1
|
Li C, Tan J, Zhang Z, Tan D, Zhang X, Zhang H, Lei B, Liu Y, Yin A, Zheng M. Copper and Nitrogen Codoped CDs for Alleviating the Damage of Reactive Oxygen Species for Cucumber Seedlings under Salt Stress. ACS APPLIED BIO MATERIALS 2025; 8:3343-3355. [PMID: 40059346 DOI: 10.1021/acsabm.5c00112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
Dramatic changes in climate and soil environments have made growing conditions for crops more challenging. These crops are subject to a range of abiotic stresses in different environments, which can lead to significant yield losses, resulting in economic and environmental damages. Herein, we report a straightforward one-pot hydrothermal method for creating carbon dots codoped with copper and nitrogen (Cu,N-CDs). Under salt stress conditions, Cu,N-CDs demonstrate the ability to alleviate oxidative damage in cucumber seedlings by modulating antioxidant defense mechanisms and scavenging reactive oxygen species (ROS). Cucumber seedling biomass accumulation is greatly enhanced by Cu,N-CDs treatment in the presence of a ROS burst, leading to a notable rise in the dry weight, plant height, and fresh weight. Cu,N-CDs mitigate oxidative damage in cucumber seedlings by activating antioxidant defense systems, specifically enhancing the activities of superoxide dismutase (+34.08%), catalase (+28.11%), peroxidase (+17.54%), and ascorbate peroxidase (+31.54%) to scavenge ROS. Furthermore, Cu,N-CDs can enhance the levels of nonenzymatic elements within the antioxidant system, such as polyphenols (+23.60%), flavonoids (+15.43%), and carotenoid content (+51.73%), which strengthen the scavenging ability of cucumber seedlings against ROS. Meanwhile, Cu,N-CDs can induce a significant increase of soluble sugar and soluble protein content by 27.27 and 32.58%, respectively, which improves the osmotic pressure as well as stress tolerance of plants. Additionally, the accumulation of biomass was aided by the increase in the photosynthetic pigment content that Cu,N-CDs treatment can produce.
Collapse
Affiliation(s)
- Chen Li
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, Guangdong Provincial Engineering Technology Research Center for Optical Agriculture College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Jieqiang Tan
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, Guangdong Provincial Engineering Technology Research Center for Optical Agriculture College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Zhiwei Zhang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, Guangdong Provincial Engineering Technology Research Center for Optical Agriculture College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Dunyuan Tan
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, Guangdong Provincial Engineering Technology Research Center for Optical Agriculture College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Xuejie Zhang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, Guangdong Provincial Engineering Technology Research Center for Optical Agriculture College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Haoran Zhang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, Guangdong Provincial Engineering Technology Research Center for Optical Agriculture College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Bingfu Lei
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, Guangdong Provincial Engineering Technology Research Center for Optical Agriculture College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Yingliang Liu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, Guangdong Provincial Engineering Technology Research Center for Optical Agriculture College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Aiguo Yin
- College of Biology and Food Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Mingtao Zheng
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, Guangdong Provincial Engineering Technology Research Center for Optical Agriculture College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China
| |
Collapse
|
2
|
Zhong L, Liu W, Xie Z, Liu J. Biomimetic synthesis of RPL14B-based CdSe quantum dots for the detection of heavy metal copper ions. RSC Adv 2024; 14:16821-16827. [PMID: 38799217 PMCID: PMC11123603 DOI: 10.1039/d4ra02022g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 05/09/2024] [Indexed: 05/29/2024] Open
Abstract
In the present study, an Escherichia coli-expressed yeast ribosomal protein was used as a template for synthesizing RPL14B-based CdSe quantum dots in vitro via the quasi-biosynthesis strategy at low temperature. The synthetic bionic RPL14B-based CdSe quantum dots were characterized using TEM, HRTEM, and EDX spectra, and the results showed that the synthesized quantum dots were CdSe quantum dots with a crystal face spacing of 0.21 and 0.18 nm. The biomimetic method-synthesized quantum dots exhibited the characteristics of a uniform particle size, good dispersion, and strong photobleaching resistance. Moreover, the fluorescence of the RPL14b-based CdSe quantum dots could be specifically quenched using Cu2+ in a linear range of 0.2-10 μM. Finally, these RPL14b-based CdSe quantum dots can be used for the specific detection of heavy metal copper ions in addition to other applications in biological analyses.
Collapse
Affiliation(s)
- Lipeng Zhong
- Department of Clinical Laboratory, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University Nanchang Jiangxi 330006 China
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University Wuhan 430072 China
| | - Wenyue Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University Wuhan 430072 China
| | - Zhixiong Xie
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University Wuhan 430072 China
| | - Jiye Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University Wuhan 430072 China
| |
Collapse
|
3
|
Zhao J, Yao J, Wang Y, Wang N, Wang J. A red fluorescent carbon dots with good water solubility for rapid detection of Al 3+ in actual samples. LUMINESCENCE 2024; 39:e4666. [PMID: 38178772 DOI: 10.1002/bio.4666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/29/2023] [Accepted: 12/11/2023] [Indexed: 01/06/2024]
Abstract
We developed a facile strategy for the fabrication of red fluorescent carbon nanodots (R-CDs) and demonstrated their applications for Al3+ sensing. Red-emission carbon dots (CDs) were synthesized using a simple hydrothermal treatment with citric acid and urea as precursors, manifesting intriguing red-emission behaviour at 610 nm. With increasing Al3+ concentration, the fluorescence band at 610 nm decreased gradually. Monitoring the intrinsic fluorescence variation (I610nm ), as-prepared CDs were developed as an effective platform for fluorescent Al3+ sensing, with a linear range of 0.5-60.0 μM and a detection limit of 3.0 nM. More importantly, R-CDs have been applied successfully to the analysis of Al3+ in actual samples with satisfactory recoveries in the range 97.12-102.05%, which indicated that obtained CDs could be implemented as an effective tool for the identification and detection of Al3+ in actual samples.
