1
|
Xie Y, Cai N, Liu X, He L, Ma Y, Yan C, Liang J, Ouyang SH, Luo A, He Y, Lu J, Ao D, Liu J, Ye Z, Liu B, He RR, Li W. SIRT5: a potential target for discovering bioactive natural products. J Nat Med 2025; 79:441-464. [PMID: 39979670 PMCID: PMC12058867 DOI: 10.1007/s11418-024-01871-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 12/17/2024] [Indexed: 02/22/2025]
Abstract
Silent information regulator 5 (SIRT5) is the fifth member of the sirtuin family, which is mainly expressed in mitochondrial matrix. SIRT5 plays a key role in metabolism and antioxidant responses, and is an important regulator for maintaining intracellular homeostasis. Given its involvement in multiple cellular processes, dysregulation of SIRT5 activity is associated with a variety of diseases. This review explores the structural characteristics of SIRT5 that influence its substrate specificity, highlights recent research advances, and summarizes its four key enzymatic activities along with their corresponding substrates in disease contexts. We also discuss the natural products that modulate SIRT5 activity and identify potential targets of SIRT5 through virtual docking, which may provide new therapeutic avenues. Although the mechanism of SIRT5 in diseases needs to be further elucidated and deglutathionylation activities are still at an early stage, targeting SIRT5 and its substrates holds significant promise for the development of novel therapeutics.
Collapse
Affiliation(s)
- Yuwei Xie
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Nali Cai
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Xiaohua Liu
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Liangliang He
- Guangdong Engineering Research Center of Traditional Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China
| | - Yiming Ma
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Changyu Yan
- Guangdong Engineering Research Center of Traditional Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China
| | - Juan Liang
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Shu-Hua Ouyang
- Guangdong Engineering Research Center of Traditional Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China
| | - Ao Luo
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Yingzhi He
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Jun Lu
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Dang Ao
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Jia Liu
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Zhonglv Ye
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Bin Liu
- Laboratory of Hepatobiliary Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China.
| | - Rong-Rong He
- Guangdong Engineering Research Center of Traditional Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China.
| | - Wen Li
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China.
| |
Collapse
|
2
|
Fiorentino F, Fabbrizi E, Mai A, Rotili D. Activation and inhibition of sirtuins: From bench to bedside. Med Res Rev 2025; 45:484-560. [PMID: 39215785 PMCID: PMC11796339 DOI: 10.1002/med.22076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/27/2024] [Accepted: 08/04/2024] [Indexed: 09/04/2024]
Abstract
The sirtuin family comprises seven NAD+-dependent enzymes which catalyze protein lysine deacylation and mono ADP-ribosylation. Sirtuins act as central regulators of genomic stability and gene expression and control key processes, including energetic metabolism, cell cycle, differentiation, apoptosis, and aging. As a result, all sirtuins play critical roles in cellular homeostasis and organism wellness, and their dysregulation has been linked to metabolic, cardiovascular, and neurological diseases. Furthermore, sirtuins have shown dichotomous roles in cancer, acting as context-dependent tumor suppressors or promoters. Given their central role in different cellular processes, sirtuins have attracted increasing research interest aimed at developing both activators and inhibitors. Indeed, sirtuin modulation may have therapeutic effects in many age-related diseases, including diabetes, cardiovascular and neurodegenerative disorders, and cancer. Moreover, isoform selective modulators may increase our knowledge of sirtuin biology and aid to develop better therapies. Through this review, we provide critical insights into sirtuin pharmacology and illustrate their enzymatic activities and biological functions. Furthermore, we outline the most relevant sirtuin modulators in terms of their modes of action, structure-activity relationships, pharmacological effects, and clinical applications.
Collapse
Affiliation(s)
- Francesco Fiorentino
- Department of Drug Chemistry and TechnologiesSapienza University of RomeRomeItaly
| | - Emanuele Fabbrizi
- Department of Drug Chemistry and TechnologiesSapienza University of RomeRomeItaly
| | - Antonello Mai
- Department of Drug Chemistry and TechnologiesSapienza University of RomeRomeItaly
- Pasteur Institute, Cenci‐Bolognetti FoundationSapienza University of RomeRomeItaly
| | - Dante Rotili
- Department of Drug Chemistry and TechnologiesSapienza University of RomeRomeItaly
| |
Collapse
|
3
|
Fan M, Mehra M, Yang K, Chadha RS, Anber S, Kovarik ML. Cross-Species Applications of Peptide Substrate Reporters to Quantitative Measurements of Kinase Activity. ACS MEASUREMENT SCIENCE AU 2024; 4:546-555. [PMID: 39430960 PMCID: PMC11487760 DOI: 10.1021/acsmeasuresciau.4c00030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/29/2024] [Accepted: 07/29/2024] [Indexed: 10/22/2024]
Abstract
Peptide substrate reporters are short chains of amino acids designed to act as substrates for enzymes of interest. Combined with capillary electrophoresis and laser-induced fluorescence detection (CE-LIF), they are powerful molecular tools for quantitative measurements of enzyme activity even at the level of single cells. Although most peptide substrate reporters have been optimized for human or murine cells in health-related applications, their performance in nonmammalian organisms remains largely unexplored. In this study, we evaluated three peptide substrate reporters for protein kinase B (PKB) in two eukaryotic microbes, Dictyostelium discoideum and Tetrahymena thermophila, which are evolutionarily distant from mammals and from each other yet express PKB homologues. All three peptide substrate reporters were phosphorylated in lysates from both organisms but with varying phosphorylation kinetics and stability. To demonstrate reporter utility, we used one to screen for and identify the previously unknown stimulus needed to activate PHK5, the PKB homologue in T. thermophila. In D. discoideum, we employed the highly quantitative nature of these assays using CE-LIF to make precise measurements of PKB activity in response to transient stimulation, drug treatment, and genetic mutation. These results underscore the broad applicability of peptide substrate reporters across diverse species while highlighting the need for further research to determine effective peptide stabilization strategies across different biological contexts.
Collapse
Affiliation(s)
| | | | | | | | - Sababa Anber
- Department of Chemistry, Trinity College, 300
Summit St., Hartford, Connecticut 06106, United States
| | - Michelle L. Kovarik
- Department of Chemistry, Trinity College, 300
Summit St., Hartford, Connecticut 06106, United States
| |
Collapse
|
4
|
Yuan T, Kumar S, Skinner ME, Victor-Joseph R, Abuaita M, Keijer J, Zhang J, Kunkel TJ, Liu Y, Petrunak EM, Saunders TL, Lieberman AP, Stuckey JA, Neamati N, Al-Murshedi F, Alfadhel M, Spelbrink JN, Rodenburg R, de Boer VC, Lombard DB. Human SIRT5 variants with reduced stability and activity do not cause neuropathology in mice. iScience 2024; 27:109991. [PMID: 38846003 PMCID: PMC11154205 DOI: 10.1016/j.isci.2024.109991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/06/2024] [Accepted: 05/13/2024] [Indexed: 06/09/2024] Open
Abstract
SIRT5 is a sirtuin deacylase that removes negatively charged lysine modifications, in the mitochondrial matrix and elsewhere in the cell. In benign cells and mouse models, under basal conditions, the phenotypes of SIRT5 deficiency are quite subtle. Here, we identify two homozygous SIRT5 variants in patients suspected to have mitochondrial disease. Both variants, P114T and L128V, are associated with reduced SIRT5 protein stability and impaired biochemical activity, with no evidence of neomorphic or dominant negative properties. The crystal structure of the P114T enzyme was solved and shows only subtle deviations from wild-type. Via CRISPR-Cas9, we generated a mouse model that recapitulates the human P114T mutation; homozygotes show reduced SIRT5 levels and activity, but no obvious metabolic abnormalities, neuropathology, or other gross phenotypes. We conclude that these human SIRT5 variants most likely represent severe hypomorphs, but are likely not by themselves the primary pathogenic cause of the neuropathology observed in the patients.
