1
|
Yang J, Chen J, Xia L, Li G. Recent progress on biosensors for detection of circulating miRNA biomarkers. Talanta 2025; 294:128219. [PMID: 40311478 DOI: 10.1016/j.talanta.2025.128219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 02/22/2025] [Accepted: 04/24/2025] [Indexed: 05/03/2025]
Abstract
Circulating miRNAs are a class of non-coding endogenous RNAs found in body fluids which typically consist of 19-24 nucleotides in length. The abnormal expression of miRNAs has been demonstrated to be associated with severe human diseases. Aiming to provide valuable insights for the further development of reliable miRNA detectors for disease early diagnosis and treatment, this work systematically summarizes the latest advancements in signal amplification strategies for miRNA analysis, based on nanomaterials, nucleic acids, enzymes, and CRISPR/Cas system. The emerging techniques for detecting circulating miRNAs in human body fluids over the past decade are highlighted, including electrochemical, optical, and dual-mode biosensors. Furthermore, the challenges of trace miRNA detection in complex samples and the development prospects of miRNA biosensors are also discussed.
Collapse
Affiliation(s)
- Jianping Yang
- School of Chemistry and Materials Science, Guangdong University of Education, Guangzhou, 510303, China; School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Jing Chen
- School of Chemistry and Materials Science, Guangdong University of Education, Guangzhou, 510303, China
| | - Ling Xia
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China.
| | - Gongke Li
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China.
| |
Collapse
|
2
|
Balali MR, Taghizadeh M, Alizadeh M, Karami Y, Karimi F, Khatami SH, Taheri-Anganeh M, Ehtiati S, Movahedpour A, Mahmoudi R, Ghasemi H. MicroRNA biosensors for detection of chronic kidney disease. Clin Chim Acta 2025; 567:120081. [PMID: 39653321 DOI: 10.1016/j.cca.2024.120081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 12/04/2024] [Accepted: 12/04/2024] [Indexed: 12/13/2024]
Abstract
Chronic kidney disease (CKD) is a prevalent health condition characterized by gradual kidney function loss. Early detection is crucial for the effective management and treatment of CKD. A promising biomarker for various diseases, including chronic kidney disease, is microRNAs (miRNAs), which are becoming increasingly important due to their stability and differential expression in various disease-related states, including CKD. Recent developments in microRNA biosensors have made it possible to detect miRNAs associated with CKD in a sensitive and specific manner. This review article discusses the current state of microRNA biosensors for detecting CKD and highlights their potential applications in clinical settings. Various microRNA biosensors, including electrochemical, optical, and nanomaterial-based sensors, are explored for their ability to detect specific miRNAs linked to CKD progression. The advantages and limitations of these biosensors are evaluated, focusing on factors such as sensitivity, specificity, and ease of use. Overall, microRNA biosensors are promising diagnostic tools for early detection of CKD. However, challenges such as standardizing protocols, validating in large cohorts, and translating to clinical practice remain to be addressed. Future research efforts should aim to overcome these limitations to fully realize the potential of microRNA biosensors in improving the diagnosis and management of CKD.
Collapse
Affiliation(s)
| | - Mohammad Taghizadeh
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Alizadeh
- Student Research Committee, Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yousof Karami
- Department of Clinical Science, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | | | - Seyyed Hossein Khatami
- Student Research Committee, Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mortaza Taheri-Anganeh
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Sajad Ehtiati
- Student Research Committee, Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ahmad Movahedpour
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran.
| | - Reza Mahmoudi
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran.
| | - Hassan Ghasemi
- Research Center for Environmental Contaminants (RCEC), Abadan University of Medical Sciences, Abadan, Iran.