Collapse
Affiliation(s)
- Jingyuan Zhao
- The First Clinical Medical School, Shanxi Medical University, Taiyuan, China
| | - Jie Yao
- Department of Basic Medicine, Shanxi Medical University, Jinzhong, China
| | - Yingqi Wang
- Department of Basic Medicine, Shanxi Medical University, Jinzhong, China
| | - Ning Wang
- Department of Basic Medicine, Shanxi Medical University, Jinzhong, China
| | - Jianhua Wang
- Department of Basic Medicine, Shanxi Medical University, Jinzhong, China
| |
Collapse
|
4
|
Tang L, Zhu C, Yang Y, Luo J, Song J, Chen H, Liu S, Liu Y, Fang Y. Amide-decorated carbon dots as sensitive and selective probes for fluorescence enhancement detection of cadmium ion. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 303:123219. [PMID: 37536241 DOI: 10.1016/j.saa.2023.123219] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/24/2023] [Accepted: 07/28/2023] [Indexed: 08/05/2023]
Abstract
As highly toxic metal ions, cadmium ions (Cd2+) are prevalent in varying concentrations around the world. The establishment of an accurate and effective method for Cd2+ determination with high sensitivity and selectivity is of particular concern. The present work fabricated a fluorescence chemosensor for the detection of Cd2+ based on functionalized carbon dots (CDs), which were hydrothermally prepared using amidated hyperbranched-polyethyleneimine (HPEI). As investigated by FTIR, NMR, and XPS, the stably grafted amide groups endowed the CDs with thermosensitivity and high cloud point due to the change in hydrophilic-hydrophobic behaviors. The CDs chemosensor with optimal amidation degree exhibited high sensitivity, selectivity, and stability in the determination of Cd2+ from various water environments. Notably, the fluorescence intensity enhanced with the increase of Cd2+ concentration, originating from the improved structure rigidity caused by the interactions between grafted amides and Cd2+. These impressive features made the CDs not only sensitive to detecting Cd2+ in low-concentration solutions with a limit of detection of 3.41 nM (the lowest known value for Cd2+ detection) but also accurate for the quantification in high-concentration solutions with a detectable Cd2+ concentration of 6.0 × 10-2 M. Owing to the broad detection range, the CDs developed in present work show great potential applications in various scenarios.
Collapse
Affiliation(s)
- Lu Tang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515031, Guangdong, PR China
| | - Chenxue Zhu
- School of Chemistry and Materials Science, Ludong University, 264025 Yantai, Shandong Province, PR China
| | - Yingsang Yang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515031, Guangdong, PR China
| | - Jiajun Luo
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515031, Guangdong, PR China
| | - Jinhui Song
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515031, Guangdong, PR China
| | - Huimin Chen
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515031, Guangdong, PR China
| | - Suyao Liu
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515031, Guangdong, PR China.
| | - Yi Liu
- School of Chemistry and Materials Science, Ludong University, 264025 Yantai, Shandong Province, PR China.
| | - Yiwen Fang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515031, Guangdong, PR China.
| |
Collapse
|
5
|
Fan J, Kang L, Liu D, Zhang S. Modification of Carbon Dots for Metal‐Ions Detection. ChemistrySelect 2023; 8. [DOI: 10.1002/slct.202300062] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/28/2023] [Indexed: 01/06/2025]
Abstract
AbstractIt is very appealing to develop cheap, highly sensitive and efficient metal ion fluorescence sensors as traditional instrument methods are inherently costly and time‐consuming. Carbon dots (CDs) are widely used for sensing metal ions, attributing to their merits of good biocompatibility, low toxicity, easy surface modification and excellent photostability. This article reviewed the research progress of CDs as metal ion sensors in recent years, and studied their modification methods and detection performances. Finally, the challenges and opportunities of CDs as metal ion sensors were also analyzed. This article is expected to provide inspiration and help for researchers focusing on CDs as metal ion sensors.
Collapse
Affiliation(s)
- Jiang Fan
- Department of Chemical Engineering, Textile and Clothing Shaanxi Polytechnic Institute No. 12 Wenhui West Road Xianyang 712000 Shaanxi China
| | - Lei Kang
- School of Surveying & Testing Shaanxi Railway Institute West Section of Shengli Street Weinan 714000 Shaanxi China
- School of Chemistry and Chemical Engineering Guangzhou University No. 230 Waihuan West Road, Guangzhou 510006, GuangdongGuangdong China
| | - Di Liu
- Department of Chemical Engineering, Textile and Clothing Shaanxi Polytechnic Institute No. 12 Wenhui West Road Xianyang 712000 Shaanxi China
| | - Sufeng Zhang
- Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development Shaanxi University of Science and Technology Weiyang University Park Xi'an 710021, GuangdongShaanxi China
| |
Collapse
|
6
|
Xing Y, Yang M, Chen X. Fabrication of P and N Co-Doped Carbon Dots for Fe 3+ Detection in Serum and Lysosomal Tracking in Living Cells. BIOSENSORS 2023; 13:230. [PMID: 36831996 PMCID: PMC9954533 DOI: 10.3390/bios13020230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Doping with heteroatoms allows the retention of the general characteristics of carbon dots while allowing their physicochemical and photochemical properties to be effectively modulated. In this work, we report the preparation of ultrastable P and N co-doped carbon dots (PNCDs) that can be used for the highly selective detection of Fe3+ and the tracking of lysosomes in living cells. Fluorescent PNCDs were facilely prepared via a hydrothermal treatment of ethylenediamine and phytic acid, and they exhibited a high quantum yield of 22.0%. The strong coordination interaction between the phosphorus groups of PNCDs and Fe3+ rendered them efficient probes for use in selective Fe3+ detection, with a detection limit of 0.39 μM, and we demonstrated their practicability by accurately detecting the Fe3+ contents in bio-samples. At the same time, PNCDs exhibited high lysosomal location specificity in different cell lines due to surface lipophilic amino groups, and real-time tracking of the lysosome morphology in HeLa cells was achieved. The present work suggests that the fabrication of heteroatom-doped CDs might be an effective strategy to provide promising tools for cytology, such as organelle tracking.
