1
|
Zhang R, Liu K, Jia F, Xu T, Yang Y. A label-free colorimetric aptasensor for rapid multiplex detection of leuco-malachite green and leuco-crystal violet. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:450-459. [PMID: 39651551 DOI: 10.1039/d4ay01849d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Leuco-malachite green (LMG) and leuco-crystal violet (LCV) are widespread co-pollutants in aquatic products that pose a severe threat to human health. Therefore, it is urgent and challenging to develop rapid multiplex detection of LMG and LCV. Herein, the bispecific aptamer (A5b) for LMG and LCV was characterized. Its dissociation constant (Kd) was 2.03 ± 0.13 μM for LMG and 0.97 ± 0.06 μM for LCV. Then, we used A5b as a sensing probe to develop a label-free colorimetric aptasensor using gold nanoparticles (AuNPs) as an indicator and poly-diallyl dimethylammonium chloride (PDDA) as an aggregation inducer. In the absence of LMG and LCV, PDDA hybridized A5b via electrostatic interaction to form a "duplex" structure, which failed to induce the aggregation of AuNPs. However, in the presence of LMG or LCV, A5b specifically bound to LMG or LCV, releasing PDDA. The free PDDA then induced the aggregation of AuNPs. Consequently, a visible color change from red to blue was observed with increasing LMG/LCV concentration. This sensor exhibited excellent sensitivity and bispecificity, and a limit of detection (LOD) of 77.9 nM for LCV and 123.1 nM for LMG, with a linear concentration range of 1-6 μM for LCV and 1-8 μM for LMG. Additionally, the potential of this sensor for real-world applications was well demonstrated in crucian samples. Overall, this work provided a bispecific affinity probe for LMG and LCV for the first time and reported a label-free colorimetric aptasensor for multiplex detection of LMG and LCV in aquatic products.
Collapse
Affiliation(s)
- Runze Zhang
- Department of Food and Biological Sciences, Agricultural College, Yanbian University, Yanji 133002, China.
| | - Kexin Liu
- Department of Food and Biological Sciences, Agricultural College, Yanbian University, Yanji 133002, China.
| | - Fangran Jia
- Department of Food and Biological Sciences, Agricultural College, Yanbian University, Yanji 133002, China.
| | - Tianci Xu
- Department of Food and Biological Sciences, Agricultural College, Yanbian University, Yanji 133002, China.
| | - Yongjie Yang
- Department of Food and Biological Sciences, Agricultural College, Yanbian University, Yanji 133002, China.
| |
Collapse
|
2
|
Kurtulbaş E, Ciğeroğlu Z, Şahin S, El Messaoudi N, Mehmeti V. Monte Carlo, molecular dynamic, and experimental studies of the removal of malachite green using g-C 3N 4/ZnO/Chitosan nanocomposite in the presence of a deep eutectic solvent. Int J Biol Macromol 2024; 274:133378. [PMID: 38914401 DOI: 10.1016/j.ijbiomac.2024.133378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/23/2024] [Accepted: 06/21/2024] [Indexed: 06/26/2024]
Abstract
Deep-eutectic solvents (DES) have emerged as promising candidates for preparing nanocomposites. In this study, a DES-based graphitic carbon nitride (g-C3N4)/ZnO/Chitosan (Ch) nanocomposite was synthesized to remove malachite green (MG) dye from water. The DES was prepared by mixing and heating citric acid as a hydrogen bond acceptor and lactic acid as a hydrogen bond donor. This is the first report of the removal of MG using DES-based nanocomposites. Experiments on kinetics and isothermal adsorption were conducted to systematically explore the adsorption performances of nanocomposite toward dye. At 25 °C, the highest adsorption performance was obtained with alkaline media (>90 % removal). The greatest adsorption capacity (qm) was 59.52 mg g-1 at conditions (30 mg L-1 MG solution, pH 9, 3 mg nanocomposite per 10 mL of MG solution, 25 °C, 150 rpm, and 150 min) based on the calculation from the best-fitting isotherm model (Langmuir). The adsorption process was most appropriately kinetically described by the PSO model. The Monte Carlo (MC) and molecular dynamic (MC) results are correlated with experimental findings to validate the theoretical predictions and enhance the overall understanding of the adsorption process. Electronic structure calculations reveal the nature of interactions, including hydrogen bonding and electrostatic forces, between the nanocomposite and MG molecules.
