1
|
Samadifar M, Yamini Y, Khataei MM, Shirani M. Automated and semi-automated packed sorbent solid phase (micro) extraction methods for extraction of organic and inorganic pollutants. J Chromatogr A 2023; 1706:464227. [PMID: 37506462 DOI: 10.1016/j.chroma.2023.464227] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/06/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023]
Abstract
In this study, the packed sorbent solid phase (micro) extraction methods from manual to automated modes are reviewed. The automatic methods have several remarkable advantages such as high sample throughput, reproducibility, sensitivity, and extraction efficiency. These methods include solid-phase extraction, pipette tip micro-solid phase extraction, microextraction by packed sorbent, in-tip solid phase microextraction, in-tube solid phase microextraction, lab-on-a-chip, and lab-on-a-valve. The recent application of these methods for the extraction of organic and inorganic compounds are discussed. Also, the combination of novel technologies (3D printing and robotic platforms) with the (semi)automated methods are investigated as the future trend.
Collapse
Affiliation(s)
- Mahsa Samadifar
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, Tehran, Iran
| | - Yadollah Yamini
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, Tehran, Iran.
| | | | - Mahboue Shirani
- Department of Chemistry, Faculty of Sciences, University of Jiroft, Jiroft, Iran
| |
Collapse
|
2
|
Wang YN, Zhang YP, You WL, Qu L, Chen DL, Chen Y, Chen J. Modified stainless steel wires with superwettability for highly efficient in-tube solid-phase microextraction. J Chromatogr A 2023; 1697:463988. [PMID: 37071965 DOI: 10.1016/j.chroma.2023.463988] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 04/11/2023] [Accepted: 04/11/2023] [Indexed: 04/20/2023]
Abstract
Construction of different surface wettability is meaningful for the interaction between the sorbent surface and target components. In the current study, four kinds of stainless-steel wires (SSWs) with different hydrophobic/hydrophilic property were prepared and used as the absorbents to enrich the target compounds with different polarity. Comparative extraction of six non-polar polycyclic aromatic hydrocarbons (PAHs) and six polar estrogens was carried out by in-tube solid phase microextraction (IT-SPME). The results showed that two SSWs with the superhydrophobic surfaces exhibited high extraction capacity to the non-polar PAHs with the superior enrichment factor (EF) in the range of 29-672 and 57-744, respectively. In contrast, the superhydrophilic SSWs demonstrated higher enrichment efficiency for the polar estrogens than other hydrophobic SSWs. On the basis of optimized conditions, a validated analysis method was established using six PAHs as model analytes for IT-SPME-HPLC. Acceptable linear ranges (0.5-10 μg L-1) and low detection limits (0.0056-0.32 μg L-1) were achieved using the superhydrophobic wire modified by perfluorooctyl trichlorosilane (FOTS). The relative recoveries spiked at 2, 5 and 10 μg L-1 in the lake water samples were in the range of 81.5%-113.7%. The relative standard deviation (RSD) of intraday (≤0.8%, n = 3) and interday (≤5.3%, n = 3) tests demonstrated the good extraction repeatability for the same extraction tube. Satisfactory repeatability for the preparation of extraction tubes (n = 3) was also obtained with the RSD values in the range of 3.6%-8.0%.
Collapse
Affiliation(s)
- Ya-Ning Wang
- College of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China
| | - Yu-Ping Zhang
- College of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China; College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Changde, 415000, China; College of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, 453000, China.
| | - Wan-Li You
- College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Changde, 415000, China
| | - LingBo Qu
- College of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China
| | - De-Liang Chen
- Changde Zhengyang Biotechnology Co., Ltd., Changde, 415000, China
| | - Yuan Chen
- Changde Zhengyang Biotechnology Co., Ltd., Changde, 415000, China
| | - Jun Chen
- College of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, 453000, China
| |
Collapse
|
3
|
Sun M, Li C, Feng J, Sun H, Sun M, Feng Y, Ji X, Han S, Feng J. Development of aerogels in solid-phase extraction and microextraction. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2021.116497] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
4
|
Dinmohammadpour Z, Yamini Y, Nazraz M, Shamsayei M. A new configuration for in-tube solid phase microextraction based on a thin-film coating. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
5
|
Lazazzara V, Vicelli B, Bueschl C, Parich A, Pertot I, Schuhmacher R, Perazzolli M. Trichoderma spp. volatile organic compounds protect grapevine plants by activating defense-related processes against downy mildew. PHYSIOLOGIA PLANTARUM 2021; 172:1950-1965. [PMID: 33783004 PMCID: PMC8360165 DOI: 10.1111/ppl.13406] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/22/2021] [Accepted: 03/19/2021] [Indexed: 05/04/2023]
Abstract
Volatile organic compounds (VOCs) are produced by soil-borne microorganisms and play crucial roles in fungal interactions with plants and phytopathogens. Although VOCs have been characterized in Trichoderma spp., the mechanisms against phytopathogens strongly differ according to the strain and pathosystem. This study aimed at characterizing VOCs produced by three Trichoderma strains used as biofungicides and to investigate their effects against grapevine downy mildew (caused by Plasmopara viticola). A VOC-mediated reduction of downy mildew severity was found in leaf disks treated with Trichoderma asperellum T34 (T34), T. harzianum T39 (T39), and T. atroviride SC1 (SC1) and 31 compounds were detected by head space-solid phase microextraction gas chromatography-mass spectrometry. Among the Trichoderma VOCs annotated, α-farnesene, cadinene, 1,3-octadiene, 2-pentylfuran, and 6-pentyl-2H-pyran-2-one reduced downy mildew severity on grapevine leaf disks. In particular, 6-pentyl-2H-pyran-2-one and 2-pentylfuran increased the accumulation of callose and enhanced the modulation of defense-related genes after P. viticola inoculation, indicating an induction of grapevine defense mechanisms. Moreover, 6-pentyl-2H-pyran-2-one activated the hypersensitive response after P. viticola inoculation, possibly to reinforce the grapevine defense reaction. These results indicate that Trichoderma VOCs can induce grapevine resistance, and these molecules could be further applied to control grapevine downy mildew.