Collapse
Affiliation(s)
- Yanzhi Xing
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Mei Yang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, China
| | - Xuwei Chen
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| |
Collapse
|
7
|
N-doped, silver, and cerium co-doped carbon quantum dots based sensor for detection of Hg2+ and captopril. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
8
|
Kanwal S, Mansoor F, Tu D, Li R, Zheng W, Lu S, Chen X. Polarity-dependent emission from hydroxyl-free carbon nanodots. NANOSCALE 2022; 14:13059-13065. [PMID: 36053169 DOI: 10.1039/d2nr03168j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Surface groups of carbon nanodots (CNDs) play a key role in modulating their photoluminescence (PL) properties. However, most of the as-prepared CNDs are complex mixtures of CNDs bearing different surface groups. Thus, the purification of CNDs is essential to reveal the PL mechanism of CNDs. Herein, we present a facile method to synthesize hydroxyl (-OH) free CNDs, followed by intelligently guided column chromatographic separation of CNDs with specific functional groups according to their degree of polarity. After systematic investigation of the separated non-polar CNDs (NP-CNDs) and polar CNDs (P-CNDs), it is revealed that radiative photon emission dominates in the NP-CNDs, which exhibits excitation wavelength-independent emissions. In contrast, an increase in the solvent polarity of P-CNDs improves Frank-Condon excited state stabilization to achieve excitation wavelength-dependent emissions. In particular, white-light emitting P-CNDs with CIE coordinates of (0.332, 0.336) are produced. These findings provide new insights into the nature of the PL mechanism for CNDs, which may pave the way towards the rational design of highly efficient and emission tunable CNDs for various applications.
Collapse
Affiliation(s)
- Shamsa Kanwal
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, and State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.
- Department of Chemistry, Khwaja Fareed University of Engineering and Information Technology, Abu Dhabi Road, Rahim Yar Khan, Pakistan
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
| | - Farukh Mansoor
- Department of Chemistry, Khwaja Fareed University of Engineering and Information Technology, Abu Dhabi Road, Rahim Yar Khan, Pakistan
| | - Datao Tu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, and State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
| | - Renfu Li
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, and State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
| | - Wei Zheng
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, and State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
| | - Shan Lu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, and State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
| | - Xueyuan Chen
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, and State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
| |
Collapse
|
9
|
Hierarchical Nanoflowers of MgFe2O4, Bentonite and B-,P- Co-Doped Graphene Oxide as Adsorbent and Photocatalyst: Optimization of Parameters by Box–Behnken Methodology. Int J Mol Sci 2022; 23:ijms23179678. [PMID: 36077079 PMCID: PMC9455985 DOI: 10.3390/ijms23179678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/22/2022] [Accepted: 08/22/2022] [Indexed: 11/29/2022] Open
Abstract
In the present study, nanocomposites having hierarchical nanoflowers (HNFs) -like morphology were synthesized by ultra-sonication approach. HNFs were ternary composite of MgFe2O4 and bentonite with boron-, phosphorous- co-doped graphene oxide (BPGO). The HNFs were fully characterized using different analytical tools viz. X-ray photoelectron spectroscopy, scanning electron microscopy, energy dispersion spectroscopy, transmission electron microscopy, X-ray diffraction, vibrating sample magnetometry and Mössbauer analysis. Transmission electron micrographs showed that chiffon-like BPGO nanosheets were wrapped on the MgFe2O4-bentonite surface, resulting in a porous flower-like morphology. The red-shift in XPS binding energies of HNFs as compared to MgFe2O4-bentoniteand BPGO revealed the presence of strong interactions between the two materials. Box–Behnken statistical methodology was employed to optimize adsorptive and photocatalytic parameters using Pb(II) and malathion as model pollutants, respectively. HNFs exhibited excellent adsorption ability for Pb(II) ions, with the Langmuir adsorption capacity of 654 mg g−1 at optimized pH 6.0 and 96% photocatalytic degradation of malathion at pH 9.0 as compared to MgFe2O4-bentonite and BPGO. Results obtained in this study clearly indicate that HNFs are promising nanocomposite for the removal of inorganic and organic contaminants from the aqueous solutions.
Collapse
|
10
|
González-González RB, Morales-Murillo MB, Martínez-Prado MA, Melchor-Martínez EM, Ahmed I, Bilal M, Parra-Saldívar R, Iqbal HMN. Carbon dots-based nanomaterials for fluorescent sensing of toxic elements in environmental samples: Strategies for enhanced performance. CHEMOSPHERE 2022; 300:134515. [PMID: 35398070 DOI: 10.1016/j.chemosphere.2022.134515] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/21/2022] [Accepted: 04/01/2022] [Indexed: 02/08/2023]
Abstract
Rapid industrialization and manufacturing expansion have caused heavy metal pollution, which is a critical environmental issue faced by global population. In addition, the disadvantages presented by conventional detection methods such as the requirement of sophisticated instruments and qualified personnel have led to the development of novel nanosensors. Recently, carbon dots (CDs) have been presented as a multifunctional nanomaterial alternative for the accurate detection of heavy metal ions in water systems. The capacity of CDs to detect contaminants in wastewater -including heavy metals- can be found in the literature; however, to the best of our knowledge, none of them discusses the most recent strategies to enhance their performance. Therefore, in this review, beyond presenting successful examples of the use of CDs for the detection of metal ions, we further discuss the strategies to enhance their photoluminescence properties and their performance for environmental monitoring. In this manner, strategies such as heteroatom-doping and surface passivation are reviewed in detail, as well as describing the mechanisms and the effect of precursors and synthesis methods. Finally, the current challenges are described in detail to propose some recommendations for further research.
Collapse
Affiliation(s)
| | - Martha Beatriz Morales-Murillo
- Tecnológico Nacional de México - Instituto Tecnológico de Durango, Chemical & Biochemical Engineering Department, Blvd. Felipe Pescador 1830 Ote., Durango, Dgo., 34080, Mexico
| | - María Adriana Martínez-Prado
- Tecnológico Nacional de México - Instituto Tecnológico de Durango, Chemical & Biochemical Engineering Department, Blvd. Felipe Pescador 1830 Ote., Durango, Dgo., 34080, Mexico
| | | | - Ishtiaq Ahmed
- School of Medical Science, Menzies Health Institute Queensland, Griffith University (Gold Coast campus), Parklands Drive, Southport, QLD, 4222, Australia
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | | | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico.
