1
|
Liu Y, Huang A, Jiang Y, Kong X, Zhao M, Gao P, Yang M, Kong Z, Jia W, Cao Y, Ma L. A sensitive LC-MS/MS method for the quantification of serum epoxyeicosatrienoic and dihydroxyeicosatrienoic acids in the identification of diabetic kidney disease. Anal Bioanal Chem 2025; 417:2193-2206. [PMID: 39976686 DOI: 10.1007/s00216-025-05798-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/20/2025] [Accepted: 02/03/2025] [Indexed: 04/15/2025]
Abstract
Epoxyeicosatrienoic acids (EETs) are vasoactive eicosanoids with vasodilatory, anti-inflammatory, and nephroprotective properties, and metabolized to low-bioactive dihydroxyeicosatrienoic acids (DHETs) by soluble epoxide hydrolase. Evidence from animal studies suggests that EETs may be potential biomarkers for diabetic kidney disease (DKD). The aim of this study was to establish a simple, sensitive and accurate LC-MS/MS method for quantifying EETs and DHETs in human serum. Samples were prepared by solid phase extraction and quantified using a "one-to-one" isotope internal standard approach. The assay required a 9-min run time per sample. EETs and DHETs demonstrated good linearity over the investigated concentration range (r2 > 0.99). The limits of quantification were 0.01 ng/mL, with accuracies ranging from 85.62 to 110.95%, intra- and inter-day variations of less than ± 15%, and matrix effects of less than ± 10%. However, 5,6-EET showed poor performance due to chemical instability and low response peaks. We successfully applied this method to rapidly analyze serum samples from 54 patients with diabetes and DKD. Levels of EETs and DHETs were downregulated in DKD patients compared to diabetic patients, and these eicosanoids showed significant negative correlations with proteinuria. This study presented a sensitive and robust LC-MS/MS method for monitoring low levels of EETs and DHETs in human serum and showed the potential for its application in the diagnosis and staging of DKD.
Collapse
Affiliation(s)
- Yi Liu
- Department of Clinical Laboratory, China-Japan Friendship Hospital, Beijing, China
| | - Anxian Huang
- Key Laboratory of Digital Technology in Medical Diagnostics of Zhejiang Province, Calibra Scientific, Inc., Hangzhou, China
| | - Yongwei Jiang
- Department of Clinical Laboratory, China-Japan Friendship Hospital, Beijing, China
| | - Xiaomu Kong
- Department of Clinical Laboratory, China-Japan Friendship Hospital, Beijing, China
| | - Meimei Zhao
- Department of Clinical Laboratory, China-Japan Friendship Hospital, Beijing, China
| | - Peng Gao
- Department of Clinical Laboratory, China-Japan Friendship Hospital, Beijing, China
| | - Ming Yang
- Department of Clinical Laboratory, China-Japan Friendship Hospital, Beijing, China
| | - Ziqing Kong
- Key Laboratory of Digital Technology in Medical Diagnostics of Zhejiang Province, Calibra Scientific, Inc., Hangzhou, China
| | - Wei Jia
- Key Laboratory of Digital Technology in Medical Diagnostics of Zhejiang Province, Calibra Scientific, Inc., Hangzhou, China.
| | - Yongtong Cao
- Department of Clinical Laboratory, China-Japan Friendship Hospital, Beijing, China.
| | - Liang Ma
- Department of Clinical Laboratory, China-Japan Friendship Hospital, Beijing, China.
| |
Collapse
|
2
|
Ma Y, Mu J, Gou X, Wu X. Precision medication based on the evaluation of drug metabolizing enzyme and transporter functions. PRECISION CLINICAL MEDICINE 2025; 8:pbaf004. [PMID: 40110576 PMCID: PMC11920622 DOI: 10.1093/pcmedi/pbaf004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/25/2025] [Accepted: 02/17/2025] [Indexed: 03/22/2025] Open
Abstract
Pharmacogenomics, therapeutic drug monitoring, and the assessments of hepatic and renal function have made significant contributions to the advancement of individualized medicine. However, their lack of direct correlation with protein abundance/non-genetic factors, target drug concentration, and drug metabolism/excretion significantly limits their application in precision drug therapy. The primary task of precision medicine is to accurately determine drug dosage, which depends on a precise assessment of the ability to handle drugs in vivo, and drug metabolizing enzymes and transporters are critical determinants of drug disposition in the body. Therefore, accurately evaluating the functions of these enzymes and transporters is key to assessing the capacity to handle drugs and predicting drug concentrations in target organs. Recent advancements in the evaluation of enzyme and transporter functions using exogenous probes and endogenous biomarkers show promise in advancing personalized medicine. This article aims to provide a comprehensive overview of the latest research on markers used for the functional evaluation of drug-metabolizing enzymes and transporters. It also explores the application of marker omics in systematically assessing their functions, thereby laying a foundation for advancing precision pharmacotherapy.
Collapse
Affiliation(s)
- Yanrong Ma
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Jing Mu
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China
| | - Xueyan Gou
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China
| | - Xinan Wu
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
3
|
Albiach-Delgado A, Moreno-Casillas JL, Ten-Doménech I, Cascant-Vilaplana MM, Moreno-Giménez A, Gómez-Ferrer M, Sepúlveda P, Kuligowski J, Quintás G. Oxylipin profile of human milk and human milk-derived extracellular vesicles. Anal Chim Acta 2024; 1313:342759. [PMID: 38862207 DOI: 10.1016/j.aca.2024.342759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/13/2024] [Accepted: 05/20/2024] [Indexed: 06/13/2024]
Abstract
BACKGROUND Small Extracellular Vesicles (sEVs) are nano-sized vesicles that are present in all biofluids including human milk (HM) playing a crucial role in cell-to-cell communication and the stimulation of the neonatal immune system. Oxylipins, which are bioactive lipids formed from polyunsaturated fatty acids, have gained considerable attention due to their potential role in mitigating disease progression and modulating the inflammatory status of breastfed infants. This study aims at an in-depth characterization of the oxylipin profiles of HM and, for the first time, of HM-derived sEVs (HMEVs) employing an ad-hoc developed and validated ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) method. RESULTS The UPLC-MS/MS method covered a panel of 13 oxylipins for quantitation and 93 oxylipins for semi-quantitation. In 200 μL of HM and HMEV isolates of 15 individuals, 42 out of 106 oxylipins were detected in either HM or HMEVs, with 38 oxylipins being detected in both matrices. Oxylipins presented distinct profiles in HM and HMEVs, suggesting specific mechanisms responsible for the encapsulation of target molecules in HMEVs. Ten and eight oxylipins were quantified with ranges between 0.03 - 73 nM and 0.30 pM-0.07 nM in HM and HMEVs, respectively. The most abundant oxylipins found in HMEVs were docosahexaenoic acid derivatives (17-HDHA and 14-HDHA) with known anti-inflammatory properties, and linoleic acid derivatives (9-10-DiHOME and 12,13-DiHOME) in HM samples. SIGNIFICANCE AND NOVELTY This is the first time a selective, relative enrichment of anti-inflammatory oxylipins in HMEVs has been described. Future studies will focus on the anti-inflammatory and pro-healing capacity of oxylipins encapsulated in HMEVs, with potential clinical applications in the field of preterm infant care, specifically the prevention of severe intestinal complications including necrotizing enterocolitis.