Collapse
Affiliation(s)
- Valentina Lazazzara
- Department of Sustainable Agro‐ecosystems and BioresourcesResearch and Innovation Centre, Fondazione Edmund MachSan Michele all'AdigeItaly
| | - Bianca Vicelli
- Department of Sustainable Agro‐ecosystems and BioresourcesResearch and Innovation Centre, Fondazione Edmund MachSan Michele all'AdigeItaly
- Center Agriculture Food Environment (C3A)University of TrentoSan Michele all'AdigeItaly
| | - Christoph Bueschl
- Institute of Bioanalytics and Agro‐Metabolomics, Department of Agrobiotechnology (IFA‐Tulln)University of Natural Resources and Life Sciences, Vienna (BOKU)TullnAustria
| | - Alexandra Parich
- Institute of Bioanalytics and Agro‐Metabolomics, Department of Agrobiotechnology (IFA‐Tulln)University of Natural Resources and Life Sciences, Vienna (BOKU)TullnAustria
| | - Ilaria Pertot
- Department of Sustainable Agro‐ecosystems and BioresourcesResearch and Innovation Centre, Fondazione Edmund MachSan Michele all'AdigeItaly
- Center Agriculture Food Environment (C3A)University of TrentoSan Michele all'AdigeItaly
| | - Rainer Schuhmacher
- Institute of Bioanalytics and Agro‐Metabolomics, Department of Agrobiotechnology (IFA‐Tulln)University of Natural Resources and Life Sciences, Vienna (BOKU)TullnAustria
| | - Michele Perazzolli
- Department of Sustainable Agro‐ecosystems and BioresourcesResearch and Innovation Centre, Fondazione Edmund MachSan Michele all'AdigeItaly
- Center Agriculture Food Environment (C3A)University of TrentoSan Michele all'AdigeItaly
| |
Collapse
|
6
|
Souza ID, Oliveira IGC, Queiroz MEC. Innovative extraction materials for fiber-in-tube solid phase microextraction: A review. Anal Chim Acta 2021; 1165:238110. [PMID: 33975700 DOI: 10.1016/j.aca.2020.11.042] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/21/2020] [Accepted: 11/26/2020] [Indexed: 11/18/2022]
Abstract
Fiber-in-tube solid-phase microextraction (fiber-in-tube SPME) with short capillary longitudinally packed with fine fibers as extraction device allows direct coupling to high performance liquid chromatography (HPLC) systems to determine weakly volatile or thermally labile compounds. This technique associates the advantages of miniaturized and analytical on-line systems. Major achievements include the use of different capillaries (fused-silica, copper, stainless steel, polyetheretherketone (PEEK), or poly(tetrafluoroethylene) (PTFE)) that are packed with neat fibers (Zylon®, silk, or Kevlar 29®) or fibers (stainless steel, basalt, or carbon) functionalized with selective coatings (aerogels, ionic liquids (ILs), polymeric ionic liquids (PILs), molecularly imprinted polymers (MIPs), layered double hydroxides (LDHs), or conducting polymer). This review outlines the fundamental theory and the innovative extraction materials for fiber-in-tube SPME-HPLC systems and highlights their main applications in environmental and bioanalyses.
