1
|
Wise SA, Hosbas Coskun S, Hayes HV, Wilson WB, Murray JA, Lippert JA, Burdette CQ, Schantz MM, Murphy KE, Christopher SJ, Yu LL, Rimmer CA, Pasiakos SM, Kuszak AJ. Development of reference materials for dietary supplements-analytical challenges, use, limitations, and future needs. Anal Bioanal Chem 2025; 417:2439-2471. [PMID: 40087178 DOI: 10.1007/s00216-025-05787-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/02/2025] [Accepted: 02/03/2025] [Indexed: 03/17/2025]
Abstract
For two decades, the National Institute of Standards and Technology (NIST) and the National Institutes of Health Office of Dietary Supplements have collaborated to develop dietary supplement-matrix reference materials. During the first decade, NIST developed over 20 botanical and non-botanical dietary supplement Standard Reference Materials (SRMs®) using multiple analytical techniques to assign values for selected marker compounds and toxic elements. In the past decade, NIST has expanded the scope of materials available, and other producers of certified reference materials (CRMs) have joined to provide a limited number of additional materials. This review describes briefly the first decade in the development of CRMs for dietary supplements, primarily botanical dietary supplement ingredients (e.g., ginkgo, green tea, saw palmetto, St. Johns' wort, botanical oils, berries, and soy) and a popular multivitamin/multimineral (MVM) SRM. We discuss the analytical challenges in producing these materials and how these materials established a model for the next generation of CRMs. The second generation of dietary supplement CRMs/RMs, consisting primarily of botanical matrices, calibration solutions, and new and replacement MVM CRMs, is discussed in greater detail including improvements based on experiences from the first decade and potential future needs and developments in this emerging reference material research sector.
Collapse
Affiliation(s)
- Stephen A Wise
- IFC Contractor in Support of the Office of Dietary Supplements (ODS), National Institutes of Health (NIH), Bethesda, MD, 20817, USA.
| | - Sanem Hosbas Coskun
- Kelly Government Services Contractor in Support of the Office of Dietary Supplements (ODS), National Institutes of Health (NIH), Bethesda, MD, 20817, USA
- Chemical Sciences Division, National Institute of Standards and Technology (NIST), Gaithersburg, MD, 20899, USA
| | - Hugh V Hayes
- Chemical Sciences Division, National Institute of Standards and Technology (NIST), Gaithersburg, MD, 20899, USA
| | - Walter B Wilson
- Chemical Sciences Division, National Institute of Standards and Technology (NIST), Gaithersburg, MD, 20899, USA
| | - Jacolin A Murray
- Chemical Sciences Division, National Institute of Standards and Technology (NIST), Gaithersburg, MD, 20899, USA
| | - J Andreas Lippert
- Chemical Sciences Division, National Institute of Standards and Technology (NIST), Gaithersburg, MD, 20899, USA
- Department of Chemistry, Weber State University, Ogden, UT, 84408, USA
| | - Carolyn Q Burdette
- Chemical Sciences Division, National Institute of Standards and Technology (NIST), Gaithersburg, MD, 20899, USA
| | - Michele M Schantz
- Chemical Sciences Division, National Institute of Standards and Technology (NIST), Gaithersburg, MD, 20899, USA
| | - Karen E Murphy
- Chemical Sciences Division, National Institute of Standards and Technology (NIST), Gaithersburg, MD, 20899, USA
| | - Steven J Christopher
- Chemical Sciences Division, National Institute of Standards and Technology (NIST), Gaithersburg, MD, 20899, USA
| | - Lee L Yu
- Chemical Sciences Division, National Institute of Standards and Technology (NIST), Gaithersburg, MD, 20899, USA
| | - Catherine A Rimmer
- Chemical Sciences Division, National Institute of Standards and Technology (NIST), Gaithersburg, MD, 20899, USA
| | - Stefan M Pasiakos
- Office of Dietary Supplements (ODS), National Institutes of Health (NIH), Bethesda, MD, 20817, USA
| | - Adam J Kuszak
- Office of Dietary Supplements (ODS), National Institutes of Health (NIH), Bethesda, MD, 20817, USA
| |
Collapse
|
2
|
Orhan N, Gafner S, Blumenthal M. Estimating the extent of adulteration of the popular herbs black cohosh, echinacea, elder berry, ginkgo, and turmeric - its challenges and limitations. Nat Prod Rep 2024; 41:1604-1621. [PMID: 39108221 DOI: 10.1039/d4np00014e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2024]
Abstract
