1
|
Kayani KF, Rahim MK, Mohammed SJ, Ahmed HR, Mustafa MS, Aziz SB. Recent Progress in Folic Acid Detection Based on Fluorescent Carbon Dots as Sensors: A Review. J Fluoresc 2025; 35:2481-2494. [PMID: 38625574 DOI: 10.1007/s10895-024-03728-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 04/11/2024] [Indexed: 04/17/2024]
Abstract
Folic acid (FA) is a water-soluble vitamin found in diverse natural sources and is crucial for preserving human health. The risk of health issues due to FA deficiency underscores the need for a straightforward and sensitive FA detection methodology. Carbon dots (CDs) have gained significant attention owing to their exceptional fluorescence performance, biocompatibility, and easy accessibility. Consequently, numerous research studies have concentrated on developing advanced CD fluorescent probes to enable swift and precise FA detection. Despite these efforts, there is still a requirement for a thorough overview of the efficient synthesis of CDs and their practical applications in FA detection to further promote the widespread use of CDs. This review paper focuses on the practical applications of CD sensors for FA detection. It begins with an in-depth introduction to FA and CDs. Following that, based on various synthetic approaches, the prepared CDs are classified into diverse detection methods, such as single sensing, visual detection, and electrochemical methods. Furthermore, persistent challenges and potential avenues are highlighted for future research to provide valuable insights into crafting effective CDs and detecting FA.
Collapse
Affiliation(s)
- Kawan F Kayani
- Department of Chemistry, College of Science, University of Sulaimani, Qliasan Street,, Sulaymaniyah City, Kurdistan Region, 46002, Iraq.
- Department of Chemistry, College of Science, Charmo University, Chamchamal/Sulaimani, Kurdistan Region, 46023, Iraq.
- Department of Pharmacy, Kurdistan Technical Institute, Sulaymaniyah City, Iraq.
| | - Mohammed K Rahim
- Department of Chemistry, College of Science, University of Sulaimani, Qliasan Street,, Sulaymaniyah City, Kurdistan Region, 46002, Iraq
| | - Sewara J Mohammed
- Anesthesia department, College of Health Sciences, Cihan University Sulaimaniya, Sulaimaniya, Kurdistan Region, 46001, Iraq
- Research and Development Center, University of Sulaimani, Qlyasan Street, Kurdistan Regional Government, Sulaymaniyah, 46001, Iraq
| | - Harez Rashid Ahmed
- Department of Chemistry, College of Science, University of Sulaimani, Qliasan Street,, Sulaymaniyah City, Kurdistan Region, 46002, Iraq
- College of Science, Department of Medical Laboratory Science, Komar University of Science and Technology, Sulaymaniyah, 46001, Iraq
| | - Muhammad S Mustafa
- Department of Chemistry, College of Science, University of Sulaimani, Qliasan Street,, Sulaymaniyah City, Kurdistan Region, 46002, Iraq
| | - Shujahadeen B Aziz
- Research and Development Center, University of Sulaimani, Qlyasan Street, Kurdistan Regional Government, Sulaymaniyah, 46001, Iraq
| |
Collapse
|
2
|
Xu R, Jiang J, Ding L, Song D, Chen Y. Innovation of Ratiometric Sensing Strategies Based on Graphitic Carbon Nitride. Crit Rev Anal Chem 2025:1-25. [PMID: 40215094 DOI: 10.1080/10408347.2025.2486213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
Graphitic carbon nitride (g-C3N4), a π-conjugated semiconductor with visible-light absorption, has emerged as a versatile material for ratiometric sensing due to its thermal/chemical stability, biocompatibility, and tunable optoelectronic properties. This review highlights recent advances in g-C3N4-based ratiometric electrochemiluminescence (ECL), fluorescence (FL), and photoelectrochemical (PEC) sensors for ultrasensitive detection of diverse analytes. Ratiometric ECL platforms achieved remarkable detection limits, such as 0.2 nM for Hg2+ and 59 aM for SARS-CoV-2 RdRp gene, leveraging dual-potential or dual-wavelength strategies. FL sensors enabled selective quantification of analysts, such as Ce3+ (6.4 × 10-8 mol/L) and tetracycline (5.0 nM) via aggregation-induced emission or inner filter effect mechanisms. In PEC sensing, spatial-resolved dual-electrode systems attained ultrahigh sensitivity for Escherichia coli (0.66 cfu/mL) and alpha-fetoprotein (0.2 pg/mL). These g-C3N4-based sensors demonstrated enhanced sensitivity and reliability across environmental, biomedical, and food safety applications. The synergy of g-C3N4's structural advantages and ratiometric design principles demonstrates broad application prospects in fields such as food and environmental safety analysis, as well as early disease diagnosis.
