1
|
Passornraprasit N, Hinestroza JP, Rodthongkum N, Potiyaraj P. Cellulose nanofibers/polyacrylic acid hydrogels integrated with a 3D printed strip: A platform for screening prostate cancer via sarcosine detection. Carbohydr Polym 2025; 352:123134. [PMID: 39843047 DOI: 10.1016/j.carbpol.2024.123134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 12/07/2024] [Accepted: 12/09/2024] [Indexed: 01/24/2025]
Abstract
Cellulose nanofiber/polyacrylic acid (CNF/PAA) hydrogel-based colorimetric sensor was fabricated for non-invasive screening of prostate cancer (PCa) via selective detection of sarcosine. The hydrogel was synthesized by photo-crosslinking of acrylic acid in the presence of CNF which acted as mechanical reinforcement and as color enhancer. The hydrogel exhibited a high aqueous absorption and high mechanical strength. A homogeneous distribution of CNF in the hydrogel was confirmed by TEM. A significant improvement in the compressive modulus and stress in the hydrogel were obtained after the incorporation of 0.25%wt CNF. The hydrogel sensor was integrated within a 3D printing strip on a diaper, and it offered a vivid color change from light yellow to blue for detecting sarcosine for PCa indication with a detection limit starting from 10 μM. The colorimetric results were semi-quantitatively evaluated by a spectrophotometer offering a linear range of 0-100 μM with R2 of 0.9901. Furthermore, the increase in CNF content significantly enhanced the sensor's sensitivity toward sarcosine. This sensor could open new avenues for non-invasive screening of prostate cancer in the future.
Collapse
Affiliation(s)
- Nichaphat Passornraprasit
- Department of Materials Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Juan P Hinestroza
- Department of Human Centered Design, Cornell University, Ithaca, NY 14850, United States
| | - Nadnudda Rodthongkum
- Center of Excellence in Responsive Wearable Materials, Chulalongkorn University, Soi Chula 12, Phayathai Road, Pathumwan, Bangkok 10330, Thailand; Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Pranut Potiyaraj
- Department of Materials Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
2
|
Leelasattarathkul T, Trakoolwilaiwan T, Khachornsakkul K. Distance-based analytical device integrated with carbon nanomaterials for sarcosine quantification in human samples. Mikrochim Acta 2024; 191:676. [PMID: 39420146 DOI: 10.1007/s00604-024-06771-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 10/11/2024] [Indexed: 10/19/2024]
Abstract
A straightforward distance-based paper analytical device (dPAD) was developed for monitoring sarcosine levels in human samples for the rapid diagnosis and prognosis of prostate cancer and related symptoms. This assay eliminates the need for the expensive horseradish peroxidase (HRP) enzyme by utilizing carbon nanodots (CDs) as a peroxidase-like nanozyme. The proposed dPAD sensor consists of a sample zone pre-deposited with sarcosine oxidase (SOx) and CDs, and a detection zone containing 3,3',5,5'-tetramethylbenzidine (TMB). When a solution containing sarcosine is added to the sample zone, hydroxyl radicals (•OH) are produced through SOx oxidation and subsequent peroxidase catalysis by the CDs. The formed •OH radicals immediately flow to the detection zone via capillary force, where they oxidize TMB, resulting in a visible colour change from colourless to blue. Sarcosine quantification is effortlessly accomplished by measuring the distance of the blue colour in the detection zone. The developed dPAD offers a linear working range between 12.5 and 35.0 nmol L-1 (R2 = 0.9959) and a detection limit (LOD) of 10.0 nmol L-1. This covers the clinical range for urinary sarcosine determination, thereby suggesting no additional sample preparation or dilution is needed. The sensor shows high precision with the highest relative standard deviation (RSD) of 4.58% and demonstrates excellent selectivity with no observed interferences. Furthermore, recovery studies in human control urine samples ranged from 98.67 to 101.50%, with the highest RSD of 2.03%. Correspondingly, our dPAD method showed a great match with the performance of a commercial ELISA method for detecting sarcosine in human control serum. The sensor is more cost-effective, user-friendly, and accessible than previous methods. Overall, the proposed method represents a promising analytical tool for sarcosine quantification. The concept is also applicable for broader analytical applications in detecting other biomolecules.
