1
|
Zhang YX, Zhang Y, Bian Y, Liu YJ, Ren A, Zhou Y, Shi D, Feng XS. Benzodiazepines in complex biological matrices: Recent updates on pretreatment and detection methods. J Pharm Anal 2023; 13:442-462. [PMID: 37305786 PMCID: PMC10257149 DOI: 10.1016/j.jpha.2023.03.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 03/10/2023] [Accepted: 03/25/2023] [Indexed: 04/04/2023] Open
Abstract
Benzodiazepines (BDZs) are used in clinics for anxiolysis, anticonvulsants, sedative hypnosis, and muscle relaxation. They have high consumptions worldwide because of their easy availability and potential addiction. They are often used for suicide or criminal practices such as abduction and drug-facilitated sexual assault. The pharmacological effects of using small doses of BDZs and their detections from complex biological matrices are challenging. Efficient pretreatment methods followed by accurate and sensitive detections are necessary. Herein, pretreatment methods for the extraction, enrichment, and preconcentration of BDZs as well as the strategies for their screening, identification, and quantitation developed in the past five years have been reviewed. Moreover, recent advances in various methods are summarized. Characteristics and advantages of each method are encompassed. Future directions of the pretreatment and detection methods for BDZs are also reviewed.
Collapse
Affiliation(s)
- Yi-Xin Zhang
- School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Yuan Zhang
- School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Yu Bian
- School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Ya-Jie Liu
- School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Ai Ren
- School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Yu Zhou
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Du Shi
- Department of Urology, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Xue-Song Feng
- School of Pharmacy, China Medical University, Shenyang, 110122, China
| |
Collapse
|
2
|
Kaeslin J, Brunner C, Ghiasikhou S, Schneider G, Zenobi R. Bioaffinity Screening with a Rapid and Sample-Efficient Autosampler for Native Electrospray Ionization Mass Spectrometry. Anal Chem 2021; 93:13342-13350. [PMID: 34546705 DOI: 10.1021/acs.analchem.1c03130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Fast and efficient handling of ligands and biological targets are required in bioaffinity screening based on native electrospray ionization mass spectrometry (ESI-MS). We use a prototype microfluidic autosampler, called the "gap sampler", to sequentially mix and electrospray individual small molecule ligands together with a target protein and compare the screening results with data from thermal shift assay and surface plasmon resonance. In a first round, all three techniques were used for a screening of 110 ligands against bovine carbonic anhydrase II, which resulted in five mutual hits and some false positives with ESI-MS presumably due to the high ligand concentration or interferences from dimethyl sulfoxide. In a second round, 33 compounds were screened in lower concentrations and in a less complex matrix, resulting in only true positives with ESI-MS. Within a cycle time of 30 s, dissociation constants were determined within an order of magnitude accuracy consuming only 5 pmol of ligand and less than 15 pmol of protein per screened compound. In a third round, dissociation constants of five compounds were accurately determined in a titration experiment. Thus, the gap sampler can rapidly and efficiently be used for high-throughput screening.
Collapse
Affiliation(s)
- Jérôme Kaeslin
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 3, CH-8093 Zurich, Switzerland
| | - Cyrill Brunner
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 3, CH-8093 Zurich, Switzerland
| | - Sahar Ghiasikhou
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 3, CH-8093 Zurich, Switzerland
| | - Gisbert Schneider
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 3, CH-8093 Zurich, Switzerland
| | - Renato Zenobi
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 3, CH-8093 Zurich, Switzerland
| |
Collapse
|
3
|
Mikhail IE, Tehranirokh M, Gooley AA, Guijt RM, Breadmore MC. Hyphenated sample preparation-electrospray and nano-electrospray ionization mass spectrometry for biofluid analysis. J Chromatogr A 2021; 1646:462086. [PMID: 33892255 DOI: 10.1016/j.chroma.2021.462086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 10/21/2022]
Abstract
Stand-alone electrospray ionization mass spectrometry (ESI-MS) has been advancing through enhancements in throughput, selectivity and sensitivity of mass spectrometers. Unlike traditional MS techniques which usually require extensive offline sample preparation and chromatographic separation, many sample preparation techniques are now directly coupled with stand-alone MS to enable outstanding throughput for bioanalysis. In this review, we summarize the different sample clean-up and/or analyte enrichment strategies that can be directly coupled with ESI-MS and nano-ESI-MS for the analysis of biological fluids. The overview covers the hyphenation of different sample preparation techniques including solid phase extraction (SPE), solid phase micro-extraction (SPME), slug flow micro-extraction/nano-extraction (SFME/SFNE), liquid extraction surface analysis (LESA), extraction electrospray, extraction using digital microfluidics (DMF), and electrokinetic extraction (EkE) with ESI-MS and nano-ESI-MS.