Collapse
Affiliation(s)
- Taolin Yuan
- Human and Animal Physiology, Wageningen University, De Elst 1, Wageningen, the Netherlands
| | - Surinder Kumar
- Department of Pathology & Laboratory Medicine, Miller School of Medicine, and Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Mary E. Skinner
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ryan Victor-Joseph
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Majd Abuaita
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jaap Keijer
- Human and Animal Physiology, Wageningen University, De Elst 1, Wageningen, the Netherlands
| | - Jessica Zhang
- Department of Pathology & Laboratory Medicine, Miller School of Medicine, and Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA
| | - Thaddeus J. Kunkel
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yanghan Liu
- Department of Medicinal Chemistry, College of Pharmacy and Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Elyse M. Petrunak
- Life Sciences Institute and Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Thomas L. Saunders
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Jeanne A. Stuckey
- Life Sciences Institute and Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Nouri Neamati
- Department of Medicinal Chemistry, College of Pharmacy and Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Fathiya Al-Murshedi
- Genetic and Developmental Medicine Clinic, Department of Genetics, Sultan Qaboos University Hospital, Sultan Qaboos University, Muscat, Oman
| | - Majid Alfadhel
- Medical Genomic Research Department, King Abdullah International Medical Research Center(KAIMRC), King Saud Bin Abdulaziz University for Health Sciences(KSAU-HS), Ministry of National Guard Health Affairs (MNG-HA), Riyadh, Saudi Arabia
- Genetics and Precision Medicine Department (GPM), King Abdullah Specialized Children’s Hospital (KASCH), King Abdulaziz Medical City, Ministry of National Guard Health Affairs (MNG-HA), Riyadh, Saudi Arabia
| | - Johannes N. Spelbrink
- Radboud Center for Mitochondrial Medicine, Department of Pediatrics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Richard Rodenburg
- Radboud Center for Mitochondrial Medicine, Department of Pediatrics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Vincent C.J. de Boer
- Human and Animal Physiology, Wageningen University, De Elst 1, Wageningen, the Netherlands
| | - David B. Lombard
- Department of Pathology & Laboratory Medicine, Miller School of Medicine, and Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
- Miami VA Healthcare System, Miami, FL 33125, USA
| |
Collapse
|
5
|
Yuan T, Kumar S, Skinner M, Victor-Joseph R, Abuaita M, Keijer J, Zhang J, Kunkel TJ, Liu Y, Petrunak EM, Saunders TL, Lieberman AP, Stuckey JA, Neamati N, Al-Murshedi F, Alfadhel M, Spelbrink JN, Rodenburg R, de Boer VCJ, Lombard DB. SIRT5 variants from patients with mitochondrial disease are associated with reduced SIRT5 stability and activity, but not with neuropathology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.06.570371. [PMID: 38105987 PMCID: PMC10723467 DOI: 10.1101/2023.12.06.570371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
SIRT5 is a sirtuin deacylase that represents the major activity responsible for removal of negatively-charged lysine modifications, in the mitochondrial matrix and elsewhere in the cell. In benign cells and mouse models, under basal non-stressed conditions, the phenotypes of SIRT5 deficiency are generally quite subtle. Here, we identify two homozygous SIRT5 variants in human patients suffering from severe mitochondrial disease. Both variants, P114T and L128V, are associated with reduced SIRT5 protein stability and impaired biochemical activity, with no evidence of neomorphic or dominant negative properties. The crystal structure of the P114T enzyme was solved and shows only subtle deviations from wild-type. Via CRISPR-Cas9, we generate a mouse model that recapitulates the human P114T mutation; homozygotes show reduced SIRT5 levels and activity, but no obvious metabolic abnormalities, neuropathology or other gross evidence of severe disease. We conclude that these human SIRT5 variants most likely represent severe hypomorphs, and are likely not the primary pathogenic cause of the neuropathology observed in the patients.
Collapse
Affiliation(s)
- Taolin Yuan
- Human and Animal Physiology, Wageningen University, De Elst 1, Wageningen, The Netherlands
| | - Surinder Kumar
- Department of Pathology & Laboratory Medicine, Miller School of Medicine, and Sylvester Comprehensive Cancer Center, University of Miami, Miami FL 33136
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109
| | - Mary Skinner
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109
| | | | - Majd Abuaita
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109
| | - Jaap Keijer
- Human and Animal Physiology, Wageningen University, De Elst 1, Wageningen, The Netherlands
| | - Jessica Zhang
- Department of Pathology & Laboratory Medicine, Miller School of Medicine, and Sylvester Comprehensive Cancer Center, University of Miami, Miami FL 33136
| | | | - Yanghan Liu
- Department of Medicinal Chemistry, College of Pharmacy and Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109
| | - Elyse M. Petrunak
- Life Sciences Institute and Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Thomas L. Saunders
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109
| | | | - Jeanne A. Stuckey
- Life Sciences Institute and Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Nouri Neamati
- Department of Medicinal Chemistry, College of Pharmacy and Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109
| | - Fathiya Al-Murshedi
- Genetic and Developmental Medicine Clinic, Department of Genetics, Sultan Qaboos University Hospital, Sultan Qaboos University, Muscat, Oman
| | - Majid Alfadhel
- Medical Genomic Research Department, King Abdullah International Medical Research Center(KAIMRC), King Saud Bin Abdulaziz University for Health Sciences(KSAU-HS), Ministry of National Guard Health Affairs (MNG-HA), Riyadh, Saudi Arabia
- Genetics and Precision Medicine department (GPM), King Abdullah Specialized Children’s Hospital (KASCH), King Abdulaziz Medical City, Ministry of National Guard Health Affairs (MNG-HA), Riyadh, Saudi Arabia
| | - Johannes N. Spelbrink
- Radboud Center for Mitochondrial Medicine, Department of Pediatrics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Richard Rodenburg
- Radboud Center for Mitochondrial Medicine, Department of Pediatrics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Vincent C. J. de Boer
- Human and Animal Physiology, Wageningen University, De Elst 1, Wageningen, The Netherlands
| | - David B. Lombard
- Department of Pathology & Laboratory Medicine, Miller School of Medicine, and Sylvester Comprehensive Cancer Center, University of Miami, Miami FL 33136
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109
- Miami VA Healthcare System, Miami FL 33125
| |
Collapse
|
6
|
Fabbrizi E, Fiorentino F, Carafa V, Altucci L, Mai A, Rotili D. Emerging Roles of SIRT5 in Metabolism, Cancer, and SARS-CoV-2 Infection. Cells 2023; 12:cells12060852. [PMID: 36980194 PMCID: PMC10047932 DOI: 10.3390/cells12060852] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/02/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Sirtuin 5 (SIRT5) is a predominantly mitochondrial enzyme catalyzing the removal of glutaryl, succinyl, malonyl, and acetyl groups from lysine residues through a NAD+-dependent deacylase mechanism. SIRT5 is an important regulator of cellular homeostasis and modulates the activity of proteins involved in different metabolic pathways such as glycolysis, tricarboxylic acid (TCA) cycle, fatty acid oxidation, electron transport chain, generation of ketone bodies, nitrogenous waste management, and reactive oxygen species (ROS) detoxification. SIRT5 controls a wide range of aspects of myocardial energy metabolism and plays critical roles in heart physiology and stress responses. Moreover, SIRT5 has a protective function in the context of neurodegenerative diseases, while it acts as a context-dependent tumor promoter or suppressor. In addition, current research has demonstrated that SIRT5 is implicated in the SARS-CoV-2 infection, although opposing conclusions have been drawn in different studies. Here, we review the current knowledge on SIRT5 molecular actions under both healthy and diseased settings, as well as its functional effects on metabolic targets. Finally, we revise the potential of SIRT5 as a therapeutic target and provide an overview of the currently reported SIRT5 modulators, which include both activators and inhibitors.