| |
Collapse
|
11
|
Won S, Kim J. The detection of Fe (III) and ascorbic acid by fluorescence quenching and recovery of carbon dots prepared from coffee waste. KOREAN J CHEM ENG 2022. [DOI: 10.1007/s11814-022-1138-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
12
|
Nitrogen-Doped and Surface Functionalized CDs: Fluorescent Probe for Cellular Imaging and Environmental Sensing of ClO–. J Fluoresc 2022; 32:1591-1600. [DOI: 10.1007/s10895-022-02952-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 04/11/2022] [Indexed: 10/18/2022]
|
13
|
Alshatteri AH, Omer KM. Smartphone-based fluorescence detection of bilirubin using yellow emissive carbon dots. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:1730-1738. [PMID: 35468175 DOI: 10.1039/d1ay02053f] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Development of highly sensitive and selective fluorescent probes for biomolecule detection has significant implications in clinical diagnosis and bioanalysis. In this study, yellow emissive carbon dots (Y-CDs, λex 430 nm, λem 550 nm) are synthesized utilizing a one-pot solvothermal approach with o-phenylenediamine (oPDA) as a precursor. The fluorescence of Y-CDs was quenched with the addition of bilirubin due to the inner filter effect mechanism. The fluorescence intensity of Y-CDs decreases as bilirubin concentration increases and can be completely quenched with approximately 90 μM bilirubin. Over other coexisting interferents (26 interferents), the Y-CD probe exhibited great selectivity for bilirubin. More crucially, a smartphone can capture the visible color intensity change of the Y-CD probe under a 365 nm UV lamp and later with the aid of computer software, RGB (red/green/blue) analysis was performed for the quantification of colors. This provides computer vision-based detection and sensitive bilirubin assay with a linear range of 4.0-225 μM and a limit of detection of 1.37 μM. Furthermore, the proposed fluorescent probe was applied in real samples (newborn serum, serum and urine of adults with hyperbilirubinemia) with satisfactory recoveries (96-102%). Based on the validation findings, solution and computer vision-based methods have the potential to be used as fast detection methods for bilirubin in biological samples at the bedside. For the first time, a fluorescent probe based on yellow emissive CDs and RGB analysis for bilirubin recognition has been reported.
Collapse
Affiliation(s)
- Azad H Alshatteri
- Center for Biomedical Analysis, Department of Chemistry, College of Science, University of Sulaimani, Qliasan St,46002, Sulaimani City, Kurdistan Region, Iraq.
- Department of Chemistry, College of Education, University of Garmian, Darbandikhan Road, 46021, Kalar City-Sulaimaniyah Province, Kurdistan Region, Iraq
| | - Khalid M Omer
- Center for Biomedical Analysis, Department of Chemistry, College of Science, University of Sulaimani, Qliasan St,46002, Sulaimani City, Kurdistan Region, Iraq.
| |
Collapse
|
14
|
Green-emitting carbon quantum dots as a dual-mode fluorescent and colorimetric sensor for hypochlorite. Anal Bioanal Chem 2022; 414:2651-2660. [PMID: 35165778 DOI: 10.1007/s00216-022-03901-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/07/2022] [Accepted: 01/12/2022] [Indexed: 11/01/2022]
Abstract
In this work, green-emitting carbon quantum dots were successfully prepared through a facile one-step solid-state reaction method. The obtained green-emitting carbon dots (G-CDs) showed good fluorescence stability in NaCl aqueous solution and different pH values. Moreover, the G-CDs showed high sensitivity and selectivity for detecting hypochlorite by both fluorometry and colorimetry. Under the optimized condition, a highly sensitive detection of hypochlorite was established in the range of 0.2-100 μM and 10-150 μM for fluorescent and colorimetric methods, respectively. The corresponding limits of detection (LOD) were 0.0781 μM and 1.82 μM, respectively. Therefore, the G-CDs were successfully applied to determinate hypochlorite in actual water samples. In addition, a paper-based sensor loading with the G-CDs was also developed for rapid visual detection of hypochlorite. The results suggested that the G-CDs could be a promising candidate to detect hypochlorite.
Collapse
|
15
|
Lin YS, Yang ZY, Anand A, Huang CC, Chang HT. Carbon dots with polarity-tunable characteristics for the selective detection of sodium copper chlorophyllin and copper ions. Anal Chim Acta 2022; 1191:339311. [PMID: 35033242 DOI: 10.1016/j.aca.2021.339311] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 11/18/2021] [Indexed: 11/28/2022]
Abstract
Compared to water-soluble carbon dots (CDs) the properties and applications of hydrophobic CDs are rarely addressed. In this study, a one-pot, simple chemical oxidation approach has been applied to synthesize hydrophobic carbon dots (TO-CDs) at room temperature from triolein (TO) in concentrated sulfuric acid solution. Sodium copper chlorophyllin (SCC) quenches the fluorescence of TO-CDs by a photoinduced electron transfer process. Upon excitation at 400 nm, the fluorescence intensity of TO-CDs probe at 500 nm shows a linear response against the SCC concentration ranging from 1.0 to 10 μM, with a limit of detection (LOD) of 0.61 μM. Quantitation of SCC in flavored drinks shows percentage recovery (%R) vaues of 98-103% and relative standard deviation (RSD) values less than 6.5%. The hydrophobic TO-CDs can be converted into hydrophilic TO-CDs through hydrolysis in NaOH solution. The presence of sulfonyl groups on the hydrophilic TO-CDs enhances the coordination ability of the CDs toward Cu2+ ions, leading to fluorescence quenching which allows for the detection of Cu2+ ions with LOD of 0.21 μM and a linear range of 0.5-10 μM. The hydrophilic TO-CD probe possesses high selectivity toward Cu2+ ions (tolerance at least ten-fold comparative to other metal ions). The assay has been validated with the analysis of spiked soil samples, with %R values of Cu concentration of 97.8-99.0% and RSDs below 2.0%. The surface tunable CD probes demonstrate their potential for the rapid screening of Cu2+ ions in environmental samples and SCC in foods.
Collapse
Affiliation(s)
- Yu-Syuan Lin
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan
| | - Zong-Yu Yang
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan
| | - Anisha Anand
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, 20224, Taiwan
| | - Chih-Ching Huang
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, 20224, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, 20224, Taiwan; School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
| | - Huan-Tsung Chang
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan.
| |
Collapse
|
16
|
Ali GK, Omer KM. Molecular imprinted polymer combined with aptamer (MIP-aptamer) as a hybrid dual recognition element for bio(chemical) sensing applications. Review. Talanta 2022; 236:122878. [PMID: 34635258 DOI: 10.1016/j.talanta.2021.122878] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/04/2021] [Accepted: 09/09/2021] [Indexed: 10/20/2022]
Abstract
The development of diagnostic devices based on memetic molecular recognitions are becoming highly promising due to high specificity, sensitivity, stability, and low-cost comparing to natural molecular recognition. During the last decade, molecular imprinted polymers (MIPs) and aptamer have shown dramatic enhancement in the molecular recognition characteristics for bio(chemical) sensing applications. Recently, MIP-aptamer, as an emerging hybrid recognition element, merged the advantages of the both recognition components. This dual recognition-based sensor has shown improved properties and desirable features, such as high sensitivity, low limit of detection, high stability under harsh environmental conditions, high binding affinity, and superior selectivity. Hybrid MIP-aptamer as dual recognition element, was used in the real sample analysis, such as detection of proteins, neurotransmitters, environmental pollutants, biogenic compounds, small ions, explosives, virus detections and pharmaceuticals. This review focuses on a comprehensive overview of the preparation strategies of various MIP-aptamer recognition elements, mechanism of formation of MIP-aptamer, and detection of various target molecules in different matrices.