Covering: up to July 2023Botanical natural medicinal products and dietary supplements are utilized globally for their positive impacts on health and wellness. However, the effectiveness and safety of botanical products can be compromised by unintentional or intentional adulteration. The presence of adulterated botanical ingredients in the global market has been documented in the published literature but a key question, namely what the extent of adulteration is, remains to be answered. This review aims to estimate the prevalence of adulteration in preparations made from black cohosh rhizome, echinacea root or herb, elder berry, ginkgo leaf, and turmeric root/rhizome. According to the information provided in the 78 publications retrieved for this paper, 818 of 2995 samples were reported to be adulterated and/or mislabeled. Ginkgo leaf samples (n = 533) had the highest adulteration rate with 56.7%, followed by black cohosh rhizome (n = 322) samples with 42.2%, echinacea root/herb (n = 200) with 28.5%, elder berry (n = 695) with 17.1%, and turmeric root/rhizome (n = 1247) with 16.5%. Products sold as licensed or registered herbal medicines were found to have a lower risk of adulteration compared to products sold as dietary/food supplements. The data show that the adulteration rate substantially differs from one ingredient to the other. Due to the significant limitations of the available data upon which the estimated extent of adulteration is based, and the rapidly changing botanical dietary supplement market, conclusions from the five herbs examined in this publication cannot be applied to other botanicals traded in the global market. However, the data clearly show that a substantial portion of the botanical dietary supplements do not contain what is claimed on their labels.
Collapse
Affiliation(s)
- Nilüfer Orhan
- American Botanical Council, 6200 Manor Road, 78723, Austin, TX, USA.
| | - Stefan Gafner
- American Botanical Council, 6200 Manor Road, 78723, Austin, TX, USA.
| | - Mark Blumenthal
- American Botanical Council, 6200 Manor Road, 78723, Austin, TX, USA.
| |
Collapse
|
3
|
Salinas-Arellano ED, Castro-Dionicio IY, Jeyaraj JG, Mirtallo Ezzone NP, Carcache de Blanco EJ. Phytochemical Profiles and Biological Studies of Selected Botanical Dietary Supplements Used in the United States. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2023; 122:1-162. [PMID: 37392311 DOI: 10.1007/978-3-031-26768-0_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2023]
Abstract
Based on their current wide bioavailability, botanical dietary supplements have become an important component of the United States healthcare system, although most of these products have limited scientific evidence for their use. The most recent American Botanical Council Market Report estimated for 2020 a 17.3% increase in sales of these products when compared to 2019, for a total sales volume of $11,261 billion. The use of botanical dietary supplements products in the United States is guided by the Dietary Supplement Health and Education Act (DSHEA) from 1994, enacted by the U.S. Congress with the aim of providing more information to consumers and to facilitate access to a larger number of botanical dietary supplements available on the market than previously. Botanical dietary supplements may be formulated for and use only using crude plant samples (e.g., plant parts such as the bark, leaves, or roots) that can be processed by grinding into a dried powder. Plant parts can also be extracted with hot water to form an "herbal tea." Other preparations of botanical dietary supplements include capsules, essential oils, gummies, powders, tablets, and tinctures. Overall, botanical dietary supplements contain bioactive secondary metabolites with diverse chemotypes that typically are found at low concentration levels. These bioactive constituents usually occur in combination with inactive molecules that may induce synergy and potentiation of the effects observed when botanical dietary supplements are taken in their different forms. Most of the botanical dietary supplements available on the U.S. market have been used previously as herbal remedies or as part of traditional medicine systems from around the world. Their prior use in these systems also provides a certain level of assurance in regard to lower toxicity levels. This chapter will focus on the importance and diversity of the chemical features of bioactive secondary metabolites found in botanical dietary supplements that are responsible for their applications. Many of the active principles of botanical dietary substances are phenolics and isoprenoids, but glycosides and some alkaloids are also present. Biological studies on the active constituents of selected botanical dietary supplements will be discussed. Thus, the present chapter should be of interest for both members of the natural products scientific community, who may be performing development studies of the products available, as well as for healthcare professionals who are directly involved in the analysis of botanical interactions and evaluation of the suitability of botanical dietary supplements for human consumption.