Collapse
Affiliation(s)
- Emanuele Fabbrizi
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, 00185 Rome, Italy
| | - Francesco Fiorentino
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, 00185 Rome, Italy
| | - Vincenzo Carafa
- Department of Precision Medicine, Università degli Studi della Campania “L. Vanvitelli”, 80138 Naples, Italy
- BIOGEM, 83031 Ariano Irpino, Italy
| | - Lucia Altucci
- Department of Precision Medicine, Università degli Studi della Campania “L. Vanvitelli”, 80138 Naples, Italy
- BIOGEM, 83031 Ariano Irpino, Italy
- IEOS—Istituto per l’Endocrinologia e Oncologia Sperimentale, CNR, 80131 Naples, Italy
| | - Antonello Mai
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, 00185 Rome, Italy
- Pasteur Institute, Cenci-Bolognetti Foundation, Sapienza University of Rome, 00185 Rome, Italy
- Correspondence: (A.M.); (D.R.); Tel.: +39-0649913392 (A.M.); +39-0649913237 (D.R.); Fax: +39-0649693268 (A.M.)
| | - Dante Rotili
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, 00185 Rome, Italy
- Correspondence: (A.M.); (D.R.); Tel.: +39-0649913392 (A.M.); +39-0649913237 (D.R.); Fax: +39-0649693268 (A.M.)
| |
Collapse
|
7
|
D'Amico CI, Polasky DA, Steyer DJ, Ruotolo BT, Kennedy RT. Ion Mobility-Mass Spectrometry Coupled to Droplet Microfluidics for Rapid Protein Structure Analysis and Drug Discovery. Anal Chem 2022; 94:13084-13091. [PMID: 36098981 DOI: 10.1021/acs.analchem.2c02307] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Native mass spectrometry coupled to ion mobility (IM-MS) has become an important tool for the investigation of protein structure and dynamics upon ligand binding. Additionally, collisional activation or collision induced unfolding (CIU) can further probe conformational changes induced by ligand binding; however, larger scale screens have not been implemented due to limitations associated with throughput and sample introduction. In this work we explore the high-throughput capabilities of CIU fingerprinting. Fingerprint collection times were reduced 10-fold over traditional data collections through the use of improved smoothing and interpolation algorithms. Fast-CIU was then coupled to a droplet sample introduction approach using 40 nL droplet sample volumes and 2 s dwell times at each collision voltage. This workflow, which increased throughput by ∼16-fold over conventional nanospray CIU methods, was applied to a 96-compound screen against Sirtuin-5, a protein target of clinical interest. Over 20 novel Sirtuin-5 binders were identified, and it was found that Sirtuin-5 inhibitors will stabilize specific Sirtuin-5 gas-phase conformations. This work demonstrates that droplet-CIU can be implemented as a high-throughput biophysical characterization approach. Future work will focus on improving the throughput of this workflow and on automating data acquisition and analysis.
Collapse
Affiliation(s)
- Cara I D'Amico
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Daniel A Polasky
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Daniel J Steyer
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Brandon T Ruotolo
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Robert T Kennedy
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109, United States.,Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
8
|
Fiorentino F, Castiello C, Mai A, Rotili D. Therapeutic Potential and Activity Modulation of the Protein Lysine Deacylase Sirtuin 5. J Med Chem 2022; 65:9580-9606. [PMID: 35802779 PMCID: PMC9340778 DOI: 10.1021/acs.jmedchem.2c00687] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Sirtiun 5 (SIRT5) is a NAD+-dependent protein lysine deacylase primarily located in mitochondria. SIRT5 displays an affinity for negatively charged acyl groups and mainly catalyzes lysine deglutarylation, desuccinylation, and demalonylation while possessing weak deacetylase activity. SIRT5 substrates play crucial roles in metabolism and reactive oxygen species (ROS) detoxification, and SIRT5 activity is protective in neuronal and cardiac physiology. Moreover, SIRT5 exhibits a dichotomous role in cancer, acting as context-dependent tumor promoter or suppressor. Given its multifaceted activity, SIRT5 is a promising target in the design of activators or inhibitors that might act as therapeutics in many pathologies, including cancer, cardiovascular disorders, and neurodegeneration. To date, few cellular-active peptide-based SIRT5 inhibitors (SIRT5i) have been described, and potent and selective small-molecule SIRT5i have yet to be discovered. In this perspective, we provide an outline of SIRT5's roles in different biological settings and describe SIRT5 modulators in terms of their mode of action, pharmacological activity, and structure-activity relationships.
Collapse
Affiliation(s)
- Francesco Fiorentino
- Department
of Drug Chemistry and Technologies, Sapienza
University of Rome, Piazzala Aldo Moro 5, Rome 00185, Italy
| | - Carola Castiello
- Department
of Drug Chemistry and Technologies, Sapienza
University of Rome, Piazzala Aldo Moro 5, Rome 00185, Italy
| | - Antonello Mai
- Department
of Drug Chemistry and Technologies, Sapienza
University of Rome, Piazzala Aldo Moro 5, Rome 00185, Italy
- Pasteur
Institute, Cenci-Bolognetti Foundation, Sapienza University of Rome, Piazzala Aldo Moro 5, Rome 00185, Italy
| | - Dante Rotili
- Department
of Drug Chemistry and Technologies, Sapienza
University of Rome, Piazzala Aldo Moro 5, Rome 00185, Italy
| |
Collapse
|
9
|
Mori M, Cazzaniga G, Meneghetti F, Villa S, Gelain A. Insights on the Modulation of SIRT5 Activity: A Challenging Balance. Molecules 2022; 27:4449. [PMID: 35889322 PMCID: PMC9316768 DOI: 10.3390/molecules27144449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/08/2022] [Accepted: 07/09/2022] [Indexed: 02/01/2023] Open
Abstract
SIRT5 is a member of the Sirtuin family, a class of deacetylating enzymes consisting of seven isoforms, involved in the regulation of several processes, including gene expression, metabolism, stress response, and aging. Considering that the anomalous activity of SIRT5 is linked to many pathological conditions, we present herein an overview of the most interesting modulators, with the aim of contributing to further development in this field.
Collapse
Affiliation(s)
| | | | | | - Stefania Villa
- Department of Pharmaceutical Sciences, University of Milan, Via L. Mangiagalli 25, 20133 Milano, Italy; (M.M.); (G.C.); (F.M.); (A.G.)
| | | |
Collapse
|
10
|
Development of hetero-triaryls as a new chemotype for subtype-selective and potent Sirt5 inhibition. Eur J Med Chem 2022; 240:114594. [PMID: 35853430 DOI: 10.1016/j.ejmech.2022.114594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/23/2021] [Accepted: 07/05/2022] [Indexed: 11/21/2022]
Abstract
In contrast to other sirtuins (NAD+-dependent class III lysine deacylases), inhibition of Sirt5 is poorly investigated, yet. Our present work is based on the recently identified Sirt5 inhibitor balsalazide, an approved drug with negligible bioavailability after oral administration. After gaining first insights into its structure-activity relationship in previous work, we were able to now develop heteroaryl-triaryls as a novel chemotype of drug-like, potent and subtype-selective Sirt5 inhibitors. The unfavourable azo group of the lead structure was modified in a systematic and comprehensive manner, leading us to a few open-chained and, most importantly, five-membered heteroaromatic substitutes (isoxazole CG_209, triazole CG_220, pyrazole CG_232) with very encouraging in vitro activities (IC50 on Sirt5 in the low micromolar range, <10 μM). These advanced inhibitors were free of cytotoxicity and showed favourable pharmacokinetic properties, as confirmed by permeability into mitochondria using live cell imaging experiments. Furthermore, results from calculations of the relative free binding affinities of the analogues compared to balsalazide as reference compound agreed well with the trends for inhibitory activities obtained in the in vitro experiments. Therefore, this method can be used to predict the affinity of closely related future potential Sirt5 inhibitors. Encouraged by our findings, we employed chemoproteomic selectivity profiling to confirm Sirt5 as main target of balsalazide and one of its improved analogues. An immobilised balsalazide-analogue specifically pulled down Sirt5 from whole cell lysates and competition experiments identified glutaryl-CoA dehydrogenase (GCDH) and nucleotide diphosphate kinase (NME4) as potential off-targets, once again confirming the selectivity of the novel balsalazide-derived Sirt5 inhibitors. In summary, a combination of targeted chemical synthesis, biological work, and computational studies led to a new generation of tailored Sirt5 inhibitors, which represent valuable chemical tools for the investigation of the physiological role of Sirt5, but could also serve as advanced lead structures for drug candidates for systemic use.