Collapse
Affiliation(s)
- Tapparath Leelasattarathkul
- Division of Chemistry, Department of Science, Faculty of Science and Technology, Rajamangala University of Technology Krungthep, Bangkok, 10120, Thailand
| | - Thithawat Trakoolwilaiwan
- Division of Chemistry, Department of Science, Faculty of Science and Technology, Rajamangala University of Technology Krungthep, Bangkok, 10120, Thailand
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang, Pathum Thani, 12120, Thailand
| | - Kawin Khachornsakkul
- Division of Chemistry, Department of Science, Faculty of Science and Technology, Rajamangala University of Technology Krungthep, Bangkok, 10120, Thailand.
- Department of Electrical and Computer Engineering, Tufts University, Medford, MA, 02155, USA.
| |
Collapse
|
3
|
Wasim M, Shaheen S, Fatima B, Hussain D, Hassan F, Tahreem S, Riaz MM, Yar A, Majeed S, Najam-Ul-Haq M. Non-enzymatic electrochemical detection of sarcosine in serum of prostate cancer patients by CoNiWBO/rGO nanocomposite. Sci Rep 2024; 14:24240. [PMID: 39414878 PMCID: PMC11484907 DOI: 10.1038/s41598-024-74628-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 09/27/2024] [Indexed: 10/18/2024] Open
Abstract
Selective and sensitive sarcosine detection is crucial due to its recent endorsement as a prostate cancer (PCa) biomarker in clinical diagnosis. The reduced graphene oxide-cobalt nickel tungsten boron oxides (CoNiWBO/rGO) nanocomposite is developed as a non-enzymatic electrochemical sensor for sarcosine detection in PCa patients' serum. CoNiWBO/rGO is synthesized by the chemical reduction method via a one-pot reduction method followed by calcination at 500 °C under a nitrogen environment for 2 h and characterized by UV-Vis, XRD, TGA, and SEM. CoNiWBO/rGO is then deposited on a glassy carbon electrode, and sarcosine sensing parameters are optimized, including concentration and pH. This non-enzymatic sensor is employed to directly determine sarcosine in serum samples. Differential pulse voltammetry (DPV) and linear sweep voltammetry (LSV) are employed to monitor the electrochemical behavior where sarcosine binding leads to oxidation. Chronoamperometric studies show the stability of the developed sensor. The results demonstrate a wide linear range from 0.1 to 50 µM and low limits of detection, i.e., 0.04 µM and 0.07 µM using DPV and LSV respectivel. Moreover, the calculated recovery of sarcosine in human serum of prostate cancer patients is 78-96%. The developed electrochemical sensor for sarcosine detection can have potential applications in clinical diagnosis.
Collapse
Affiliation(s)
- Muhammad Wasim
- Department of Biochemistry, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Sana Shaheen
- Department of Biochemistry, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Batool Fatima
- Department of Biochemistry, Bahauddin Zakariya University, Multan, 60800, Pakistan.
| | - Dilshad Hussain
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Fatima Hassan
- Department of Mechatronics, College of Electrical and Mechanical Engineering, National University of Science and Technology, Islamabad, Pakistan
| | - Shajeea Tahreem
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, Lahore, Pakistan
| | | | - Ahmad Yar
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Saadat Majeed
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Muhammad Najam-Ul-Haq
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan.
| |
Collapse
|
4
|
Khachornsakkul K, Del-Rio-Ruiz R, Asci C, Sonkusale S. NFC-enabled photothermal-based microfluidic paper analytical device for glucose detection. Analyst 2024; 149:3756-3764. [PMID: 38837236 DOI: 10.1039/d4an00506f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
This study introduces the development of a photothermal-based microfluidic paper analytical device (PT-µPAD) integrated with near-field communication (NFC) technology and smartphone readout for enzyme-free glucose quantification in human samples. With the properties of gold nanoparticles (AuNPs) both as a nanozyme and as a photothermal substrate, there is no need for costly reagents like enzymes or a readout instrumentation for the selective and sensitive detection of glucose. In PT-µPADs, AuNPs are etched by hydrogen peroxide (H2O2) generated from glucose catalysis. Photothermal detection from the plasmonic heating of these AuNPs when illuminated by a 533nm LED light source is achieved by inserting the PT-µPAD sensor into a portable NFC platform suitable for smartphone readout. Temperature variation is directly proportional to the glucose concentration. After optimization, we acquired a linear range between 5.0 and 20.0 µmol L-1 (R2 = 0.9967) and a limit of detection (LOD) of 25.0 nmol L-1 for glucose. Additionally, while our sensor does not utilize any enzyme, it is remarkably selective to glucose with no effects from interferences. Recovery studies in various human control samples indicated a range of 99.73-102.66% with the highest RSD of 3.53%, making it highly accurate and precise. Moreover, our method is more sensitive than other methods relying on conventional µPADs for glucose sensing. By integrating the potential benefits of microfluidics, nanomaterials as nanozymes, and NFC technology for wireless readout, our sensor demonstrates great promise as an accessible, affordable, and shelf-stable device for glucose quantification. Moreover, this concept can be extended to detect other molecules of interest as a point-of-care (POC) diagnostics device.