Collapse
Affiliation(s)
- Israel D Souza
- Departamento de Química, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Igor G C Oliveira
- Departamento de Química, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Maria Eugênia C Queiroz
- Departamento de Química, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
7
|
Kataoka H. In-tube solid-phase microextraction: Current trends and future perspectives. J Chromatogr A 2020; 1636:461787. [PMID: 33359971 DOI: 10.1016/j.chroma.2020.461787] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/02/2020] [Accepted: 12/04/2020] [Indexed: 01/01/2023]
Abstract
In-tube solid-phase microextraction (IT-SPME) was developed about 24 years ago as an effective sample preparation technique using an open tubular capillary column as an extraction device. IT-SPME is useful for micro-concentration, automated sample cleanup, and rapid online analysis, and can be used to determine the analytes in complex matrices simple sample processing methods such as direct sample injection or filtration. IT-SPME is usually performed in combination with high-performance liquid chromatography using an online column switching technology, in which the entire process from sample preparation to separation to data analysis is automated using the autosampler. Furthermore, IT-SPME minimizes the use of harmful organic solvents and is simple and labor-saving, making it a sustainable and environmentally friendly green analytical technique. Various operating systems and new sorbent materials have been developed to improve its extraction efficiency by, for example, enhancing its sorption capacity and selectivity. In addition, IT-SPME methods have been widely applied in environmental analysis, food analysis and bioanalysis. This review describes the present state of IT-SPME technology and summarizes its current trends and future perspectives, including method development and strategies to improve extraction efficiency.
Collapse
Affiliation(s)
- Hiroyuki Kataoka
- School of Pharmacy, Shujitsu University, Nishigawara, Okayama 703-8516, Japan.
| |
Collapse
|
8
|
Pena-Pereira F, Bendicho C, Pavlović DM, Martín-Esteban A, Díaz-Álvarez M, Pan Y, Cooper J, Yang Z, Safarik I, Pospiskova K, Segundo MA, Psillakis E. Miniaturized analytical methods for determination of environmental contaminants of emerging concern - A review. Anal Chim Acta 2020; 1158:238108. [PMID: 33863416 DOI: 10.1016/j.aca.2020.11.040] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 01/09/2023]
Abstract
The determination of contaminants of emerging concern (CECs) in environmental samples has become a challenging and critical issue. The present work focuses on miniaturized analytical strategies reported in the literature for the determination of CECs. The first part of the review provides brief overview of CECs whose monitoring in environmental samples is of particular significance, namely personal care products, pharmaceuticals, endocrine disruptors, UV-filters, newly registered pesticides, illicit drugs, disinfection by-products, surfactants, high technology rare earth elements, and engineered nanomaterials. Besides, an overview of downsized sample preparation approaches reported in the literature for the determination of CECs in environmental samples is provided. Particularly, analytical methodologies involving microextraction approaches used for the enrichment of CECs are discussed. Both solid phase- and liquid phase-based microextraction techniques are highlighted devoting special attention to recently reported approaches. Special emphasis is placed on newly developed materials used for extraction purposes in microextraction techniques. In addition, recent contributions involving miniaturized analytical flow techniques for the determination of CECs are discussed. Besides, the strengths, weaknesses, opportunities and threats of point of need and portable devices have been identified and critically compared with chromatographic methods coupled to mass chromatography. Finally, challenging aspects regarding miniaturized analytical methods for determination of CECs are critically discussed.
Collapse
Affiliation(s)
- Francisco Pena-Pereira
- Centro de Investigación Mariña, Universidade de Vigo, Departamento de Química Analítica e Alimentaria, Grupo QA2, Edificio CC Experimentais, Campus de Vigo, As Lagoas, Marcosende, 36310, Vigo, Spain.
| | - Carlos Bendicho
- Centro de Investigación Mariña, Universidade de Vigo, Departamento de Química Analítica e Alimentaria, Grupo QA2, Edificio CC Experimentais, Campus de Vigo, As Lagoas, Marcosende, 36310, Vigo, Spain.