Collapse
|
11
|
Yang F, Su H, Deng J, Mou L, Wang H, Li R, Dai QQ, Yan YH, Qian S, Wang Z, Li GB, Yang L. Discovery of new human Sirtuin 5 inhibitors by mimicking glutaryl-lysine substrates. Eur J Med Chem 2021; 225:113803. [PMID: 34461505 DOI: 10.1016/j.ejmech.2021.113803] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/18/2021] [Accepted: 08/23/2021] [Indexed: 11/28/2022]
Abstract
Human sirtuin 5 (SIRT5) plays pivotal roles in metabolic pathways and other biological processes, and is involved in several human diseases including cancer. Development of new potent and selective SIRT5 inhibitors is currently desirable to provide potential therapeutics for related diseases. Herein, we report a series of new 3-thioureidopropanoic acid derivatives, which were designed to mimic the binding features of SIRT5 glutaryl-lysine substrates. Structure-activity relationship studies revealed several compounds with low micromolar inhibitory activities to SIRT5. Computational and biochemical studies indicated that these compounds exhibited competitive SIRT5 inhibition with respect to the glutaryl-lysine substrate rather than nicotinamide adenine dinucleotide cofactor. Moreover, they showed high selectivity for SIRT5 over SIRT1-3 and 6 and could stabilize SIRT5 proteins as revealed by thermal shift analyses. This work provides an effective substrate-mimicking strategy for future inhibitor design, and offers new inhibitors to investigate their therapeutic potentials in SIRT5-associated disease models.
Collapse
Affiliation(s)
- Fan Yang
- College of Food and Bioengineering, Xihua University, Sichuan, 610039, China
| | - Huilin Su
- College of Food and Bioengineering, Xihua University, Sichuan, 610039, China
| | - Ji Deng
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Luohe Mou
- College of Food and Bioengineering, Xihua University, Sichuan, 610039, China
| | - Huali Wang
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Rong Li
- College of Food and Bioengineering, Xihua University, Sichuan, 610039, China
| | - Qing-Qing Dai
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yu-Hang Yan
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Shan Qian
- College of Food and Bioengineering, Xihua University, Sichuan, 610039, China
| | - Zhouyu Wang
- College of Science, Xihua University, Sichuan, 610039, China
| | - Guo-Bo Li
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Lingling Yang
- College of Food and Bioengineering, Xihua University, Sichuan, 610039, China.
| |
Collapse
|
12
|
Murray G, Bednarski S, Hall M, Foster SW, Jin S, Davis JJ, Xue W, Constans E, Grinias JP. Comparison of Design Approaches for Low-Cost Sampling Mechanisms in Open-Source Chemical Instrumentation. HARDWAREX 2021; 10:e00220. [PMID: 34553104 PMCID: PMC8452234 DOI: 10.1016/j.ohx.2021.e00220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
Robotic positioning systems are used in a variety of chemical instruments, primarily for liquid handling purposes, such as autosamplers from vials or well plates. Here, two approaches to the design of open-source autosampler positioning systems for use with 96-well plates are described and compared. The first system, a 3-axis design similar to many low-cost 3D printers that are available on the market, is constructed using an aluminum design and stepper motors. The other system relies upon a series of 3D printed parts to achieve movement with a series of linker arms based on Selective Compliance Assembly Robot Arm (SCARA) design principles. Full printer design files, assembly instructions, software, and user directions are included for both samplers. The positioning precision of the 3-axis system is better than the SCARA mechanism due to finer motor control, albeit with a slightly higher cost of materials. Based on the improved precision of this approach, the 3-axis autosampler system was used to demonstrate the generation of a segmented flow droplet stream from adjacent wells within a 96-well plate.
Collapse
Affiliation(s)
- Greggory Murray
- Department of Mechanical Engineering, Rowan University, Glassboro, NJ, United States
| | - Samuel Bednarski
- Department of Mechanical Engineering, Rose-Hulman Institute of Technology, Terre Haute, IN, United States
| | - Michael Hall
- Department of Mechanical Engineering, Rose-Hulman Institute of Technology, Terre Haute, IN, United States
| | - Samuel W. Foster
- Department of Chemistry & Biochemistry, Rowan University, Glassboro, NJ, United States
| | - SiJun Jin
- Department of Mechanical Engineering, Rose-Hulman Institute of Technology, Terre Haute, IN, United States
| | - Joshua J. Davis
- Department of Chemistry & Biochemistry, Rowan University, Glassboro, NJ, United States
| | - Wei Xue
- Department of Mechanical Engineering, Rowan University, Glassboro, NJ, United States
| | - Eric Constans
- Department of Mechanical Engineering, Rose-Hulman Institute of Technology, Terre Haute, IN, United States
| | - James P. Grinias
- Department of Chemistry & Biochemistry, Rowan University, Glassboro, NJ, United States
| |
Collapse
|
13
|
Giblin W, Bringman-Rodenbarger L, Guo AH, Kumar S, Monovich AC, Mostafa AM, Skinner ME, Azar M, Mady AS, Chung CH, Kadambi N, Melong KA, Lee HJ, Zhang L, Sajjakulnukit P, Trefely S, Varner EL, Iyer S, Wang M, Wilmott JS, Soyer HP, Sturm RA, Pritchard AL, Andea AA, Scolyer RA, Stark MS, Scott DA, Fullen DR, Bosenberg MW, Chandrasekaran S, Nikolovska-Coleska Z, Verhaegen ME, Snyder NW, Rivera MN, Osterman AL, Lyssiotis CA, Lombard DB. The deacylase SIRT5 supports melanoma viability by influencing chromatin dynamics. J Clin Invest 2021; 131:138926. [PMID: 33945506 PMCID: PMC8203465 DOI: 10.1172/jci138926] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 04/29/2021] [Indexed: 12/13/2022] Open
Abstract
Cutaneous melanoma remains the most lethal skin cancer, and ranks third among all malignancies in terms of years of life lost. Despite the advent of immune checkpoint and targeted therapies, only roughly half of patients with advanced melanoma achieve a durable remission. Sirtuin 5 (SIRT5) is a member of the sirtuin family of protein deacylases that regulates metabolism and other biological processes. Germline Sirt5 deficiency is associated with mild phenotypes in mice. Here we showed that SIRT5 was required for proliferation and survival across all cutaneous melanoma genotypes tested, as well as uveal melanoma, a genetically distinct melanoma subtype that arises in the eye and is incurable once metastatic. Likewise, SIRT5 was required for efficient tumor formation by melanoma xenografts and in an autochthonous mouse Braf Pten-driven melanoma model. Via metabolite and transcriptomic analyses, we found that SIRT5 was required to maintain histone acetylation and methylation levels in melanoma cells, thereby promoting proper gene expression. SIRT5-dependent genes notably included MITF, a key lineage-specific survival oncogene in melanoma, and the c-MYC proto-oncogene. SIRT5 may represent a druggable genotype-independent addiction in melanoma.