Collapse
Affiliation(s)
- Ebru Kurtulbaş
- Istanbul University-Cerrahpasa, Faculty of Engineering, Chemical Engineering Department, 34320 Avcilar, Istanbul, Türkiye
| | - Zeynep Ciğeroğlu
- Uşak University, Faculty of Engineering and Sciences, Chemical Engineering Department, 64300 Uşak, Türkiye.
| | - Selin Şahin
- Istanbul University-Cerrahpasa, Faculty of Engineering, Chemical Engineering Department, 34320 Avcilar, Istanbul, Türkiye
| | - Noureddine El Messaoudi
- Laboratory of Applied Chemistry and Environment, Faculty of Sciences, Ibn Zohr University, Agadir 80000, Morocco
| | - Valbonë Mehmeti
- University of Prishtina, Faculty of Agriculture and Veterinary, Prishtina, Kosovo
| |
Collapse
|
3
|
Xia YF, Yuan HQ, Qiao C, Li W, Wang R, Chen P, Li YX, Bao GM. Multifunctional Eu 3+-MOF for simultaneous quantification of malachite green and leuco-malachite green and efficient adsorption of malachite green. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133386. [PMID: 38160559 DOI: 10.1016/j.jhazmat.2023.133386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/08/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
Multi-target detection combined with in-situ removal of contaminants is a challenging issue difficult to overcome. Herein, a dual-emissive Eu3+-metal organic framework (Eu3+-MOF) was constructed by pre-functionalization with a blue-emissive ligand and post-functionalization with red-emissive Eu3+ ions using a UiO-66 precursor. The fluorescence of the synthesized Eu3+-MOF is highly selective and sensitive toward malachite green (MG) and its metabolite leuco-malachite green (LMG), which are environmentally persistent and highly toxic to humans. The limit of detection of MG and LMG are 34.20 and 1.98 nM, respectively. Interestingly, the fluorescence of this Eu3+-MOF showed ratiometric but different responsive modes toward MG and LMG, which enabled the simultaneous quantification of MG and LMG. Furthermore, a paper-based sensor combined with the smartphone was fabricated, which facilitated not only the dual-channel detection of MG, but also its portable, visual, rapid, and intelligent determination. Furthermore, the high surface area of MOFs, together with the coordinate bonding interaction, π-π stacking, and electrostatic interaction sites, endows Eu3+-MOF with the efficient ability toward MG removal. This multifunctional Eu3+-MOF can be successfully used for trace detection, simultaneous determination of MG and LMG, as well as efficient removal of MG. Thus, it exhibits bright prospects for widespread applications in the field of food and environmental analysis.
Collapse
Affiliation(s)
- Yi-Fan Xia
- National "111″ Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Hou-Qun Yuan
- National "111″ Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China.
| | - Chen Qiao
- National "111″ Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Wei Li
- College of Chemistry and Materials, Jiangxi Agricultural University, Nanchang 330045, China
| | - Ran Wang
- National "111″ Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Peiyao Chen
- National "111″ Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Yan-Xia Li
- College of Chemistry and Materials, Jiangxi Agricultural University, Nanchang 330045, China
| | - Guang-Ming Bao
- National "111″ Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China.
| |
Collapse
|
4
|
Wu W, Sun Q, Li T, Liu K, Jiang Y, Wang Y, Yang Y. Selection and characterization of bispecific aptamers against malachite green and leucomalachite green. Anal Biochem 2022; 658:114849. [PMID: 36150472 DOI: 10.1016/j.ab.2022.114849] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 11/01/2022]
Abstract
In order to develop multi-residues rapid detection, the bispecific aptamers against malachite green (MG) and leucomalachite green (LMG) were isolated by the capture systematic evolution of ligands by exponential enrichment (Capture-SELEX). After thirteen rounds of selection, the enriched ssDNA pools were sent for high-throughput sequencing. Nine aptamer candidates (A1-A9) were picked out to test their specificity by gold nanoparticles (AuNPs) colorimetric assay. Three aptamers (A2, A3, A5) with good selectivity were truncated to verify their affinity by fluorescence assay. Finally, three truncated aptamers (A2-a, A3-a, A5-a) with bispecificity and high affinity were identified. For LMG, the dissociation constant (Kd) of them were 8.4 ± 0.8 nM, 8.2 ± 1.2 nM, and 13.7 ± 1.4 nM, respectively. For MG, Kd of them were 3.4 ± 0.3 μM, 2.3 ± 0.2 μM, 3.0 ± 0.2μM. Among them, A3-a is the best. Our work will provide novel probes for the development of multi-residues rapid detection as well as opportunities for multiple target aptamer discovery.