| |
Collapse
|
3
|
Wang B, He W, Xie Z, Zhang J, Ren Y, He Q, Jin J. Bioinformatics analysis of miRNAs germacrone protection on diabetic nephropathy. Sci Rep 2024; 14:31754. [PMID: 39738220 PMCID: PMC11685625 DOI: 10.1038/s41598-024-81944-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 12/02/2024] [Indexed: 01/01/2025] Open
Abstract
Diabetes nephropathy (DN) is a prevalent and severe microvascular diabetic complication. Despite the recent developments in germacrone-based therapies for DN, the underlying mechanisms of germacrone in DN remain poorly understood. This study used comprehensive bioinformatics analysis to identify critical microRNAs (miRNAs) and the potential underlying pathways related to germacrone activities. Additionally, we established a DN mice model, which was treated with germacrone, to investigate how it altered the miRNA transcriptome in mice kidneys. RNA sequencing was also performed on the DN mice model with and without germacrone pre-treatment. Based on our results, we found 23 miRNAs were differentially expressed in the DN group compared to the controls, and a total of 14 miRNAs were differentially expressed between the DN group and the germacrone-treated group. In addition, we identified three miRNAs (mmu-miR-542-5p, mmu-miR-149-5p and mmu-miR-196a-2-3p) that were upregulated with the DN group and downregulated in the germacrone-treated group. Bioinformatics analysis suggested that autophagy and apoptosis were related to the pathogenesis of DN and germacrone treatment. Subsequently, the expression level of mmu-miR-542-5p, mmu-miR-149-5p and mmu-miR-196a-2-3p were validated in a validation dataset. Altogether, these findings add important knowledge on the pathogenesis of DN and the impacts of germacrone.
Collapse
Affiliation(s)
- Binqi Wang
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310000, People's Republic of China
| | - Wenfang He
- Urology & Nephrology Center, Department of Nephrology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, People's Republic of China
| | - Zhixuan Xie
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People's Republic of China
- Institute of Chronic Kidney Disease, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People's Republic of China
| | - Jinshi Zhang
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310000, People's Republic of China
| | - Yan Ren
- Urology & Nephrology Center, Department of Nephrology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, People's Republic of China
| | - Qiang He
- Department of Nephrology, the First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, 310000, People's Republic of China.
| | - Juan Jin
- Department of Nephrology, the First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, 310000, People's Republic of China.
| |
Collapse
|
4
|
Smith DA, Redman JE, Fraser DJ, Bowen T. Identification and detection of microRNA kidney disease biomarkers in liquid biopsies. Curr Opin Nephrol Hypertens 2023; 32:515-521. [PMID: 37678380 DOI: 10.1097/mnh.0000000000000927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
PURPOSE OF REVIEW MicroRNAs (miRNAs) are emerging rapidly as a novel class of biomarkers of major organ disorders, including kidney diseases. However, current PCR-based detection methods are not amenable to development for high-throughput, cost-effective miRNA biomarker quantification. RECENT FINDINGS MiRNA biomarkers show significant promise for diagnosis and prognosis of kidney diseases, including diabetic kidney disease, acute kidney injury, IgA nephropathy and delayed graft function following kidney transplantation. A variety of novel methods to detect miRNAs in liquid biopsies including urine, plasma and serum are being developed. As miRNAs are functional transcripts that regulate the expression of many protein coding genes, differences in miRNA profiles in disease also offer clues to underlying disease mechanisms. SUMMARY Recent findings highlight the potential of miRNAs as biomarkers to detect and predict progression of kidney diseases. Developing in parallel, novel methods for miRNA detection will facilitate the integration of these biomarkers into rapid routine clinical testing and existing care pathways. Validated kidney disease biomarkers also hold promise to identify novel therapeutic tools and targets. VIDEO ABSTRACT http://links.lww.com/CONH/A43.