Collapse
Affiliation(s)
- William Giblin
- Department of Pathology and
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA
| | | | | | | | | | - Ahmed M. Mostafa
- Department of Pathology and
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | | | | | | | | | | | | | - Ho-Joon Lee
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Li Zhang
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Peter Sajjakulnukit
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Sophie Trefely
- Department of Cancer Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Center for Metabolic Disease Research, Department of Microbiology and Immunology, Temple University, Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA
| | - Erika L. Varner
- Center for Metabolic Disease Research, Department of Microbiology and Immunology, Temple University, Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA
| | - Sowmya Iyer
- Department of Pathology and MGH Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | | | - James S. Wilmott
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia
| | - H. Peter Soyer
- The University of Queensland Diamantina Institute, The University of Queensland, Dermatology Research Centre, Brisbane, Australia
- Department of Dermatology, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Richard A. Sturm
- The University of Queensland Diamantina Institute, The University of Queensland, Dermatology Research Centre, Brisbane, Australia
| | - Antonia L. Pritchard
- Institute of Health Research and Innovation, University of the Highlands and Islands, An Lóchran, Inverness, United Kingdom
- Oncogenomics, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Aleodor A. Andea
- Department of Pathology and
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA
| | - Richard A. Scolyer
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia
- Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, and NSW Pathology, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Mitchell S. Stark
- The University of Queensland Diamantina Institute, The University of Queensland, Dermatology Research Centre, Brisbane, Australia
| | - David A. Scott
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Douglas R. Fullen
- Department of Pathology and
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA
| | - Marcus W. Bosenberg
- Departments of Pathology and Dermatology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Sriram Chandrasekaran
- Department of Biomedical Engineering and
- Program in Chemical Biology
- Center for Computational Medicine and Bioinformatics, and
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Zaneta Nikolovska-Coleska
- Department of Pathology and
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | | | - Nathaniel W. Snyder
- Center for Metabolic Disease Research, Department of Microbiology and Immunology, Temple University, Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA
| | - Miguel N. Rivera
- Department of Pathology and MGH Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Andrei L. Osterman
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Costas A. Lyssiotis
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Division of Gastroenterology, Department of Internal Medicine and
| | - David B. Lombard
- Department of Pathology and
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Institute of Gerontology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
14
|
Identification of the subtype-selective Sirt5 inhibitor balsalazide through systematic SAR analysis and rationalization via theoretical investigations. Eur J Med Chem 2020; 206:112676. [PMID: 32858418 DOI: 10.1016/j.ejmech.2020.112676] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/17/2020] [Accepted: 07/18/2020] [Indexed: 12/30/2022]
Abstract
We report here an extensive structure-activity relationship study of balsalazide, which was previously identified in a high-throughput screening as an inhibitor of Sirt5. To get a closer understanding why this compound is able to inhibit Sirt5, we initially performed docking experiments comparing the binding mode of a succinylated peptide as the natural substrate and balsalazide with Sirt5 in the presence of NAD+. Based on the evidence gathered here, we designed and synthesized 13 analogues of balsalazide, in which single functional groups were either deleted or slightly altered to investigate which of them are mandatory for high inhibitory activity. Our study confirms that balsalazide with all its given functional groups is an inhibitor of Sirt5 in the low micromolar concentration range and structural modifications presented in this study did not increase potency. While changes on the N-aroyl-β-alanine side chain eliminated potency, the introduction of a truncated salicylic acid part minimally altered potency. Calculations of the associated reaction paths showed that the inhibition potency is very likely dominated by the stability of the inhibitor-enzyme complex and not the type of inhibition (covalent vs. non-covalent). Further in-vitro characterization in a trypsin coupled assay determined that the tested inhibitors showed no competition towards NAD+ or the synthetic substrate analogue ZKsA. In addition, investigations for subtype selectivity revealed that balsalazide is a subtype-selective Sirt5 inhibitor, and our initial SAR and docking studies pave the way for further optimization.
Collapse
|
15
|
Liénard-Mayor T, Taverna M, Descroix S, Mai TD. Droplet-interfacing strategies in microscale electrophoresis for sample treatment, separation and quantification: A review. Anal Chim Acta 2020; 1143:281-297. [PMID: 33384124 DOI: 10.1016/j.aca.2020.09.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/25/2020] [Accepted: 09/05/2020] [Indexed: 12/20/2022]
Abstract
In this study, for the first time we report on a comprehensive overview of different strategies to hyphenate droplet-based sample handling and preparation with electrophoretic separation in different formats (i.e. microchip and capillary electrophoresis). Droplet-interfaced electrophoresis is an emerging technique in which micro/nanometric droplets are used as a bridge and carrier of target analytes between sample treatment and electrokinetic separation steps, thus being expected to overcome the challenges of working dimension mismatch and low degree of module integration. This review covers all works on this topic from 2006 (the year of the first communication) up to 2020, with focus being given to three principal interfacing strategies, including droplets in immiscible phases, digital microfluidics with electrowetting-on-dielectric principle and inkjet droplet generation. Different instrumental developments for such purpose, the viewpoints on pros and cons of these designs as well as application demonstrations of droplet-interfaced electrokinetic strategies are discussed.
Collapse
Affiliation(s)
- Théo Liénard-Mayor
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92296, Châtenay-Malabry, France
| | - Myriam Taverna
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92296, Châtenay-Malabry, France; Institut Universitaire de France, France
| | - Stéphanie Descroix
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, 75005, Paris, France
| | - Thanh Duc Mai
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92296, Châtenay-Malabry, France.
| |
Collapse
|
16
|
Markel U, Essani KD, Besirlioglu V, Schiffels J, Streit WR, Schwaneberg U. Advances in ultrahigh-throughput screening for directed enzyme evolution. Chem Soc Rev 2020; 49:233-262. [PMID: 31815263 DOI: 10.1039/c8cs00981c] [Citation(s) in RCA: 158] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Enzymes are versatile catalysts and their synthetic potential has been recognized for a long time. In order to exploit their full potential, enzymes often need to be re-engineered or optimized for a given application. (Semi-) rational design has emerged as a powerful means to engineer proteins, but requires detailed knowledge about structure function relationships. In turn, directed evolution methodologies, which consist of iterative rounds of diversity generation and screening, can improve an enzyme's properties with virtually no structural knowledge. Current diversity generation methods grant us access to a vast sequence space (libraries of >1012 enzyme variants) that may hide yet unexplored catalytic activities and selectivity. However, the time investment for conventional agar plate or microtiter plate-based screening assays represents a major bottleneck in directed evolution and limits the improvements that are obtainable in reasonable time. Ultrahigh-throughput screening (uHTS) methods dramatically increase the number of screening events per time, which is crucial to speed up biocatalyst design, and to widen our knowledge about sequence function relationships. In this review, we summarize recent advances in uHTS for directed enzyme evolution. We shed light on the importance of compartmentalization to preserve the essential link between genotype and phenotype and discuss how cells and biomimetic compartments can be applied to serve this function. Finally, we discuss how uHTS can inspire novel functional metagenomics approaches to identify natural biocatalysts for novel chemical transformations.
Collapse
Affiliation(s)
- Ulrich Markel
- Institute of Biotechnology, RWTH Aachen University, Worringer Weg 3, 52074 Aachen, Germany.
| | | | | | | | | | | |
Collapse
|
17
|
Ouimet CM, D'Amico CI, Kennedy RT. Droplet sample introduction to microchip gel and zone electrophoresis for rapid analysis of protein-protein complexes and enzymatic reactions. Anal Bioanal Chem 2019; 411:6155-6163. [PMID: 31300857 DOI: 10.1007/s00216-019-02006-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 06/19/2019] [Accepted: 06/28/2019] [Indexed: 02/05/2023]
Abstract
Electrophoresis has demonstrated utility as tool for screening of small molecule modulators of protein-protein interactions and enzyme targets. Screening of large chemical libraries requires high-throughput separations. Such fast separation can be accessed by microchip electrophoresis. Here, microchip gel electrophoresis separations of proteins are achieved in 2.6 s with 1200 V/cm and 3-mm separation lengths. However, such fast separations can still suffer from limited overall throughput from sample introduction constraints. Automated introduction of microfluidic droplets has been demonstrated to overcome this limitation. Most devices for coupling microfluidic droplets to microchip electrophoresis are only compatible with free-solution separations. Here, we present a device that is compatible with coupling droplets to gel and free-solution electrophoresis. In this device, automated sample introduction is based on a novel mechanism of carrier phase separation using the difference in density of the carrier phase and the running buffer. This device is demonstrated for microchip gel electrophoresis and free-solution electrophoresis separations of protein-protein interaction and enzyme samples, respectively. Throughputs of about 10 s per sample are achieved and over 1000 separations are demonstrated without reconditioning of the device. Graphical abstract.