Collapse
Affiliation(s)
- Kawin Khachornsakkul
- Department of Electrical and Computer Engineering, Tufts University, Medford, MA 02155, USA.
- Nano Lab, Tufts University, Medford, MA 02155, USA
| | - Ruben Del-Rio-Ruiz
- Department of Electrical and Computer Engineering, Tufts University, Medford, MA 02155, USA.
- Nano Lab, Tufts University, Medford, MA 02155, USA
| | - Cihan Asci
- Department of Electrical and Computer Engineering, Tufts University, Medford, MA 02155, USA.
- Nano Lab, Tufts University, Medford, MA 02155, USA
| | - Sameer Sonkusale
- Department of Electrical and Computer Engineering, Tufts University, Medford, MA 02155, USA.
- Nano Lab, Tufts University, Medford, MA 02155, USA
| |
Collapse
|
5
|
Khachornsakkul K, Leelasattarathkul T. Photothermal biosensing integrated with microfluidic paper-based analytical device for sensitive quantification of sarcosine. Talanta 2024; 271:125628. [PMID: 38219320 DOI: 10.1016/j.talanta.2024.125628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/13/2023] [Accepted: 01/04/2024] [Indexed: 01/16/2024]
Abstract
This article presents the development of a photothermal biosensing integrated with microfluidic paper-based analytical device (PT-μPAD) as a quantitative biosensor method for monitoring sarcosine in human control urine, plasma, and serum samples. The device utilizes gold nanoparticles (AuNPs) as both a peroxidase-like nanozyme and a photothermal substrate to enable sarcosine detection. In our PT-μPAD, hydrogen peroxide (H2O2) is generated through the oxidation of sarcosine by a sarcosine oxidase (SOx) enzyme. Subsequently, the H2O2 flows through the paper microchannels to the detection zone, where it etches the pre-deposited AuNPs, inducing a temperature change upon exposure by a 532 nm laser. The temperature variation is then measured using a portable and inexpensive infrared thermometer. Under optimized conditions, we obtained a linear range between 10.0 and 40.0 nmol L-1 (R2 = 0.9954) and a detection limit (LOD) of 32.0 pmol L-1. These values fall within the clinical range for sarcosine monitoring in prostate cancer diagnostics in humans. Moreover, our approach exhibits high selectivity without interfering effects. Recovery studies in various human control samples demonstrated a range of 99.05-102.11 % with the highest RSD of 2.25 %. The PT-μPAD was further validated for sarcosine determination in human control urine and compared with a commercial ELISA assay, revealing no significant difference between these two methods at a 95 % confidence level. Overall, our proposed sarcosine biosensor is well-suited for prostate cancer monitoring, given its affordability, sensitivity, and user-friendliness, even for unskilled individuals. Moreover, this strategy has promising prospects for broader applications, potentially detecting various biomarkers as a point-of-care (POC) diagnostic tool.
Collapse
Affiliation(s)
- Kawin Khachornsakkul
- Division of Chemistry, Department of Science, Faculty of Science and Technology, Rajamangala University of Technology Krungthep, Bangkok, 10120, Thailand; Department of Electrical and Computer Engineering, Tufts University, Medford, MA, 02155, USA
| | - Tapparath Leelasattarathkul
- Division of Chemistry, Department of Science, Faculty of Science and Technology, Rajamangala University of Technology Krungthep, Bangkok, 10120, Thailand.
| |
Collapse
|
6
|
Akbari Nakhjavani S, Tokyay BK, Soylemez C, Sarabi MR, Yetisen AK, Tasoglu S. Biosensors for prostate cancer detection. Trends Biotechnol 2023; 41:1248-1267. [PMID: 37147246 DOI: 10.1016/j.tibtech.2023.04.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/22/2023] [Accepted: 04/04/2023] [Indexed: 05/07/2023]
Abstract
Prostate cancer (PC) is one of the most common tumors and a leading cause of mortality among men, resulting in ~375 000 deaths annually worldwide. Various analytical methods have been designed for quantitative and rapid detection of PC biomarkers. Electrochemical (EC), optical, and magnetic biosensors have been developed to detect tumor biomarkers in clinical and point-of-care (POC) settings. Although POC biosensors have shown potential for detection of PC biomarkers, some limitations, such as the sample preparation, should be considered. To tackle such shortcomings, new technologies have been utilized for development of more practical biosensors. Here, biosensing platforms for the detection of PC biomarkers such as immunosensors, aptasensors, genosensors, paper-based devices, microfluidic systems, and multiplex high-throughput platforms, are discussed.