Collapse
Affiliation(s)
- Wenwei Wu
- Agricultural College, Yanbian University, Yanji, 133002, China
| | - Qifeng Sun
- Beijing Hightrust Medical Laboratory Co., LTD, Beijing, 102600, China
| | - Tiansong Li
- College of Science, Beihua University, Jilin, 132001, China
| | - Kexin Liu
- Agricultural College, Yanbian University, Yanji, 133002, China
| | - Yan Jiang
- Agricultural College, Yanbian University, Yanji, 133002, China
| | - Yi Wang
- College of Science, Beihua University, Jilin, 132001, China.
| | - Yongjie Yang
- Agricultural College, Yanbian University, Yanji, 133002, China.
| |
Collapse
|
5
|
Hui Y, Huang Z, Alahi MEE, Nag A, Feng S, Mukhopadhyay SC. Recent Advancements in Electrochemical Biosensors for Monitoring the Water Quality. BIOSENSORS 2022; 12:bios12070551. [PMID: 35884353 PMCID: PMC9313366 DOI: 10.3390/bios12070551] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/10/2022] [Accepted: 07/13/2022] [Indexed: 05/06/2023]
Abstract
The release of chemicals and microorganisms from various sources, such as industry, agriculture, animal farming, wastewater treatment plants, and flooding, into water systems have caused water pollution in several parts of our world, endangering aquatic ecosystems and individual health. World Health Organization (WHO) has introduced strict standards for the maximum concentration limits for nutrients and chemicals in drinking water, surface water, and groundwater. It is crucial to have rapid, sensitive, and reliable analytical detection systems to monitor the pollution level regularly and meet the standard limit. Electrochemical biosensors are advantageous analytical devices or tools that convert a bio-signal by biorecognition elements into a significant electrical response. Thanks to the micro/nano fabrication techniques, electrochemical biosensors for sensitive, continuous, and real-time detection have attracted increasing attention among researchers and users worldwide. These devices take advantage of easy operation, portability, and rapid response. They can also be miniaturized, have a long-life span and a quick response time, and possess high sensitivity and selectivity and can be considered as portable biosensing assays. They are of special importance due to their great advantages such as affordability, simplicity, portability, and ability to detect at on-site. This review paper is concerned with the basic concepts of electrochemical biosensors and their applications in various water quality monitoring, such as inorganic chemicals, nutrients, microorganisms' pollution, and organic pollutants, especially for developing real-time/online detection systems. The basic concepts of electrochemical biosensors, different surface modification techniques, bio-recognition elements (BRE), detection methods, and specific real-time water quality monitoring applications are reviewed thoroughly in this article.
Collapse
Affiliation(s)
- Yun Hui
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China;
| | - Zhaoling Huang
- School of Mechanical and Electrical Engineering, Guilin University of Electronic Technology, Guilin 541004, China;
| | - Md Eshrat E. Alahi
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China;
- Correspondence: (M.E.E.A.); (S.F.)
| | - Anindya Nag
- Faculty of Electrical and Computer Engineering, Technische Universität Dresden, 01062 Dresden, Germany;
- Centre for Tactile Internet with Human-in-the-Loop (CeTI), Technische Universität Dresden, 01069 Dresden, Germany
| | - Shilun Feng
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- Correspondence: (M.E.E.A.); (S.F.)
