1
|
Li L, Jiang C. Electrodeposited coatings for neural electrodes: A review. Biosens Bioelectron 2025; 282:117492. [PMID: 40288311 DOI: 10.1016/j.bios.2025.117492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 03/27/2025] [Accepted: 04/16/2025] [Indexed: 04/29/2025]
Abstract
Neural electrodes play a pivotal role in ensuring safe stimulation and high-quality recording for various bioelectronics such as neuromodulation devices and brain-computer interfaces. With the miniaturization of electrodes and the increasing demand for multi-functionality, the incorporation of coating materials via electrodeposition to enhance electrodes performance emerges as a highly effective strategy. These coatings not only substantially improve the stimulation and recording performance of electrodes but also introduce additional functionalities. This review began by outlining the application scenarios and critical requirements of neural electrodes. It then delved into the deposition principles and key influencing factors. Furthermore, the advancements in the electrochemical performance and adhesion stability of these coatings were reviewed. Ultimately, the latest innovative works in the electrodeposited coating applications were highlighted, and future perspectives were summarized.
Collapse
Affiliation(s)
- Linze Li
- School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350116, China.
| | - Changqing Jiang
- National Engineering Research Center of Neuromodulation, School of Aerospace Engineering, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
2
|
Malik M, Steele SA, Mitra D, Long CJ, Hickman JJ. Trans-epithelial/endothelial electrical resistance (TEER): Current state of integrated TEER measurements in organ-on-a-chip devices. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2025; 34:100588. [PMID: 40276329 PMCID: PMC12017418 DOI: 10.1016/j.cobme.2025.100588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
Trans-epithelial/endothelial electrical resistance (TEER) is a non-invasive and quick method of assessing the integrity of barrier tissues. Traditional TEER measurement methods such as chopstick electrode-based and chamber-based measurement work well with static, Transwell-based models; however, the same methods do not directly apply to human on a chip or organ-on-a-chip (OOC) platforms. With the wide variety of organ-on-a-chip devices, innovative designs to accurately measure TEER, without disturbing cells, are customized for various devices. Wire electrode integration, integrating a two-probe or four-probe technique, flexible printed circuit boards or multi-electrode glass substrate-based methods are some of the TEER measurement setups being utilized in conjunction with OOC systems. The variability in measurement setups associated with OOCs make standardization challenging; however, the field is working towards establishing guidelines on acceptable TEER values of different OOC constructs.
Collapse
Affiliation(s)
- Mridu Malik
- Hesperos Inc., 12501 Research Pkwy, Suite 100, Orlando, Florida 32826, USA
| | - Stecia A. Steele
- Hesperos Inc., 12501 Research Pkwy, Suite 100, Orlando, Florida 32826, USA
| | - Deepshikha Mitra
- Hesperos Inc., 12501 Research Pkwy, Suite 100, Orlando, Florida 32826, USA
| | | | - James J. Hickman
- Hesperos Inc., 12501 Research Pkwy, Suite 100, Orlando, Florida 32826, USA
- Nanoscience Technology Center, 12424 Research Parkway, Suite 400, Orlando, FL 32826, USA
| |
Collapse
|
3
|
Wu J, Saizaki T, Yoshinobu T, Guo Y. Advancing multiplexed ion monitoring techniques: The development of integrated thermally drawn polymer fiber-based ion probes. Talanta 2025; 285:127249. [PMID: 39681055 DOI: 10.1016/j.talanta.2024.127249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 11/09/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024]
Abstract
The monitoring of ion homeostasis in vivo is of paramount importance due to its critical functions in biological systems. However, current leading technologies for creating ion-selective electrodes often fall short of the requirements for in vivo applications in terms of multiplexity, miniaturization, and flexibility. To address this gap, we introduce an integrated multiplexed ion monitoring probe created from thermally drawn multi-electrode polymer fiber, aimed at enhancing in vivo ion homeostasis studies. This probe employs a carbon nanofiber (CNF)/graphene composite as the sensing material, utilizing a thermal drawing process, laser machining, and material functionalization to fabricate multiplexed ion probes. Our design incorporates electrodes on micron-scale fibers for sensing Na+, K+ and Cl- ions, alongside an electrode for electrophysiology recording, achieving excellent sensitivity, stability, selectivity, and reversibility in distilled water and artificial cerebrospinal fluid solutions (aCSF). These results demonstrate the potential of the probe for future in vivo applications.