| | - Dragana Mutavdžić Pavlović
- Department of Analytical Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev Trg 19, Zagreb, 10000, Croatia
| | - Antonio Martín-Esteban
- Departamento de Medio Ambiente y Agronomía, INIA, Carretera de A Coruña Km 7.5, Madrid, E-28040, Spain
| | - Myriam Díaz-Álvarez
- Departamento de Medio Ambiente y Agronomía, INIA, Carretera de A Coruña Km 7.5, Madrid, E-28040, Spain
| | - Yuwei Pan
- Cranfield Water Science Institute, Cranfield University, Cranfield, MK43 0AL, United Kingdom; School of Engineering, University of Glasgow, G12 8LT, United Kingdom
| | - Jon Cooper
- School of Engineering, University of Glasgow, G12 8LT, United Kingdom
| | - Zhugen Yang
- Cranfield Water Science Institute, Cranfield University, Cranfield, MK43 0AL, United Kingdom
| | - Ivo Safarik
- Department of Nanobiotechnology, Biology Centre, ISB, CAS, Na Sadkach 7, 370 05, Ceske Budejovice, Czech Republic; Regional Centre of Advanced Technologies and Materials, Palacky University, Slechtitelu 27, 783 71, Olomouc, Czech Republic; Department of Magnetism, Institute of Experimental Physics, SAS, Watsonova 47, 040 01, Kosice, Slovakia
| | - Kristyna Pospiskova
- Department of Nanobiotechnology, Biology Centre, ISB, CAS, Na Sadkach 7, 370 05, Ceske Budejovice, Czech Republic; Regional Centre of Advanced Technologies and Materials, Palacky University, Slechtitelu 27, 783 71, Olomouc, Czech Republic
| | - Marcela A Segundo
- LAQV/REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, R Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Elefteria Psillakis
- Laboratory of Aquatic Chemistry, School of Environmental Engineering, Polytechnioupolis, Technical University of Crete, GR-73100, Chania, Crete, Greece
| |
Collapse
|
9
|
Duo H, Lu X, Wang S, Liang X, Guo Y. Preparation and applications of metal-organic framework derived porous carbons as novel adsorbents in sample preparation. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.116093] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
10
|
Jalili V, Barkhordari A, Ghiasvand A. Solid-phase microextraction technique for sampling and preconcentration of polycyclic aromatic hydrocarbons: A review. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104967] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
11
|
Jinadasa BKKK, Monteau F, Morais S. Critical review of micro-extraction techniques used in the determination of polycyclic aromatic hydrocarbons in biological, environmental and food samples. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2020; 37:1004-1026. [PMID: 32186468 DOI: 10.1080/19440049.2020.1733103] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Polycyclic Aromatic Hydrocarbons (PAHs) are ubiquitous environmental contaminants and their accurate determination is very important to human health and environment safety. In this review, sorptive-based micro-extraction techniques [such as Solid-Phase Micro-extraction (SPME), Stir Bar Sorptive Extraction (SBSE), Micro-extraction in Packed Sorbent (MEPS)] and solvent-based micro-extraction [Membrane-Mediated Liquid-Phase Micro-extraction (MM-LPME), Dispersive Liquid-Liquid Micro-extraction (DLLME), and Single Drop Micro-extraction (SDME)] developed for quantification of PAHs in environmental, biological and food samples are reviewed. Moreover, recent micro-extraction techniques that have been coupled with other sample extraction strategies are also briefly discussed. The main objectives of these micro-extraction techniques are to perform extraction, pre-concentration and clean up together as one step, and the reduction of the analysis time, cost and solvent following the green chemistry guidelines.
Collapse
Affiliation(s)
- B K K K Jinadasa
- Laboratoire D'étude Des Résidus Et Contaminants Dans Les Aliments (LABERCA), Nantes-Atlantic National College of Veterinary Medicine, Food Science, and Engineering (ONIRIS) , Nantes, France
| | - Fabrice Monteau
- Laboratoire D'étude Des Résidus Et Contaminants Dans Les Aliments (LABERCA), Nantes-Atlantic National College of Veterinary Medicine, Food Science, and Engineering (ONIRIS) , Nantes, France
| | - Simone Morais
- REQUIMTE-LAQV, Instituto Superior De Engenharia Do Porto, Instituto Politécnico Do Porto , Porto, Portugal
| |
Collapse
|
12
|
Nakagami K, Monobe T, Sumiya O, Takashima K, Ueta I, Saito Y. Braid configuration designed for fiber-packed capillary in microscale sample preparation. J Chromatogr A 2020; 1613:460694. [DOI: 10.1016/j.chroma.2019.460694] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 11/07/2019] [Accepted: 11/07/2019] [Indexed: 11/30/2022]
|
13
|
Chen J, Zhang B, Dang X, Zheng D, Ai Y, Chen H. A nanocomposite consisting of etched multiwalled carbon nanotubes, amino-modified metal-organic framework UiO-66 and polyaniline for preconcentration of polycyclic aromatic hydrocarbons prior to their determination by HPLC. Mikrochim Acta 2020; 187:78. [DOI: 10.1007/s00604-019-3997-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 11/03/2019] [Indexed: 10/25/2022]
|
14
|
Recent Applications and Newly Developed Strategies of Solid-Phase Microextraction in Contaminant Analysis: Through the Environment to Humans. SEPARATIONS 2019. [DOI: 10.3390/separations6040054] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The present review aims to describe the recent and most impactful applications in pollutant analysis using solid-phase microextraction (SPME) technology in environmental, food, and bio-clinical analysis. The covered papers were published in the last 5 years (2014–2019) thus providing the reader with information about the current state-of-the-art and the future potential directions of the research in pollutant monitoring using SPME. To this end, we revised the studies focused on the investigation of persistent organic pollutants (POPs), pesticides, and emerging pollutants (EPs) including personal care products (PPCPs), in different environmental, food, and bio-clinical matrices. We especially emphasized the role that SPME is having in contaminant surveys following the path that goes from the environment to humans passing through the food web. Besides, this review covers the last technological developments encompassing the use of novel extraction coatings (e.g., metal-organic frameworks, covalent organic frameworks, PDMS-overcoated fiber), geometries (e.g., Arrow-SPME, multiple monolithic fiber-SPME), approaches (e.g., vacuum and cold fiber SPME), and on-site devices. The applications of SPME hyphenated with ambient mass spectrometry have also been described.