Collapse
Affiliation(s)
- Eric D Salinas-Arellano
- Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, 500 West 12th Avenue, Columbus, OH, 43210, USA
| | - Ines Y Castro-Dionicio
- Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, 500 West 12th Avenue, Columbus, OH, 43210, USA
| | - Jonathan G Jeyaraj
- Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, 500 West 12th Avenue, Columbus, OH, 43210, USA
| | - Nathan P Mirtallo Ezzone
- Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, 500 West 12th Avenue, Columbus, OH, 43210, USA
| | - Esperanza J Carcache de Blanco
- Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, 500 West 12th Avenue, Columbus, OH, 43210, USA.
| |
Collapse
|
4
|
Liu Z, Zhang M, Chen P, Harnly JM, Sun J. Mass Spectrometry-Based Nontargeted and Targeted Analytical Approaches in Fingerprinting and Metabolomics of Food and Agricultural Research. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:11138-11153. [PMID: 35998657 DOI: 10.1021/acs.jafc.2c01878] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Mass spectrometry (MS)-based techniques have been extensively applied in food and agricultural research. This review aims to address the advances and applications of MS-based analytical strategies in nontargeted and targeted analysis and summarizes the recent publications of MS-based techniques, including flow injection MS fingerprinting, chromatography-tandem MS metabolomics, direct analysis using ambient mass spectrometry, as well as development in MS data deconvolution software packages and databases for metabolomic studies. Various nontargeted and targeted approaches are employed in marker compounds identification, material adulteration detection, and the analysis of specific classes of secondary metabolites. In the newly emerged applications, the recent advances in computer tools for the fast deconvolution of MS data in targeted secondary metabolite analysis are highlighted.
Collapse
Affiliation(s)
- Zhihao Liu
- United States Department of Agriculture, Methods and Application of Food Composition Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, Beltsville, Maryland 20705, United States
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland 20742, United States
| | - Mengliang Zhang
- Department of Chemistry, Middle Tennessee State University, Murfreesboro, Tennessee 37132, United States
| | - Pei Chen
- United States Department of Agriculture, Methods and Application of Food Composition Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, Beltsville, Maryland 20705, United States
| | - James M Harnly
- United States Department of Agriculture, Methods and Application of Food Composition Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, Beltsville, Maryland 20705, United States
| | - Jianghao Sun
- United States Department of Agriculture, Methods and Application of Food Composition Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, Beltsville, Maryland 20705, United States
| |
Collapse
|
5
|
Wise SA. What if using certified reference materials (CRMs) was a requirement to publish in analytical/bioanalytical chemistry journals? Anal Bioanal Chem 2022; 414:7015-7022. [PMID: 35697811 DOI: 10.1007/s00216-022-04163-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/23/2022] [Accepted: 05/31/2022] [Indexed: 12/17/2022]
Abstract
Certified reference materials (CRMs) are routinely used by analytical chemists to validate new analytical methods and to demonstrate the quality of their quantitative measurements. Even though CRMs for trace element and trace organic analysis have been available and widely used for over 50 years, the majority of papers published in analytical chemistry journals do not mention the use of CRMs. What if analytical/bioanalytical chemistry journals required the use of CRMs to publish a paper? This feature article attempts to address this question by providing examples of recent papers that have made exceptional use of CRMs to validate new analytical methods and to describe novel, alternative uses of CRMs that provide new characterization of the CRM. The potential benefits of using a CRM even when it does not have certified values for the analytes of interest are presented.