Collapse
Affiliation(s)
- Jingxuan Wu
- Graduate School of Biomedical Engineering, Tohoku University, Sendai, Miyagi, 980-8579, Japan
| | - Tomoki Saizaki
- School of Engineering, Tohoku University, Sendai, Miyagi, 980-8579, Japan
| | - Tatsuo Yoshinobu
- Graduate School of Biomedical Engineering, Tohoku University, Sendai, Miyagi, 980-8579, Japan
| | - Yuanyuan Guo
- Graduate School of Biomedical Engineering, Tohoku University, Sendai, Miyagi, 980-8579, Japan; Frontier Research Institute for Interdisciplinary Sciences (FRIS), Tohoku University, Sendai, Miyagi, 980-0845, Japan.
| |
Collapse
|
4
|
Kim AR, Hong SJ, Lee HB, Lee NE. Stretchable impedance electrode array with high durability for monitoring of cells under mechanical and chemical stimulations. LAB ON A CHIP 2025; 25:403-412. [PMID: 39751844 DOI: 10.1039/d4lc00680a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Electrochemical impedance spectroscopy (EIS) serves as a non-invasive technique for assessing cell status, while mechanical stretching plays a pivotal role in stimulating cells to emulate their natural environment. Integrating these two domains enables the concurrent application of mechanical stimulation and EIS in a stretchable cell culture system. However, challenges arise from the difficulty in creating a durable and stable stretchable impedance electrode array. To overcome this limitation, we have developed a cell culture system integrated with a stretchable impedance electrode array (SIEA). This design enabled impedance monitoring during cell proliferation under mechanical stimulation over a long period of time due to the high mechanical durability and electrochemical stability of the SIEA. Our evaluation also involved testing the cytotoxicity of doxorubicin on H9C2 cells directly on the SIEA. The results underscore the significant potential of our SIEA device as an effective tool for monitoring cells subjected to mechanical stimulation and as a platform for drug toxicity testing.
Collapse
Affiliation(s)
- A Ri Kim
- Department of Nano Science and Technology, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea.
| | - Seok Ju Hong
- School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Han-Byeol Lee
- School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Nae-Eung Lee
- Department of Nano Science and Technology, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea.
- Advanced Institute of Nano Technology, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
- School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
- Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
| |
Collapse
|
5
|
Ji T, Ye W, Xiao W, Dawson G, Dong Q, Gwenin C. Iridium oxide-modified reference screen-printed electrodes for point-of-care portable electrochemical cortisol detection. Talanta 2024; 280:126776. [PMID: 39216420 DOI: 10.1016/j.talanta.2024.126776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 07/10/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024]
Abstract
Cortisol is a well-known stress biomarker; this study focuses on using electrochemical immuno-sensing to measure the concentration of cortisol selectively and sensitively in artificial samples. Anti-cortisol antibodies have been immobilised on polycrystalline Au electrodes via strong covalent thiol bonds, fabricating an electrochemical bio-immunosensor for cortisol detection. IrOx was then anodically electrodeposited as a reference electrode on a commercial screen-printed electrode and electrochemical impedance spectrometry (EIS) studies were used to correlate the electrochemical response to cortisol concentration and the induced changes in charge transfer resistance (Rct). A linear relationship between the Rct and the logarithm of cortisol concentration was found in concentrations ranging from 1 ng/mL to 1 mg/mL with limit of detection at 11.85 pg/mL (32.69 pM). The modification of the reference electrode with iridium oxide has greatly improved the reproducibility of the screen-printed electrode. The sensing system can provide a reliable and sensitive detection approach for cortisol measurements.