Collapse
|
15
|
|
16
|
Feng J, Sun M, Han S, Ji X, Li C, Wang X, Tian Y. Polydopamine‐coated cotton fibers as the adsorbent for in‐tube solid‐phase microextraction. J Sep Sci 2019; 42:2163-2170. [DOI: 10.1002/jssc.201801333] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 03/30/2019] [Accepted: 04/15/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Juanjuan Feng
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of ShandongSchool of Chemistry and Chemical EngineeringUniversity of Jinan Jinan P. R. China
| | - Min Sun
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of ShandongSchool of Chemistry and Chemical EngineeringUniversity of Jinan Jinan P. R. China
| | - Sen Han
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of ShandongSchool of Chemistry and Chemical EngineeringUniversity of Jinan Jinan P. R. China
| | - Xiangping Ji
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of ShandongSchool of Chemistry and Chemical EngineeringUniversity of Jinan Jinan P. R. China
| | - Chunying Li
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of ShandongSchool of Chemistry and Chemical EngineeringUniversity of Jinan Jinan P. R. China
| | - Xiuqin Wang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of ShandongSchool of Chemistry and Chemical EngineeringUniversity of Jinan Jinan P. R. China
| | - Yu Tian
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of ShandongSchool of Chemistry and Chemical EngineeringUniversity of Jinan Jinan P. R. China
| |
Collapse
|
17
|
Xia L, He Y, Xiao X, Li G. An online field-assisted micro-solid-phase extraction device coupled with high-performance liquid chromatography for the direct analysis of solid samples. Anal Bioanal Chem 2019; 411:4073-4084. [PMID: 31025184 DOI: 10.1007/s00216-019-01809-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 02/03/2019] [Accepted: 03/26/2019] [Indexed: 01/05/2023]
Abstract
Herein, a total online device based on field-assisted extraction (FAE), micro-solid-phase extraction (μ-SPE), and high-performance liquid chromatography (HPLC) was designed. Solid samples were pretreated with ultrasound-microwave synergic effects, and then the extract was cleaned up online with a monolithic column, followed by HPLC analysis. The cross-actions between ultrasound and microwave along with other extraction parameters were studied systematically. The efficiency of this online method was verified in the determination of polycyclic aromatic hydrocarbons (PAHs) in foods and tetracycline antibiotics (TCAs) in cosmetic samples. The detection limits of nine PAHs including fluorene, phenanthrene, anthracene, fluoranthene, benzo[k]fluoranthene, benz[a]anthracene, benzo[b]fluoranthene, pyrene, and benzo[a]pyrene were all within 0.075-0.30 μg/kg, as well as four TCAs including oxytetracycline, tetracycline, chlortetracycline, and doxycycline were within 0.02-0.06 μg/kg. Six PAHs were found in roast potatoes and baked fish and the recoveries were in the range of 71.5-119.7% with RSDs of 0.2-10.9% (n = 3). The recoveries for TCAs in cosmetic samples were in the range of 75.3-118.0% with RSDs lower than 8.2% (n = 3). Compared with those offline methods, this total online FAE-μ-SPE-HPLC method not only simplifies the operation process, but also increases the precision and accuracy. Beyond trace analytes analysis in solid and semi-solid matrixes, application of this total online analysis method can also be extended to investigate field-assisted extraction mechanisms. Graphical abstract.
Collapse
Affiliation(s)
- Ling Xia
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
| | - Yuanyuan He
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
| | - Xiaohua Xiao
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China.
| | - Gongke Li
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China.