Collapse
Affiliation(s)
- Abel Albiach-Delgado
- Neonatal Research Group, Health Research Institute Hospital La Fe (IIS La Fe), Avda Fernando Abril Martorell 106, 46026, Valencia, Spain; Primary Care Interventions to Prevent Maternal and Child Chronic Diseases of Perinatal and Developmental Origin Network (RICORS-SAMID) (RD21/0012/0015), Instituto de Salud Carlos III, Madrid, Spain; Servicio de Análisis de Vesículas Extracelulares (SAVE), Health Research Institute Hospital La Fe (IIS La Fe), Avda Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - Jose L Moreno-Casillas
- Neonatal Research Group, Health Research Institute Hospital La Fe (IIS La Fe), Avda Fernando Abril Martorell 106, 46026, Valencia, Spain; Servicio de Análisis de Vesículas Extracelulares (SAVE), Health Research Institute Hospital La Fe (IIS La Fe), Avda Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - Isabel Ten-Doménech
- Neonatal Research Group, Health Research Institute Hospital La Fe (IIS La Fe), Avda Fernando Abril Martorell 106, 46026, Valencia, Spain; Primary Care Interventions to Prevent Maternal and Child Chronic Diseases of Perinatal and Developmental Origin Network (RICORS-SAMID) (RD21/0012/0015), Instituto de Salud Carlos III, Madrid, Spain; Servicio de Análisis de Vesículas Extracelulares (SAVE), Health Research Institute Hospital La Fe (IIS La Fe), Avda Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - Mari Merce Cascant-Vilaplana
- Neonatal Research Group, Health Research Institute Hospital La Fe (IIS La Fe), Avda Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - Alba Moreno-Giménez
- Neonatal Research Group, Health Research Institute Hospital La Fe (IIS La Fe), Avda Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - Marta Gómez-Ferrer
- Regenerative Medicine and Heart Transplantation Unit, Health Research Institute Hospital La Fe (IIS La Fe), Avda Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - Pilar Sepúlveda
- Regenerative Medicine and Heart Transplantation Unit, Health Research Institute Hospital La Fe (IIS La Fe), Avda Fernando Abril Martorell 106, 46026, Valencia, Spain; Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Carlos III Institute of Health, Madrid, Spain; Cardiology Service, University & Polytechnic Hospital La Fe, Avenida Fernando Abril Martorell 106, 46026, Valencia, Spain; Department of Pathology, University of Valencia, Avenida Blasco Ibáñez 15, 46010, Valencia, Spain.
| | - Julia Kuligowski
- Neonatal Research Group, Health Research Institute Hospital La Fe (IIS La Fe), Avda Fernando Abril Martorell 106, 46026, Valencia, Spain; Primary Care Interventions to Prevent Maternal and Child Chronic Diseases of Perinatal and Developmental Origin Network (RICORS-SAMID) (RD21/0012/0015), Instituto de Salud Carlos III, Madrid, Spain; Servicio de Análisis de Vesículas Extracelulares (SAVE), Health Research Institute Hospital La Fe (IIS La Fe), Avda Fernando Abril Martorell 106, 46026, Valencia, Spain.
| | - Guillermo Quintás
- Health and Biomedicine, Leitat Technological Center, Avda Fernando Abril Martorell 106, 46026, Valencia, Spain
| |
Collapse
|
4
|
Gong J. Oxylipins biosynthesis and the regulation of bovine postpartum inflammation. Prostaglandins Other Lipid Mediat 2024; 171:106814. [PMID: 38280540 DOI: 10.1016/j.prostaglandins.2024.106814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 01/08/2024] [Accepted: 01/23/2024] [Indexed: 01/29/2024]
Abstract
Uncontrolled or dysregulated inflammation has adverse effects on the reproduction, production and health of animals, and is a major pathological cause of increased incidence and severity of infectious and metabolic diseases. To achieve successful transition from a non-lactation pregnant state to a non-pregnant lactation state, drastic metabolic and endocrine alteration have taken place in dairy cows during the periparturient period. These physiological changes, coupled with decreased dry matter intake near calving and sudden change of diet composition after calving, have the potential to disrupt the delicate balance between pro- and anti-inflammation, resulting in a disordered or excessive inflammatory response. In addition to cytokines and other immunoregulatory factors, most oxylipins formed from polyunsaturated fatty acids (PUFAs) via enzymatic and nonenzymatic oxygenation pathways have pro- or anti-inflammatory properties and play a pivotal role in the onset, development and resolution of inflammation. However, little attention has been paid to the possibility that oxylipins could function as endogenous immunomodulating agents. This review will provide a detailed overview of the main oxylipins derived from different PUFAs and discuss the regulatory role that oxylipins play in the postpartum inflammatory response in dairy cows. Based on the current research, much remains to be illuminated in this emerging field. Understanding the role that oxylipins play in the control of postpartum inflammation and inflammatory-based disease may improve our ability to prevent transition disorders via Management, pharmacological, genetic selection and dietary intervention strategies.
Collapse
Affiliation(s)
- Jian Gong
- College of Life Science and Technology, Inner Mongolia Normal University, 81 Zhaowuda Road, Hohhot 010022, China.