| | | |
Collapse
|
6
|
Xiao X, Hu S, Lai X, Peng J, Lai W. Developmental trend of immunoassays for monitoring hazards in food samples: A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.02.045] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
Danesh NM, Lavaee P, Ramezani M, Alibolandi M, Kianfar M, Alinezhad Nameghi M, Abnous K, Taghdisi SM. An electrochemical sensing method based on an oligonucleotide structure for ultrasensitive detection of malachite green. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105598] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
8
|
Jiang LP, Li N, Liu LQ, Zheng X, Du FY, Ruan GH. Preparation and Application of Polymerized High Internal Phase Emulsion Monoliths for the Preconcentration and Determination of Malachite Green and Leucomalachite Green in Water Samples. JOURNAL OF ANALYSIS AND TESTING 2020. [DOI: 10.1007/s41664-020-00145-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Chen Y, Xia S, Han X, Fu Z. Simultaneous Determination of Malachite Green, Chloramphenicols, Sulfonamides, and Fluoroquinolones Residues in Fish by Liquid Chromatography-Mass Spectrometry. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2020; 2020:3725618. [PMID: 32149000 PMCID: PMC7049828 DOI: 10.1155/2020/3725618] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 12/27/2019] [Accepted: 01/14/2020] [Indexed: 06/10/2023]
Abstract
A fast-analytical method using simplified extraction has been developed for the simultaneous determination of 42 compounds from 4 different classes of veterinary drugs (amphenicols, triphenylmethane, fluoroquinolones, and sulfonamides) in fish by reverse phase liquid chromatography-tandem mass spectrometry. The selection of extraction reagents was optimized using different types of microfiltration membrane, mobile phase, and LC column. Samples were extracted using 0.4% hydrochloric acid in acetonitrile and ethyl acetate and then were cleaned up using solid-phase extraction Cleanert Alumina N columns (500 mg) and Oasis hydrophilic-lipophilic balance (HLB) cartridges. The chromatographic separation was performed on a XR-ODS C8 column using a mobile phase of (A) 0.1% formic acid and 2 mM ammonium acetate and (B) 0.1% formic acid acetonitrile at a flow rate of 0.25 mL·min-1. The results indicated 67.7-112.8% recovery of 42 compounds with an intra- and interday relative standard deviations less than 10%. The limits of quantification for analytes were in the range of 0.3-1.0 μg kg-1 for samples which were satisfactory to support future surveillance monitoring. The method applicability was checked by analyzing 30 fish samples collected from local markets. Two fish samples surpassed the established MRL of 100 μg kg-1 with values of 104 μg kg-1 and 112 μg kg-1.
Collapse
Affiliation(s)
- Yongping Chen
- Tianjin Agricultural Ecological Environment Monitoring and Agricultural Product Quality Testing Center, Tianjin 300221, China
| | - Sudong Xia
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, Department of Fishery Science, Tianjin Agricultural University, Tianjin 300384, China
| | - Xianqin Han
- Tianjin Agricultural Ecological Environment Monitoring and Agricultural Product Quality Testing Center, Tianjin 300221, China
| | - Zhiru Fu
- Tianjin Agricultural Ecological Environment Monitoring and Agricultural Product Quality Testing Center, Tianjin 300221, China
| |
Collapse
|
10
|
Kaur S, Kaur I. Self‐assembly of p‐Aminothiophenol on Gold Surface: Application for Impedimetric and Potentiometric Sensing of Cobalt (II) Ions – A Comparative Study. ELECTROANAL 2019. [DOI: 10.1002/elan.201900187] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sarbjeet Kaur
- Department of Chemistry, Centre for Advanced StudiesGuru Nanak Dev University Amritsar, Punjab 143005 India
| | - Inderpreet Kaur
- Department of Chemistry, Centre for Advanced StudiesGuru Nanak Dev University Amritsar, Punjab 143005 India
| |
Collapse
|
11
|
A glassy carbon electrode modified with a monolayer of zirconium(IV) phosphonate for sensing of methyl-parathion by square wave voltammetry. Mikrochim Acta 2019; 186:433. [PMID: 31197482 DOI: 10.1007/s00604-019-3493-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 05/12/2019] [Indexed: 01/28/2023]
Abstract
A glassy carbon electrode (GCE) was consecutively modified with amino groups and phosphate groups, and then loaded with Zr(IV) ions. Fourier transform infrared spectrophotometry, field-emission scanning electron microscopy, energy dispersive X-ray spectroscopy and cyclic voltammetry were used to characterize the morphologies and electrochemical properties. The sensor was used to detect p-nitrophenyl-substituted organophosphorus pesticides, with methyl-parathion (MP) as the model analyte. Under optimized conditions, the oxidation current of square wave voltammetry (typically measured at around -0.28 V vs. saturated calomel electrode) increases linearly in the 1.0 to 100 ng mL-1 MP concentration range, and the detection limit is 0.25 ng mL-1 (at a signal to noise ratio of 3). Average recoveries from (spiked) real water samples are 99.9-102.2%, with relative standard deviations of 0.3-2.6% (n = 3) at three levels. The reliability and accuracy of the method was validated by HPLC. Graphical abstract Zr(IV) modified GCE is prepared via three steps. The electrode shows high specificity and selectivity towards methyl-parathion. And the linear range is 1.0 - 100.0 ng mL-1 with the detection limit as low as 0.25 ng mL-1 with SWV.