| |
Collapse
|
18
|
A Dual Ligand Sol⁻Gel Organic-Silica Hybrid Monolithic Capillary for In-Tube SPME-MS/MS to Determine Amino Acids in Plasma Samples. Molecules 2019; 24:molecules24091658. [PMID: 31035579 PMCID: PMC6540176 DOI: 10.3390/molecules24091658] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/17/2019] [Accepted: 04/24/2019] [Indexed: 11/17/2022] Open
Abstract
This work describes the direct coupling of the in-tube solid-phase microextraction (in-tube SPME) technique to a tandem mass spectrometry system (MS/MS) to determine amino acids (AA) and neurotransmitters (NT) (alanine, serine, isoleucine, leucine, aspartic acid, glutamic acid, lysine, methionine, tyrosine, and tryptophan) in plasma samples from schizophrenic patients. An innovative organic-silica hybrid monolithic capillary with bifunctional groups (amino and cyano) was developed and evaluated as an extraction device for in-tube SPME. The morphological and structural aspects of the monolithic phase were evaluated by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), nitrogen sorption experiments, X-ray diffraction (XRD) analyses, and adsorption experiments. In-tube SPME-MS/MS conditions were established to remove matrix, enrich analytes (monolithic capillary) and improve the sensitivity of the MS/MS system. The proposed method was linear from 45 to 360 ng mL-1 for alanine, from 15 to 300 ng mL-1 for leucine and isoleucine, from 12 to 102 ng mL-1 for methionine, from 10 to 102 ng mL-1 for tyrosine, from 9 to 96 ng mL-1 for tryptophan, from 12 to 210 ng mL-1 for serine, from 12 to 90 ng mL-1 for glutamic acid, from 12 to 102 ng mL-1 for lysine, and from 6 to 36 ng mL-1 for aspartic acid. The precision of intra-assays and inter-assays presented CV values ranged from 1.6% to 14.0%. The accuracy of intra-assays and inter-assays presented RSE values from -11.0% to 13.8%, with the exception of the lower limit of quantification (LLOQ) values. The in-tube SPME-MS/MS method was successfully applied to determine the target AA and NT in plasma samples from schizophrenic patients.
Collapse
|
19
|
Li C, Feng J, Wang X, Tian Y, Ji X, Luo C, Sun M. Melamine–Formaldehyde Aerogel Doped with Boron Nitride Nanosheets as the Coating of In-Tube Solid-Phase Microextraction. Chromatographia 2019. [DOI: 10.1007/s10337-019-03707-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
20
|
Pang J, Yuan D, Huang X. On-line combining monolith-based in-tube solid phase microextraction and high-performance liquid chromatography- fluorescence detection for the sensitive monitoring of polycyclic aromatic hydrocarbons in complex samples. J Chromatogr A 2018; 1571:29-37. [DOI: 10.1016/j.chroma.2018.07.077] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 07/24/2018] [Accepted: 07/27/2018] [Indexed: 01/03/2023]
|
21
|
Duo H, Wang Y, Wang L, Lu X, Liang X. Zirconium(IV)-based metal-organic frameworks (UiO-67) as solid-phase extraction adsorbents for extraction of phenoxyacetic acid herbicides from vegetables. J Sep Sci 2018; 41:4149-4158. [DOI: 10.1002/jssc.201800784] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/04/2018] [Accepted: 09/04/2018] [Indexed: 01/10/2023]
Affiliation(s)
- Huixiao Duo
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province; Lanzhou Institute of Chemical Physics; Chinese Academy of Sciences; Lanzhou P. R. China
- Chinese Academy of Sciences; University of Chinese Academy of Sciences; Huairou Beijing P. R. China
| | - Yuhuan Wang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province; Lanzhou Institute of Chemical Physics; Chinese Academy of Sciences; Lanzhou P. R. China
- Chinese Academy of Sciences; University of Chinese Academy of Sciences; Huairou Beijing P. R. China
| | - Licheng Wang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province; Lanzhou Institute of Chemical Physics; Chinese Academy of Sciences; Lanzhou P. R. China
| | - Xiaofeng Lu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province; Lanzhou Institute of Chemical Physics; Chinese Academy of Sciences; Lanzhou P. R. China
| | - Xiaojing Liang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province; Lanzhou Institute of Chemical Physics; Chinese Academy of Sciences; Lanzhou P. R. China
| |
Collapse
|
22
|
Feng J, Wang X, Tian Y, Luo C, Sun M. Basalt fibers grafted with a poly(ionic liquids) coating for in-tube solid-phase microextraction. J Sep Sci 2018; 41:3267-3274. [DOI: 10.1002/jssc.201800477] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/08/2018] [Accepted: 06/11/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Juanjuan Feng
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering; University of Jinan; Jinan P. R. China
| | - Xiuqin Wang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering; University of Jinan; Jinan P. R. China
| | - Yu Tian
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering; University of Jinan; Jinan P. R. China
| | - Chuannan Luo
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering; University of Jinan; Jinan P. R. China
| | - Min Sun
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering; University of Jinan; Jinan P. R. China
| |
Collapse
|
23
|
De Toffoli AL, Fumes BH, Lanças FM. Packed in-tube solid phase microextraction with graphene oxide supported on aminopropyl silica: Determination of target triazines in water samples. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2018; 53:434-440. [PMID: 29469607 DOI: 10.1080/03601234.2018.1438831] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
On-line in-tube solid phase microextraction (in-tube SPME) coupled to high performance liquid chromatography and tandem mass spectrometry (HPLC-MS/MS) was successfully applied to the determination of selected triazines in water samples. The method based on the employment of a packed column containing graphene oxide (GO) supported on aminopropyl silica (Si) showed that the extraction phase has a high potential for triazines extraction aiming to its physical-chemical properties including ultrahigh specific surface area, good mechanical and thermal stability and high fracture strength. Injection volume and loading time were both investigated and optimized. The method validation using Si-GO to extract and concentrate the analytes showed satisfactory results, good sensitivity, good linearity (0.2-4.0 µg L-1) and low detection limits (1.1-2.9 ng L-1). The high extraction efficiency was determined with enrichment factors ranging from 1.2-2.9 for the lowest level, 1.3-4.9 intermediate level and 1.2-3.0 highest level (n = 3). Although the analytes were not detected in the real samples evaluated, the method has demonstrated to be efficient through its application in the analysis of spiked triazines in ground and mineral water samples.