Collapse
Affiliation(s)
- Sattar Akbari Nakhjavani
- Department of Mechanical Engineering, Koç University, Sariyer, Istanbul 34450, Turkey; Koç University Translational Medicine Research Center (KUTTAM), Koç University, Istanbul 34450, Turkey
| | - Begum K Tokyay
- Koç University Translational Medicine Research Center (KUTTAM), Koç University, Istanbul 34450, Turkey; Department of Biomedical Sciences and Engineering, Koç University, 34450 Istanbul, Turkey
| | - Cansu Soylemez
- Department of Biomedical Sciences and Engineering, Koç University, 34450 Istanbul, Turkey
| | - Misagh R Sarabi
- Department of Biomedical Sciences and Engineering, Koç University, 34450 Istanbul, Turkey; Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, Germany 70569
| | - Ali K Yetisen
- Department of Chemical Engineering, Imperial College, London SW7 2AZ, UK
| | - Savas Tasoglu
- Department of Mechanical Engineering, Koç University, Sariyer, Istanbul 34450, Turkey; Koç University Translational Medicine Research Center (KUTTAM), Koç University, Istanbul 34450, Turkey; Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, Germany 70569; Koç University Arçelik Research Center for Creative Industries (KUAR), Koç University, Istanbul 34450, Turkey; Boğaziçi Institute of Biomedical Engineering, Boğaziçi University, Istanbul 34684, Turkey.
| |
Collapse
|
7
|
Khachornsakkul K, Del-Rio-Ruiz R, Zeng W, Sonkusale S. Highly Sensitive Photothermal Microfluidic Thread-Based Duplex Immunosensor for Point-of-Care Monitoring. Anal Chem 2023; 95:12802-12810. [PMID: 37578458 DOI: 10.1021/acs.analchem.3c01778] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Herein, we successfully developed a thread-based analytical device (μTAD) for simultaneous immunosensing of two biomolecules with attomolar sensitivity by using a photothermal effect. A photothermal effect exploits a strong light-to-heat energy conversion of plasmonic metallic nanoparticles at localized surface plasmon resonance. The key innovation is to utilize the cotton thread to realize this sensor and the use of chitosan modification for enhancing the microfluidic properties, for improving the efficiency of photothermal conversion, and for sensor stability. The developed μTAD sensor consists of (i) a sample zone, (ii) a conjugation zone coated with gold nanoparticles bound with an antibody (AuNPs-Ab2), and (iii) a test zone immobilized with a capture antibody (anti-Ab1). The prepared μTAD is assembled in a custom three-dimensional (3D) printed device which holds the laser for illumination and the thermometer for readout. The 3D-printed supportive device enhances signal response by focusing light and localizing the heat generated. For proof of concept, simultaneous sensing of two key stress and inflammation biomarkers, namely, cortisol and interleukin-6 (IL-6), are monitored using this technique. Under optimization, this device exhibited a detection linear range of 2.0-14.0 ag/mL (R2 = 0.9988) and 30.0-360.0 fg/mL (R2 = 0.9942) with a detection limit (LOD) of 1.40 ag/mL (∼3.86 amol/L) and 20.0 fg/mL (∼950.0 amol/L) for cortisol and IL-6, respectively. Furthermore, the analysis of both biomolecules in human samples indicated recoveries in the range of 98.8%-102.88% with the highest relative standard deviation being 3.49%, offering great accuracy and precision. These results are the highest reported sensitivity for these analytes using an immunoassay method. Our PT-μTAD strategy is therefore a promising approach for detecting biomolecules in resource-limited point-of-care settings.