| |
Collapse
|
5
|
Kuronuma K, Otsuka M, Wakabayashi M, Yoshioka T, Kobayashi T, Kameda M, Morioka Y, Chiba H, Takahashi H. Role of transient receptor potential vanilloid 4 in therapeutic anti-fibrotic effects of pirfenidone. Am J Physiol Lung Cell Mol Physiol 2022; 323:L193-L205. [PMID: 35787697 DOI: 10.1152/ajplung.00565.2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, fatal lung disorder characterized by aberrant extracellular matrix deposition in the interstitium. Pirfenidone is an anti-fibrotic agent used to treat patients with IPF. Pirfenidone shows a pleiotropic mode of action, but its underlying anti-fibrotic mechanism is unclear. Transient receptor potential vanilloid 4 (TRPV4), which is a mechanosensitive calcium channel, was recently shown to be related to pulmonary fibrosis. To clarify the anti-fibrotic mechanisms of pirfenidone, we investigated whether TRPV4 blockade has a pharmacological effect in a murine model of pulmonary fibrosis and whether pirfenidone contributes to suppression of TRPV4. Our synthetic TRPV4 antagonist and pirfenidone treatment attenuated lung injury in the bleomycin mouse model. TRPV4-mediated increases in intracellular calcium were inhibited by pirfenidone. Additionally, TRPV4-stimulated interleukin-8 release from cells was reduced and a delay in cell migration was abolished by pirfenidone. Furthermore, pirfenidone decreased TRPV4 endogenous ligands in bleomycin-administered mouse lungs and their production by microsomes of human lungs. We found TRPV4 expression in the bronchiolar and alveolar epithelium and activated fibroblasts of the lungs in patients with IPF. Finally, we showed that changes in forced vital capacity of patients with IPF treated with pirfenidone were significantly correlated with metabolite levels of TRPV4 endogenous ligands in bronchoalveolar lavage fluid. These results suggest that the anti-fibrotic action of pirfenidone is partly mediated by TRPV4 and that TRPV4 endogenous ligands in bronchoalveolar lavage fluid may be biomarkers for distinguishing responders to pirfenidone.
Collapse
Affiliation(s)
- Koji Kuronuma
- Department of Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Mitsuo Otsuka
- Department of Respiratory Medicine, Sapporo-Kosei General Hospital, Sapporo, Japan
| | - Masato Wakabayashi
- Translational Research Unit, Biomarker R&D Department, Shionogi Co., Ltd., Osaka, Japan
| | - Takeshi Yoshioka
- Translational Research Unit, Biomarker R&D Department, Shionogi Co., Ltd., Osaka, Japan
| | - Tomofumi Kobayashi
- Department of Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Masami Kameda
- Department of Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yasuhide Morioka
- Drug Discovery and Disease Research Laboratory, Shionogi Co., Ltd., Osaka, Japan
| | - Hirofumi Chiba
- Department of Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiroki Takahashi
- Department of Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
6
|
Nouwade K, Tfaili S, Chaminade P. Investigation of stationary phases performance for eicosanoids profiling in RP-HPLC. Anal Bioanal Chem 2021; 413:6551-6569. [PMID: 34476519 DOI: 10.1007/s00216-021-03618-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 08/11/2021] [Indexed: 11/30/2022]
Abstract
Eicosanoids - oxidative derivatives from arachidonic acid - represent biologically active lipid mediators in inflammatory processes. Different analytical methods treat eicosanoid analysis. Among which, reverse phase liquid chromatography figures as the appropriate method for eicosanoid profiling. RP-HPLC for eicosanoid analysis is often conducted on C18 columns. Some studies focused on profiling one family of eicosanoids; others considered all eicosanoid families. In both cases, co-elution remained a major issue and detection in mass spectrometry partially resolves this problem. In fact, the mass transitions used to monitor eicosanoid species are not specific enough and many isobars can be listed. For this, optimizing the RP-HPLC separation remains important. Based on the parameter Fs - deriving from the hydrophobic-subtraction model - and radar plots, we chose columns with different selectivities. The hydrophobic-subtraction model guided our interpretation of molecular interactions between eicosanoids and stationary phases. We founded our approach for selectivity optimization on peak capacity per minute and time needed values. Herein, we screened seven stationary phases and evaluated their chromatographic performances in RP-HPLC. Stationary phases presented different chemistry, type of silica, length, and particle size. Superficially porous particle columns registered better chromatographic profiles than classical stationary phases; and columns with embedded polar group did not serve our purpose. The stationary phase Accucore C30 - even being the least retentive - revealed the best selectivity and efficiency, and recorded the shorter duration for eicosanoid analysis.
Collapse
Affiliation(s)
- Kodjo Nouwade
- Université Paris-Saclay, Lipides : systèmes analytiques et biologiques, 92296, Châtenay-Malabry, France
| | - Sana Tfaili
- Université Paris-Saclay, Lipides : systèmes analytiques et biologiques, 92296, Châtenay-Malabry, France.
| | - Pierre Chaminade
- Université Paris-Saclay, Lipides : systèmes analytiques et biologiques, 92296, Châtenay-Malabry, France
| |
Collapse
|
7
|
Hamzaoui M, Roche C, Coquerel D, Duflot T, Brunel V, Mulder P, Richard V, Bellien J, Guerrot D. Soluble Epoxide Hydrolase Inhibition Prevents Experimental Type 4 Cardiorenal Syndrome. Front Mol Biosci 2021; 7:604042. [PMID: 33777999 PMCID: PMC7991096 DOI: 10.3389/fmolb.2020.604042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/14/2020] [Indexed: 11/13/2022] Open
Abstract
Objectives: Cardiovascular diseases (CVD) remain the leading cause of morbimortality in patients with chronic kidney disease (CKD). The aim of this study was to assess the cardiovascular impact of the pharmacological inhibition of soluble epoxide hydrolase (sEH), which metabolizes the endothelium-derived vasodilatory and anti-inflammatory epoxyeicosatrienoic acids (EETs) to dihydroxyeicosatrienoic acid (DHETs), in the 5/6 nephrectomy (Nx) mouse model. Methods and Results: Compared to sham-operated mice, there was decrease in EET-to-DHET ratio 3 months after surgery in vehicle-treated Nx mice but not in mice treated with the sEH inhibitor t-AUCB. Nx induced an increase in plasma creatinine and in urine albumin-to-creatinine ratio as well as the development of kidney histological lesions, all of which were not modified by t-AUCB. In addition, t-AUCB did not oppose Nx-induced blood pressure increase. However, t-AUCB prevented the development of cardiac hypertrophy and fibrosis induced by Nx, as well as normalized the echocardiographic indices of diastolic and systolic function. Moreover, the reduction in endothelium-dependent flow-mediated dilatation of isolated mesenteric arteries induced by Nx was blunted by t-AUCB without change in endothelium-independent dilatation to sodium nitroprusside. Conclusion: Inhibition of sEH reduces the cardiac remodelling, and the diastolic and systolic dysfunctions associated with CKD. These beneficial effects may be mediated by the prevention of endothelial dysfunction, independent from kidney preservation and antihypertensor effect. Thus, inhibition of sEH holds a therapeutic potential in preventing type 4 cardiorenal syndrome.
