1
|
Li L, Liu X, Xu S, Zhang S, Yang Z, Xiao D. Electrochromic platform for the visual detection of the neuroblastoma biomarkers vanillylmandelic acid and homovanillic acid. Analyst 2025; 150:2153-2159. [PMID: 40223690 DOI: 10.1039/d5an00228a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
Vanillylmandelic acid (VMA) and homovanillic acid (HVA) are biomarkers for the diagnosis and course-of-disease monitoring of malignant tumor neuroblastomas, which endanger infants and children. Herein, we demonstrated a proof-of-concept visual detection of VMA and HVA on an electrochromic basis, in which the viologen 1,1'-dibenzyl-4,4'-bipyridinium dichloride was used as a coloration chromophore. It was found that VMA and HVA can be used as effective electron mediators to improve the electrochromic performance of devices. It is interesting to note that VMA and HVA reduce the driving voltage of electrochromic devices (ECDs) down to -1.0 V, which is lower than that (-2.1 V) achieved without these additives, and the coloration of ECDs is undoubtedly dependent on the concentration of VMA and HVA from 0.8 to 10-6 mol L-1. Thus, this study presents an ECD platform as a breakthrough strategy for the facile, routine and portable visual detection of the neuroblastoma biomarkers VMA and HVA with obvious advantages over other detection techniques such as HPLC/MS used in clinical diagnosis.
Collapse
Affiliation(s)
- Lu Li
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| | - Xiaodi Liu
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| | - Shijie Xu
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| | - Shiming Zhang
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| | - Zhuangzhuang Yang
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| | - Debao Xiao
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| |
Collapse
|
2
|
Meza-Morales W, Ayus-Martinez S, Jimenez-Osorio J, Buendia-Otero M, López L, Suleiman D, Suarez E, Freytes DO, Cunci L, Mora C. Functionalized screen-printed electrodes for non-invasive detection of vascular-endothelial cadherin in extracellular vesicles. RSC Adv 2025; 15:12609-12621. [PMID: 40264865 PMCID: PMC12012609 DOI: 10.1039/d4ra08926j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 04/07/2025] [Indexed: 04/24/2025] Open
Abstract
In this study, we developed a biosensor using a gold screen-printed electrode (Au-SPE) functionalized with mercaptoundecanoic acid (MUA) and an antibody for detecting the vascular-endothelial cadherin (CD144) as a endothelial biomarker protein on extracellular vesicles (EVs) isolated from saliva. The MUA functionalization provides a stable platform for immobilizing the CD144 antibody, ensuring the detection of the target protein. This biosensor combines Au-SPE technology with an immunoassay, offering a rapid, sensitive, and non-invasive method for detection of CD144 carried by EVs. Characterization of saliva-derived EVs using transmission electron microscopy (TEM) and nanoparticle tracking analysis (NTA) confirmed their morphology and size, which fell within the expected range of 80-180 nm. NTA indicated a lower concentration of particles in saliva-EVs than in serum-EVs (controls), highlighting the need for sensitive detection of EV cargos in this type of EV. Immunodetection confirmed the presence of CD144 in both saliva and serum-derived EVs, with higher concentrations in serum. Functionalization of Au-SPEs with MUA and CD144 antibodies was confirmed by significant resistance changes, and atomic force microscopy (AFM) was used to verify the preservation of EV morphology and their capturing post-immune adsorption. A calibration curve demonstrated the high sensitivity of the biosensor prototype for detecting CD144-positive EVs, with a limit of detection (LOD) of 0.111 ng mL-1 and a limit of quantification (LOQ) of 0.37 ng mL-1, requiring only 3 μL of EV-sample. This biosensor shows potential as a novel method for detecting and studying endothelial biomarkers associated with cardiovascular disease in EVs isolated from saliva, a capability not currently available with existing tools. Furthermore, it provides a key platform for expanding research to other biomarkers and diseases by monitoring protein cargos in the EVs, enhancing its utility across diverse clinical applications.
Collapse
Affiliation(s)
- William Meza-Morales
- Department of Chemical Engineering, University of Puerto Rico-Mayaguez Route 108 Mayaguez Puerto Rico USA
| | - Sahimy Ayus-Martinez
- Department of Chemical Engineering, University of Puerto Rico-Mayaguez Route 108 Mayaguez Puerto Rico USA
| | - Jesus Jimenez-Osorio
- Department of Chemical Engineering, University of Puerto Rico-Mayaguez Route 108 Mayaguez Puerto Rico USA
| | - Maria Buendia-Otero
- Department of Chemical Engineering, University of Puerto Rico-Mayaguez Route 108 Mayaguez Puerto Rico USA
| | - Luis López
- Department of Chemistry, University of Puerto Rico-Rio Piedras 601 Av. Universidad San Juan Puerto Rico USA
| | - David Suleiman
- Department of Chemical Engineering, University of Puerto Rico-Mayaguez Route 108 Mayaguez Puerto Rico USA
| | - Edu Suarez
- Department of Biology, University of Puerto Rico-Ponce Av. Santiago de los Caballeros Ponce Puerto Rico USA
| | - Donald O Freytes
- Lampe Joint Department of Biomedical Engineering, The University of North Carolina at Chapel Hill/North Carolina State University 4130 Engineering Building III, Campus Box 7115 Raleigh NC 27695 USA
| | - Lisandro Cunci
- Department of Chemistry, University of Puerto Rico-Rio Piedras 601 Av. Universidad San Juan Puerto Rico USA
| | - Camilo Mora
- Department of Chemical Engineering, University of Puerto Rico-Mayaguez Route 108 Mayaguez Puerto Rico USA
| |
Collapse
|
3
|
Cao H, Oghenemaro EF, Latypova A, Abosaoda MK, Zaman GS, Devi A. Advancing clinical biochemistry: addressing gaps and driving future innovations. Front Med (Lausanne) 2025; 12:1521126. [PMID: 40265187 PMCID: PMC12011881 DOI: 10.3389/fmed.2025.1521126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 03/18/2025] [Indexed: 04/24/2025] Open
Abstract
Modern healthcare depends fundamentally on clinical biochemistry for disease diagnosis and therapeutic guidance. The discipline encounters operational constraints, including sampling inefficiencies, precision limitations, and expansion difficulties. Recent advancements in established technologies, such as mass spectrometry and the development of high-throughput screening and point-of-care technologies, are revolutionizing the industry. Modern biosensor technology and wearable monitors facilitate continuous health tracking, Artificial Intelligence (AI)/machine learning (ML) applications enhance analytical capabilities, generating predictive insights for individualized treatment protocols. However, concerns regarding algorithmic bias, data privacy, lack of transparency in decision-making ("black box" models), and over-reliance on automated systems pose significant challenges that must be addressed for responsible AI integration. However, significant limitations remain-substantial implementation expenses, system incompatibility issues, and information security vulnerabilities intersect with ethical considerations regarding algorithmic fairness and protected health information. Addressing these challenges demands coordinated efforts between clinicians, scientists, and technical specialists. This review discusses current challenges in clinical biochemistry, explicitly addressing the limitations of reference intervals and barriers to implementing innovative biomarkers in medical settings. The discussion evaluates how advanced technologies and multidisciplinary collaboration can overcome these constraints while identifying research priorities to enhance diagnostic precision and accessibility for better healthcare delivery.