Collapse
|
12
|
Manikandan VS, Adhikari B, Chen A. Nanomaterial based electrochemical sensors for the safety and quality control of food and beverages. Analyst 2019; 143:4537-4554. [PMID: 30113611 DOI: 10.1039/c8an00497h] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The issue of foodborne related illnesses due to additives and contaminants poses a significant challenge to food processing industries. The efficient, economical and rapid analysis of food additives and contaminants is therefore necessary in order to minimize the risk of public health issues. Electrochemistry offers facile and robust analytical methods, which are desirable for food safety and quality assessment over conventional analytical techniques. The development of a wide array of nanomaterials has paved the way for their applicability in the design of high-performance electrochemical sensing devices for medical diagnostics and environment and food safety. The design of nanomaterial based electrochemical sensors has garnered enormous attention due to their high sensitivity and selectivity, real-time monitoring and ease of use. This review article focuses predominantly on the synthesis and applications of different nanomaterials for the electrochemical determination of some common additives and contaminants, including hydrazine (N2H4), malachite green (MG), bisphenol A (BPA), ascorbic acid (AA), caffeine, caffeic acid (CA), sulfite (SO32-) and nitrite (NO2-), which are widely found in food and beverages. Important aspects, such as the design, fabrication and characterization of graphene-based materials, gold nanoparticles, mono- and bimetallic nanoparticles and metal nanocomposites, sensitivity and selectivity for electrochemical sensor development are addressed. High-performance nanomaterial based electrochemical sensors have and will continue to have myriad prospects in the research and development of advanced analytical devices for the safety and quality control of food and beverages.
Collapse
Affiliation(s)
- Venkatesh S Manikandan
- Electrochemical Technology Centre, Department of Chemistry, University of Guelph, 50 Stone Road E, Guelph, Ontario N1G 2W1, Canada.
| | | | | |
Collapse
|
13
|
Zhou X, Zhang J, Pan Z, Li D. Review of Methods for the Detection and Determination of Malachite Green and Leuco-Malachite Green in Aquaculture. Crit Rev Anal Chem 2018; 49:1-20. [DOI: 10.1080/10408347.2018.1456314] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Xinhui Zhou
- College of Information and Electrical Engineering, China Agricultural University, Beijing, China
- China-EU Center for Information and Communication Technologies in Agriculture, China Agricultural University, Beijing, China
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture, China Agricultural University, Beijing, China
- Beijing Engineering and Technology Research Center for Internet of Things in Agriculture, China Agricultural University, Beijing, China
| | - Jiaran Zhang
- College of Information and Electrical Engineering, China Agricultural University, Beijing, China
- China-EU Center for Information and Communication Technologies in Agriculture, China Agricultural University, Beijing, China
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture, China Agricultural University, Beijing, China
- Beijing Engineering and Technology Research Center for Internet of Things in Agriculture, China Agricultural University, Beijing, China
| | - Zhongli Pan
- Healthy Processed Foods Research Unit, USDA-ARS-WRRC Albany, California, USA
- Department of Biological and Agricultural Engineering, University of California, Davis, California, USA
| | - Daoliang Li
- College of Information and Electrical Engineering, China Agricultural University, Beijing, China
- China-EU Center for Information and Communication Technologies in Agriculture, China Agricultural University, Beijing, China
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture, China Agricultural University, Beijing, China
- Beijing Engineering and Technology Research Center for Internet of Things in Agriculture, China Agricultural University, Beijing, China
| |
Collapse
|
14
|
Ouyang L, Yao L, Zhou T, Zhu L. Accurate SERS detection of malachite green in aquatic products on basis of graphene wrapped flexible sensor. Anal Chim Acta 2018; 1027:83-91. [PMID: 29866273 DOI: 10.1016/j.aca.2018.04.052] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 04/06/2018] [Accepted: 04/20/2018] [Indexed: 01/10/2023]
Abstract
Malachite Green (MG) is a banned pesticide for aquaculture products. As a required inspection item, its fast and accurate determination before the products' accessing market is very important. Surface enhanced Raman scattering (SERS) is a promising tool for MG sensing, but it requires the overcoming of several problems such as fairly poor sensitivity and reproducibility, especially laser induced chemical conversion and photo-bleaching during SERS observation. By using a graphene wrapped Ag array based flexible membrane sensor, a modified SERS strategy was proposed for the sensitive and accurate detection of MG. The graphene layer functioned as an inert protector for impeding chemical transferring of the bioproduct Leucomalachite Green (LMG) to MG during the SERS detection, and as a heat transmitter for preventing laser induced photo-bleaching, which enables the separate detection of MG and LMG in fish extracts. The combination of the Ag array and the graphene cover also produced plentiful densely and uniformly distributed hot spots, leading to analytical enhancement factor up to 3.9 × 108 and excellent reproducibility (relative standard deviation low to 5.8% for 70 runs). The proposed method was easily used for MG detection with limit of detection (LOD) as low as 2.7 × 10-11 mol L-1. The flexibility of the sensor enable it have a merit for in-field fast detection of MG residues on the scale of a living fish through a surface extraction and paste transferring manner. The developed strategy was successfully applied in the analysis of real samples, showing good prospects for both the fast inspection and quantitative detection of MG.