Collapse
Affiliation(s)
- Gona K Ali
- Center for Biomedical Analysis, Department of Chemistry, College of Science, University of Sulaimani, Qliasan St, 46002, Slemani City, Kurdistan Region, Iraq
| | - Khalid M Omer
- Center for Biomedical Analysis, Department of Chemistry, College of Science, University of Sulaimani, Qliasan St, 46002, Slemani City, Kurdistan Region, Iraq.
| |
Collapse
|
17
|
Dual-emitter polymer carbon dots with spectral selection towards nanomolar detection of iron and aluminum ions. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103452] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
18
|
Fabrication, Characterization and Performance Evaluation of Screen-printed Carbon Electrodes: Determination of Acetaminophen in Tylenol. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2021. [DOI: 10.1016/s1872-2040(21)60116-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
19
|
Tadesse A, Belachew N, Hagos M, Basavaiah K. Synthesis of Fluorescent Nitrogen and Phosphorous Co-doped Carbon Quantum Dots for Sensing of Iron, Cell Imaging and Antioxidant Activities. J Fluoresc 2021; 31:763-774. [PMID: 33655457 DOI: 10.1007/s10895-021-02696-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/02/2021] [Indexed: 12/14/2022]
Abstract
Carbon quantum dots (CQD) as the result of their exceptional physical and chemical properties show tremendous potential in various field of applications like cell imaging and doping of CQDs with elements like nitrogen and phosphorous increase its fluorescence property. Herein, we have synthesized fluorescent nitrogen and phosphorous codoped carbon quantum dots (NPCQDs) via a one-pot hydrothermal method. Sesame oil, L-Aspartic acid, and phosphoric acid were used as carbon, nitrogen, and phosphorous sources, respectively. UV-Vis spectrophotometer, fluorescence spectrometer, Fourier transform infrared spectrometer (FTIR), X-ray diffraction spectrometer (XRD), field emission scanning microscopy (FESEM), and transmission electron microscopy (TEM) were employed to characterize the synthesized fluorescent NPCQDs. The as-synthesized NPCQDs with a particle size of 4.7 nm possess excellent water solubility, high fluorescence with high quantum yield (46%), high ionic stability, and resistance to photobleaching. MTT assay indicated the biocompatibility of NPCQDs and it was used for multicolor live-cell imaging. Besides, the NPCQDs show an effective probe of iron ions (Fe3+) in an aqueous solution with a high degree of sensitivity and selectivity. The DPPH assay showed its good antioxidant activity.
Collapse
Affiliation(s)
- Aschalew Tadesse
- Department of Applied Chemistry, Adama Science and Technology University, Adama, Ethiopia.
| | - Neway Belachew
- Department of Chemistry, Debre Berhan University, Debre Berhan, Ethiopia
| | - Mebrahtu Hagos
- Faculty of Natural and Computational Sciences, Woldia University, 400, Woldia, Ethiopia
| | - Keloth Basavaiah
- Department of Inorganic and Analytical Chemistry, Andhra University, Visakhapatnam, 530003, India
| |
Collapse
|
20
|
Wang X, Gao S, Xu N, Xu L, Chen S, Mei C, Xu C. Facile synthesis of phosphorus‐nitrogen doped carbon quantum dots from cyanobacteria for bioimaging. CAN J CHEM ENG 2021. [DOI: 10.1002/cjce.23927] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Xi Wang
- Jiangsu Co‐Innovation Centre of Efficient Processing and Utilization of Forest Products, Nanjing Forestry University Nanjing People's Republic of China
- College of Materials Science and Engineering, Nanjing Forestry University Nanjing People's Republic of China
- Jiangsu Province Key Laboratory of Green Biomass‐based Fuels and Chemicals Nanjing People's Republic of China
| | - Shiyu Gao
- Jiangsu Co‐Innovation Centre of Efficient Processing and Utilization of Forest Products, Nanjing Forestry University Nanjing People's Republic of China
- College of Materials Science and Engineering, Nanjing Forestry University Nanjing People's Republic of China
- Jiangsu Province Key Laboratory of Green Biomass‐based Fuels and Chemicals Nanjing People's Republic of China
| | - Nan Xu
- Jiangsu Co‐Innovation Centre of Efficient Processing and Utilization of Forest Products, Nanjing Forestry University Nanjing People's Republic of China
- College of Materials Science and Engineering, Nanjing Forestry University Nanjing People's Republic of China
- Jiangsu Province Key Laboratory of Green Biomass‐based Fuels and Chemicals Nanjing People's Republic of China
| | - Li Xu
- Jiangsu Co‐Innovation Centre of Efficient Processing and Utilization of Forest Products, Nanjing Forestry University Nanjing People's Republic of China
- College of Materials Science and Engineering, Nanjing Forestry University Nanjing People's Republic of China
- Jiangsu Province Key Laboratory of Green Biomass‐based Fuels and Chemicals Nanjing People's Republic of China
| | - Sainan Chen
- Jiangsu Provincial Key Laboratory of Environmental Engineering, Jiangsu Academy of Environmental Science Nanjing People's Republic of China
| | - Changtong Mei
- Jiangsu Co‐Innovation Centre of Efficient Processing and Utilization of Forest Products, Nanjing Forestry University Nanjing People's Republic of China
- College of Materials Science and Engineering, Nanjing Forestry University Nanjing People's Republic of China
- Jiangsu Province Key Laboratory of Green Biomass‐based Fuels and Chemicals Nanjing People's Republic of China
| | - Changyan Xu
- Jiangsu Co‐Innovation Centre of Efficient Processing and Utilization of Forest Products, Nanjing Forestry University Nanjing People's Republic of China
- College of Materials Science and Engineering, Nanjing Forestry University Nanjing People's Republic of China
- Jiangsu Province Key Laboratory of Green Biomass‐based Fuels and Chemicals Nanjing People's Republic of China
| |
Collapse
|
21
|
Rossini EL, Milani MI, Lima LS, Pezza HR. Paper microfluidic device using carbon dots to detect glucose and lactate in saliva samples. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 248:119285. [PMID: 33310613 DOI: 10.1016/j.saa.2020.119285] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/23/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
Bioanalyses are commonly performed with blood or serum samples. However, these analyses often require invasive and painful blood collection using a needle or finger pricking. Saliva is an alternative and very attractive biological medium for performing clinical analyses, since it contains many types of clinically relevant biomarkers and compounds. Its collection is straightforward and can be achieved in a non-invasive and stress-free way. However, the analytes are frequently present at low concentrations, while the viscosity of whole saliva hinders its analysis using paper devices, especially those with multiple layers (3D-μPADs). This work explores the use of a simple, fast, and low-cost saliva sample pretreatment using a cotton-paper-syringe filtration system, allowing the analysis of saliva samples using multilayer paper devices. The proposed methodology employs the oxidation of glucose and lactate, catalyzed by specific oxidase enzymes, producing hydrogen peroxide. The detection is based on the fluorescence quenching of carbon dots in the presence of hydrogen peroxidase. The concentrations of the analytes showed good linear correlations with the fluorescence quenching, with LODs of 2.60 × 10-6 and 8.14 × 10-7 mol L-1 for glucose and lactate, respectively. The proposed method presented satisfactory intra-day and inter-day repeatabilities, with %RSD values in the range 3.82-6.61%. The enzymatic systems proved to be specific for the analytes and the matrix had no significant influence on the glucose and lactate determinations. The proposed methodology was successfully applied to saliva and serum samples and was validated using certified material.