Collapse
Affiliation(s)
- Mouad Hamzaoui
- Normandie University, UNIROUEN, INSERM U1096, FHU REMOD-VHF, Rouen, France.,Nephrology Department, Rouen University Hospital, Rouen, France
| | - Clothilde Roche
- Normandie University, UNIROUEN, INSERM U1096, FHU REMOD-VHF, Rouen, France
| | - David Coquerel
- Normandie University, UNIROUEN, INSERM U1096, FHU REMOD-VHF, Rouen, France
| | - Thomas Duflot
- Normandie University, UNIROUEN, INSERM U1096, FHU REMOD-VHF, Rouen, France.,Pharmacology Department, Rouen University Hospital, Rouen, France
| | - Valery Brunel
- Biochemistry Department, Rouen University Hospital, Rouen, France
| | - Paul Mulder
- Normandie University, UNIROUEN, INSERM U1096, FHU REMOD-VHF, Rouen, France
| | - Vincent Richard
- Normandie University, UNIROUEN, INSERM U1096, FHU REMOD-VHF, Rouen, France
| | - Jérémy Bellien
- Normandie University, UNIROUEN, INSERM U1096, FHU REMOD-VHF, Rouen, France.,Pharmacology Department, Rouen University Hospital, Rouen, France
| | - Dominique Guerrot
- Normandie University, UNIROUEN, INSERM U1096, FHU REMOD-VHF, Rouen, France.,Nephrology Department, Rouen University Hospital, Rouen, France
| |
Collapse
|
8
|
Duflot T, Laurent C, Soudey A, Fonrose X, Hamzaoui M, Iacob M, Bertrand D, Favre J, Etienne I, Roche C, Coquerel D, Le Besnerais M, Louhichi S, Tarlet T, Li D, Brunel V, Morisseau C, Richard V, Joannidès R, Stanke-Labesque F, Lamoureux F, Guerrot D, Bellien J. Preservation of epoxyeicosatrienoic acid bioavailability prevents renal allograft dysfunction and cardiovascular alterations in kidney transplant recipients. Sci Rep 2021; 11:3739. [PMID: 33580125 PMCID: PMC7881112 DOI: 10.1038/s41598-021-83274-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 01/27/2021] [Indexed: 12/25/2022] Open
Abstract
This study addressed the hypothesis that epoxyeicosatrienoic acids (EETs) synthesized by CYP450 and catabolized by soluble epoxide hydrolase (sEH) are involved in the maintenance of renal allograft function, either directly or through modulation of cardiovascular function. The impact of single nucleotide polymorphisms (SNPs) in the sEH gene EPHX2 and CYP450 on renal and vascular function, plasma levels of EETs and peripheral blood monuclear cell sEH activity was assessed in 79 kidney transplant recipients explored at least one year after transplantation. Additional experiments in a mouse model mimicking the ischemia–reperfusion (I/R) injury suffered by the transplanted kidney evaluated the cardiovascular and renal effects of the sEH inhibitor t-AUCB administered in drinking water (10 mg/l) during 28 days after surgery. There was a long-term protective effect of the sEH SNP rs6558004, which increased EET plasma levels, on renal allograft function and a deleterious effect of K55R, which increased sEH activity. Surprisingly, the loss-of-function CYP2C9*3 was associated with a better renal function without affecting EET levels. R287Q SNP, which decreased sEH activity, was protective against vascular dysfunction while CYP2C8*3 and 2C9*2 loss-of-function SNP, altered endothelial function by reducing flow-induced EET release. In I/R mice, sEH inhibition reduced kidney lesions, prevented cardiac fibrosis and dysfunction as well as preserved endothelial function. The preservation of EET bioavailability may prevent allograft dysfunction and improve cardiovascular disease in kidney transplant recipients. Inhibition of sEH appears thus as a novel therapeutic option but its impact on other epoxyfatty acids should be carefully evaluated.
Collapse
Affiliation(s)
- Thomas Duflot
- Department of Pharmacology, Rouen University Hospital, 76000, Rouen, France.,UNIROUEN, INSERM U1096, FHU CARNAVAL, Normandie University, 76000, Rouen, France.,Laboratory of Pharmacokinetics, Toxicology and Pharmacogenetics, Rouen University Hospital, 76000, Rouen, France
| | - Charlotte Laurent
- Department of Nephrology, Rouen University Hospital, 76000, Rouen, France
| | - Anne Soudey
- UNIROUEN, INSERM U1096, FHU CARNAVAL, Normandie University, 76000, Rouen, France
| | - Xavier Fonrose
- Department of Pharmacology, Grenoble Alpes University Hospital, HP2, INSERM U1042, University of Grenoble Alpes, 38000, Grenoble, France
| | - Mouad Hamzaoui
- UNIROUEN, INSERM U1096, FHU CARNAVAL, Normandie University, 76000, Rouen, France.,Department of Nephrology, Rouen University Hospital, 76000, Rouen, France
| | - Michèle Iacob
- Department of Pharmacology, Rouen University Hospital, 76000, Rouen, France
| | - Dominique Bertrand
- Department of Nephrology, Rouen University Hospital, 76000, Rouen, France
| | - Julie Favre
- UNIROUEN, INSERM U1096, FHU CARNAVAL, Normandie University, 76000, Rouen, France
| | - Isabelle Etienne
- Department of Nephrology, Rouen University Hospital, 76000, Rouen, France
| | - Clothilde Roche
- UNIROUEN, INSERM U1096, FHU CARNAVAL, Normandie University, 76000, Rouen, France
| | - David Coquerel
- UNIROUEN, INSERM U1096, FHU CARNAVAL, Normandie University, 76000, Rouen, France
| | - Maëlle Le Besnerais
- UNIROUEN, INSERM U1096, FHU CARNAVAL, Normandie University, 76000, Rouen, France
| | - Safa Louhichi
- Department of Pharmacology, Rouen University Hospital, 76000, Rouen, France.,UNIROUEN, INSERM U1096, FHU CARNAVAL, Normandie University, 76000, Rouen, France
| | - Tracy Tarlet
- Department of Pharmacology, Rouen University Hospital, 76000, Rouen, France.,UNIROUEN, INSERM U1096, FHU CARNAVAL, Normandie University, 76000, Rouen, France
| | - Dongyang Li
- Department of Entomology and Nematology, and Comprehensive Cancer Center, University of California, Davis, Davis, CA, 95616, USA
| | - Valéry Brunel
- Department of General Biochemistry, Rouen University Hospital, 76000, Rouen, France
| | - Christophe Morisseau
- Department of Entomology and Nematology, and Comprehensive Cancer Center, University of California, Davis, Davis, CA, 95616, USA
| | - Vincent Richard
- Department of Pharmacology, Rouen University Hospital, 76000, Rouen, France.,UNIROUEN, INSERM U1096, FHU CARNAVAL, Normandie University, 76000, Rouen, France
| | - Robinson Joannidès
- Department of Pharmacology, Rouen University Hospital, 76000, Rouen, France.,UNIROUEN, INSERM U1096, FHU CARNAVAL, Normandie University, 76000, Rouen, France.,Centre d'Investigation Clinique (CIC)-INSERM 1404, Rouen University Hospital, 76000, Rouen, France
| | - Françoise Stanke-Labesque
- Department of Pharmacology, Grenoble Alpes University Hospital, HP2, INSERM U1042, University of Grenoble Alpes, 38000, Grenoble, France
| | - Fabien Lamoureux
- Department of Pharmacology, Rouen University Hospital, 76000, Rouen, France.,UNIROUEN, INSERM U1096, FHU CARNAVAL, Normandie University, 76000, Rouen, France.,Laboratory of Pharmacokinetics, Toxicology and Pharmacogenetics, Rouen University Hospital, 76000, Rouen, France
| | - Dominique Guerrot
- UNIROUEN, INSERM U1096, FHU CARNAVAL, Normandie University, 76000, Rouen, France.,Department of Nephrology, Rouen University Hospital, 76000, Rouen, France
| | - Jérémy Bellien
- Department of Pharmacology, Rouen University Hospital, 76000, Rouen, France. .,UNIROUEN, INSERM U1096, FHU CARNAVAL, Normandie University, 76000, Rouen, France. .,Centre d'Investigation Clinique (CIC)-INSERM 1404, Rouen University Hospital, 76000, Rouen, France. .,Department of Pharmacology, Rouen University Hospital, 76031, Rouen Cedex, France.