Collapse
Affiliation(s)
- Haiou Cao
- Department of Oncology, Heilongjiang Beidahuang Group General Hospital, Harbin, Heilongjiang, China
| | - Enwa Felix Oghenemaro
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Delta State University, Abraka, Nigeria
| | - Amaliya Latypova
- Department of Medical and Technical Information Technology, Bauman Moscow State Technical University, Moscow, Russia
- Department of Mathematics and Natural Sciences, Gulf University for Science and Technology, Mishref, Kuwait
| | - Munthar Kadhim Abosaoda
- College of Pharmacy, The Islamic University, Najaf, Iraq
- College of Pharmacy, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Pharmacy, The Islamic University of Babylon, Babylon, Iraq
| | - Gaffar Sarwar Zaman
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Anita Devi
- Department of Applied Sciences, Chandigarh Engineering College, Chandigarh Group of Colleges-Jhanjeri, Mohali, India
| |
Collapse
|
4
|
Yu J, Zhou R, Liu S, Zheng J, Yan H, Su S, Chai N, Segal E, Jiang C, Guo K, Li CZ. Electrochemical Biosensors for the Detection of Exosomal microRNA Biomarkers for Early Diagnosis of Neurodegenerative Diseases. Anal Chem 2025; 97:5355-5371. [PMID: 40057850 PMCID: PMC11923972 DOI: 10.1021/acs.analchem.4c02619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 02/10/2025] [Accepted: 02/20/2025] [Indexed: 03/19/2025]
Abstract
Early and precise diagnosis of neurodegenerative disorders like Alzheimer's (AD) and Parkinson's (PD) is crucial for slowing their progression and enhancing patient outcomes. Exosomal microRNAs (miRNAs) are emerging as promising biomarkers due to their ability to reflect the diseases' pathology, yet their low abundance poses significant detection hurdles. This review article delves into the burgeoning field of electrochemical biosensors, designed for the precise detection of exosomal miRNA biomarkers. Electrochemical biosensors offer a compelling solution, combining the sensitivity required to detect low-abundance biomarkers with the specificity needed to discern miRNA profiles distinctive to neural pathological states. We explore the operational principles of these biosensors, including the electrochemical transduction mechanisms that facilitate miRNA detection. The review also summarizes advancements in nanotechnology, signal enhancement, bioreceptor anchoring, and microfluidic integration that improve sensor accuracy. The evidence of their use in neurodegenerative disease diagnosis is analyzed, focusing on the clinical impact, diagnostic precision, and obstacles faced in practical applications. Their potential integration into point-of-care testing and regulatory considerations for their market entry are discussed. Looking toward the future, the article highlights forthcoming innovations that might revolutionize early diagnostic processes. Electrochemical biosensors, with their impressive sensitivity, specificity, and point-of-care compatibility, are on track to become instrumental in the early diagnosis of neurodegenerative diseases, possibly transforming patient care and prognosis.
Collapse
Affiliation(s)
- Jiacheng Yu
- Biotechnology
and Food Engineering, Guangdong Technion-Israel
Institute of Technology (GTIIT), Shantou 515063, China
- Faculty
of Biotechnology and Food Engineering, Technion-Israel
Institute of Technology (IIT), Haifa 3200003, Israel
| | - Runzhi Zhou
- Biotechnology
and Food Engineering, Guangdong Technion-Israel
Institute of Technology (GTIIT), Shantou 515063, China
- Faculty
of Biotechnology and Food Engineering, Technion-Israel
Institute of Technology (IIT), Haifa 3200003, Israel
| | - Shan Liu
- Sichuan
Provincial Key Laboratory for Human Disease Gene Study, Department
of Medical Genetics, Sichuan Academy of Medical Sciences & Sichuan
Provincial People’s Hospital, University
of Electronic Science and Technology of China, Chengdu 610072, China
| | - Jintao Zheng
- Biotechnology
and Food Engineering, Guangdong Technion-Israel
Institute of Technology (GTIIT), Shantou 515063, China
- Faculty
of Biotechnology and Food Engineering, Technion-Israel
Institute of Technology (IIT), Haifa 3200003, Israel
| | - Haoyang Yan
- Biotechnology
and Food Engineering, Guangdong Technion-Israel
Institute of Technology (GTIIT), Shantou 515063, China
- Faculty
of Biotechnology and Food Engineering, Technion-Israel
Institute of Technology (IIT), Haifa 3200003, Israel
| | - Song Su
- Department
of Gastroenterology, The First Medical Center
of Chinese PLA General Hospital, Beijing 100853, China
| | - Ningli Chai
- Department
of Gastroenterology, The First Medical Center
of Chinese PLA General Hospital, Beijing 100853, China
| | - Ester Segal
- Faculty
of Biotechnology and Food Engineering, Technion-Israel
Institute of Technology (IIT), Haifa 3200003, Israel
| | - Cheng Jiang
- School
of Medicine, The Chinese University of Hong
Kong Shenzhen, Shenzhen 518172, China
| | - Keying Guo
- Biotechnology
and Food Engineering, Guangdong Technion-Israel
Institute of Technology (GTIIT), Shantou 515063, China
- Faculty
of Biotechnology and Food Engineering, Technion-Israel
Institute of Technology (IIT), Haifa 3200003, Israel
- Guangdong
Provincial Key Laboratory of Materials and Technologies for Energy
Conversion, Shantou 515063, China
- Monash Institute
of Pharmaceutical Sciences (MIPS), Monash
University, Parkville VIC 3052, Australia
| | - Chen-zhong Li
- School
of Medicine, The Chinese University of Hong
Kong Shenzhen, Shenzhen 518172, China
| |
Collapse
|
5
|
Vo DK, Trinh KTL. Advances in Wearable Biosensors for Wound Healing and Infection Monitoring. BIOSENSORS 2025; 15:139. [PMID: 40136936 PMCID: PMC11940385 DOI: 10.3390/bios15030139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 02/16/2025] [Accepted: 02/21/2025] [Indexed: 03/27/2025]
Abstract