Collapse
Affiliation(s)
- Rui Xu
- College of Chemistry, Jilin University, Changchun, China
| | - Juncai Jiang
- College of Chemistry, Jilin University, Changchun, China
| | - Lan Ding
- College of Chemistry, Jilin University, Changchun, China
| | - Daqian Song
- Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Changchun, China
| | - Yanhua Chen
- College of Chemistry, Jilin University, Changchun, China
- Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Changchun, China
| |
Collapse
|
3
|
Shen L, Tang J, Li M, Yu C, Zhang M, Wang S, Li Y, Liu Z. Facile synthesis of sulfur quantum dots with red light emission: Implications for electrochemiluminescence analysis application. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 323:124878. [PMID: 39084015 DOI: 10.1016/j.saa.2024.124878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/29/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024]
Abstract
Sulfur quantum dots (SQDs) have been reported as a potential candidate due to their low toxicity and high luminescent performance. Here, SQDs with red light fluorescence (FL) emission were synthesized by a one-step hydrothermal method using Na2CO3 as an etching agent, using sublimed sulfur powder as a sulfur source, and using bovine serum albumin (BSA) as a stabilizer. The choice of etching agent (NaOH or Na2CO3) realized the tuning of SQDs' FL emission with blue and red light. The synthesized SQDs showed good FL stability and high FL efficiency, with a quantum yield of 1.03 % in an aqueous solution at 575 nm. In addition, stable and efficient electrochemiluminescence (ECL) emission was achieved by employing SQDs as ECL emitters with K2S2O8 as the co-reactant. The resorcinol (RS) can enhance the ECL intensity of the SQDs-K2S2O8 system, and the ECL intensity had a good linear relationship with the concentration of RS in a range from 2.5 nM to 25 nM with a detection limit of 0.61 nM. This work provides an emerging red-light luminescent SQDs, which would open up a way for the development of new types of luminophor in FL or ECL analysis. It also provides convenience for bio-labeling of live cells, in vivo imaging and provide new materials for photoelectric devices.
Collapse
Affiliation(s)
- Lihua Shen
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, China.
| | - Jundan Tang
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Meng Li
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Chunxia Yu
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Meng Zhang
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Shan Wang
- School of Chemistry and Chemical Engineering, Xianyang Normal University, Xianyang 712000, China.
| | - Yuangang Li
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Zhifang Liu
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
4
|
The role of doping strategy in nanoparticle-based electrochemiluminescence biosensing. Bioelectrochemistry 2022; 148:108249. [PMID: 36029761 DOI: 10.1016/j.bioelechem.2022.108249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 11/23/2022]
Abstract
Doping plays a crucial role in electrochemiluminescence (ECL) due to the followings: (1) Modulation of electronic structure, alteration of the surface state of nanoparticles (NPs), providing effective protection from the surrounding environment, thereby leading to ECL emitters with exceptional properties including tunable spectra, high luminescence efficiency, low excitation potential, and good stability. (2) Employment of doped NPs as promising coreactant alternatives due to the presence of functional groups such as amines induced by NP doping. (3) Serving as novel co-reaction accelerators (CRAs) for ECL through doping induced high catalytic properties. (4) Behaving as excellent carriers to load ECL emitters, recognition elements, and catalysts due to doping-induced larger surface area, higher conductivity and better biocompatibility of NPs. As a consequence, doped NPs have aroused broad interest and found wide applications in various ECL sensing platforms. In this review, the current promising improvements, concepts, and excellent applications of doped NPs for ECL biosensing are addressed. We aim to bring to light the physicochemical characteristics of various doped NPs that endow them with appealing ECL performance, leading to diverse applications in biosensing.
Collapse
|
5
|
Ali H, Verma N. A Hybrid UV-Vis Spectroelectrochemical Approach for Measuring Folic Acid using a Novel Ni-CNF/ITO Electrode. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
6
|
Li L, Zhao W, Luo L, Liu X, Bi X, Li J, Jiang P, You T. Electrochemiluminescence of Carbon‐based Quantum Dots: Synthesis, Mechanism and Application in Heavy Metal Ions Detection. ELECTROANAL 2022. [DOI: 10.1002/elan.202100221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Libo Li
- Key Laboratory of Modern Agricultural Equipment and Technology Ministry of Education School of Agricultural Engineering Jiangsu University 212013 Zhenjiang Jiangsu China
| | - Wanlin Zhao
- Key Laboratory of Modern Agricultural Equipment and Technology Ministry of Education School of Agricultural Engineering Jiangsu University 212013 Zhenjiang Jiangsu China
| | - Lijun Luo
- Key Laboratory of Modern Agricultural Equipment and Technology Ministry of Education School of Agricultural Engineering Jiangsu University 212013 Zhenjiang Jiangsu China
| | - Xiaohong Liu
- Key Laboratory of Modern Agricultural Equipment and Technology Ministry of Education School of Agricultural Engineering Jiangsu University 212013 Zhenjiang Jiangsu China
| | - Xiaoya Bi
- Key Laboratory of Modern Agricultural Equipment and Technology Ministry of Education School of Agricultural Engineering Jiangsu University 212013 Zhenjiang Jiangsu China