Collapse
Affiliation(s)
- Claire M Ouimet
- Department of Chemistry, University of Michigan, 930 N. University Ave, Ann Arbor, MI, 48109-1055, USA
| | - Cara I D'Amico
- Department of Pharmacology, University of Michigan, 1150 W. Medical Center Dr, Ann Arbor, MI, 48109-5632, USA
| | - Robert T Kennedy
- Department of Chemistry, University of Michigan, 930 N. University Ave, Ann Arbor, MI, 48109-1055, USA. .,Department of Pharmacology, University of Michigan, 1150 W. Medical Center Dr, Ann Arbor, MI, 48109-5632, USA.
| |
Collapse
|
18
|
Sahore V, Doonan SR, Bailey RC. Droplet Microfluidics in Thermoplastics: Device Fabrication, Droplet Generation, and Content Manipulation using Integrated Electric and Magnetic Fields. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2018; 10:4264-4274. [PMID: 30886651 PMCID: PMC6419776 DOI: 10.1039/c8ay01474d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We have developed droplet microfluidic devices in thermoplastics and demonstrated the integration of key functional components that not only facilitate droplet generation, but also include electric field-assisted reagent injection, droplet splitting, and magnetic field-assisted bead extraction. We manufactured devices in poly(methyl methacrylate) and cyclic olefin polymer using a hot-embossing procedure employing silicon masters fabricated via photolithography and deep reactive ion etching techniques. Device characterization showed robust fabrication with uniform feature transfer and good embossing yield. Channel modification with heptadecafluoro-1,1,2,2-tetrahydrodecyltrichlorosilane increased device hydrophobicity, allowing stable generation of 330-pL aqueous droplets using T-junction configuration. Picoinjector and K-channel motifs were also both successfully integrated into the thermoplastic devices, allowing for robust control over electric field-assisted reagent injection, as well as droplet splitting with the K-channel. A magnetic field was also introduced to the K-channel geometry to allow for selective concentration of magnetic beads while decanting waste volume through droplet splitting. To show the ability to link multiple, modular features in a single thermoplastic device, we integrated droplet generation, reagent injection, and magnetic field-assisted droplet splitting on a single device, realizing a magnetic bead washing scheme to selectively exchange the fluid composition around the magnetic particles, analogous to the washing steps in many common biochemical assays. Finally, integrated devices were used to perform a proof-of-concept in-droplet β-galactosidase enzymatic assay combining enzyme-magnetic bead containing droplet generation, resorufin-β-D-galactopyranoside substrate injection, enzyme-substrate reaction, and enzyme-magnetic bead washing. By integrating multiple droplet operations and actuation forces we have demonstrated the potential of thermoplastic droplet microfluidic devices for complex (bio)chemical analysis, and we envision a path toward mass fabrication of droplet microfluidic devices for a range of (bio)chemical applications.
Collapse
|
19
|
Kumar S, Lombard DB. Functions of the sirtuin deacylase SIRT5 in normal physiology and pathobiology. Crit Rev Biochem Mol Biol 2018; 53:311-334. [PMID: 29637793 DOI: 10.1080/10409238.2018.1458071] [Citation(s) in RCA: 184] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Sirtuins are NAD+-dependent protein deacylases/ADP-ribosyltransferases that have emerged as candidate targets for new therapeutics to treat metabolic disorders and other diseases, including cancer. The sirtuin SIRT5 resides primarily in the mitochondrial matrix and catalyzes the removal of negatively charged lysine acyl modifications; succinyl, malonyl, and glutaryl groups. Evidence has now accumulated to document the roles of SIRT5 as a significant regulator of cellular homeostasis, in a context- and cell-type specific manner, as has been observed previously for other sirtuin family members. SIRT5 regulates protein substrates involved in glycolysis, the TCA cycle, fatty acid oxidation, electron transport chain, ketone body formation, nitrogenous waste management, and ROS detoxification, among other processes. SIRT5 plays pivotal roles in cardiac physiology and stress responses and is involved in the regulation of numerous aspects of myocardial energy metabolism. SIRT5 is implicated in neoplasia, as both a tumor promoter and suppressor in a context-specific manner, and may serve a protective function in the setting of neurodegenerative disorders. Here, we review the current understanding of functional impacts of SIRT5 on its metabolic targets, and its molecular functions in both normal and pathological conditions. Finally, we will discuss the potential utility of SIRT5 as a drug target and also summarize the current status, progress, and challenges in developing small molecule compounds to modulate SIRT5 activity with high potency and specificity.
Collapse
Affiliation(s)
- Surinder Kumar
- a Department of Pathology , University of Michigan , Ann Arbor , MI , USA
| | - David B Lombard
- a Department of Pathology , University of Michigan , Ann Arbor , MI , USA.,b Institute of Gerontology , University of Michigan , Ann Arbor , MI , USA
| |
Collapse
|
20
|
Kalbas D, Liebscher S, Nowak T, Meleshin M, Pannek M, Popp C, Alhalabi Z, Bordusa F, Sippl W, Steegborn C, Schutkowski M. Potent and Selective Inhibitors of Human Sirtuin 5. J Med Chem 2018; 61:2460-2471. [PMID: 29494161 DOI: 10.1021/acs.jmedchem.7b01648] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Sirtuins are protein deacylases that regulate metabolism and stress responses and are implicated in aging-related diseases. Modulators of the human sirtuins Sirt1-7 are sought as chemical tools and potential therapeutics, e.g., for cancer. Selective and potent inhibitors are available for Sirt2, but selective inhibitors for Sirt5 with Ki values in the low nanomolar range are lacking. We synthesized and screened 3-arylthiosuccinylated and 3-benzylthiosuccinylated peptide derivatives yielding Sirt5 inhibitors with low-nanomolar Ki values. A biotinylated derivative with this scaffold represents an affinity probe for human Sirt5 that is able to selectively extract this enzyme out of complex biological samples like cell lysates. Crystal structures of Sirt5/inhibitor complexes reveal that the compounds bind in an unexpected manner to the active site of Sirt5.
Collapse
Affiliation(s)
- Diana Kalbas
- Department of Enzymology, Institute of Biochemistry and Biotechnology , Martin-Luther-University Halle-Wittenberg , 06120 Halle/Saale , Germany
| | - Sandra Liebscher
- Department of Natural Product Biochemistry, Institute of Biochemistry and Biotechnology , Martin-Luther-University Halle-Wittenberg , 06120 Halle/Saale , Germany
| | - Theresa Nowak
- Department of Medical Chemistry, Institute of Pharmacy , Martin-Luther-University Halle-Wittenberg , 06120 Halle/Saale , Germany
| | - Marat Meleshin
- Department of Enzymology, Institute of Biochemistry and Biotechnology , Martin-Luther-University Halle-Wittenberg , 06120 Halle/Saale , Germany
| | - Martin Pannek
- Department of Biochemistry , University of Bayreuth , 95447 Bayreuth , Germany
| | - Corinna Popp
- Department of Enzymology, Institute of Biochemistry and Biotechnology , Martin-Luther-University Halle-Wittenberg , 06120 Halle/Saale , Germany
| | - Zayan Alhalabi
- Department of Medical Chemistry, Institute of Pharmacy , Martin-Luther-University Halle-Wittenberg , 06120 Halle/Saale , Germany
| | - Frank Bordusa
- Department of Natural Product Biochemistry, Institute of Biochemistry and Biotechnology , Martin-Luther-University Halle-Wittenberg , 06120 Halle/Saale , Germany
| | - Wolfgang Sippl
- Department of Medical Chemistry, Institute of Pharmacy , Martin-Luther-University Halle-Wittenberg , 06120 Halle/Saale , Germany
| | - Clemens Steegborn
- Department of Biochemistry , University of Bayreuth , 95447 Bayreuth , Germany
| | - Mike Schutkowski
- Department of Enzymology, Institute of Biochemistry and Biotechnology , Martin-Luther-University Halle-Wittenberg , 06120 Halle/Saale , Germany
| |
Collapse
|
21
|
Abstract
SIGNIFICANCE Developing evidence in the literature suggests that sirtuin 5 (SIRT5) may be involved in metabolic reprogramming, an emerging hallmark of cancer by which neoplastic cells reconfigure their metabolism to support the anabolic demands of rapid cell division. SIRT5 is one of the seven members of the nicotinamide adenine dinucleotide-dependent sirtuin family of lysine deacetylases. It removes succinyl, malonyl, and glutaryl groups from protein targets within the mitochondrial matrix and other subcellular compartments. SIRT5 substrates include a number of proteins integral to metabolism. Recent Advances: New work has begun to elucidate the roles of SIRT5 in glycolysis, tricarboxylic acid cycle, fatty acid oxidation, nitrogen metabolism, pentose phosphate pathway, antioxidant defense, and apoptosis. CRITICAL ISSUES In this study, we summarize biological functions of SIRT5 reported in normal tissues and in cancer and discuss potential mechanisms whereby SIRT5 may impact tumorigenesis, particularly focusing on its reported roles in metabolic reprogramming. Finally, we review current efforts to target SIRT5 pharmacologically. FUTURE DIRECTIONS The biological significance of SIRT5 has been elucidated in the context of only an extremely small fraction of its targets and interactors. There is no doubt that further studies in this area will provide a wealth of insights into functions of SIRT5 and its targets in normal and neoplastic cells. Antioxid. Redox Signal. 28, 677-690.