Wound healing is a complicated biological process that is important for restoring tissue integrity and function after injury. Infection, usually due to bacterial colonization, significantly complicates this process by hindering the course of healing and enhancing the chances of systemic complications. Recent advances in wearable biosensors have transformed wound care by making real-time monitoring of biomarkers such as pH, temperature, moisture, and infection-related metabolites like trimethylamine and uric acid. This review focuses on recent advances in biosensor technologies designed for wound management. Novel sensor architectures, such as flexible and stretchable electronics, colorimetric patches, and electrochemical platforms, enable the non-invasive detection of changes associated with wounds with high specificity and sensitivity. These are increasingly combined with AI and analytics based on smartphones that can enable timely and personalized interventions. Examples are the PETAL patch sensor that applies multiple sensing mechanisms for wide-ranging views on wound status and closed-loop systems that connect biosensors to therapeutic devices to automate infection control. Additionally, self-powered biosensors that tap into body heat or energy from the biofluids themselves avoid any external batteries and are thus more effective in field use or with limited resources. Internet of Things connectivity allows further support for remote sharing and monitoring of data, thus supporting telemedicine applications. Although wearable biosensors have developed relatively rapidly and their prospects continue to expand, regular clinical application is stalled by significant challenges such as regulatory, cost, patient compliance, and technical problems related to sensor accuracy, biofouling, and power, among others, that need to be addressed by innovative solutions. The goal of this review is to synthesize current trends, challenges, and future directions in wound healing and infection monitoring, with emphasis on the potential for wearable biosensors to improve patient outcomes and reduce healthcare burdens. These innovations are leading the way toward next-generation wound care by bridging advanced materials science, biotechnology, and digital health.
Collapse
Affiliation(s)
- Dang-Khoa Vo
- College of Pharmacy, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Republic of Korea
| | - Kieu The Loan Trinh
- BioNano Applications Research Center, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Republic of Korea
| |
Collapse
|
6
|
Stoikov D, Kappo D, Ivanov A, Gorbachuk V, Mostovaya O, Padnya P, Stoikov I, Evtugyn G. Enzyme Biosensor Based on 3D-Printed Flow-Through Reactor Modified with Thiacalixarene-Functionalized Oligo (Lactic Acids). BIOSENSORS 2025; 15:77. [PMID: 39996979 PMCID: PMC11852404 DOI: 10.3390/bios15020077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/26/2025] [Accepted: 01/28/2025] [Indexed: 02/26/2025]
Abstract
Electrochemical enzyme biosensors are extensively utilized in clinical analysis and environmental monitoring, yet achieving effective enzyme immobilization while maintaining high activity remains a challenge. In this work, we developed a flow-through enzyme biosensor system using a 3D-printed flow-through electrochemical cell fabricated from commercially available poly (lactic acid). After modification with thiacalixarene-functionalized oligo (lactic acids) (OLAs), the material enabled efficient immobilization of uricase on the inner surface of a replaceable reactor of the cell. Swelling and hydrolytic stability of OLAs in cone, partial cone, and 1,3-alternate conformations were studied, with 1,3-alernate conformation demonstrating superior stability and enzyme immobilization performance. The use of OLAs enhanced immobilization efficiency by over 30% and protected the reactor from swelling, hydrolytic degradation, and enzyme loss. The biosensor was validated for amperometric uric acid determination, with a screen-printed carbon electrode modified with carbon black and Prussian Blue. This modification reduced the cathodic potential for uric acid detection to -0.05 V. The biosensor exhibited a linear detection range of 10 nM to 30 μM with a detection limit of 7 nM, and it performed effectively in artificial urine and synthetic blood plasma. The novel cell design, featuring easy assembly and low-cost replaceable parts, makes this biosensor a promising candidate for routine clinical analysis and other practical applications.
Collapse
Affiliation(s)
- Dmitry Stoikov
- Alexander Butlerov Institute of Chemistry, Kazan Federal University, 18 Kremlevskaya Street, Kazan 420008, Russia; (D.S.); (D.K.); (O.M.); (P.P.); (I.S.)
| | - Dominika Kappo
- Alexander Butlerov Institute of Chemistry, Kazan Federal University, 18 Kremlevskaya Street, Kazan 420008, Russia; (D.S.); (D.K.); (O.M.); (P.P.); (I.S.)
| | - Alexey Ivanov
- Alexander Butlerov Institute of Chemistry, Kazan Federal University, 18 Kremlevskaya Street, Kazan 420008, Russia; (D.S.); (D.K.); (O.M.); (P.P.); (I.S.)
| | - Vladimir Gorbachuk
- Alexander Butlerov Institute of Chemistry, Kazan Federal University, 18 Kremlevskaya Street, Kazan 420008, Russia; (D.S.); (D.K.); (O.M.); (P.P.); (I.S.)
| | - Olga Mostovaya
- Alexander Butlerov Institute of Chemistry, Kazan Federal University, 18 Kremlevskaya Street, Kazan 420008, Russia; (D.S.); (D.K.); (O.M.); (P.P.); (I.S.)
| | - Pavel Padnya
- Alexander Butlerov Institute of Chemistry, Kazan Federal University, 18 Kremlevskaya Street, Kazan 420008, Russia; (D.S.); (D.K.); (O.M.); (P.P.); (I.S.)
| | - Ivan Stoikov
- Alexander Butlerov Institute of Chemistry, Kazan Federal University, 18 Kremlevskaya Street, Kazan 420008, Russia; (D.S.); (D.K.); (O.M.); (P.P.); (I.S.)
| | - Gennady Evtugyn
- Alexander Butlerov Institute of Chemistry, Kazan Federal University, 18 Kremlevskaya Street, Kazan 420008, Russia; (D.S.); (D.K.); (O.M.); (P.P.); (I.S.)