Collapse
Affiliation(s)
- Ana L De Toffoli
- a University of Sao Paulo, Institute of Chemistry at Sao Carlos , Department of Chemistry , São Carlos , SP , Brazil
| | - Bruno H Fumes
- a University of Sao Paulo, Institute of Chemistry at Sao Carlos , Department of Chemistry , São Carlos , SP , Brazil
| | - Fernando M Lanças
- a University of Sao Paulo, Institute of Chemistry at Sao Carlos , Department of Chemistry , São Carlos , SP , Brazil
| |
Collapse
|
24
|
Feng J, Mao H, Wang X, Tian Y, Luo C, Sun M. Ionic liquid chemically bonded basalt fibers for in-tube solid-phase microextraction. J Sep Sci 2018; 41:1839-1846. [DOI: 10.1002/jssc.201701314] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 12/24/2017] [Accepted: 12/25/2017] [Indexed: 12/30/2022]
Affiliation(s)
- Juanjuan Feng
- Key Laboratory of Interfacial Reaction and Sensing Analysis in Universities of Shandong; School of Chemistry and Chemical Engineering; University of Jinan; Jinan P. R. China
| | - Huijun Mao
- Key Laboratory of Interfacial Reaction and Sensing Analysis in Universities of Shandong; School of Chemistry and Chemical Engineering; University of Jinan; Jinan P. R. China
| | - Xiuqin Wang
- Key Laboratory of Interfacial Reaction and Sensing Analysis in Universities of Shandong; School of Chemistry and Chemical Engineering; University of Jinan; Jinan P. R. China
| | - Yu Tian
- Key Laboratory of Interfacial Reaction and Sensing Analysis in Universities of Shandong; School of Chemistry and Chemical Engineering; University of Jinan; Jinan P. R. China
| | - Chuannan Luo
- Key Laboratory of Interfacial Reaction and Sensing Analysis in Universities of Shandong; School of Chemistry and Chemical Engineering; University of Jinan; Jinan P. R. China
| | - Min Sun
- Key Laboratory of Interfacial Reaction and Sensing Analysis in Universities of Shandong; School of Chemistry and Chemical Engineering; University of Jinan; Jinan P. R. China
| |
Collapse
|
25
|
Downy mildew symptoms on grapevines can be reduced by volatile organic compounds of resistant genotypes. Sci Rep 2018; 8:1618. [PMID: 29374187 PMCID: PMC5786018 DOI: 10.1038/s41598-018-19776-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 01/04/2018] [Indexed: 12/22/2022] Open
Abstract
Volatile organic compounds (VOCs) play a crucial role in the communication of plants with other organisms and are possible mediators of plant defence against phytopathogens. Although the role of non-volatile secondary metabolites has been largely characterised in resistant genotypes, the contribution of VOCs to grapevine defence mechanisms against downy mildew (caused by Plasmopara viticola) has not yet been investigated. In this study, more than 50 VOCs from grapevine leaves were annotated/identified by headspace-solid-phase microextraction gas chromatography-mass spectrometry analysis. Following P. viticola inoculation, the abundance of most of these VOCs was higher in resistant (BC4, Kober 5BB, SO4 and Solaris) than in susceptible (Pinot noir) genotypes. The post-inoculation mechanism included the accumulation of 2-ethylfuran, 2-phenylethanol, β-caryophyllene, β-cyclocitral, β-selinene and trans-2-pentenal, which all demonstrated inhibitory activities against downy mildew infections in water suspensions. Moreover, the development of downy mildew symptoms was reduced on leaf disks of susceptible grapevines exposed to air treated with 2-ethylfuran, 2-phenylethanol, β-cyclocitral or trans-2-pentenal, indicating the efficacy of these VOCs against P. viticola in receiver plant tissues. Our data suggest that VOCs contribute to the defence mechanisms of resistant grapevines and that they may inhibit the development of downy mildew symptoms on both emitting and receiving tissues.