Collapse
Affiliation(s)
| | - Angela H. Guo
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Costas A. Lyssiotis
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - David B. Lombard
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
- Institute of Gerontology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
22
|
Diefenbach XW, Farasat I, Guetschow ED, Welch CJ, Kennedy RT, Sun S, Moore JC. Enabling Biocatalysis by High-Throughput Protein Engineering Using Droplet Microfluidics Coupled to Mass Spectrometry. ACS OMEGA 2018; 3:1498-1508. [PMID: 30023807 PMCID: PMC6044804 DOI: 10.1021/acsomega.7b01973] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 01/18/2018] [Indexed: 05/24/2023]
Abstract
Directed Evolution is a key technology driving the utility of biocatalysis in pharmaceutical synthesis. Conventional approaches to Directed Evolution are conducted using bacterial cells expressing enzymes in microplates, with catalyzed reactions measured by HPLC, high-performance liquid chromatography-mass spectrometry (HPLC-MS), or optical detectors, which require either long cycle times or tailor-made substrates. To better fit modern, fast-paced process chemistry development where solutions are rapidly needed for new substrates, droplet microfluidics interfaced with electrospray ionization (ESI)-MS provides a label-free high-throughput screening platform. To apply this method to industrial enzyme screening and to explore potential approaches that may further improve the overall throughput, we optimized the existing droplet-MS methods. Carryover between droplets, traditionally a significant issue, was reduced to undetectable level by replacing the stainless steel ESI needle with a Teflon needle within a capillary electrophoresis (CE)-MS source. Throughput was improved to 3 Hz with a wide range of droplet sizes (10-50 nL) by tuning the sheath flow within the CE-MS source. The optimized method was demonstrated by screening reactions using two different transaminase libraries. Good correlations (r2 ∼ 0.95) were found between the droplet-MS and LC-MS methods, with 100% match on hit variants. We further explored the capability of the system by performing in vitro transcription-translation inside the droplets and directly analyzing the intact reaction mixture droplets by MS. The synthesized protein attained comparable activity to the protein standard, and the complex samples appeared well tolerated by the MS. The success of the above applications indicates that the MS analysis of the microfluidic droplets is an available option for considerably accelerating the screening of enzyme evolution libraries.
Collapse
Affiliation(s)
- Xue W. Diefenbach
- Merck
Research Laboratory, Merck & Co., Inc., 126 E Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Iman Farasat
- Merck
Research Laboratory, Merck & Co., Inc., 126 E Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Erik D. Guetschow
- Merck
Research Laboratory, Merck & Co., Inc., 126 E Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Christopher J. Welch
- Merck
Research Laboratory, Merck & Co., Inc., 126 E Lincoln Avenue, Rahway, New Jersey 07065, United States
- Welch
Innovation, LLC., Cranbury, New Jersey 08512, United States
| | - Robert T. Kennedy
- Department
of Chemistry, University of Michigan, 930 N University Avenue, Ann Arbor, Michigan 48109, United States
| | - Shuwen Sun
- Merck
Research Laboratory, Merck & Co., Inc., 126 E Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Jeffrey C. Moore
- Merck
Research Laboratory, Merck & Co., Inc., 126 E Lincoln Avenue, Rahway, New Jersey 07065, United States
| |
Collapse
|
23
|
Zou R, Shi W, Tao J, Li H, Lin X, Yang S, Hua P. SIRT5 and post-translational protein modifications: A potential therapeutic target for myocardial ischemia-reperfusion injury with regard to mitochondrial dynamics and oxidative metabolism. Eur J Pharmacol 2018; 818:410-418. [DOI: 10.1016/j.ejphar.2017.11.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 10/23/2017] [Accepted: 11/01/2017] [Indexed: 11/27/2022]
|
24
|
Kašička V. Recent developments in capillary and microchip electroseparations of peptides (2015-mid 2017). Electrophoresis 2017; 39:209-234. [PMID: 28836681 DOI: 10.1002/elps.201700295] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 08/15/2017] [Accepted: 08/16/2017] [Indexed: 12/17/2022]
Abstract
The review brings a comprehensive overview of recent developments and applications of high performance capillary and microchip electroseparation methods (zone electrophoresis, isotachophoresis, isoelectric focusing, affinity electrophoresis, electrokinetic chromatography, and electrochromatography) to analysis, microscale isolation, purification, and physicochemical and biochemical characterization of peptides in the years 2015, 2016, and ca. up to the middle of 2017. Advances in the investigation of electromigration properties of peptides and in the methodology of their analysis (sample preseparation, preconcentration and derivatization, adsorption suppression and EOF control, and detection) are described. New developments in particular CE and CEC methods are presented and several types of their applications to peptide analysis are reported: qualitative and quantitative analysis, determination in complex (bio)matrices, monitoring of chemical and enzymatical reactions and physical changes, amino acid, sequence and chiral analysis, and peptide mapping of proteins. Some micropreparative peptide separations are shown and capabilities of CE and CEC methods to provide important physicochemical characteristics of peptides are demonstrated.
Collapse
Affiliation(s)
- Václav Kašička
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
25
|
Dawod M, Arvin NE, Kennedy RT. Recent advances in protein analysis by capillary and microchip electrophoresis. Analyst 2017; 142:1847-1866. [PMID: 28470231 PMCID: PMC5516626 DOI: 10.1039/c7an00198c] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
This review article describes the significant recent advances in the analysis of proteins by capillary and microchip electrophoresis during the period from mid-2014 to early 2017. This review highlights the progressions, new methodologies, innovative instrumental modifications, and challenges for efficient protein analysis in human specimens, animal tissues, and plant samples. The protein analysis fields covered in this review include analysis of native, reduced, and denatured proteins in addition to Western blotting, protein therapeutics and proteomics.
Collapse
Affiliation(s)
- Mohamed Dawod
- Department of Chemistry, University of Michigan, 930 N. University Ave, Ann Arbor, Michigan 48109, USA.
| | | | | |
Collapse
|
26
|
Ouimet CM, D’Amico CI, Kennedy RT. Advances in capillary electrophoresis and the implications for drug discovery. Expert Opin Drug Discov 2017; 12:213-224. [PMID: 27911223 PMCID: PMC5521262 DOI: 10.1080/17460441.2017.1268121] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Many screening platforms are prone to assay interferences that can be avoided by directly measuring the target or enzymatic product. Capillary electrophoresis (CE) and microchip electrophoresis (MCE) have been applied in a variety of formats to drug discovery. CE provides direct detection of the product allowing for the identification of some forms of assay interference. The high efficiency, rapid separations, and low volume requirements make CE amenable to drug discovery. Areas covered: This article describes advances in capillary electrophoresis throughput, sample introduction, and target assays as they pertain to drug discovery and screening. Instrumental advances discussed include integrated droplet microfluidics platforms and multiplexed arrays. Applications of CE to assays of diverse drug discovery targets, including enzymes and affinity interactions are also described. Expert opinion: Current screening with CE does not fully take advantage of the throughputs or low sample volumes possible with CE and is most suitable as a secondary screening method or for screens that are inaccessible with more common platforms. With further development, droplet microfluidics coupled to MCE could take advantage of the low sample requirements by performing assays on the nanoliter scale at high throughput.