- Analytical Chemistry Department, Chemical Technology Institute, Ural Federal University, 19 Mira Street, Ekaterinburg 620002, Russia
| |
Collapse
|
7
|
Madhurantakam S, David BE, Naqvi A, Lee ZJ, Abraham JT, Vankamamidi TS, Prasad S. Advancements in electrochemical immunosensors towards point-of-care detection of cardiac biomarkers. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:6615-6633. [PMID: 39114951 DOI: 10.1039/d4ay01049c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
Cardiovascular disease remains the leading cause of death worldwide, with mortality rates increasing annually. This underscores the urgent need for accurate diagnostic and monitoring tools. Electrochemical detection has emerged as a promising method for swiftly and precisely measuring specific biomarkers in bodily fluids. This approach is not only cost-effective and efficient compared to traditional clinical methods, but it can also be tailored to detect individual biomarkers, which makes it particularly well-suited for point-of-care (POC) applications. The ability to conduct testing at the point of care is crucial for timely interventions and personalized disease management, empowering healthcare providers to tailor treatment plans based on real-time biomarker data. Thanks to recent advancements in nanomaterials, we've seen significant progress in electrochemical detection, leading to the development of specialized rapid immunoassay systems. These systems utilize specific antibodies to target molecules, expanding the range of detectable biomarkers. This innovation has the potential to revolutionize the diagnosis and treatment of cardiovascular diseases by enhancing detection sensitivity and specificity. Ultimately, these advancements aim to improve patient outcomes by enabling earlier diagnosis, more precise monitoring, and personalized therapeutic interventions, which will contribute to more effective management of cardiovascular health globally.
Collapse
Affiliation(s)
- Sasya Madhurantakam
- Department of Bioengineering, University of Texas at Dallas, 800W Campbell Rd, Richardson, Texas 75080, USA.
| | - Bianca Elizabeth David
- Department of Bioengineering, University of Texas at Dallas, 800W Campbell Rd, Richardson, Texas 75080, USA.
| | - Aliya Naqvi
- Department of Bioengineering, University of Texas at Dallas, 800W Campbell Rd, Richardson, Texas 75080, USA.
| | - Zachary J Lee
- Department of Bioengineering, University of Texas at Dallas, 800W Campbell Rd, Richardson, Texas 75080, USA.
| | - Jacob Thomas Abraham
- Department of Bioengineering, University of Texas at Dallas, 800W Campbell Rd, Richardson, Texas 75080, USA.
| | - Trayi Sai Vankamamidi
- Department of Bioengineering, University of Texas at Dallas, 800W Campbell Rd, Richardson, Texas 75080, USA.
| | - Shalini Prasad
- Department of Bioengineering, University of Texas at Dallas, 800W Campbell Rd, Richardson, Texas 75080, USA.
| |
Collapse
|
8
|
Boșca AB, Dinte E, Mihu CM, Pârvu AE, Melincovici CS, Șovrea AS, Mărginean M, Constantin AM, Băbțan AM, Muntean A, Ilea A. Local Drug Delivery Systems as Novel Approach for Controlling NETosis in Periodontitis. Pharmaceutics 2024; 16:1175. [PMID: 39339210 PMCID: PMC11435281 DOI: 10.3390/pharmaceutics16091175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
Periodontitis is a chronic inflammation caused by periodontopathogenic bacteria in the dental biofilm, and also involves the inflammatory-immune response of the host. Polymorphonuclear neutrophils (PMNs) play essential roles in bacterial clearance by multiple mechanisms, including the formation of neutrophil extracellular traps (NETs) that retain and destroy pathogens. During PD progression, the interaction between PMNs, NETs, and bacteria leads to an exaggerated immune response and a prolonged inflammatory state. As a lesion matures, PMNs accumulate in the periodontal tissues and die via NETosis, ultimately resulting in tissue injury. A better understanding of the role of NETs, the associated molecules, and the pathogenic pathways of NET formation in periodontitis, could provide markers of NETosis as reliable diagnostic and prognostic tools. Moreover, an assessment of NET biomarker levels in biofluids, particularly in saliva or gingival crevicular fluid, could be useful for monitoring periodontitis progression and treatment efficacy. Preventing excessive NET accumulation in periodontal tissues, by both controlling NETs' formation and their appropriate removal, could be a key for further development of more efficient therapeutic approaches. In periodontal therapy, local drug delivery (LDD) systems are more targeted, enhancing the bioavailability of active pharmacological agents in the periodontal pocket and surrounding tissues for prolonged time to ensure an optimal therapeutic outcome.
Collapse
Affiliation(s)
- Adina Bianca Boșca
- Department of Histology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.B.B.)
| | - Elena Dinte
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Carmen Mihaela Mihu
- Department of Histology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.B.B.)
| | - Alina Elena Pârvu
- Department of Pathophysiology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Carmen Stanca Melincovici
- Department of Histology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.B.B.)
| | - Alina Simona Șovrea
- Department of Histology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.B.B.)
| | - Mariana Mărginean
- Department of Histology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.B.B.)
| | - Anne-Marie Constantin
- Department of Histology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.B.B.)
| | - Anida-Maria Băbțan
- Department of Oral Rehabilitation, Faculty of Dentistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania (A.I.)
| | - Alexandrina Muntean
- Department of Paediatric Dentistry, Faculty of Dentistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Aranka Ilea
- Department of Oral Rehabilitation, Faculty of Dentistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania (A.I.)
| |
Collapse
|
9
|
Mikaeeli Kangarshahi B, Naghib SM, Rabiee N. DNA/RNA-based electrochemical nanobiosensors for early detection of cancers. Crit Rev Clin Lab Sci 2024; 61:473-495. [PMID: 38450458 DOI: 10.1080/10408363.2024.2321202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/02/2024] [Accepted: 02/16/2024] [Indexed: 03/08/2024]
Abstract
Nucleic acids, like DNA and RNA, serve as versatile recognition elements in electrochemical biosensors, demonstrating notable efficacy in detecting various cancer biomarkers with high sensitivity and selectivity. These biosensors offer advantages such as cost-effectiveness, rapid response, ease of operation, and minimal sample preparation. This review provides a comprehensive overview of recent developments in nucleic acid-based electrochemical biosensors for cancer diagnosis, comparing them with antibody-based counterparts. Specific examples targeting key cancer biomarkers, including prostate-specific antigen, microRNA-21, and carcinoembryonic antigen, are highlighted. The discussion delves into challenges and limitations, encompassing stability, reproducibility, interference, and standardization issues. The review suggests future research directions, exploring new nucleic acid recognition elements, innovative transducer materials and designs, novel signal amplification strategies, and integration with microfluidic devices or portable instruments. Evaluating these biosensors in clinical settings using actual samples from cancer patients or healthy donors is emphasized. These sensors are sensitive and specific at detecting non-communicable and communicable disease biomarkers. DNA and RNA's self-assembly, programmability, catalytic activity, and dynamic behavior enable adaptable sensing platforms. They can increase biosensor biocompatibility, stability, signal transduction, and amplification with nanomaterials. In conclusion, nucleic acids-based electrochemical biosensors hold significant potential to enhance cancer detection and treatment through early and accurate diagnosis.
