sample preparation procedure is an essential step before the analytes of interest are introduced into a detection instrument. Solid-phase microextraction (SPME), an emerging sample preparation technique that integrates sampling, extraction, concentration, and sample introduction into one step, has gained wide acceptance in various research fields, including in the determination of endogenous compounds. In this review, recent developments and applications of SPME for the determination of endogenous substances over the past five years are summarized. Several aspects, including the design of SPME devices (sampling configuration and coating), applications (in vitro and in vivo sampling), and coupling with emerging instruments (comprehensive two-dimensional gas chromatography (GC × GC), ambient mass spectrometry (AMS) and surface enhanced Raman scattering (SERS)) are involved. Finally, the challenges and opportunities of SPME methods in endogenous substances analysis are also discussed.
Collapse
Affiliation(s)
- Siming Huang
- Department of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiang Road West, Guangzhou, 510120, China
| | - Guosheng Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Niru Ye
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Xiaoxue Kou
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Fang Zhu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Jun Shen
- Department of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiang Road West, Guangzhou, 510120, China.
| | - Gangfeng Ouyang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China; College of Chemistry & Molecular Engineering, Center of Advanced Analysis and Computational Science, Zhengzhou University, Kexue Avenue 100, Zhengzhou, 450001, PR China.
| |
Collapse
|
49
|
Fitzgerald JE, Shen J, Fenniri H. A Barcoded Polymer-Based Cross-Reactive Spectroscopic Sensor Array for Organic Volatiles. SENSORS (BASEL, SWITZERLAND) 2019; 19:E3683. [PMID: 31450628 PMCID: PMC6749357 DOI: 10.3390/s19173683] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/04/2019] [Accepted: 08/16/2019] [Indexed: 01/10/2023]
Abstract
The development of cross-reactive sensor arrays for volatile organics (electronic noses, e-noses) is an active area of research. In this manuscript, we present a new format for barcoded polymer sensor arrays based on porous polymer beads. An array of nine self-encoded polymers was analyzed by Raman spectroscopy before and after exposure to a series of volatile organic compounds, and the changes in the vibrational fingerprints of their polymers was recorded before and after exposure. Our results show that the spectroscopic changes experienced by the porous spectroscopically encoded beads after exposure to an analyte can be used to identify and classify the target analytes. To expedite this analysis, analyte-specific changes induced in the sensor arrays were transformed into a response pattern using multivariate data analysis. These studies established the barcoded bead array format as a potentially effective sensing element in e-nose devices. Devices such as these have the potential to advance personalized medicine, providing a platform for non-invasive, real-time volatile metabolite detection.
Collapse
Affiliation(s)
| | - Jianliang Shen
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325000, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Hicham Fenniri
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA.
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA.
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, MA 02115, USA.
| |
Collapse
|
50
|
Kim S, Yin X, Prodhan MAI, Zhang X, Zhong Z, Kato I. Global Plasma Profiling for Colorectal Cancer-Associated Volatile Organic Compounds: a Proof-of-Principle Study. J Chromatogr Sci 2019; 57:385-396. [PMID: 30796770 PMCID: PMC6478127 DOI: 10.1093/chromsci/bmz011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 12/14/2018] [Accepted: 01/24/2019] [Indexed: 12/12/2022]
Abstract
Volatile organic compounds (VOCs) could reflect changes resulting from ongoing pathophysiological processes and altered body metabolisms, and thus have been studied for various types of cancers. We aimed to test an advanced global metabolomic technique to characterize circulating VOCs in patients diagnosed with colorectal cancer (CRC). We employed solid-phase microextraction (SPME) and comprehensive two-dimensional gas chromatography mass-spectrometry (GC × GC-MS). We analyzed 30 random plasma samples from incident cases of CRC. The 30 samples were from population controls enrolled in a large population-based case-control study. The number of metabolite peaks detected in the cases was significantly lower than that detected in the controls (median 1530 vs. 1694, P = 0.02). Partial least squares-discriminant analysis showed clear VOC profile differences between the CRC and the controls. After adjustment for multiple comparisons at the 5% false discovery rate level, five VOCs were differentially expressed between the cases and the controls. Among these five VOCs, 2,3,4-trimethyl-hexane (decreased) and 2,4-dimethylhept-1-ene (increased) were both lipid peroxidation products but not previously reported for CRC. In summary, this study pointed to an intriguing observation that the richness of volatile metabolites may be reduced in CRC cases and demonstrated the utility of SPME GC × GC-MS in discovery of candidate markers for further validation.
Collapse
Affiliation(s)
- Seongho Kim
- Department of Oncology, Wayne State University School of Medicine, Detroit MI, USA
- Biostatistics Core, Karmanos Cancer Institute, Wayne State University, Detroit MI, USA
| | - Xinmin Yin
- Department of Chemistry, University of Louisville, Louisville, Kentucky, USA
| | | | - Xiang Zhang
- Department of Chemistry, University of Louisville, Louisville, Kentucky, USA
| | - Zichun Zhong
- Department of Computer Science, College of Engineering, Wayne State University, Detroit MI, USA
| | - Ikuko Kato
- Department of Oncology, Wayne State University School of Medicine, Detroit MI, USA
- Department of Pathology, Wayne State University School of Medicine, Detroit MI, USA
| |
Collapse
|