Collapse
Affiliation(s)
- Claire M. Ouimet
- Department of Chemistry, University of Michigan, 930 N. University Ave, Ann Arbor, MI, 48109, United States
| | - Cara I. D’Amico
- Department of Pharmacology, University of Michigan, 1150 W. Medical Center Dr., Ann Arbor, MI, 48109, United States
| | - Robert T. Kennedy
- Department of Chemistry, University of Michigan, 930 N. University Ave, Ann Arbor, MI, 48109, United States
- Department of Pharmacology, University of Michigan, 1150 W. Medical Center Dr., Ann Arbor, MI, 48109, United States
| |
Collapse
|
27
|
Schiedel M, Robaa D, Rumpf T, Sippl W, Jung M. The Current State of NAD + -Dependent Histone Deacetylases (Sirtuins) as Novel Therapeutic Targets. Med Res Rev 2017; 38:147-200. [PMID: 28094444 DOI: 10.1002/med.21436] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 10/24/2016] [Accepted: 11/14/2016] [Indexed: 12/19/2022]
Abstract
Sirtuins are NAD+ -dependent protein deacylases that cleave off acetyl, as well as other acyl groups, from the ε-amino group of lysines in histones and other substrate proteins. Seven sirtuin isotypes (Sirt1-7) have been identified in mammalian cells. As sirtuins are involved in the regulation of various physiological processes such as cell survival, cell cycle progression, apoptosis, DNA repair, cell metabolism, and caloric restriction, a dysregulation of their enzymatic activity has been associated with the pathogenesis of neoplastic, metabolic, infectious, and neurodegenerative diseases. Thus, sirtuins are promising targets for pharmaceutical intervention. Growing interest in a modulation of sirtuin activity has prompted the discovery of several small molecules, able to inhibit or activate certain sirtuin isotypes. Herein, we give an update to our previous review on the topic in this journal (Schemies, 2010), focusing on recent developments in sirtuin biology, sirtuin modulators, and their potential as novel therapeutic agents.
Collapse
Affiliation(s)
- Matthias Schiedel
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Dina Robaa
- Department of Pharmaceutical Chemistry, Martin-Luther Universität Halle-Wittenberg, Halle/Saale, Germany
| | - Tobias Rumpf
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Wolfgang Sippl
- Department of Pharmaceutical Chemistry, Martin-Luther Universität Halle-Wittenberg, Halle/Saale, Germany
| | - Manfred Jung
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| |
Collapse
|
28
|
Wuethrich A, Quirino JP. Sensitivity enhancing injection from a sample reservoir and channel interface in microchip electrophoresis. J Sep Sci 2017; 40:927-932. [DOI: 10.1002/jssc.201601064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/08/2016] [Accepted: 11/28/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Alain Wuethrich
- Australian Centre for Research on Separation Science (ACROSS) School of Physical Sciences‐Chemistry University of Tasmania Hobart TAS 7001 Australia
| | - Joselito P. Quirino
- Australian Centre for Research on Separation Science (ACROSS) School of Physical Sciences‐Chemistry University of Tasmania Hobart TAS 7001 Australia
| |
Collapse
|
29
|
Tycova A, Vido M, Kovarikova P, Foret F. Interface-free capillary electrophoresis-mass spectrometry system with nanospray ionization—Analysis of dexrazoxane in blood plasma. J Chromatogr A 2016; 1466:173-9. [DOI: 10.1016/j.chroma.2016.08.042] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 08/16/2016] [Accepted: 08/18/2016] [Indexed: 01/02/2023]
|
30
|
Gertz M, Steegborn C. Using mitochondrial sirtuins as drug targets: disease implications and available compounds. Cell Mol Life Sci 2016; 73:2871-96. [PMID: 27007507 PMCID: PMC11108305 DOI: 10.1007/s00018-016-2180-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 02/15/2016] [Accepted: 03/11/2016] [Indexed: 02/06/2023]
Abstract
Sirtuins are an evolutionary conserved family of NAD(+)-dependent protein lysine deacylases. Mammals have seven Sirtuin isoforms, Sirt1-7. They contribute to regulation of metabolism, stress responses, and aging processes, and are considered therapeutic targets for metabolic and aging-related diseases. While initial studies were focused on Sirt1 and 2, recent progress on the mitochondrial Sirtuins Sirt3, 4, and 5 has stimulated research and drug development for these isoforms. Here we review the roles of Sirtuins in regulating mitochondrial functions, with a focus on the mitochondrially located isoforms, and on their contributions to disease pathologies. We further summarize the compounds available for modulating the activity of these Sirtuins, again with a focus on mitochondrial isoforms, and we describe recent results important for the further improvement of compounds. This overview illustrates the potential of mitochondrial Sirtuins as drug targets and summarizes the status, progress, and challenges in developing small molecule compounds modulating their activity.
Collapse
Affiliation(s)
- Melanie Gertz
- Department of Biochemistry, University of Bayreuth, Universitätsstr. 30, 95447, Bayreuth, Germany
- Bayer Pharma AG, Apratherweg 18a, 42096, Wuppertal, Germany
| | - Clemens Steegborn
- Department of Biochemistry, University of Bayreuth, Universitätsstr. 30, 95447, Bayreuth, Germany.
| |
Collapse
|
31
|
Grinias JP, Whitfield JT, Guetschow ED, Kennedy RT. An Inexpensive, Open-Source USB Arduino Data Acquisition Device for Chemical Instrumentation. JOURNAL OF CHEMICAL EDUCATION 2016; 93:1316-1319. [PMID: 27453587 PMCID: PMC4946424 DOI: 10.1021/acs.jchemed.6b00262] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Many research and teaching labs rely on USB data acquisition devices to collect voltage signals from instrumentation. However, these devices can be cost-prohibitive (especially when large numbers are needed for teaching labs) and require software to be developed for operation. In this article, we describe the development and use of an open-source USB data acquisition device (with 16-bit acquisition resolution) built using simple electronic components and an Arduino Uno that costs under $50. Additionally, open-source software written in Python is included so that data can be acquired using nearly any PC or Mac computer with a simple USB connection. Use of the device was demonstrated for a sophomore-level analytical experiment using GC and a CE-UV separation on an instrument used for research purposes.
Collapse
Affiliation(s)
- James P. Grinias
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109
| | - Jason T. Whitfield
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109
| | - Erik D. Guetschow
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109
| | - Robert T. Kennedy
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
32
|
Li Q, Zhu Y, Zhang NQ, Fang Q. Automatic Combination of Microfluidic Nanoliter-Scale Droplet Array with High-Speed Capillary Electrophoresis. Sci Rep 2016; 6:26654. [PMID: 27230468 PMCID: PMC4882528 DOI: 10.1038/srep26654] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 05/04/2016] [Indexed: 12/12/2022] Open
Abstract
In this paper, we developed a novel approach for interfacing a microfluidic two-dimensional droplet array to a high-speed capillary electrophoresis (HSCE) system. Picoliter-scale sample injection (ca. 200 pL) from a nanoliter-scale droplet array covered by nonvolatile oil was automatically achieved using the spontaneous injection mode, without the interference from the cover oil and the need of special droplet extraction interface as in previously reported systems. The system was applied in consecutive separations of 25 different samples of amino acids with a whole separation time less than 15 min, as well as on-line monitoring of in-droplet derivatizing reaction of amino acids by fluorescein isothiocyanate (FITC) over 3 hours. High separation speed (up to 100 samples per hour) and high separation efficiency (up to 9.22 × 10(5) N/m) were achieved.
Collapse
Affiliation(s)
- Q Li
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou 310058, China.,Lishui Center for Disease Control and Prevention, Lishui 323000, China
| | - Y Zhu
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - N-Q Zhang
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Q Fang
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|