Collapse
|
26
|
Feng J, Tian Y, Wang X, Luo C, Sun M. Basalt fibers functionalized with gold nanoparticles for in-tube solid-phase microextraction. J Sep Sci 2018; 41:1149-1155. [DOI: 10.1002/jssc.201701027] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 12/07/2017] [Accepted: 12/08/2017] [Indexed: 01/14/2023]
Affiliation(s)
- Juanjuan Feng
- Key Laboratory of Interfacial Reaction and Sensing Analysis in Universities of Shandong; School of Chemistry and Chemical Engineering; University of Jinan; Jinan P. R. China
| | - Yu Tian
- Key Laboratory of Interfacial Reaction and Sensing Analysis in Universities of Shandong; School of Chemistry and Chemical Engineering; University of Jinan; Jinan P. R. China
| | - Xiuqin Wang
- Key Laboratory of Interfacial Reaction and Sensing Analysis in Universities of Shandong; School of Chemistry and Chemical Engineering; University of Jinan; Jinan P. R. China
| | - Chuannan Luo
- Key Laboratory of Interfacial Reaction and Sensing Analysis in Universities of Shandong; School of Chemistry and Chemical Engineering; University of Jinan; Jinan P. R. China
| | - Min Sun
- Key Laboratory of Interfacial Reaction and Sensing Analysis in Universities of Shandong; School of Chemistry and Chemical Engineering; University of Jinan; Jinan P. R. China
| |
Collapse
|
27
|
Fernández-Amado M, Prieto-Blanco M, López-Mahía P, Muniategui-Lorenzo S, Prada-Rodríguez D. Ion-pair in-tube solid phase microextraction for the simultaneous determination of phthalates and their degradation products in atmospheric particulate matter. J Chromatogr A 2017; 1520:35-47. [DOI: 10.1016/j.chroma.2017.09.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 08/23/2017] [Accepted: 09/03/2017] [Indexed: 12/31/2022]
|
28
|
Electrophoretic deposition of graphene oxide onto carbon fibers for in-tube solid-phase microextraction. J Chromatogr A 2017; 1517:209-214. [DOI: 10.1016/j.chroma.2017.07.086] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 07/22/2017] [Accepted: 07/28/2017] [Indexed: 11/19/2022]
|
29
|
Bu Y, Feng J, Tian Y, Wang X, Sun M, Luo C. An organically modified silica aerogel for online in-tube solid-phase microextraction. J Chromatogr A 2017; 1517:203-208. [PMID: 28843602 DOI: 10.1016/j.chroma.2017.07.075] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 07/18/2017] [Accepted: 07/23/2017] [Indexed: 10/19/2022]
Abstract
Aerogels have received considerable attentions because of its porous, high specific surface, unique properties and environmental friendliness. In this work, an organically modified silica aerogel was functionalized on the basalt fibers (BFs) and filled into a poly(ether ether ketone) (PEEK) tube, which was coupled with high performance liquid chromatography (HPLC) for in-tube solid-phase microextraction (IT-SPME). The aerogel was characterized by scanning electron microscopy (SEM) and fourier transform infrared spectrometry (FT-IR). The extraction efficiency of the tube was systematically investigated and shown enrichment factors from 2346 to 3132. An automated, sensitive and selective method was developed for the determination of five estrogens. The linear range was from 0.03 to 100μgL-1 with correlation coefficients (r) higher than 0.9989, and low detection limits (LODs) were 0.01-0.05μgL-1. The relative standard deviations (RSDs) for intra-day and inter-day were less than 4.5% and 6.7% (n=6), respectively. Finally, the analysis method was successfully applied to detect estrogens in sewage and emollient water samples.
Collapse
Affiliation(s)
- Yanan Bu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Juanjuan Feng
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Yu Tian
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Xiuqin Wang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Min Sun
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China.
| | - Chuannan Luo
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China.
| |
Collapse
|
30
|
A preconcentrator-separator two-in-one online system for polycyclic aromatic hydrocarbons analysis. Talanta 2017; 167:573-582. [DOI: 10.1016/j.talanta.2017.02.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 02/17/2017] [Accepted: 02/17/2017] [Indexed: 11/24/2022]
|
31
|
In situ hydrothermal growth of polyaniline coating for in-tube solid-phase microextraction towards ultraviolet filters in environmental water samples. J Chromatogr A 2017; 1483:48-55. [DOI: 10.1016/j.chroma.2016.12.077] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 12/21/2016] [Accepted: 12/27/2016] [Indexed: 11/18/2022]
|
32
|
Serra-Mora P, Moliner-Martínez Y, Molins-Legua C, Herráez-Hernández R, Verdú-Andrés J, Campíns-Falcó P. Trends in Online Intube Solid Phase Microextraction. COMPREHENSIVE ANALYTICAL CHEMISTRY 2017. [DOI: 10.1016/bs.coac.2017.01.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|