Collapse
Affiliation(s)
- Tong Ji
- Xi'an Jiaotong-Liverpool University, School of Science, Department of Chemistry, No. 111 Ren'ai Road, Suzhou Industrial Park, Suzhou, People's Republic of China
| | - Wen Ye
- Xi'an Jiaotong-Liverpool University, School of Science, Department of Chemistry, No. 111 Ren'ai Road, Suzhou Industrial Park, Suzhou, People's Republic of China
| | - Weiyu Xiao
- Xi'an Jiaotong-Liverpool University, School of Science, Department of Chemistry, No. 111 Ren'ai Road, Suzhou Industrial Park, Suzhou, People's Republic of China
| | - Graham Dawson
- Xi'an Jiaotong-Liverpool University, School of Science, Department of Chemistry, No. 111 Ren'ai Road, Suzhou Industrial Park, Suzhou, People's Republic of China
| | - Qiuchen Dong
- Xi'an Jiaotong-Liverpool University, School of Science, Department of Chemistry, No. 111 Ren'ai Road, Suzhou Industrial Park, Suzhou, People's Republic of China.
| | - Christopher Gwenin
- School of Applied Sciences Division of Health Sciences, Abertay University, Bell St, Dundee, DD1 1HG, United Kingdom.
| |
Collapse
|
6
|
Zhang Z, Feng Y, Teng H, Ru S, Li Y, Liu M, Wang J. Development and application of bisphenol S electrochemical immunosensor and iridium oxide nanoparticle-based lateral flow immunoassay. CHEMOSPHERE 2024; 364:143034. [PMID: 39117083 DOI: 10.1016/j.chemosphere.2024.143034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Bisphenol S (BPS) is a common pollutant in the environment and has posed a potential threat to aquatic animals and human health. To accurately assess the pollution level and ecological risk of BPS, there is an urgent need to establish simple and sensitive detection methods for BPS. In this study, BPS complete antigen was successfully prepared by introducing methyl 4-bromobutyrate and coupling bovine serum albumin (BSA). The monoclonal antibody against BPS (anti-BPS mAb) with high affinity (1: 256,000) was developed based on the BPS complete antigen, which showed low cross-reactivity with BPS structural analogues. Then, an electrochemical immunosensor was constructed to detect BPS using multi-walled carbon nanotubes and gold nanoflower composites as signal amplification elements and using anti-BPS mAb as the probe. The electrochemical immunosensor had a linear range from 1 to 250 ng⋅mL-1 and a limit of detection (LOD) down to 0.6 ng⋅mL-1. Additionally, a more stable and sensitive lateral flow immunoassay (LFIA) for BPS was developed based on iridium oxide nanoparticles, with a visual detection limit of 1 ng⋅mL-1, which was 10 times lower than that of classical Au-NPs LFIA. After evaluation of their stability and specificity, the reliability of these two methods were further validated by measuring BPS concentrations in the water and fish tissues. Thus, this study provides sensitive, robust and rapid methods for the detection of BPS in the environment and organisms, which can provide a methodological reference for monitoring environmental contaminants.