Collapse
Affiliation(s)
- Eduardo Luiz Rossini
- Instituto de Química, Universidade Estadual Paulista "Júlio de Mesquita Filho" - UNESP, Rua Prof. Francisco Degni 55, C.P. 355, 14800-900 Araraquara, SP, Brazil.
| | - Maria Izabel Milani
- Instituto de Química, Universidade Estadual Paulista "Júlio de Mesquita Filho" - UNESP, Rua Prof. Francisco Degni 55, C.P. 355, 14800-900 Araraquara, SP, Brazil
| | - Liliane Spazzapam Lima
- Instituto de Química, Universidade Estadual Paulista "Júlio de Mesquita Filho" - UNESP, Rua Prof. Francisco Degni 55, C.P. 355, 14800-900 Araraquara, SP, Brazil
| | - Helena Redigolo Pezza
- Instituto de Química, Universidade Estadual Paulista "Júlio de Mesquita Filho" - UNESP, Rua Prof. Francisco Degni 55, C.P. 355, 14800-900 Araraquara, SP, Brazil
| |
Collapse
|
22
|
Sousa HBA, Martins CSM, Prior JAV. You Don't Learn That in School: An Updated Practical Guide to Carbon Quantum Dots. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:611. [PMID: 33804394 PMCID: PMC7998311 DOI: 10.3390/nano11030611] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/15/2021] [Accepted: 02/22/2021] [Indexed: 12/25/2022]
Abstract
Carbon quantum dots (CQDs) have started to emerge as candidates for application in cell imaging, biosensing, and targeted drug delivery, amongst other research fields, due to their unique properties. Those applications are possible as the CQDs exhibit tunable fluorescence, biocompatibility, and a versatile surface. This review aims to summarize the recent development in the field of CQDs research, namely the latest synthesis progress concerning materials/methods, surface modifications, characterization methods, and purification techniques. Furthermore, this work will systematically explore the several applications CQDs have been subjected to, such as bioimaging, fluorescence sensing, and cancer/gene therapy. Finally, we will briefly discuss in the concluding section the present and future challenges, as well as future perspectives and views regarding the emerging paradigm that is the CQDs research field.
Collapse
Affiliation(s)
| | | | - João A. V. Prior
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira n. 228, 4050-313 Porto, Portugal; (H.B.A.S.); (C.S.M.M.)
| |
Collapse
|
23
|
Chen Z, Xu X, Meng D, Jiang H, Zhou Y, Feng S, Mu Z, Yang Y. Dual-Emitting N/S-Doped Carbon Dots-Based Ratiometric Fluorescent and Light Scattering Sensor for High Precision Detection of Fe(III) Ions. J Fluoresc 2020; 30:1007-1013. [PMID: 32607734 DOI: 10.1007/s10895-020-02571-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 06/22/2020] [Indexed: 01/14/2023]
Abstract
Precise and rapid sensing of Fe(III) under concerned facile conditions is important in environmental monitoring. Herein, a facile and label-free ratiometric sensor is constructed for selective determination of Fe(III) ions by coupling second-order scattering (SOS) and fluorescence. We were synthesized fluorescent N, S-doped carbon dots (N/S-CDs) via facile one-step hydrothermal treatment with an intensive fluorescence and a weak SOS signal and high quantum yield (32%). The fluorescence of N/S-CDs was quenched whereas the intensity of SOS was relatively increased by Fe(III) ions due to aggregation-induced fluorescence quenching or enhancement. Based on this effect, a novel fluorescent ratiometric probe with the combined fluorescence and SOS is proposed for the sensing of Fe(III) ions, and with the detection limit of 83 nM and linear range of 0.1-10 μM and 10-40 μM, respectively.
Collapse
Affiliation(s)
- Zhiyan Chen
- Technology Centre of China Tobacco Guangxi Industrial Co., LTD, Nanning, 530001, Guangxi Province, China
| | - Xueqin Xu
- Technology Centre of China Tobacco Guangxi Industrial Co., LTD, Nanning, 530001, Guangxi Province, China
| | - Dongling Meng
- Technology Centre of China Tobacco Guangxi Industrial Co., LTD, Nanning, 530001, Guangxi Province, China
| | - Honglin Jiang
- Technology Centre of China Tobacco Guangxi Industrial Co., LTD, Nanning, 530001, Guangxi Province, China
| | - Yun Zhou
- Technology Centre of China Tobacco Guangxi Industrial Co., LTD, Nanning, 530001, Guangxi Province, China
| | - Shouai Feng
- Technology Centre of China Tobacco Guangxi Industrial Co., LTD, Nanning, 530001, Guangxi Province, China
| | - Zhao Mu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan Province, China
| | - Yaling Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan Province, China.