Collapse
Affiliation(s)
- Kawin Khachornsakkul
- Department of Electrical and Computer Engineering, Tufts University, Medford, Massachusetts 02155, United States
- Nano Lab, Tufts University, Medford, Massachusetts 02155, United States
| | - Ruben Del-Rio-Ruiz
- Department of Electrical and Computer Engineering, Tufts University, Medford, Massachusetts 02155, United States
- Nano Lab, Tufts University, Medford, Massachusetts 02155, United States
| | - Wenxin Zeng
- Department of Electrical and Computer Engineering, Tufts University, Medford, Massachusetts 02155, United States
- Nano Lab, Tufts University, Medford, Massachusetts 02155, United States
| | - Sameer Sonkusale
- Department of Electrical and Computer Engineering, Tufts University, Medford, Massachusetts 02155, United States
- Nano Lab, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
8
|
Wang X, Dai C, Wu Y, Liu Y, Wei D. Molecular-electromechanical system for unamplified detection of trace analytes in biofluids. Nat Protoc 2023:10.1038/s41596-023-00830-x. [PMID: 37208410 DOI: 10.1038/s41596-023-00830-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 03/07/2023] [Indexed: 05/21/2023]
Abstract
Biological research and diagnostic applications normally require analysis of trace analytes in biofluids. Although considerable advancements have been made in developing precise molecular assays, the trade-off between sensitivity and ability to resist non-specific adsorption remains a challenge. Here, we describe the implementation of a testing platform based on a molecular-electromechanical system (MolEMS) immobilized on graphene field-effect transistors. A MolEMS is a self-assembled DNA nanostructure, containing a stiff tetrahedral base and a flexible single-stranded DNA cantilever. Electromechanical actuation of the cantilever modulates sensing events close to the transistor channel, improving signal-transduction efficiency, while the stiff base prevents non-specific adsorption of background molecules present in biofluids. A MolEMS realizes unamplified detection of proteins, ions, small molecules and nucleic acids within minutes and has a limit of detection of several copies in 100 μl of testing solution, offering an assay methodology with wide-ranging applications. In this protocol, we provide step-by-step procedures for MolEMS design and assemblage, sensor manufacture and operation of a MolEMS in several applications. We also describe adaptations to construct a portable detection platform. It takes ~18 h to construct the device and ~4 min to finish the testing from sample addition to result.
Collapse
Affiliation(s)
- Xuejun Wang
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, China
| | - Changhao Dai
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, China
| | - Yungeng Wu
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, China
| | - Yunqi Liu
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, China
| | - Dacheng Wei
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, China.
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, China.
| |
Collapse
|
9
|
Ogawa M, Katoh A, Matsubara R, Kondo H, Otsuka M, Sawatsubashi T, Hiruta Y, Citterio D. Semi-quantitative microfluidic paper-based analytical device for ionic silica detection. ANAL SCI 2023:10.1007/s44211-023-00345-1. [PMID: 37186078 DOI: 10.1007/s44211-023-00345-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023]
Abstract
Silicate ions (SiO32-), or ionic silica, are known to cause silica scaling in industrial water applications when excess amounts are present; hence, concentrations must be monitored and kept at a constant low level. Ionic silica is conventionally measured by spectrophotometry in the form of its silicomolybdic complex based on the molybdenum blue reaction, but the operation process is complicated and not suitable for on-site detection. To solve these issues, microfluidic paper-based analytical devices (µPADs) have been gaining attention as portable, low-cost analytical devices suitable for on-site detection. The foldable origami type device described in this work enabled silica detection based on the molybdenum blue reaction, in the range of 50-1000 mg/L, with a practically detectable lowest concentration of 50 mg/L. The device showed selectivity for silicate ions and stability over 21 days when stored at 4 °C. The semi-quantitative analytical performance makes the proposed paper-based device attractive for on-site industrial monitoring.
Collapse
Affiliation(s)
- Mami Ogawa
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan
| | - Aya Katoh
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan
| | - Ryuichi Matsubara
- Chemical Research Department, Research and Innovation Center, Mitsubishi Heavy Industries Ltd., 2-1-1 Shinhama, Arai-Cho, Takasago, Hyogo, Japan
| | - Haruka Kondo
- Chemical Research Department, Research and Innovation Center, Mitsubishi Heavy Industries Ltd., 2-1-1 Shinhama, Arai-Cho, Takasago, Hyogo, Japan
| | - Mizuki Otsuka
- Chemical Research Department, Research and Innovation Center, Mitsubishi Heavy Industries Ltd., 5-717-1 Fukahori-Machi, Nagasaki, Japan
| | - Tetsuya Sawatsubashi
- Chemical Research Department, Research and Innovation Center, Mitsubishi Heavy Industries Ltd., 5-717-1 Fukahori-Machi, Nagasaki, Japan
| | - Yuki Hiruta
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan
| | - Daniel Citterio
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan.