Collapse
Affiliation(s)
- Zhenzhong Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Yongliang Feng
- Department of Basic Courses, Tangshan University, Tangshan, 063000, China
| | - Hayan Teng
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Yuejiao Li
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Minhao Liu
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Jun Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
7
|
Khoury F, Saleh S, Badawe H, Obeid M, Khraiche M. Inkjet-Printed, Flexible Organic Electrochemical Transistors for High-Performance Electrocorticography Recordings. ACS APPLIED MATERIALS & INTERFACES 2024; 16. [PMID: 39146224 PMCID: PMC11492168 DOI: 10.1021/acsami.4c07359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 08/17/2024]
Abstract
Organic electrochemical transistors (OECTs) have emerged as powerful tools for biosignal amplification, including electrocorticography (ECoG). However, their widespread application has been limited by the complexities associated with existing fabrication techniques, restricting accessibility and scalability. Here, we introduce a novel all-planar, all-printed high-performance OECT device that significantly enhances the accuracy and sensitivity of ECoG recordings. Achieved through an innovative three-step drop-on-demand inkjet printing process on flexible substrates, our device offers a rapid response time of 0.5 ms, a compact channel area of 1950 μm2, and is characterized by a transconductance of 11 mS. This process not only simplifies integration but also reduces costs. Our optimized in-plane gate voltage control facilitates operation at peak transconductance, which elevates the signal-to-noise ratio (SNR) by up to 133%. In vivo evaluations in a rat model of seizure demonstrate the device's performance in recording distinct electrographic phases, surpassing the capabilities of PEDOT:PSS-coated gold-based ultralow impedance passive electrodes, achieving a high SNR of 48 db. Our results underscore the potential of Inkjet-printed OECTs in advancing the accessibility and accuracy of diagnostic tools that could enhance patient care by facilitating timely detection of neurological conditions.
Collapse
Affiliation(s)
- Fadi Khoury
- Neural
Engineering and NanoBiosensors Group, Biomedical Engineering Program,
Maroun Semaan Faculty of Engineering and Architecture, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Sahera Saleh
- Neural
Engineering and NanoBiosensors Group, Biomedical Engineering Program,
Maroun Semaan Faculty of Engineering and Architecture, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Heba Badawe
- Neural
Engineering and NanoBiosensors Group, Biomedical Engineering Program,
Maroun Semaan Faculty of Engineering and Architecture, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Makram Obeid
- Stark
Neurosciences Research Institute, Department of Neurology, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Massoud Khraiche
- Neural
Engineering and NanoBiosensors Group, Biomedical Engineering Program,
Maroun Semaan Faculty of Engineering and Architecture, American University of Beirut, Beirut 1107 2020, Lebanon
| |
Collapse
|
8
|
Bocu R. Extended Review Concerning the Integration of Electrochemical Biosensors into Modern IoT and Wearable Devices. BIOSENSORS 2024; 14:214. [PMID: 38785688 PMCID: PMC11117989 DOI: 10.3390/bios14050214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/17/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024]
Abstract
Electrochemical biosensors include a recognition component and an electronic transducer, which detect the body fluids with a high degree of accuracy. More importantly, they generate timely readings of the related physiological parameters, and they are suitable for integration into portable, wearable and implantable devices that are significant relative to point-of-care diagnostics scenarios. As an example, the personal glucose meter fundamentally improves the management of diabetes in the comfort of the patients' homes. This review paper analyzes the principles of electrochemical biosensing and the structural features of electrochemical biosensors relative to the implementation of health monitoring and disease diagnostics strategies. The analysis particularly considers the integration of the biosensors into wearable, portable, and implantable systems. The fundamental aim of this paper is to present and critically evaluate the identified significant developments in the scope of electrochemical biosensing for preventive and customized point-of-care diagnostic devices. The paper also approaches the most important engineering challenges that should be addressed in order to improve the sensing accuracy, and enable multiplexing and one-step processes, which mediate the integration of electrochemical biosensing devices into digital healthcare scenarios.