Collapse
Affiliation(s)
- Ibraam E Mikhail
- ARC Training Centre for Portable Analytical Separation Technologies (ASTech), Australia; Australian Centre for Research on Separation Science (ACROSS), School of Natural Sciences (Chemistry), University of Tasmania, Private Bag 75, Hobart, Tasmania 7001, Australia; Department of Analytical Chemistry, Faculty of Pharmacy, Mansoura University, 35516, Egypt
| | - Masoomeh Tehranirokh
- ARC Training Centre for Portable Analytical Separation Technologies (ASTech), Australia; Trajan Scientific and Medical, Ringwood, VIC, 3134, Australia
| | - Andrew A Gooley
- ARC Training Centre for Portable Analytical Separation Technologies (ASTech), Australia; Trajan Scientific and Medical, Ringwood, VIC, 3134, Australia
| | - Rosanne M Guijt
- ARC Training Centre for Portable Analytical Separation Technologies (ASTech), Australia; Centre for Regional and Rural Futures, Deakin University, Geelong, VIC, 3220, Australia
| | - Michael C Breadmore
- ARC Training Centre for Portable Analytical Separation Technologies (ASTech), Australia; Australian Centre for Research on Separation Science (ACROSS), School of Natural Sciences (Chemistry), University of Tasmania, Private Bag 75, Hobart, Tasmania 7001, Australia.
| |
Collapse
|
4
|
Ghiasikhou S, Cazzamalli S, Scheuermann J, Neri D, Zenobi R. Automated and enhanced extraction of a small molecule-drug conjugate using an enzyme-inhibitor interaction based SPME tool followed by direct analysis by ESI-MS. Anal Bioanal Chem 2019; 411:7387-7398. [DOI: 10.1007/s00216-019-02165-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 08/20/2019] [Accepted: 09/23/2019] [Indexed: 12/11/2022]
|
5
|
Hu B, Zheng B, Rickert D, Gómez-Ríos GA, Bojko B, Pawliszyn J, Yao ZP. Direct coupling of solid phase microextraction with electrospray ionization mass spectrometry: A Case study for detection of ketamine in urine. Anal Chim Acta 2019; 1075:112-119. [PMID: 31196416 DOI: 10.1016/j.aca.2019.05.044] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/16/2019] [Accepted: 05/17/2019] [Indexed: 12/28/2022]
Abstract
Electrospray ionization mass spectrometry (ESI-MS) is a commonly used technique for analysis of various samples. Solid phase microextraction (SPME) is a simple and efficient technique that combines both sampling and sample preparation into one consolidated step, preconcentrating extracted analytes for ultra-sensitive analysis. Historically, SPME has been coupled with chromatography-based techniques for sample separation prior to analysis, however more recently, the chromatographic step has been omitted, with the SPME device directly coupled with the mass spectrometer. In this study, direct coupling of SPME with ESI-MS was developed, and extensively validated to quantitate ketamine from human urine, employing a practical experimental workflow and no extensive hardware modification to the equipment. Among the different fibers evaluated, SPME device coated with C18/benzenesulfonic acid particles was selected for the analysis due to its good selectivity and signal response. Different approaches, including desorption spray, dripping, desorption ESI and nano-ESI were attempted for elution and ionization of the analytes extracted using the SPME fibers. The results showed that the desorption spray and nano-ESI methods offered better signal response and signal duration than the others that were evaluated. The analytical performance of the SPME-nano-ESI-MS setup was excellent, including limit of detection (LOD) of 0.027 ng/mL, limit of quantitation (LOQ) of 0.1 ng/mL, linear range of 0.1-500.0 ng/mL (R2 = 0.9995) and recoveries of 90.8-109.4% with RSD 3.4-10.6% for three validation points at 4.0, 40.0 and 400.0 ng/mL, far better than the performance of conventional methods. The results herein presented, demonstrated that the direct coupling of SPME fibers with ESI-MS-based systems allowed for the simple and ultra-sensitive determination of analytes from raw samples such as human urine.