| |
Collapse
|
24
|
CdSe quantum dots capped with a deep eutectic solvent as a fluorescent probe for copper(II) determination in various drinks. Mikrochim Acta 2020; 187:147. [PMID: 31970526 DOI: 10.1007/s00604-019-4085-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 12/13/2019] [Indexed: 10/25/2022]
Abstract
The present study shows that copper(II) ions can be determined with a new fluorescent probe that is based on the use of CdSe quantum dots capped with deep eutectic solvent (DES-CdSe QDs). The capped QDs were prepared in aqueous phase by a one-step procedure under ambient atmosphere using selenium dioxide as a stable precursor for selenium, and ascorbic acid as non-toxic reducing agent. The deep eutectic solvent is composed of choline chloride and thioglycolic acid and acts as stabilizing and functionalizing agent. The fluorescent probe undergoes an increase in the fluorescence intensity (with excitation/emission wavelengths at 380/560 nm) in the presence of Cu(II). Other ions display no significant effect on fluorescence. The effects of sample pH value, concentration of buffer, and volume of QDs solution were optimized by response surface methodology using a Box-Behnken statistical design. Under the optimal conditions, the response of the probe is linear in the 10-600 nM Cu(II) concentration range, with a 5.3 nM limit of detection. This is lower than the allowable maximum Cu(II) concentration in drinking water. The relative standard deviation of the method for five replicate measurements of Cu(II) at a 100 nM concentration level is 2.0%. The probe was successfully applied to the determination of Cu(II) in various drinks. Graphical abstractSchematic representation of a fluorometric method for the determination of Cu(II) at nanomolar concentration levels. The fluorescent system consists of deep eutectic solvent-capped cadmium selenide quantum dots (DES-CdSe QDs). Fluorescence is strongly enhanced by copper(II).
Collapse
|
25
|
Li S, Ma X, Pang C, Tian H, Xu Z, Yang Y, Lv D, Ge H. Fluorometric aptasensor for cadmium(II) by using an aptamer-imprinted polymer as the recognition element. Mikrochim Acta 2019; 186:823. [PMID: 31754804 DOI: 10.1007/s00604-019-3886-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 09/30/2019] [Indexed: 11/29/2022]
Abstract
A fluorometric assay is described for the determination of Cd(II) in environmental and agricultural samples. It is making use of a molecularly imprinted polymer (MIP) and aptamer as dual recognition units, while carbon quantum dots (co-doped with sulphur and nitrogen) and gold nanoparticles (SN-CQD/Au) act as the fluorophores. The aptamer-modified MIP was placed on an SN-CQD/Au-modified indium tin oxide glass electrode. Cd(II) was detected with high selectivity by the recognition sites of the aptamer in the MIP. Fluorescence, with excitation/emission peaks at 370/430 nm, is quenched by Cd(II). Response is linear in the 20 pM to 12 nM concentration range. The detection limit is 1.2 pM. The sensor is selective for Cd(II), and recoveries from spiked waters, soils and vegetables real-world samples range between 82.1 and 113.9%. Graphical abstractA fluorescence sensor composed of a molecularly imprinted polymer and an aptamer as a dual identification system for Cd2+ coupled with and carbon quantum dots (co-doped with sulphur and nitrogen) and gold nanoparticles (SN-CQDs/Au) as fluorescent element that can detect Cd2+ with high selectivity by a dual-recognition mechanism.
Collapse
Affiliation(s)
- Shuhuai Li
- Analysis and Test Center of Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China. .,Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Haikou, 571101, China.
| | - Xionghui Ma
- Analysis and Test Center of Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.,Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Haikou, 571101, China
| | - Chaohai Pang
- Analysis and Test Center of Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.,Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Haikou, 571101, China
| | - Hai Tian
- Analysis and Test Center of Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.,Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Haikou, 571101, China
| | - Zhi Xu
- Analysis and Test Center of Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China. .,College of Food Science and Technology of Huazhong Agricultural University, Wuhan, 430070, China.
| | - Yan Yang
- Tropical Crops Genetic Resources Institute of Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.
| | - Daizhu Lv
- Analysis and Test Center of Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.,Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Haikou, 571101, China
| | - Huilin Ge
- Analysis and Test Center of Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.,Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Haikou, 571101, China
| |
Collapse
|
26
|
Synthesis of molecularly imprinted fluorescent probe based on biomass-derived carbon quantum dots for detection of mesotrione. Anal Bioanal Chem 2019; 411:5519-5530. [PMID: 31147761 DOI: 10.1007/s00216-019-01930-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 05/16/2019] [Indexed: 10/26/2022]
Abstract
A novel fluorescent probe based on molecularly imprinted polymers (MIPs) coupled with carbon quantum dots (CQDs) was fabricated and successfully used for selective recognition of mesotrione. In this probe, the biomass-derived CQDs were prepared through a hydrothermal method using mango peels as carbon source, and the whole synthesis procedure was green without chemical reagents. The CQDs were encapsulated into MIPs by using sol-gel technology. After removal of the template molecule mesotrione, specific binding sites are formed and there is electrostatic attraction between the probe and the template molecule. The synthetic CQDs@MIPs were able to selectively capture the target mesotrione with fluorescence quenching via the specific interaction between mesotrione and the recognition cavities. The probe was used for determination of mesotrione in corn to verify the practicality of the proposed method. The detection limit of mesotrione was 4.7 nmol L-1, and the linear range was 15 nmol L-1 to 3000 nmol L-1. Meanwhile, the recoveries of this method for mesotrione were 91.4-96.2%, and the relative standard deviations (RSDs) were 3.2-6.1%. This work provides a novel research method to synthesize CQDs@MIPs with high selectivity (imprinting factor = 5.6), and which can be used for convenient, rapid recognition and sensitive detection of trace compounds from complex matrices.
Collapse
|
27
|
P,N Codoped carbon dots as an efficient "off-on" fluorescent probe for lipoic acid detection and its cellular dual-color imaging. Anal Bioanal Chem 2019; 411:3603-3612. [PMID: 31129691 DOI: 10.1007/s00216-019-01842-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/21/2019] [Accepted: 04/10/2019] [Indexed: 12/14/2022]
Abstract
A facile single hydrothermal method was developed to synthetize P,N codoped carbon dots (P,N/CDs), which show strong and stable fluorescence, good water solubility, low toxicity and good biocompatibility. Hence, a novel and efficient "off-on" P,N/CDs fluorescent probe was developed for the highly sensitive detection of lipoic acid (LA) for the first time. The fluorescence of the P,N/CDs was quenched by Cu2+ forming a P,N/CDs-Cu2+ complex, which acted as the "off" process, but Cu2+ could be removed by LA, due to stronger chelating between LA and Cu2+, forming a more stable complex, which recovered the fluorescence of the P,N/CDs, in order to achieve the "on" process. Under optimal conditions, the concentration of LA and the increased fluorescence intensity of the P,N/CDs-Cu2+ complex displayed a good linear relationship within the range of 0.05-28 μM, with a detection limit (S/N = 3) of 0.02 μM. The established "off-on" fluorescent probe was successfully applied to the analysis of LA in urine samples. The average recoveries were in the range of 98.3-101.5%, with a relative standard deviations of less than 3.1%. In addition, the P,N/CDs were also successfully applied to cellular dual-color imaging of live T24 cells. The results show that the P,N/CDs have great application potential in clinical diagnosis, bioassay and bioimaging. Graphical abstract.