Collapse
Affiliation(s)
- Razvan Bocu
- Department of Mathematics and Computer Science, Transilvania University of Brasov, 500036 Brasov, Romania
| |
Collapse
|
9
|
Li L, Jiang C, Li L. A Comparative Study on the Effect of Substrate Structure on Electrochemical Performance and Stability of Electrodeposited Platinum and Iridium Oxide Coatings for Neural Electrodes. MICROMACHINES 2023; 15:70. [PMID: 38258189 PMCID: PMC10821385 DOI: 10.3390/mi15010070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/20/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024]
Abstract
Implantable electrodes are crucial for stimulation safety and recording quality of neuronal activity. To enhance their electrochemical performance, electrodeposited nanostructured platinum (nanoPt) and iridium oxide (IrOx) have been proposed due to their advantages of in situ deposition and ease of processing. However, their unstable adhesion has been a challenge in practical applications. This study investigated the electrochemical performance and stability of nanoPt and IrOx coatings on hierarchical platinum-iridium (Pt-Ir) substrates prepared by femtosecond laser, compared with the coatings on smooth Pt-Ir substrates. Ultrasonic testing, agarose gel testing, and cyclic voltammetry (CV) testing were used to evaluate the coatings' stability. Results showed that the hierarchical Pt-Ir substrate significantly enhanced the charge-storage capacity of electrodes with both coatings to more than 330 mC/cm2, which was over 75 times that of the smooth Pt-Ir electrode. The hierarchical substrate could also reduce the cracking of nanoPt coatings after ultrasonic, agarose gel and CV testing. Although some shedding was observed in the IrOx coating on the hierarchical substrate after one hour of sonication, it showed good stability in the agarose gel and CV tests. Stable nanoPt and IrOx coatings may not only improve the electrochemical performance but also benefit the function of neurobiochemical detection.
Collapse
Affiliation(s)
- Linze Li
- School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350108, China
| | - Changqing Jiang
- National Engineering Research Center of Neuromodulation, School of Aerospace Engineering, Tsinghua University, Beijing 100084, China
| | - Luming Li
- National Engineering Research Center of Neuromodulation, School of Aerospace Engineering, Tsinghua University, Beijing 100084, China
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| |
Collapse
|
10
|
Zhang Y, Wu X, Vadlamani RA, Lim Y, Kim J, David K, Gilbert E, Li Y, Wang R, Jiang S, Wang A, Sontheimer H, English DF, Emori S, Davalos RV, Poelzing S, Jia X. Submillimeter Multifunctional Ferromagnetic Fiber Robots for Navigation, Sensing, and Modulation. Adv Healthc Mater 2023; 12:e2300964. [PMID: 37473719 PMCID: PMC10799194 DOI: 10.1002/adhm.202300964] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/22/2023]
Abstract
Small-scale robots capable of remote active steering and navigation offer great potential for biomedical applications. However, the current design and manufacturing procedure impede their miniaturization and integration of various diagnostic and therapeutic functionalities. Herein, submillimeter fiber robots that can integrate navigation, sensing, and modulation functions are presented. These fiber robots are fabricated through a scalable thermal drawing process at a speed of 4 meters per minute, which enables the integration of ferromagnetic, electrical, optical, and microfluidic composite with an overall diameter of as small as 250 µm and a length of as long as 150 m. The fiber tip deflection angle can reach up to 54o under a uniform magnetic field of 45 mT. These fiber robots can navigate through complex and constrained environments, such as artificial vessels and brain phantoms. Moreover, Langendorff mouse hearts model, glioblastoma micro platforms, and in vivo mouse models are utilized to demonstrate the capabilities of sensing electrophysiology signals and performing a localized treatment. Additionally, it is demonstrated that the fiber robots can serve as endoscopes with embedded waveguides. These fiber robots provide a versatile platform for targeted multimodal detection and treatment at hard-to-reach locations in a minimally invasive and remotely controllable manner.