| |
Collapse
|
9
|
Varennes O, Mentaverri R, Duflot T, Kauffenstein G, Objois T, Lenglet G, Avondo C, Morisseau C, Brazier M, Kamel S, Six I, Bellien J. The Metabolism of Epoxyeicosatrienoic Acids by Soluble Epoxide Hydrolase Is Protective against the Development of Vascular Calcification. Int J Mol Sci 2020; 21:ijms21124313. [PMID: 32560362 PMCID: PMC7352784 DOI: 10.3390/ijms21124313] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 06/15/2020] [Indexed: 12/13/2022] Open
Abstract
This study addressed the hypothesis that soluble epoxide hydrolase (sEH), which metabolizes endothelium-derived epoxyeicosatrienoic acids, plays a role in vascular calcification. The sEH inhibitor trans-4-(4-(3-adamantan-1-yl-ureido)-cyclohexyloxy)-benzoic acid (t-AUCB) potentiated the increase in calcium deposition of rat aortic rings cultured in high-phosphate conditions. This was associated with increased tissue-nonspecific alkaline phosphatase activity and mRNA expression level of the osteochondrogenic marker Runx2. The procalcifying effect of t-AUCB was prevented by mechanical aortic deendothelialization or inhibition of the production and action of epoxyeicosatrienoic acids using the cytochrome P450 inhibitor fluconazole and the antagonist 14,15-epoxyeicosa-5(Z)-enoic acid (14,15-EEZE), respectively. Similarly, exogenous epoxyeicosatrienoic acids potentiated the calcification of rat aortic rings through a protein kinase A (PKA)-dependent mechanism and of human aortic vascular smooth muscle cells when sEH was inhibited by t-AUCB. Finally, a global gene expression profiling analysis revealed that the mRNA expression level of sEH was decreased in human carotid calcified plaques compared to adjacent lesion-free sites and was inversely correlated with Runx2 expression. These results show that sEH hydrolase plays a protective role against vascular calcification by reducing the bioavailability of epoxyeicosatrienoic acids.
Collapse
Affiliation(s)
- Olivier Varennes
- MP3CV, EA7517, CURS (Centre de Recherche Universitaire en Santé), University of Picardie Jules Verne, 80025 Amiens, France; (O.V.); (R.M.); (T.O.); (G.L.); (C.A.); (M.B.); (S.K.)
| | - Romuald Mentaverri
- MP3CV, EA7517, CURS (Centre de Recherche Universitaire en Santé), University of Picardie Jules Verne, 80025 Amiens, France; (O.V.); (R.M.); (T.O.); (G.L.); (C.A.); (M.B.); (S.K.)
- Department of Biochemistry, Amiens-Picardie University Hospital, 80054 Amiens, France
| | - Thomas Duflot
- Department of Pharmacology, Rouen University Hospital, CEDEX 1, 76031 Rouen, France;
- INSERM U1096, Normandy University, UNIROUEN, F-76000 Rouen, France
| | | | - Thibaut Objois
- MP3CV, EA7517, CURS (Centre de Recherche Universitaire en Santé), University of Picardie Jules Verne, 80025 Amiens, France; (O.V.); (R.M.); (T.O.); (G.L.); (C.A.); (M.B.); (S.K.)
| | - Gaëlle Lenglet
- MP3CV, EA7517, CURS (Centre de Recherche Universitaire en Santé), University of Picardie Jules Verne, 80025 Amiens, France; (O.V.); (R.M.); (T.O.); (G.L.); (C.A.); (M.B.); (S.K.)
| | - Carine Avondo
- MP3CV, EA7517, CURS (Centre de Recherche Universitaire en Santé), University of Picardie Jules Verne, 80025 Amiens, France; (O.V.); (R.M.); (T.O.); (G.L.); (C.A.); (M.B.); (S.K.)
| | - Christophe Morisseau
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, CA 95616, USA;
| | - Michel Brazier
- MP3CV, EA7517, CURS (Centre de Recherche Universitaire en Santé), University of Picardie Jules Verne, 80025 Amiens, France; (O.V.); (R.M.); (T.O.); (G.L.); (C.A.); (M.B.); (S.K.)
| | - Saïd Kamel
- MP3CV, EA7517, CURS (Centre de Recherche Universitaire en Santé), University of Picardie Jules Verne, 80025 Amiens, France; (O.V.); (R.M.); (T.O.); (G.L.); (C.A.); (M.B.); (S.K.)
- Department of Biochemistry, Amiens-Picardie University Hospital, 80054 Amiens, France
| | - Isabelle Six
- MP3CV, EA7517, CURS (Centre de Recherche Universitaire en Santé), University of Picardie Jules Verne, 80025 Amiens, France; (O.V.); (R.M.); (T.O.); (G.L.); (C.A.); (M.B.); (S.K.)