Collapse
|
28
|
Huang SW, Lin YF, Li YX, Hu CC, Chiu TC. Synthesis of Fluorescent Carbon Dots as Selective and Sensitive Probes for Cupric Ions and Cell Imaging. Molecules 2019; 24:E1785. [PMID: 31072045 PMCID: PMC6539694 DOI: 10.3390/molecules24091785] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/06/2019] [Accepted: 05/08/2019] [Indexed: 11/25/2022] Open
Abstract
A novel sensing system has been designed for the detection of cupric ions. It is based on the quenched fluorescence signal of carbon dots (CDs), which were carbonized from poly(vinylpyrrolidone) (PVP) and L-Cysteine (CYS). Cupric ions interact with the nitrogen and sulfur atoms on surface of the CDs to form an absorbed complex; this results in strong quenching of the fluorescence of the CDs via a fast metal-to-ligand binding affinity. The synthesized water-soluble CDs also exhibited a quantum yield of 7.6%, with favorable photoluminescent properties and good photostability. The fluorescence intensity of the CDs was very stable in high ionic strength (up to 1.0 M NaCl) and over a wide range of pH levels (2.0-12.0). This facile method can therefore develop a sensor that offers reliable, fast, and selective detection of cupric ions with a detection limit down to 0.15 μM and a linear range from 0.5 to 7.0 μM (R2 = 0.980). The CDs were used for cell imaging, observed that they were low toxicity to Tramp C1 cells and exhibited blue and green and red fluorescence under a fluorescence microscope. In summary, the CDs exhibited excellent fluorescence properties, and could be applied to the selective and sensitive detection of cupric ion and multicolor cell imaging.
Collapse
Affiliation(s)
- Shu-Wei Huang
- Department of Applied Science, National Taitung University, Taitung 95092, Taiwan.
| | - Yu-Feng Lin
- Department of Biomedical Engineering and Environmental Science, National Tsing Hua University, Hsinchu 30013, Taiwan.
| | - Yu-Xuan Li
- Department of Applied Science, National Taitung University, Taitung 95092, Taiwan.
| | - Cho-Chun Hu
- Department of Applied Science, National Taitung University, Taitung 95092, Taiwan.
| | - Tai-Chia Chiu
- Department of Applied Science, National Taitung University, Taitung 95092, Taiwan.
| |
Collapse
|
29
|
Microwave-assisted facile synthesis of polymer dots as a fluorescent probe for detection of cobalt(II) and manganese(II). Anal Bioanal Chem 2019; 411:2373-2381. [DOI: 10.1007/s00216-019-01678-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/23/2019] [Accepted: 02/06/2019] [Indexed: 10/27/2022]
|
30
|
Omer KM, Hama Aziz KH, Salih YM, Tofiq DI, Hassan AQ. Photoluminescence enhancement via microwave irradiation of carbon quantum dots derived from solvothermal synthesis of l-arginine. NEW J CHEM 2019. [DOI: 10.1039/c8nj04788j] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photoluminescence enhancement of carbon quantum dots was achieved via solvothermal synthesis followed by microwave irradiation.
Collapse
Affiliation(s)
- Khalid M. Omer
- Department of Chemistry
- College of Science
- University of Sulaimani
- Sulaimani
- Iraq
| | - Kosar H. Hama Aziz
- Department of Chemistry
- College of Science
- University of Sulaimani
- Sulaimani
- Iraq
| | - Yousif M. Salih
- Department of Chemistry
- College of Science
- University of Sulaimani
- Sulaimani
- Iraq
| | - Diary I. Tofiq
- Department of Chemistry
- College of Science
- University of Sulaimani
- Sulaimani
- Iraq
| | - Aso Q. Hassan
- Department of Chemistry
- College of Science
- University of Sulaimani
- Sulaimani
- Iraq
| |
Collapse
|
31
|
Omer KM, Hama Aziz KH, Mohammed SJ. Improvement of selectivity via the surface modification of carbon nanodots towards the quantitative detection of mercury ions. NEW J CHEM 2019. [DOI: 10.1039/c9nj03057c] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Highly fluorescent carbon nanodots are promising fluorophores for biochemical, pharmaceutical, and environmental analysis due to their facile preparation, biocompatibility, tunability, and low-cost precursors.
Collapse
Affiliation(s)
- Khalid M. Omer
- Department of Chemistry
- College of Science
- University of Sulaimani
- Iraq
- Komar Research Center
| | | | | |
Collapse
|
32
|
Hama Aziz KH, Omer KM, Hamarawf RF. Lowering the detection limit towards nanomolar mercury ion detection via surface modification of N-doped carbon quantum dots. NEW J CHEM 2019. [DOI: 10.1039/c9nj01333d] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Surface modification of carbon dots can lower the detection limit of trace analysis which is challenging in analytical chemistry and environmental analysis.
Collapse
Affiliation(s)
- Kosar Hikmat Hama Aziz
- Department of Chemistry
- College of Science University of Sulaimani
- Sulaimani-
- Sulaimani City
- Iraq
| | - Khalid M. Omer
- Department of Chemistry
- College of Science University of Sulaimani
- Sulaimani-
- Sulaimani City
- Iraq
| | - Rebaz Fayaq Hamarawf
- Department of Chemistry
- College of Science University of Sulaimani
- Sulaimani-
- Sulaimani City
- Iraq
| |
Collapse
|
33
|
A novel fluorescent probe for ascorbic acid based on seed-mediated growth of silver nanoparticles quenching of carbon dots fluorescence. Anal Bioanal Chem 2018; 411:877-883. [DOI: 10.1007/s00216-018-1505-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/14/2018] [Accepted: 11/19/2018] [Indexed: 10/27/2022]
|