| |
Collapse
|
10
|
Ning L, Zhou Y, Xie Y, Duan Z, Yu F, Cheng H. Ultrasensitive and colorimetric small extracellular vesicles (sEVs) analysis via dual-cycle signal tool. J Anal Sci Technol 2023. [DOI: 10.1186/s40543-023-00370-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
AbstractFor the clinical diagnosis of diseases and for basic biological research, it is crucial to develop a trustworthy and efficient method for detecting small extracellular vesicles (sEVs) in multiple experimental conditions. Here, we create a colorimetric assay that enables sensitive and precise sEVs identification without the need for pricey equipment. In this assay, the exonuclease III (Exo III)-assisted signal recycle is activated by the released single-strand DNA (ssDNA) from SMBs (streptavidin magnetic beads)-aptamer-ssDNA complex after identification of sEVs. By integrating with the strand displacement amplification (SDA) process, a significant amount of double-strand DNA products with G-rich tails is produced. The G-rich tails fold to G-quadruplex under the assistance of hemin to catalyze the oxidation of TMB, yielding a color change. The approach offers a broad detection range of 5 orders of magnitudes based on the signal recycles and SDA. In addition, single-stranded DNA binding protein (SSB) is exploited in this method to minimize the background signal from non-specific digestion of Exo-III, making the method a robust tool for sEVs detection and disease diagnosis.
Collapse
|
11
|
Tan W, Zhang L, Jarujamrus P, C G Doery J, Shen W. Improvement Strategies on Colorimetric Performance and Practical Applications of Paper-based Analytical Devices. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Carneiro MCCG, Rodrigues LR, Moreira FTC, Sales MGF. Colorimetric Paper-Based Sensors against Cancer Biomarkers. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22093221. [PMID: 35590912 PMCID: PMC9102172 DOI: 10.3390/s22093221] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/15/2022] [Accepted: 04/17/2022] [Indexed: 05/14/2023]
Abstract
Cancer is a major cause of mortality and morbidity worldwide. Detection and quantification of cancer biomarkers plays a critical role in cancer early diagnosis, screening, and treatment. Clinicians, particularly in developing countries, deal with high costs and limited resources for diagnostic systems. Using low-cost substrates to develop sensor devices could be very helpful. The interest in paper-based sensors with colorimetric detection increased exponentially in the last decade as they meet the criteria for point-of-care (PoC) devices. Cellulose and different nanomaterials have been used as substrate and colorimetric probes, respectively, for these types of devices in their different designs as spot tests, lateral-flow assays, dipsticks, and microfluidic paper-based devices (μPADs), offering low-cost and disposable devices. However, the main challenge with these devices is their low sensitivity and lack of efficiency in performing quantitative measurements. This review includes an overview of the use of paper for the development of sensing devices focusing on colorimetric detection and their application to cancer biomarkers. We highlight recent works reporting the use of paper in the development of colorimetric sensors for cancer biomarkers, such as proteins, nucleic acids, and others. Finally, we discuss the main advantages of these types of devices and highlight their major pitfalls.
Collapse
Affiliation(s)
- Mariana C. C. G. Carneiro
- BioMark@ISEP, School of Engineering, Polytechnic Institute, 4249-015 Porto, Portugal;
- Centre of Biological Engineering, Minho University (CEB), 4710-057 Braga, Portugal; (L.R.R.); (M.G.F.S.)
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
| | - Ligia R. Rodrigues
- Centre of Biological Engineering, Minho University (CEB), 4710-057 Braga, Portugal; (L.R.R.); (M.G.F.S.)
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
| | - Felismina T. C. Moreira
- BioMark@ISEP, School of Engineering, Polytechnic Institute, 4249-015 Porto, Portugal;
- Centre of Biological Engineering, Minho University (CEB), 4710-057 Braga, Portugal; (L.R.R.); (M.G.F.S.)
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
- Correspondence:
| | - Maria Goreti F. Sales
- Centre of Biological Engineering, Minho University (CEB), 4710-057 Braga, Portugal; (L.R.R.); (M.G.F.S.)
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
- BioMark@UC, Faculty of Sciences and Technology, Coimbra University, 3030-790 Coimbra, Portugal
| |
Collapse
|