Collapse
Affiliation(s)
- Lei Ouyang
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China; Shenzhen Institute of Huazhong University of Science and Technology, 518000, Shenzhen, China
| | - Ling Yao
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Taohong Zhou
- Hubei Provincial Institute for Food Supervision and Test, Wuhan, 430074, China
| | - Lihua Zhu
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China; Shenzhen Institute of Huazhong University of Science and Technology, 518000, Shenzhen, China.
| |
Collapse
|
15
|
Svalova TS, Malysheva NN, Kozitsina AN. Structure of the receptor layer in electrochemical immunosensors. Modern trends and prospects of development. Russ Chem Bull 2018. [DOI: 10.1007/s11172-017-1951-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
16
|
Wang F, Wang H, Shen YD, Li YJ, Dong JX, Xu ZL, Yang JY, Sun YM, Xiao ZL. Bispecific Monoclonal Antibody-Based Multianalyte ELISA for Furaltadone Metabolite, Malachite Green, and Leucomalachite Green in Aquatic Products. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:8054-8061. [PMID: 27706938 DOI: 10.1021/acs.jafc.6b03233] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A new multianalyte immunoassay was designed to screen furaltadone metabolite 5-morpholinomethyl-3-amino-2-oxazolidone (AMOZ), malachite green (MG), and leucomalachite green (LMG) in aquatic products using a bispecific monoclonal antibody (BsMAb). Gradient drug mutagenesis methods were separately used to prepare an anti-3-nitrobenzaldehyde-derivatized AMOZ (3-NPAMOZ) hybridoma cell line that was hypoxanthine-guanine-phosphoribosyltransferase (HGRPT) deficient and an anti-LMG hybridoma cell line that was thymidine kinase (TK) deficient. BsMAb recognizing 3-NPAMOZ and LMG was generated using hybrid-hybridomas of HGRPT and TK deficient cell lines. For AMOZ and LMG, respectively, the BsMAb-based indirect competitive ELSIA (ic-ELISA) values of 1.7 ng/mL and 45.3 ng/mL and detection limits of 0.2 ng/mL and 4.8 ng/mL. To establish the ic-ELISA, 3-NPAMOZ derivatized from AMOZ with 3-nitrobenzaldehyde and LMG reduced from MG by potassium borohydride was recognized by BsMAb. Recoveries of AMOZ, MG, and LMG in aquatic products were satisfactory and correlated with HPLC analysis. Thus, the multianalyte ic-ELISA is suitable for rapid quantification of AMOZ, MG, and LMG in aquatic products.
Collapse
Affiliation(s)
- Feng Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University , Guangzhou 510642, China
| | - Hong Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University , Guangzhou 510642, China
| | - Yu-Dong Shen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University , Guangzhou 510642, China
| | - Yong-Jun Li
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University , Guangzhou 510642, China
- Zhongshan Quality Supervision & Inspection Institute of Agricultural Products , Zhongshan 528403, China
| | - Jie-Xian Dong
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California , Davis, California 95616, United States
| | - Zhen-Lin Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University , Guangzhou 510642, China
| | - Jin-Yi Yang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University , Guangzhou 510642, China
| | - Yuan-Ming Sun
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University , Guangzhou 510642, China
| | - Zhi-Li Xiao
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University , Guangzhou 510642, China
| |
Collapse
|