Collapse
Affiliation(s)
- Yujing Zhang
- Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Xiaobo Wu
- Translational Biology, Medicine, and Health Graduate Program, Virginia Tech, Roanoke, VA, 24016, USA
- Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, 24016, USA
| | - Ram Anand Vadlamani
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Youngmin Lim
- Department of Physics, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Jongwoon Kim
- Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Kailee David
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Earl Gilbert
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, 24061, USA
- School of Neuroscience, Virginia Tech, Blacksburg, VA, 24061, USA
| | - You Li
- Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Ruixuan Wang
- Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Shan Jiang
- Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Anbo Wang
- Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Harald Sontheimer
- Department of Neuroscience, University of Virginia, Charlottesville, VA, 22903, USA
| | | | - Satoru Emori
- Department of Physics, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Rafael V Davalos
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Steven Poelzing
- Translational Biology, Medicine, and Health Graduate Program, Virginia Tech, Roanoke, VA, 24016, USA
- Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, 24016, USA
| | - Xiaoting Jia
- Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
- School of Neuroscience, Virginia Tech, Blacksburg, VA, 24061, USA
- Department of Materials Science and Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| |
Collapse
|
11
|
Wu J, Liu H, Chen W, Ma B, Ju H. Device integration of electrochemical biosensors. NATURE REVIEWS BIOENGINEERING 2023; 1:346-360. [PMID: 37168735 PMCID: PMC9951169 DOI: 10.1038/s44222-023-00032-w] [Citation(s) in RCA: 209] [Impact Index Per Article: 104.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 01/23/2023] [Indexed: 05/13/2023]
Abstract
Electrochemical biosensors incorporate a recognition element and an electronic transducer for the highly sensitive detection of analytes in body fluids. Importantly, they can provide rapid readouts and they can be integrated into portable, wearable and implantable devices for point-of-care diagnostics; for example, the personal glucose meter enables at-home assessment of blood glucose levels, greatly improving the management of diabetes. In this Review, we discuss the principles of electrochemical biosensing and the design of electrochemical biosensor devices for health monitoring and disease diagnostics, with a particular focus on device integration into wearable, portable and implantable systems. Finally, we outline the key engineering challenges that need to be addressed to improve sensing accuracy, enable multiplexing and one-step processes, and integrate electrochemical biosensing devices in digital health-care pathways.
Collapse
Affiliation(s)
- Jie Wu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Hong Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Weiwei Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
- School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Biao Ma
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| |
Collapse
|
12
|
Peng Z, Fiorani A, Akai K, Murata M, Otake A, Einaga Y. Boron-Doped Diamond as a Quasi-Reference Electrode. Anal Chem 2022; 94:16831-16837. [DOI: 10.1021/acs.analchem.2c03923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Zhen Peng
- Department of Chemistry, Keio University, 3-14-1 Hiyoshi, Yokohama223-8522, Japan
| | - Andrea Fiorani
- Department of Chemistry, Keio University, 3-14-1 Hiyoshi, Yokohama223-8522, Japan
| | - Kazumi Akai
- Department of Chemistry, Keio University, 3-14-1 Hiyoshi, Yokohama223-8522, Japan
| | - Michio Murata
- Department of Chemistry, Keio University, 3-14-1 Hiyoshi, Yokohama223-8522, Japan
| | - Atsushi Otake
- Department of Chemistry, Keio University, 3-14-1 Hiyoshi, Yokohama223-8522, Japan
| | - Yasuaki Einaga
- Department of Chemistry, Keio University, 3-14-1 Hiyoshi, Yokohama223-8522, Japan
| |
Collapse
|
13
|
Robbins EM, Castagnola E, Cui XT. Accurate and stable chronic in vivo voltammetry enabled by a replaceable subcutaneous reference electrode. iScience 2022; 25:104845. [PMID: 35996579 PMCID: PMC9391596 DOI: 10.1016/j.isci.2022.104845] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 06/16/2022] [Accepted: 07/22/2022] [Indexed: 01/12/2023] Open
Abstract
In vivo sensing of neurotransmitters has provided valuable insight into both healthy and diseased brain. However, chronically implanted Ag/AgCl reference electrodes suffer from degradationgradation, resulting in errors in the potential at the working electrode. Here, we report a simple, effective way to protect in vivo sensing measurements from reference polarization with a replaceable subcutaneously implanted reference. We compared a brain-implanted reference and a subcutaneous reference and observed no difference in impedance or dopamine redox peak separation in an acute preparation. Chronically, peak background potential and dopamine oxidation potential shifts were eliminated for three weeks. Scanning electron microscopy shows changes in surface morphology and composition of chronically implanted Ag/AgCl electrodes, and postmortem histology reveals extensive cell death and gliosis in the surrounding tissue. As accurate reference potentials are critical to in vivo electrochemistry applications, this simple technique can improve a wide and diverse assortment of in vivo preparations.