| | - Jiamin Li
- Key Laboratory of Modern Agricultural Equipment and Technology Ministry of Education School of Agricultural Engineering Jiangsu University 212013 Zhenjiang Jiangsu China
| | - Panao Jiang
- Key Laboratory of Modern Agricultural Equipment and Technology Ministry of Education School of Agricultural Engineering Jiangsu University 212013 Zhenjiang Jiangsu China
| | - Tianyan You
- Key Laboratory of Modern Agricultural Equipment and Technology Ministry of Education School of Agricultural Engineering Jiangsu University 212013 Zhenjiang Jiangsu China
| |
Collapse
|
7
|
Zhang X, Liao X, Hou Y, Jia B, Fu L, Jia M, Zhou L, Lu J, Kong W. Recent advances in synthesis and modification of carbon dots for optical sensing of pesticides. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126881. [PMID: 34449329 DOI: 10.1016/j.jhazmat.2021.126881] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/26/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
Serious threat from pesticide residues to the ecosystem and human health has become a global concern. Developing reliable methods for monitoring pesticides is a world-wide research hotspot. Carbon dots (CDs) with excellent photostability, low toxicity, and good biocompatibility have been regarded as the potential substitutes in fabricating various optical sensors for pesticide detection. Based on the relevant high-quality publications, this paper first summarizes the current state-of-the-art of the synthetic and modification approaches of CDs. Then, a comprehensive overview is given on the recent advances of CDs-based optical sensors for pesticides over the past five years, with a particular focus on photoluminescent, electrochemiluminescent and colorimetric sensors regarding the sensing mechanisms and design principles by integrating with various recognition elements including antibodies, aptamers, enzymes, molecularly imprinted polymers, and some nanoparticles. Novel functions and extended applications of CDs as signal indicators, catalyst, co-reactants, and electrode surface modifiers, in constructing optical sensors are specially highlighted. Beyond an assessment of the performances of the real-world application of these proposed optical sensors, the existing inadequacies and current challenges, as well as future perspectives for pesticide monitoring are discussed in detail. It is hoped to provide powerful insights for the development of novel CDs-based sensing strategies with their wide application in different fields for pesticide supervision.
Collapse
Affiliation(s)
- Xin Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China; Pharmacy College, Jinzhou Medical University, Jinzhou 121001, China
| | - Xiaofang Liao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Yujiao Hou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China; Xinjiang Agricultural Vocational Technical College, Changji 831100, China
| | - Boyu Jia
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Lizhu Fu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China; Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Mingxuan Jia
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China; Pharmacy College, Jinzhou Medical University, Jinzhou 121001, China
| | - Lidong Zhou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Jinghua Lu
- Pharmacy College, Jinzhou Medical University, Jinzhou 121001, China
| | - Weijun Kong
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China.
| |
Collapse
|
8
|
Liu FY, Zhang TK, Zhao YL, Ning HX, Li FS. Electrochemiluminescence of 1,8-Naphthalimide-Modified Carbon Nitride for Cu2+ Detection. JOURNAL OF ANALYSIS AND TESTING 2021. [DOI: 10.1007/s41664-021-00203-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
9
|
Zhang W, Xu D, Wang F, Chen M. Element-doped graphitic carbon nitride: confirmation of doped elements and applications. NANOSCALE ADVANCES 2021; 3:4370-4387. [PMID: 36133458 PMCID: PMC9417723 DOI: 10.1039/d1na00264c] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/17/2021] [Indexed: 05/11/2023]
Abstract
Doping is widely reported as an efficient strategy to enhance the performance of graphitic carbon nitride (g-CN). In the study of element-doped g-CN, the characterization of doped elements is an indispensable requirement, as well as a huge challenge. In this review, we summarize some useful characterization methods which can confirm the existence and chemical states of doped elements. The advantages and shortcomings of these characterization methods are discussed in detail. Various applications of element-doped g-CN and the function of doped elements are also introduced. Overall, this review article aims to provide helpful information for the research of element-doped g-CN.
Collapse
Affiliation(s)
- Wenjun Zhang
- Department of Materials Science, Fudan University Shanghai 200433 PR China
| | - Datong Xu
- Department of Materials Science, Fudan University Shanghai 200433 PR China
| | - Fengjue Wang
- Department of Materials Science, Fudan University Shanghai 200433 PR China
| | - Meng Chen
- Department of Materials Science, Fudan University Shanghai 200433 PR China
| |
Collapse
|
10
|
Zou R, Teng X, Lin Y, Lu C. Graphitic carbon nitride-based nanocomposites electrochemiluminescence systems and their applications in biosensors. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.116054] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
11
|
Chen M, Ning Z, Chen K, Zhang Y, Shen Y. Recent Advances of Electrochemiluminescent System in Bioassay. JOURNAL OF ANALYSIS AND TESTING 2020. [DOI: 10.1007/s41664-020-00136-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|