Collapse
Affiliation(s)
- Daniel A Smith
- Division of Infection & Immunity
- Wales Kidney Research Unit
- Systems Immunity University Research Institute, School of Medicine, College of Biomedical and Life Sciences, Cardiff University, Heath Park, Cardiff
| | - James E Redman
- School of Chemistry, Cardiff University, Park Place, Cardiff, Wales, UK
| | - Donald J Fraser
- Division of Infection & Immunity
- Wales Kidney Research Unit
- Systems Immunity University Research Institute, School of Medicine, College of Biomedical and Life Sciences, Cardiff University, Heath Park, Cardiff
| | - Timothy Bowen
- Division of Infection & Immunity
- Wales Kidney Research Unit
- Systems Immunity University Research Institute, School of Medicine, College of Biomedical and Life Sciences, Cardiff University, Heath Park, Cardiff
| |
Collapse
|
5
|
Yadav A, Patil R, Dutta S. Advanced Self-Powered Biofuel Cells with Capacitor and Nanogenerator for Biomarker Sensing. ACS APPLIED BIO MATERIALS 2023; 6:4060-4080. [PMID: 37787456 DOI: 10.1021/acsabm.3c00640] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Self-powered biofuel cells (BFCs) have evolved for highly sensitive detection of biomarkers such as noncodon micro ribonucleic acids (miRNAs) in the presence of interfering substrates. Self-charging supercapacitive BFCs for in vivo and in vitro cellular microenvironments represent the most prevalent sensing mechanism for diagnosis. Therefore, self-powered biosensing (SPB) with a capacitor and contact separation with a triboelectric nanogenerator (TENG) offers electrochemical and colorimetric dual-mode detection via improved electrical signal intensity. In this review, we discuss three major components: stretchable self-powered BFC design, miRNA sensing, and impedance spectroscopy. A specific focus is given to 1) assembling of sensors for biomarkers, 2) electrical output signal intensification, and 3) role of supercapacitors and nanogenerators in SPBs. We outline the key features of stretchable SPBs and the sequence of miRNA sensing by SPBs. We have emphasized the need of a supercapacitor and nanogenerator for SPBs in the context of advanced assembly of the sensing unit. Finally, we outline the role of impedance spectroscopy in the detection and estimation of biomarkers. We highlight key challenges in SPBs for biomarker sensing, which needs improved sensing accuracy, integration strategies of electrochemical biosensing for in vitro and in vivo microenvironments, and the impact of miRNA sensing on cancer diagnostics. This article attempts a specific focus on the accuracy and limitations of sensing unit for miRNA biomarkers and associated tool for boosting electrical signal intensity for a potential big step further.
Collapse
Affiliation(s)
- Anubha Yadav
- Electrochemical Energy & Sensor Research Laboratory Amity Institute of Click Chemistry Research & Studies, Amity University, Sector 125, Noida 201301, Uttar Pradesh, India
| | - Rahul Patil
- Electrochemical Energy & Sensor Research Laboratory Amity Institute of Click Chemistry Research & Studies, Amity University, Sector 125, Noida 201301, Uttar Pradesh, India
| | - Saikat Dutta
- Electrochemical Energy & Sensor Research Laboratory Amity Institute of Click Chemistry Research & Studies, Amity University, Sector 125, Noida 201301, Uttar Pradesh, India
| |
Collapse
|
6
|
Urinary microRNA in Diabetic Kidney Disease: A Literature Review. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59020354. [PMID: 36837555 PMCID: PMC9962090 DOI: 10.3390/medicina59020354] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/31/2023] [Accepted: 02/10/2023] [Indexed: 02/15/2023]
Abstract
Diabetic kidney disease is the most common primary disease of end-stage kidney disease globally; however, a sensitive and accurate biomarker to predict this disease remains awaited. microRNAs are endogenous single-stranded noncoding RNAs that have intervened in different post-transcriptional regulations of various cellular biological functions. Previous literatures have reported its potential role in the pathophysiology of diabetic kidney disease, including regulation of Transforming Growth Factor-β1-mediated fibrosis, extracellular matrix and cell adhesion proteins, cellular hypertrophy, growth factor, cytokine production, and redox system activation. Urinary microRNAs have emerged as a novel, non-invasive liquid biopsy for disease diagnosis. In this review, we describe the available experimental and clinical evidence of urinary microRNA in the context of diabetic kidney disease and discuss the future application of microRNA in routine practice.