Collapse
Affiliation(s)
- Babak Mikaeeli Kangarshahi
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran, Iran
| | - Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran, Iran
| | - Navid Rabiee
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, Western Australia, Australia
| |
Collapse
|
10
|
Wasilewski T, Kamysz W, Gębicki J. AI-Assisted Detection of Biomarkers by Sensors and Biosensors for Early Diagnosis and Monitoring. BIOSENSORS 2024; 14:356. [PMID: 39056632 PMCID: PMC11274923 DOI: 10.3390/bios14070356] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024]
Abstract
The steady progress in consumer electronics, together with improvement in microflow techniques, nanotechnology, and data processing, has led to implementation of cost-effective, user-friendly portable devices, which play the role of not only gadgets but also diagnostic tools. Moreover, numerous smart devices monitor patients' health, and some of them are applied in point-of-care (PoC) tests as a reliable source of evaluation of a patient's condition. Current diagnostic practices are still based on laboratory tests, preceded by the collection of biological samples, which are then tested in clinical conditions by trained personnel with specialistic equipment. In practice, collecting passive/active physiological and behavioral data from patients in real time and feeding them to artificial intelligence (AI) models can significantly improve the decision process regarding diagnosis and treatment procedures via the omission of conventional sampling and diagnostic procedures while also excluding the role of pathologists. A combination of conventional and novel methods of digital and traditional biomarker detection with portable, autonomous, and miniaturized devices can revolutionize medical diagnostics in the coming years. This article focuses on a comparison of traditional clinical practices with modern diagnostic techniques based on AI and machine learning (ML). The presented technologies will bypass laboratories and start being commercialized, which should lead to improvement or substitution of current diagnostic tools. Their application in PoC settings or as a consumer technology accessible to every patient appears to be a real possibility. Research in this field is expected to intensify in the coming years. Technological advancements in sensors and biosensors are anticipated to enable the continuous real-time analysis of various omics fields, fostering early disease detection and intervention strategies. The integration of AI with digital health platforms would enable predictive analysis and personalized healthcare, emphasizing the importance of interdisciplinary collaboration in related scientific fields.
Collapse
Affiliation(s)
- Tomasz Wasilewski
- Department of Inorganic Chemistry, Faculty of Pharmacy, Medical University of Gdansk, Hallera 107, 80-416 Gdansk, Poland
| | - Wojciech Kamysz
- Department of Inorganic Chemistry, Faculty of Pharmacy, Medical University of Gdansk, Hallera 107, 80-416 Gdansk, Poland
| | - Jacek Gębicki
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland;
| |
Collapse
|
11
|
Zheng C, Liu R, Chen J, Li S, Ling Y, Zhang Z. Development of a selective electrochemical microsensor based on molecularly imprinted polydopamine/ZIF-67/laser-induced graphene for point-of-care determination of 3-nitrotyrosine. Biosens Bioelectron 2024; 255:116246. [PMID: 38537430 DOI: 10.1016/j.bios.2024.116246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/22/2024] [Accepted: 03/23/2024] [Indexed: 04/15/2024]
Abstract
3-nitrotyrosine (3-NT) is a biomarker closely associated with the early diagnosis of oxidative stress-related disorders. The development of an accurate, cost-effective, point-of-care 3-NT sensor holds significant importance for self-monitoring and clinical treatment. In this study, a selective, sensitive, and portable molecularly imprinted electrochemical sensor was developed. ZIF-67 with strong adsorption capacity was facilely modified on an electrochemically active laser-induced graphene (LIG) substrate (formed ZIF-67/LIG). Subsequently, biocompatible dopamine was chosen as the functional monomer, and interference-free ʟ-tyrosine was used as the dummy template to create molecularly imprinted polydopamine (MIPDA) on the ZIF-67/LIG, endowing the sensor with selectivity. The morphologies, electrochemical properties, and detection performance of the sensor were comprehensively investigated using scanning electron microscopy, cyclic voltammetry, electrochemical impedance spectroscopy, and differential pulse voltammetry. To achieve the best performance, several parameters were optimized, including the number of polymerization cycles (15), elution time (60 min), incubation time (7 min), and pH of the buffer solution (6). The turnaround time for this sensor is 10 min. Benefiting from the alliance of MIPDA, ZIF-67, and LIG, the sensor exhibited excellent sensitivity with a detection limit of 6.71 nM, and distinguished selectivity against 11 interfering substances. To enable convenient clinical diagnosis, a customized electrochemical microsensor with MIPDA/ZIF-67/LIG was designed, showcasing excellent reliability and convenience in detecting biological samples without pretreatment. The proposed microsensor will not only facilitate clinical diagnosis and improve patient care, but also provide inspiration for the development of other portable and accurate electrochemical biosensors.
Collapse
Affiliation(s)
- Chibin Zheng
- Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, PR China
| | - Ruwei Liu
- Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, PR China
| | - Jianyue Chen
- Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, PR China; Institute of New Functional Materials Co., Ltd, Guangxi Institute of Industrial Technology, Nanning, 530200, PR China
| | - Shilin Li
- Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, PR China
| | - Yunhan Ling
- Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, PR China.
| | - Zhengjun Zhang
- Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, PR China
| |
Collapse
|
12
|
Lin H, Deng H, Jiang Z, Hua P, Hu S, Ao H, Zhong M, Liu M, Guo G. Microarray analysis of tRNA-derived small RNA (tsRNA) in LPS-challenged macrophages treated with metformin. Gene 2024; 913:148399. [PMID: 38518902 DOI: 10.1016/j.gene.2024.148399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 03/08/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
Metformin, a widely used anti-diabetic drug, has demonstrated its efficacy in addressing various inflammatory conditions. tRNA-derived small RNA (tsRNA), a novel type of small non-coding RNA, exhibits diverse regulatory functions and holds promise as both a diagnostic biomarker and a therapeutic target for various diseases. The purpose of this study is to investigate whether the abundance of tsRNAs changed in LPS versus LPS + metformin-treated cells, utilizing microarray technology. Firstly, we established an in vitro lipopolysaccharide (LPS)-induced inflammation model using RAW264.7 macrophages and assessed the protective effects of metformin against inflammatory damage. Subsequently, we extracted total RNA from both LPS-treated and metformin + LPS-treated cell samples for microarray analysis to identify differentially abundant tsRNAs (DA-tsRNAs). Furthermore, we conducted bioinformatics analysis to predict target genes for validated DA-tsRNAs and explore the biological functions and signaling pathways associated with DA-tsRNAs. Notably, metformin was found to inhibit the inflammatory response in RAW264.7 macrophages. The microarray results revealed a total of 247 DA-tsRNAs, with 58 upregulated and 189 downregulated tsRNAs in the Met + LPS group compared to the LPS group. The tsRNA-mRNA network was visualized, shedding light on potential interactions. The results of bioinformatics analysis suggested that these potential targets of specific tsRNAs were mainly related to inflammation and immunity. Our study provides compelling evidence that metformin exerts anti-inflammatory effects and modulates the abundance of tsRNAs in LPS-treated RAW264.7 macrophages. These findings establish a valuable foundation for using tsRNAs as potential biomarkers for metformin in the treatment of inflammatory conditions.