Collapse
Affiliation(s)
- Elaine Marie Robbins
- Department of Bioengineering, University of Pittsburgh, 5057 Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, PA 15260, USA
| | - Elisa Castagnola
- Department of Bioengineering, University of Pittsburgh, 5057 Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, PA 15260, USA
| | - Xinyan Tracy Cui
- Department of Bioengineering, University of Pittsburgh, 5057 Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, PA 15260, USA
- Center for Neural Basis of Cognition, Pittsburgh, PA, USA
- McGowan Institute for Regenerative Medicine, Pittsburgh, PA, USA
- Corresponding author
| |
Collapse
|
14
|
Castagnola E, Robbins EM, Wu B, Pwint MY, Garg R, Cohen-Karni T, Cui XT. Flexible Glassy Carbon Multielectrode Array for In Vivo Multisite Detection of Tonic and Phasic Dopamine Concentrations. BIOSENSORS 2022; 12:540. [PMID: 35884343 PMCID: PMC9312827 DOI: 10.3390/bios12070540] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/13/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Dopamine (DA) plays a central role in the modulation of various physiological brain functions, including learning, motivation, reward, and movement control. The DA dynamic occurs over multiple timescales, including fast phasic release, as a result of neuronal firing and slow tonic release, which regulates the phasic firing. Real-time measurements of tonic and phasic DA concentrations in the living brain can shed light on the mechanism of DA dynamics underlying behavioral and psychiatric disorders and on the action of pharmacological treatments targeting DA. Current state-of-the-art in vivo DA detection technologies are limited in either spatial or temporal resolution, channel count, longitudinal stability, and ability to measure both phasic and tonic dynamics. We present here an implantable glassy carbon (GC) multielectrode array on a SU-8 flexible substrate for integrated multichannel phasic and tonic measurements of DA concentrations. The GC MEA demonstrated in vivo multichannel fast-scan cyclic voltammetry (FSCV) detection of electrically stimulated phasic DA release simultaneously at different locations of the mouse dorsal striatum. Tonic DA measurement was enabled by coating GC electrodes with poly(3,4-ethylenedioxythiophene)/carbon nanotube (PEDOT/CNT) and using optimized square-wave voltammetry (SWV). Implanted PEDOT/CNT-coated MEAs achieved stable detection of tonic DA concentrations for up to 3 weeks in the mouse dorsal striatum. This is the first demonstration of implantable flexible MEA capable of multisite electrochemical sensing of both tonic and phasic DA dynamics in vivo with chronic stability.
Collapse
Affiliation(s)
- Elisa Castagnola
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260, USA; (E.C.); (E.M.R.); (B.W.); (M.Y.P.)
| | - Elaine M. Robbins
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260, USA; (E.C.); (E.M.R.); (B.W.); (M.Y.P.)
| | - Bingchen Wu
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260, USA; (E.C.); (E.M.R.); (B.W.); (M.Y.P.)
- Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - May Yoon Pwint
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260, USA; (E.C.); (E.M.R.); (B.W.); (M.Y.P.)
- Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Raghav Garg
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA; (R.G.); (T.C.-K.)
| | - Tzahi Cohen-Karni
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA; (R.G.); (T.C.-K.)
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Xinyan Tracy Cui
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260, USA; (E.C.); (E.M.R.); (B.W.); (M.Y.P.)
- Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA 15261, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| |
Collapse
|