Collapse
Affiliation(s)
- Bin Hu
- State Key Laboratory of Chemical Biology and Drug Discovery, Food Safety and Technology Research Centre and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region, China; State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation) and Shenzhen Key Laboratory of Food Biological Safety Control, Shenzhen Research Institute of The Hong Kong Polytechnic University, Shenzhen, 518057, China; Institute of Mass Spectrometer and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Jinan University, Guangzhou, 510632, China
| | - Bo Zheng
- State Key Laboratory of Chemical Biology and Drug Discovery, Food Safety and Technology Research Centre and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region, China; State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation) and Shenzhen Key Laboratory of Food Biological Safety Control, Shenzhen Research Institute of The Hong Kong Polytechnic University, Shenzhen, 518057, China
| | - Daniel Rickert
- Department of Chemistry, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | | | - Barbara Bojko
- Department of Chemistry, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Janusz Pawliszyn
- Department of Chemistry, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.
| | - Zhong-Ping Yao
- State Key Laboratory of Chemical Biology and Drug Discovery, Food Safety and Technology Research Centre and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region, China; State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation) and Shenzhen Key Laboratory of Food Biological Safety Control, Shenzhen Research Institute of The Hong Kong Polytechnic University, Shenzhen, 518057, China.
| |
Collapse
|
6
|
Huba AK, Mirabelli MF, Zenobi R. High-throughput screening of PAHs and polar trace contaminants in water matrices by direct solid-phase microextraction coupled to a dielectric barrier discharge ionization source. Anal Chim Acta 2018; 1030:125-132. [DOI: 10.1016/j.aca.2018.05.050] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 04/21/2018] [Accepted: 05/19/2018] [Indexed: 01/21/2023]
|
7
|
Reyes-Garcés N, Gionfriddo E, Gómez-Ríos GA, Alam MN, Boyacı E, Bojko B, Singh V, Grandy J, Pawliszyn J. Advances in Solid Phase Microextraction and Perspective on Future Directions. Anal Chem 2017; 90:302-360. [DOI: 10.1021/acs.analchem.7b04502] [Citation(s) in RCA: 478] [Impact Index Per Article: 59.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | | | | | - Md. Nazmul Alam
- Department of Chemistry, University of Waterloo, Ontario, Canada N2L 3G1
| | - Ezel Boyacı
- Department of Chemistry, Middle East Technical University, Ankara 06800, Turkey
| | - Barbara Bojko
- Department of Pharmacodynamics and Molecular Pharmacology, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-067 Bydgoszcz, Poland
| | - Varoon Singh
- Department of Chemistry, University of Waterloo, Ontario, Canada N2L 3G1
| | - Jonathan Grandy
- Department of Chemistry, University of Waterloo, Ontario, Canada N2L 3G1
| | - Janusz Pawliszyn
- Department of Chemistry, University of Waterloo, Ontario, Canada N2L 3G1
| |
Collapse
|