Collapse
Affiliation(s)
- Stephen A Wise
- Office of Dietary Supplements, National Institutes of Health, Bethesda, MD, 20817, USA. .,Scientist Emeritus, National Institute of Standards and Technology (NIST), Gaithersburg, MD, 20899, USA.
| |
Collapse
|
6
|
Hosbas Coskun S, Wise SA, Kuszak AJ. The Importance of Reference Materials and Method Validation for Advancing Research on the Health Effects of Dietary Supplements and Other Natural Products. Front Nutr 2021; 8:786261. [PMID: 34970578 PMCID: PMC8713974 DOI: 10.3389/fnut.2021.786261] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/17/2021] [Indexed: 01/21/2023] Open
Abstract
Insufficient assessment of the identity and chemical composition of complex natural products, including botanicals, herbal remedies, and dietary supplements, hinders reproducible research and limits understanding mechanism(s) of action and health outcomes, which in turn impede improvements in clinical practice and advances in public health. This review describes available analytical resources and good methodological practices that support natural product characterization and strengthen the knowledge gained for designing and interpreting safety and efficacy investigations. The practice of validating analytical methods demonstrates that measurements of constituents of interest are reproducible and appropriate for the sample (e.g., plant material, phytochemical extract, and biological specimen). In particular, the utilization of matrix-based reference materials enables researchers to assess the accuracy, precision, and sensitivity of analytical measurements of natural product constituents, including dietary ingredients and their metabolites. Select case studies are presented where the careful application of these resources and practices has enhanced experimental rigor and benefited research on dietary supplement health effects.
Collapse
Affiliation(s)
| | | | - Adam J. Kuszak
- Office of Dietary Supplements, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
7
|
Ichim MC, Booker A. Chemical Authentication of Botanical Ingredients: A Review of Commercial Herbal Products. Front Pharmacol 2021; 12:666850. [PMID: 33935790 PMCID: PMC8082499 DOI: 10.3389/fphar.2021.666850] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 03/09/2021] [Indexed: 12/30/2022] Open
Abstract
Chemical methods are the most important and widely used traditional plant identification techniques recommended by national and international pharmacopoeias. We have reviewed the successful use of different chemical methods for the botanical authentication of 2,386 commercial herbal products, sold in 37 countries spread over six continents. The majority of the analyzed products were reported to be authentic (73%) but more than a quarter proved to be adulterated (27%). At a national level, the number of products and the adulteration proportions varied very widely. Yet, the adulteration reported for the four countries, from which more than 100 commercial products were purchased and their botanical ingredients chemically authenticated, was 37% (United Kingdom), 31% (Italy), 27% (United States), and 21% (China). Simple or hyphenated chemical analytical techniques have identified the total absence of labeled botanical ingredients, substitution with closely related or unrelated species, the use of biological filler material, and the hidden presence of regulated, forbidden or allergenic species. Additionally, affecting the safety and efficacy of the commercial herbal products, other low quality aspects were reported: considerable variability of the labeled metabolic profile and/or phytochemical content, significant product-to-product variation of botanical ingredients or even between batches by the same manufacturer, and misleading quality and quantity label claims. Choosing an appropriate chemical technique can be the only possibility for assessing the botanical authenticity of samples which have lost their diagnostic microscopic characteristics or were processed so that DNA cannot be adequately recovered.
Collapse
Affiliation(s)
- Mihael Cristin Ichim
- “Stejarul” Research Centre for Biological Sciences, National Institute of Research and Development for Biological Sciences, Piatra Neamt, Romania
| | - Anthony Booker
- Research Centre for Optimal Health, School of Life Sciences, College of Liberal Arts and Sciences, University of Westminster, London, United Kingdom
- Pharmacognosy and Phytotherapy, UCL School of Pharmacy, London, United Kingdom
| |
Collapse
|