Collapse
|
7
|
Barratt J, Pawluczyk I, Selvaskandan H. Clinical application of microRNAs in glomerular diseases. Nephrol Dial Transplant 2022; 38:1375-1384. [PMID: 35906877 DOI: 10.1093/ndt/gfac230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Indexed: 11/13/2022] Open
Abstract
RNA interference (RNAi) occurs in all organisms and modulates most, if not all, biological pathways. It is the process by which non-coding RNAs, including microRNAs (miRs), regulate gene transcription and post-transcriptional processing of messenger RNA (mRNA). A single miR can modulate several genes within a cell, and several miRs can regulate expression of the same gene, adding tiers of complexity to regulation of gene expression. MicroRNAs and other RNAi approaches have been successfully used in vitro and in vivo to selectively manipulate gene transcription, making them pivotal agents for basic science research and candidates for targeted therapeutics. This review will focus on miRs and their potential as biomarkers and novel therapeutics for glomerular disease.
Collapse
Affiliation(s)
- Jonathan Barratt
- University of Leicester, Department of Cardiovascular Sciences, Leicester, UK
| | - Izabella Pawluczyk
- University of Leicester, Department of Cardiovascular Sciences, Leicester, UK
| | - Haresh Selvaskandan
- University of Leicester, Department of Cardiovascular Sciences, Leicester, UK
| |
Collapse
|
8
|
Chu SS, Nguyen HA, Zhang J, Tabassum S, Cao H. Towards Multiplexed and Multimodal Biosensor Platforms in Real-Time Monitoring of Metabolic Disorders. SENSORS (BASEL, SWITZERLAND) 2022; 22:5200. [PMID: 35890880 PMCID: PMC9323394 DOI: 10.3390/s22145200] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
Metabolic syndrome (MS) is a cluster of conditions that increases the probability of heart disease, stroke, and diabetes, and is very common worldwide. While the exact cause of MS has yet to be understood, there is evidence indicating the relationship between MS and the dysregulation of the immune system. The resultant biomarkers that are expressed in the process are gaining relevance in the early detection of related MS. However, sensing only a single analyte has its limitations because one analyte can be involved with various conditions. Thus, for MS, which generally results from the co-existence of multiple complications, a multi-analyte sensing platform is necessary for precise diagnosis. In this review, we summarize various types of biomarkers related to MS and the non-invasively accessible biofluids that are available for sensing. Then two types of widely used sensing platform, the electrochemical and optical, are discussed in terms of multimodal biosensing, figure-of-merit (FOM), sensitivity, and specificity for early diagnosis of MS. This provides a thorough insight into the current status of the available platforms and how the electrochemical and optical modalities can complement each other for a more reliable sensing platform for MS.
Collapse
Affiliation(s)
- Sung Sik Chu
- Department of Biomedical Engineering, Henry Samueli School of Engineering, University of California Irvine, Irvine, CA 92697, USA; (S.S.C.); (J.Z.)
| | - Hung Anh Nguyen
- Department of Electrical Engineering and Computer Science, Henry Samueli School of Engineering, University of California Irvine, Irvine, CA 92697, USA;
| | - Jimmy Zhang
- Department of Biomedical Engineering, Henry Samueli School of Engineering, University of California Irvine, Irvine, CA 92697, USA; (S.S.C.); (J.Z.)
| | - Shawana Tabassum
- Department of Electrical Engineering, College of Engineering, The University of Texas at Tyler, Tyler, TX 75799, USA
| | - Hung Cao
- Department of Biomedical Engineering, Henry Samueli School of Engineering, University of California Irvine, Irvine, CA 92697, USA; (S.S.C.); (J.Z.)
- Department of Electrical Engineering and Computer Science, Henry Samueli School of Engineering, University of California Irvine, Irvine, CA 92697, USA;
| |
Collapse
|