Collapse
Affiliation(s)
- Huan Lin
- Medical center of Burn plastic and wound repair, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Hongao Deng
- Medical center of Burn plastic and wound repair, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Zhengying Jiang
- Medical center of Burn plastic and wound repair, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Peng Hua
- Medical center of Burn plastic and wound repair, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Shiqiang Hu
- Medical center of Burn plastic and wound repair, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Haiyong Ao
- Jiangxi Key Laboratory of Nanobiomaterials & School of Materials Science and Engineering, East China Jiaotong University, Nanchang, China
| | - Meiling Zhong
- School of Materials Science and Engineering, East China Jiaotong University, Nanchang, China
| | - Mingzhuo Liu
- Medical center of Burn plastic and wound repair, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
| | - Guanghua Guo
- Medical center of Burn plastic and wound repair, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
| |
Collapse
|
13
|
Mota FAR, Passos MLC, Santos JLM, Saraiva MLMFS. Comparative analysis of electrochemical and optical sensors for detection of chronic wounds biomarkers: A review. Biosens Bioelectron 2024; 251:116095. [PMID: 38382268 DOI: 10.1016/j.bios.2024.116095] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/23/2024]
Abstract
Chronic wounds (CW) present a significant healthcare challenge due to their prolonged healing time and associated complications. To effectively treat these wounds and prevent further deterioration, monitoring their healing progress is crucial. Traditional wound assessment methods relying on visual inspection and subjective evaluation are prone to inter-observer variability. Biomarkers play a critical role in objectively evaluating wound status and predicting healing outcomes, providing quantitative measures of wound healing progress, inflammation, infection, and tissue regeneration. Recent attention has been devoted to identifying and validating CW biomarkers. Various studies have investigated potential biomarkers, including growth factors, cytokines, proteases, and extracellular matrix components, shedding light on the complex molecular and cellular processes within CW. This knowledge enables a more targeted and personalized approach to wound management. Accurate and sensitive techniques are necessary for detecting CW biomarkers. Thus, this review compares and discusses the use of electrochemical and optical sensors for biomarker determination. The advantages and disadvantages of these sensors are highlighted. Differences in detection capabilities and characteristics such as non-invasiveness, portability, high sensitivity, specificity, simplicity, cost-effectiveness, compatibility with point-of-care applications, and real-time monitoring of wound biomarkers will be pointed out and compared. In summary, this work provides an overview of CW, explores the emerging field of CW biomarkers, and discusses methods for detecting these biomarkers, with a specific focus on optical and electrochemical sensors. The potential of further research and development in this field for advancing wound care and improving patient outcomes will also be noted.
Collapse
Affiliation(s)
- Fátima A R Mota
- LAQV, REQUIMTE, Department of Chemical Sciences, Laboratory of Applied Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, no 228, Porto, 4050-313, Portugal.
| | - Marieta L C Passos
- LAQV, REQUIMTE, Department of Chemical Sciences, Laboratory of Applied Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, no 228, Porto, 4050-313, Portugal.
| | - João L M Santos
- LAQV, REQUIMTE, Department of Chemical Sciences, Laboratory of Applied Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, no 228, Porto, 4050-313, Portugal.
| | - M Lúcia M F S Saraiva
- LAQV, REQUIMTE, Department of Chemical Sciences, Laboratory of Applied Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, no 228, Porto, 4050-313, Portugal.
| |
Collapse
|
14
|
Liu Y, Lin Z, Wang Y, Chen L, Wang Y, Luo C. Nanotechnology in inflammation: cutting-edge advances in diagnostics, therapeutics and theranostics. Theranostics 2024; 14:2490-2525. [PMID: 38646646 PMCID: PMC11024862 DOI: 10.7150/thno.91394] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 02/14/2024] [Indexed: 04/23/2024] Open
Abstract
Inflammatory dysregulation is intimately associated with the occurrence and progression of many life-threatening diseases. Accurate detection and timely therapeutic intervention on inflammatory dysregulation are crucial for the effective therapy of inflammation-associated diseases. However, the clinical outcomes of inflammation-involved disorders are still unsatisfactory. Therefore, there is an urgent need to develop innovative anti-inflammatory strategies by integrating emerging technological innovations with traditional therapeutics. Biomedical nanotechnology is one of the promising fields that can potentially transform the diagnosis and treatment of inflammation. In this review, we outline recent advances in biomedical nanotechnology for the diagnosis and treatment of inflammation, with special attention paid to nanosensors and nanoprobes for precise diagnosis of inflammation-related diseases, emerging anti-inflammatory nanotherapeutics, as well as nanotheranostics and combined anti-inflammatory applications. Moreover, the prospects and challenges for clinical translation of nanoprobes and anti-inflammatory nanomedicines are highlighted.