- Correspondence: (I.S.); (J.B.); Tel.: +33-2-32-88-90-30 (J.B.); Fax: +33-2-32-88-91-16 (J.B)
| | - Jeremy Bellien
- Department of Pharmacology, Rouen University Hospital, CEDEX 1, 76031 Rouen, France;
- INSERM U1096, Normandy University, UNIROUEN, F-76000 Rouen, France
- Correspondence: (I.S.); (J.B.); Tel.: +33-2-32-88-90-30 (J.B.); Fax: +33-2-32-88-91-16 (J.B)
| |
Collapse
|
10
|
Development and validation of a rapid, specific and sensitive LC-MS/MS bioanalytical method for eicosanoid quantification - assessment of arachidonic acid metabolic pathway activity in hypertensive rats. Biochimie 2020; 171-172:223-232. [PMID: 32179167 DOI: 10.1016/j.biochi.2020.03.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 03/11/2020] [Indexed: 11/23/2022]
Abstract
Lipid mediators such as eicosanoids maintain various physiological processes, and their alterations are involved in the development of numerous cardiovascular diseases. Therefore, the reliable assessment of their profile could be helpful in diagnosis as well as in eicosanoid biomarker-based treatment. Hence, the presented study aimed to develop and validate a new rapid, specific and sensitive LC-MS/MS method for quantification of arachidonic acid-derived eicosanoids in plasma, including lipid mediators generated via COX-, LOX- and CYP450-dependent pathways. The developed method features high sensitivity because the lower limit of quantification ranged from 0.05 to 0.50 ng mL-1 as well as the accuracy and precision estimated within 88.88-111.25% and 1.03-11.82%, respectively. An application of a simple and fast liquid-liquid extraction procedure for sample cleaning resulted in a highly satisfactory recovery of the analytes (>88.30%). Additionally, the method was validated using artificial plasma, an approach that enabled the elimination of the matrix effect caused by an endogenous concentration of studied lipid mediators. Importantly, the presented LC-MS/MS method allowed for simultaneous quantitative and qualitative [quan/qual] analysis of the selected eicosanoids, leading to an additional improvement of the method specificity. Moreover, the validated method was successfully applied for eicosanoid profiling in rat, mouse and human plasma samples, clearly demonstrating the heterogeneity of the profile of studied lipid mediators in those species.
Collapse
|
11
|
Gladine C, Ostermann AI, Newman JW, Schebb NH. MS-based targeted metabolomics of eicosanoids and other oxylipins: Analytical and inter-individual variabilities. Free Radic Biol Med 2019; 144:72-89. [PMID: 31085232 DOI: 10.1016/j.freeradbiomed.2019.05.012] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/19/2019] [Accepted: 05/10/2019] [Indexed: 02/07/2023]
Abstract
Oxylipins, including the well-known eicosanoids, are potent lipid mediators involved in numerous physiological and pathological processes. Therefore, their quantitative profiling has gained a lot of attention during the last years notably in the active field of health biomarker discovery. Oxylipins include hundreds of structurally and stereochemically distinct lipid species which today are most commonly analyzed by (ultra) high performance liquid chromatography-mass spectrometry based ((U)HPLC-MS) methods. To maximize the utility of oxylipin profiling in clinical research, it is crucial to understand and assess the factors contributing to the analytical and biological variability of oxylipin profiles in humans. In this review, these factors and their impacts are summarized and discussed, providing a framework for recommendations expected to enhance the interlaboratory comparability and biological interpretation of oxylipin profiling in clinical research.
Collapse
Affiliation(s)
- Cécile Gladine
- Université Clermont Auvergne, INRA, UNH, Unité de Nutrition Humaine, CRNH Auvergne, Clermont-Ferrand, France.
| | - Annika I Ostermann
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, Gaußstraße 20, University of Wuppertal, 42119, Wuppertal, Germany
| | - John W Newman
- United States Department of Agriculture, Agricultural Research Service, Western Human Nutrition Research Center, Davis, CA, USA; University of California Davis, Department of Nutrition, Davis, CA, USA
| | - Nils Helge Schebb
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, Gaußstraße 20, University of Wuppertal, 42119, Wuppertal, Germany
| |
Collapse
|
12
|
Ostermann AI, Koch E, Rund KM, Kutzner L, Mainka M, Schebb NH. Targeting esterified oxylipins by LC-MS - Effect of sample preparation on oxylipin pattern. Prostaglandins Other Lipid Mediat 2019; 146:106384. [PMID: 31698140 DOI: 10.1016/j.prostaglandins.2019.106384] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 08/09/2019] [Accepted: 08/12/2019] [Indexed: 02/06/2023]
Abstract
A major part of oxygenated metabolites of polyunsaturated fatty acids - i.e. eicosanoids and other oxylipins - in biological samples is found in the esterified form. Yet, their biological role is only poorly understood. For quantification of esterified oxylipins in biological samples current protocols mostly apply alkaline hydrolysis with or without prior lipid extraction to release oxylipins into their free form which can be subsequently quantified via liquid chromatography-mass spectrometry. Herein, a detailed protocol for precise and reproducible quantification of esterified oxylipins in plasma is presented comprising i) extraction of lipids and removal of proteins with iso-propanol, ii) base hydrolysis with potassium hydroxide to saponify lipids and iii) solid phase extraction of the liberated oxylipins on C8/anion exchange mixed mode material. Unequal extraction of internal standards and lipid classes during lipid extraction before hydrolysis led to distorted concentrations, emphasizing that the choice of solvent used in this step is important to minimize discrimination. Regarding the hydrolysis conditions, at least 30 min incubation at 60 °C is required with 0.1 M KOH in sample. Drying of the SPE cartridges is a critical parameter since autoxidation processes of PUFA, which are present in high concentrations after cleavage, lead to artificial formation of epoxy fatty acids. With the developed protocol, inter-day, intra-day and inter-operator variance was <21% for most oxylipins including hydroxy-, dihydroxy-, and epoxy-PUFA. The applicability of the developed methodology is demonstrated by investigating the changes in the oxylipin pattern following omega-3 fatty acid feeding to rats.