Collapse
Affiliation(s)
- Yuting Liu
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Ziqi Lin
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Yuting Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Liuhui Chen
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Yuequan Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Cong Luo
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
- Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| |
Collapse
|
15
|
Abdul Wahab MR, Palaniyandi T, Viswanathan S, Baskar G, Surendran H, Gangadharan SGD, Sugumaran A, Sivaji A, Kaliamoorthy S, Kumarasamy S. Biomarker-specific biosensors revolutionise breast cancer diagnosis. Clin Chim Acta 2024; 555:117792. [PMID: 38266968 DOI: 10.1016/j.cca.2024.117792] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/19/2024] [Accepted: 01/19/2024] [Indexed: 01/26/2024]
Abstract
Breast cancer is the most common cancer among women across the globe. In order to treat breast cancer successfully, it is crucial to conduct a comprehensive assessment of the condition during its initial stages. Although mammogram screening has long been a common method of breast cancer screening, high rates of type I error and type II error results as well as radiation exposure have always been of concern. The outgrowth cancer mortality rate is primarily due to delayed diagnosis, which occurs most frequently in a metastatic III or IV stage, resulting in a poor prognosis after therapy. Traditional detection techniques require identifying carcinogenic properties of cells, such as DNA or RNA alterations, conformational changes and overexpression of certain proteins, and cell shape, which are referred to as biomarkers or analytes. These procedures are complex, long-drawn-out, and expensive. Biosensors have recently acquired appeal as low-cost, simple, and super sensitive detection methods for analysis. The biosensor approach requires the existence of biomarkers in the sample. Thus, the development of novel molecular markers for diverse forms of cancer is a rising complementary affair. These biosensor devices offer two major advantages: (1) a tiny amount of blood collected from the patient is sufficient for analysis, and (2) it could help clinicians swiftly select and decide on the best therapy routine for the individual. This review will include updates on prospective cancer markers and biosensors in cancer diagnosis, as well as the associated detection limitations, with a focus on biosensor development for marker detection.
Collapse
Affiliation(s)
| | - Thirunavukkarasu Palaniyandi
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Chennai, India; Department of Anatomy, Biomedical Research Unit and Laboratory Animal Centre, Saveetha Dental College and Hospital, SIMATS, Saveetha University, Chennai, India.
| | - Sandhiya Viswanathan
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Chennai, India
| | - Gomathy Baskar
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Chennai, India
| | - Hemapreethi Surendran
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Chennai, India
| | - S G D Gangadharan
- Department of Medical Oncology, Madras Medical College, R. G. G. G. H., Chennai, Tamil Nadu, India
| | - Abimanyu Sugumaran
- Department of Pharmaceutical Sciences, Assam University, (A Central University), Silchar, Assam, India
| | - Asha Sivaji
- Department of Biochemistry, DKM College for Women, Vellore, India
| | - Senthilkumar Kaliamoorthy
- Department of Electronics and Communication Engineering, Dr. M.G.R Educational and Research Institute, Chennai, Tamil Nadu, India
| | - Saravanan Kumarasamy
- Department of Electrical and Electronics Engineering, Dr. M.G.R Educational and Research Institute, Chennai, Tamil Nadu, India
| |
Collapse
|
16
|
Theodore Armand TP, Kim HC, Kim JI. Digital Anti-Aging Healthcare: An Overview of the Applications of Digital Technologies in Diet Management. J Pers Med 2024; 14:254. [PMID: 38540996 PMCID: PMC10970731 DOI: 10.3390/jpm14030254] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 02/21/2024] [Accepted: 02/25/2024] [Indexed: 04/30/2025] Open
Abstract
Diet management has long been an important practice in healthcare, enabling individuals to get an insight into their nutrient intake, prevent diseases, and stay healthy. Traditional methods based on self-reporting, food diaries, and periodic assessments have been used for a long time to control dietary habits. These methods have shown limitations in accuracy, compliance, and real-time analysis. The rapid advancement of digital technologies has revolutionized healthcare, including the diet control landscape, allowing for innovative solutions to control dietary patterns and generate accurate and personalized recommendations. This study examines the potential of digital technologies in diet management and their effectiveness in anti-aging healthcare. After underlining the importance of nutrition in the aging process, we explored the applications of mobile apps, web-based platforms, wearables devices, sensors, the Internet of Things, artificial intelligence, blockchain, and other technologies in managing dietary patterns and improving health outcomes. The research further examines the effects of digital dietary control on anti-aging healthcare, including improved nutritional monitoring, personalized recommendations, and behavioral and sustainable changes in habits, leading to an expansion of longevity and health span. The challenges and limitations of digital diet monitoring are discussed, and some future directions are provided. Although many digital tools are used in diet control, their accuracy, effectiveness, and impact on health outcomes are not discussed much. This review consolidates the existing literature on digital diet management using emerging digital technologies to analyze their practical implications, guiding researchers, healthcare professionals, and policy makers toward personalized dietary management and healthy aging.
Collapse
Affiliation(s)
- Tagne Poupi Theodore Armand
- Institute of Digital Anti-Aging Healthcare, Inje University, Gimhae 50834, Republic of Korea; (T.P.T.A.); (H.-C.K.)
| | - Hee-Cheol Kim
- Institute of Digital Anti-Aging Healthcare, Inje University, Gimhae 50834, Republic of Korea; (T.P.T.A.); (H.-C.K.)
- College of AI Convergence, u-AHRC, Inje University, Gimhae 50834, Republic of Korea
| | - Jung-In Kim
- Institute of Digital Anti-Aging Healthcare, Inje University, Gimhae 50834, Republic of Korea; (T.P.T.A.); (H.-C.K.)
| |
Collapse
|
17
|
Banga I, Paul A, Dhamu VN, Ramasubramanya AH, Muthukumar S, Prasad S. Activated carbon derived from wood biochar for Amperometric sensing of Ammonia for early screening of chronic kidney disease. Int J Biol Macromol 2023; 253:126894. [PMID: 37709225 DOI: 10.1016/j.ijbiomac.2023.126894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/31/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
Personalized medicine has emerged as an increasingly efficient and effective approach to addressing disease diagnosis and intervention. Ammonia is a waste product produced by the body during the digestion of protein. The requirement to develop an electrochemical sensing platform for monitoring skin ammonia levels holds great potential as an essential solution to pre-screen chronic kidney disease (CKD). In this research, we have manufactured an innovative electrochemical sensor by employing activated carbon derived from wood biochar as the signal transducer. We conducted a comprehensive analysis of the structural and morphological characteristics of the synthesized materials using various techniques. The hypothesized interaction was investigated using chronoamperometry as a transduction technique. To assess cross-reactivity, we conducted a study using common interferants or chemicals present in the environment. The data presented in this paper represents three replicates and is plotted with a 5 % error bar, demonstrating a 95 % confidence interval in the sensor response. In this study, we have elucidated the functionality and usefulness of a wearable microelectronic research prototype integrated with an HTC-activated carbon @RTIL-based electrochemical sensing platform for detecting ammonia levels released from the skin as a marker for chronic kidney disease screening. By enabling early detection and monitoring, these platforms can facilitate timely interventions, such as lifestyle modifications, medication adjustments, or referral to nephrology specialists. This proactive approach can potentially slow down disease progression, minimize the need for dialysis or transplantation, and ultimately improve the quality of life for CKD patients.