Collapse
Affiliation(s)
- Annika I Ostermann
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaußstraße 20, Wuppertal, Germany
| | - Elisabeth Koch
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaußstraße 20, Wuppertal, Germany
| | - Katharina M Rund
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaußstraße 20, Wuppertal, Germany
| | - Laura Kutzner
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaußstraße 20, Wuppertal, Germany
| | - Malwina Mainka
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaußstraße 20, Wuppertal, Germany
| | - Nils Helge Schebb
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaußstraße 20, Wuppertal, Germany.
| |
Collapse
|
13
|
Hariri G, Bourcier S, Marjanovic Z, Joffre J, Lemarié J, Lavillegrand JR, Charue D, Duflot T, Bigé N, Baudel JL, Maury E, Mohty M, Guidet B, Bellien J, Blanc-Brude O, Ait-Oufella H. Exploring the microvascular impact of red blood cell transfusion in intensive care unit patients. Crit Care 2019; 23:292. [PMID: 31470888 PMCID: PMC6717366 DOI: 10.1186/s13054-019-2572-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 08/19/2019] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Red blood cell (RBC) transfusion is a common treatment for hospitalized patients. However, the effects of RBC transfusion on microvascular function remain controversial. METHODS In a medical ICU in a tertiary teaching hospital, we prospectively included anemic patients requiring RBC transfusion. Skin microvascular reactivity was measured before and 30 min after RBC transfusion. Plasma was collected to analyze intravascular hemolysis and draw the lipidomic and cytokine profiles. RESULTS In a cohort of 59 patients, the median age was 66 [55-81] years and SAPS II was 38 [24-48]. After RBC transfusion, endothelium-dependent microvascular reactivity improved in 35 (59%) patients, but worsened in 24 others (41%). Comparing clinical and biological markers revealed that baseline blood leucokyte counts distinguished improving from worsening patients (10.3 [5.7; 19.7] vs. 4.6 [2.1; 7.3] × 109/L; p = 0.001) and correlated with variations of microvascular reactivity (r = 0.36, p = 0.005). Blood platelet count was also higher in improving patients (200 [97; 280] vs 160 [40; 199] × 103/mL, p = 0.03) but did not correlate with variations of microvascular reactivity. We observed no intravascular hemolysis (HbCO, heme, bilirubin, LDH), but recorded a significant increase in RBC microparticle levels specific to improving patients after transfusion (292 [108; 531] vs. 53 [34; 99] MP/μL; p = 0.03). The improvement in microvascular dilation was positively correlated with RBC microparticle levels (R = 0.83, p < 0.001) and conversion of arachidonic acid into vasodilating eicosanoids. CONCLUSIONS Patients displaying an improved microvascular reactivity after RBC transfusion had high blood leukocyte counts, increased RBC microparticle formation, and enhanced metabolism of arachidonic acid into vasodilating lipids. Our data suggested a contribution of recipient leukocytes to the vascular impact of RBC transfusion.
Collapse
Affiliation(s)
- Geoffroy Hariri
- Assistance Publique–Hôpitaux de Paris (AP-HP), Hôpital Saint-Antoine, Service de Réanimation Médicale, 184 rue du Faubourg Saint-Antoine, 75571 Paris Cedex 12, France
- Sorbonne Université, Université Pierre-et-Marie Curie-Paris 6, Paris, France
| | - Simon Bourcier
- Assistance Publique–Hôpitaux de Paris (AP-HP), Hôpital Saint-Antoine, Service de Réanimation Médicale, 184 rue du Faubourg Saint-Antoine, 75571 Paris Cedex 12, France
| | - Zora Marjanovic
- Assistance Publique, Hôpitaux de Paris (AP-HP), Hôpital Saint-Antoine, Service d’hématologie, 75571 Paris Cedex 12, France
| | - Jérémie Joffre
- Assistance Publique–Hôpitaux de Paris (AP-HP), Hôpital Saint-Antoine, Service de Réanimation Médicale, 184 rue du Faubourg Saint-Antoine, 75571 Paris Cedex 12, France
- Sorbonne Université, Université Pierre-et-Marie Curie-Paris 6, Paris, France
| | - Jérémie Lemarié
- Service de Réanimation Médicale, Hôpital Central, Nancy, France
| | - Jean-Rémi Lavillegrand
- Assistance Publique–Hôpitaux de Paris (AP-HP), Hôpital Saint-Antoine, Service de Réanimation Médicale, 184 rue du Faubourg Saint-Antoine, 75571 Paris Cedex 12, France
- Sorbonne Université, Université Pierre-et-Marie Curie-Paris 6, Paris, France
| | - Dominique Charue
- Inserm U970, Centre de Recherche Cardiovasculaire de Paris (PARCC), Paris, France
| | - Thomas Duflot
- Normandie University, UNIROUEN, INSERM U1096, FHU REMOD-VHF, 76000 Rouen, France
- Laboratory of Pharmacokinetics, Toxicology and Pharmacogenomics, Rouen University Hospital, 76000 Rouen, France
| | - Naïke Bigé
- Assistance Publique–Hôpitaux de Paris (AP-HP), Hôpital Saint-Antoine, Service de Réanimation Médicale, 184 rue du Faubourg Saint-Antoine, 75571 Paris Cedex 12, France
| | - Jean-Luc Baudel
- Assistance Publique–Hôpitaux de Paris (AP-HP), Hôpital Saint-Antoine, Service de Réanimation Médicale, 184 rue du Faubourg Saint-Antoine, 75571 Paris Cedex 12, France
| | - Eric Maury
- Assistance Publique–Hôpitaux de Paris (AP-HP), Hôpital Saint-Antoine, Service de Réanimation Médicale, 184 rue du Faubourg Saint-Antoine, 75571 Paris Cedex 12, France
- Sorbonne Université, Université Pierre-et-Marie Curie-Paris 6, Paris, France
| | - Mohamad Mohty
- Assistance Publique, Hôpitaux de Paris (AP-HP), Hôpital Saint-Antoine, Service d’hématologie, 75571 Paris Cedex 12, France
| | - Bertrand Guidet
- Assistance Publique–Hôpitaux de Paris (AP-HP), Hôpital Saint-Antoine, Service de Réanimation Médicale, 184 rue du Faubourg Saint-Antoine, 75571 Paris Cedex 12, France
- Sorbonne Université, Université Pierre-et-Marie Curie-Paris 6, Paris, France
- Inserm U1136, F-75012 Paris, France
| | - Jeremy Bellien
- Normandie University, UNIROUEN, INSERM U1096, FHU REMOD-VHF, 76000 Rouen, France
- Department of Pharmacology, Rouen University Hospital, 76000 Rouen, France
| | - Olivier Blanc-Brude
- Inserm U970, Centre de Recherche Cardiovasculaire de Paris (PARCC), Paris, France
| | - Hafid Ait-Oufella
- Assistance Publique–Hôpitaux de Paris (AP-HP), Hôpital Saint-Antoine, Service de Réanimation Médicale, 184 rue du Faubourg Saint-Antoine, 75571 Paris Cedex 12, France
- Sorbonne Université, Université Pierre-et-Marie Curie-Paris 6, Paris, France
- Inserm U970, Centre de Recherche Cardiovasculaire de Paris (PARCC), Paris, France
| |
Collapse
|
14
|
Duflot T, Moreau-Grangé L, Roche C, Iacob M, Wils J, Rémy-Jouet I, Cailleux AF, Leuillier M, Renet S, Li D, Morisseau C, Lamoureux F, Richard V, Prévost G, Joannidès R, Bellien J. Altered bioavailability of epoxyeicosatrienoic acids is associated with conduit artery endothelial dysfunction in type 2 diabetic patients. Cardiovasc Diabetol 2019; 18:35. [PMID: 30885203 PMCID: PMC6423843 DOI: 10.1186/s12933-019-0843-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 03/08/2019] [Indexed: 01/04/2023] Open
Abstract
Background This pathophysiological study addressed the hypothesis that soluble epoxide hydrolase (sEH), which metabolizes the vasodilator and anti-inflammatory epoxyeicosatrienoic acids (EETs) to dihydroxyeicosatrienoic acids (DHETs), contributes to conduit artery endothelial dysfunction in type 2 diabetes. Methods and results Radial artery endothelium-dependent flow-mediated dilatation in response to hand skin heating was reduced in essential hypertensive patients (n = 9) and type 2 diabetic subjects with (n = 19) or without hypertension (n = 10) compared to healthy subjects (n = 36), taking into consideration cardiovascular risk factors, flow stimulus and endothelium-independent dilatation to glyceryl trinitrate. Diabetic patients but not non-diabetic hypertensive subjects displayed elevated whole blood reactive oxygen species levels and loss of NO release during heating, assessed by measuring local plasma nitrite variation. Moreover, plasma levels of EET regioisomers increased during heating in healthy subjects, did not change in hypertensive patients and decreased in diabetic patients. Correlation analysis showed in the overall population that the less NO and EETs bioavailability increases during heating, the more flow-mediated dilatation is reduced. The expression and activity of sEH, measured in isolated peripheral blood mononuclear cells, was elevated in diabetic but not hypertensive patients, leading to increased EETs conversion to DHETs. Finally, hyperglycemic and hyperinsulinemic euglycemic clamps induced a decrease in flow-mediated dilatation in healthy subjects and this was associated with an altered EETs release during heating. Conclusions These results demonstrate that an increased EETs degradation by sEH and altered NO bioavailability are associated with conduit artery endothelial dysfunction in type 2 diabetic patients independently from their hypertensive status. The hyperinsulinemic and hyperglycemic state in these patients may contribute to these alterations. Trial registration NCT02311075. Registered December 8, 2014. Electronic supplementary material The online version of this article (10.1186/s12933-019-0843-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Thomas Duflot
- Department of Pharmacology, Rouen University Hospital, 76000, Rouen Cedex, France.,Normandie Univ, UNIROUEN, INSERM U1096, FHU REMOD-VHF, 76000, Rouen, France.,Laboratory of Pharmacokinetics, Toxicology and Pharmacogenetics, Rouen University Hospital, 76000, Rouen, France
| | | | - Clothilde Roche
- Normandie Univ, UNIROUEN, INSERM U1096, FHU REMOD-VHF, 76000, Rouen, France
| | - Michèle Iacob
- Department of Pharmacology, Rouen University Hospital, 76000, Rouen Cedex, France
| | - Julien Wils
- Department of Pharmacology, Rouen University Hospital, 76000, Rouen Cedex, France.,Normandie Univ, UNIROUEN, INSERM U1096, FHU REMOD-VHF, 76000, Rouen, France
| | | | | | - Matthieu Leuillier
- Normandie Univ, UNIROUEN, INSERM U1096, FHU REMOD-VHF, 76000, Rouen, France
| | - Sylvanie Renet
- Normandie Univ, UNIROUEN, INSERM U1096, FHU REMOD-VHF, 76000, Rouen, France
| | - Dongyang Li
- Department of Entomology and Nematology, and Comprehensive Cancer Center, University of California, Davis, Davis, CA, 95616, USA
| | - Christophe Morisseau
- Department of Entomology and Nematology, and Comprehensive Cancer Center, University of California, Davis, Davis, CA, 95616, USA
| | - Fabien Lamoureux
- Department of Pharmacology, Rouen University Hospital, 76000, Rouen Cedex, France.,Normandie Univ, UNIROUEN, INSERM U1096, FHU REMOD-VHF, 76000, Rouen, France.,Laboratory of Pharmacokinetics, Toxicology and Pharmacogenetics, Rouen University Hospital, 76000, Rouen, France
| | - Vincent Richard
- Department of Pharmacology, Rouen University Hospital, 76000, Rouen Cedex, France.,Normandie Univ, UNIROUEN, INSERM U1096, FHU REMOD-VHF, 76000, Rouen, France
| | - Gaëtan Prévost
- Department of Endocrinology, Rouen University Hospital, 76000, Rouen, France.,Normandie Univ, UNIROUEN, INSERM U1239, 76000, Rouen, France
| | - Robinson Joannidès
- Department of Pharmacology, Rouen University Hospital, 76000, Rouen Cedex, France.,Normandie Univ, UNIROUEN, INSERM U1096, FHU REMOD-VHF, 76000, Rouen, France.,Centre d'Investigation Clinique (CIC)-INSERM 1404, Rouen University Hospital, 76000, Rouen, France
| | - Jérémy Bellien
- Department of Pharmacology, Rouen University Hospital, 76000, Rouen Cedex, France. .,Normandie Univ, UNIROUEN, INSERM U1096, FHU REMOD-VHF, 76000, Rouen, France. .,Centre d'Investigation Clinique (CIC)-INSERM 1404, Rouen University Hospital, 76000, Rouen, France.
| |
Collapse
|
15
|
Putman A, Brown J, Gandy J, Abuelo A, Sordillo L. Oxylipid profiles of dairy cattle vary throughout the transition into early mammary gland involution. J Dairy Sci 2019; 102:2481-2491. [DOI: 10.3168/jds.2018-15158] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 11/15/2018] [Indexed: 12/16/2022]
|
16
|
Quantification of eicosanoids and their metabolites in biological matrices: a review. Bioanalysis 2018; 10:2027-2046. [PMID: 30412686 DOI: 10.4155/bio-2018-0173] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The quantification of eicosanoids and their metabolites in biological samples remain an analytical challenge, even though a number of methodologies/techniques have been developed. The major difficulties encountered are related to the oxidation of eicosanoids and their low quantities in biological matrices. Among the known methodologies, liquid chromatography-mass spectrometry (LC-MS/MS) is the standard method for eicosanoid quantification in biological samples. Recently advances have improved the ability to identify and simultaneous quantitate eicosanoids in biological matrices. The present article reviews the quantitative analysis of eicosanoids in different biological matrices by LC and ultra performance liquid chromatography (UPLC)-MS/MS and discusses important aspects to be considered during the collection, sample preparation and the generation of calibration curves required for eicosanoid analysis.
Collapse
|