Collapse
Affiliation(s)
- Ivneet Banga
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA.
| | - Anirban Paul
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA.
| | | | | | - Sriram Muthukumar
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA; EnLiSense LLC, 1813 Audubon Pondway, Allen, TX 75013, USA.
| | - Shalini Prasad
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA; EnLiSense LLC, 1813 Audubon Pondway, Allen, TX 75013, USA.
| |
Collapse
|
18
|
Messina M, Maugeri L, Spoto G, Puccio R, Ruggieri M, Petralia S. Fully Integrated Point-of-Care Platform for the Self-Monitoring of Phenylalanine in Finger-Prick Blood. ACS Sens 2023; 8:4152-4160. [PMID: 37890867 PMCID: PMC10683505 DOI: 10.1021/acssensors.3c01384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/21/2023] [Indexed: 10/29/2023]
Abstract
Development of point-of-care platforms combining reliability and ease of use is a challenge for the evolution of sensing in healthcare technologies. Here, we report the development and testing of a fully integrated enzymatic colorimetric assay for the sensing of phenylalanine in blood samples from phenylketonuria patients. The platform works with a customized mobile app for data acquisition and visualization and comprises an electronic system and a disposable sensor. The sensing approach is based on specific enzymatic phenylalanine recognition, and the optical transduction method is based on in situ gold nanostructure formation. The phenylketonuria (PKU) smart sensor platform is conceived to perform self-monitoring on phenylalanine levels and real-time therapy tuning, thanks to the direct connection with clinicians. Validation of the technologies with a population of patients affected by PKU, together with the concurrent validation of the platform through centralized laboratories, has confirmed the good analytical performances in terms of sensitivity and specificity, robustness, and utility for phenylalanine sensing. The self-monitoring of phenylalanine for the daily identification of abnormal health conditions could facilitate rapid therapy tuning, improving the wellness of PKU patients.
Collapse
Affiliation(s)
- Maria
Anna Messina
- Expanded
Newborn Screening Laboratory, A.O.U Policlinico
“G. Rodolico—San Marco”, 95125 Catania, Italy
| | - Ludovica Maugeri
- Department
of Drug and Health Sciences, University
of Catania, 95125 Catania, Italy
| | | | | | - Martino Ruggieri
- Expanded
Newborn Screening Laboratory, A.O.U Policlinico
“G. Rodolico—San Marco”, 95125 Catania, Italy
- Unit
of Clinical Pediatrics, Department of Clinical and Experimental Medicine, University of Catania, 95125 Catania, Italy
| | - Salvatore Petralia
- Department
of Drug and Health Sciences, University
of Catania, 95125 Catania, Italy
- CNR-Institute
of Biomolecular Chemistry, 95126 Catania, Italy
| |
Collapse
|
19
|
Campuzano S, Pingarrón JM. Electrochemical Affinity Biosensors: Pervasive Devices with Exciting Alliances and Horizons Ahead. ACS Sens 2023; 8:3276-3293. [PMID: 37534629 PMCID: PMC10521145 DOI: 10.1021/acssensors.3c01172] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/25/2023] [Indexed: 08/04/2023]
Abstract
Electrochemical affinity biosensors are evolving at breakneck speed, strengthening and colonizing more and more niches and drawing unimaginable roadmaps that increasingly make them protagonists of our daily lives. They achieve this by combining their intrinsic attributes with those acquired by leveraging the significant advances that occurred in (nano)materials technology, bio(nano)materials and nature-inspired receptors, gene editing and amplification technologies, and signal detection and processing techniques. The aim of this Perspective is to provide, with the support of recent representative and illustrative literature, an updated and critical view of the repertoire of opportunities, innovations, and applications offered by electrochemical affinity biosensors fueled by the key alliances indicated. In addition, the imminent challenges that these biodevices must face and the new directions in which they are envisioned as key players are discussed.
Collapse
Affiliation(s)
- Susana Campuzano
- Departamento de Química Analítica,
Facultad de Ciencias Químicas, Universidad
Complutense de Madrid, 28040 Madrid, España
| | - José M. Pingarrón
- Departamento de Química Analítica,
Facultad de Ciencias Químicas, Universidad
Complutense de Madrid, 28040 Madrid, España
| |
Collapse
|
20
|
Silva AT, Figueiredo R, Azenha M, Jorge PA, Pereira CM, Ribeiro JA. Imprinted Hydrogel Nanoparticles for Protein Biosensing: A Review. ACS Sens 2023; 8:2898-2920. [PMID: 37556357 PMCID: PMC10463276 DOI: 10.1021/acssensors.3c01010] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/31/2023] [Indexed: 08/11/2023]
Abstract
Over the past decade, molecular imprinting (MI) technology has made tremendous progress, and the advancements in nanotechnology have been the major driving force behind the improvement of MI technology. The preparation of nanoscale imprinted materials, i.e., molecularly imprinted polymer nanoparticles (MIP NPs, also commonly called nanoMIPs), opened new horizons in terms of practical applications, including in the field of sensors. Currently, hydrogels are very promising for applications in bioanalytical assays and sensors due to their high biocompatibility and possibility to tune chemical composition, size (microgels, nanogels, etc.), and format (nanostructures, MIP film, fibers, etc.) to prepare optimized analyte-responsive imprinted materials. This review aims to highlight the recent progress on the use of hydrogel MIP NPs for biosensing purposes over the past decade, mainly focusing on their incorporation on sensing devices for detection of a fundamental class of biomolecules, the peptides and proteins. The review begins by directing its focus on the ability of MIPs to replace biological antibodies in (bio)analytical assays and highlight their great potential to face the current demands of chemical sensing in several fields, such as disease diagnosis, food safety, environmental monitoring, among others. After that, we address the general advantages of nanosized MIPs over macro/micro-MIP materials, such as higher affinity toward target analytes and improved binding kinetics. Then, we provide a general overview on hydrogel properties and their great advantages for applications in the field of Sensors, followed by a brief description on current popular routes for synthesis of imprinted hydrogel nanospheres targeting large biomolecules, namely precipitation polymerization and solid-phase synthesis, along with fruitful combination with epitope imprinting as reliable approaches for developing optimized protein-imprinted materials. In the second part of the review, we have provided the state of the art on the application of MIP nanogels for screening macromolecules with sensors having different transduction modes (optical, electrochemical, thermal, etc.) and design formats for single use, reusable, continuous monitoring, and even multiple analyte detection in specialized laboratories or in situ using mobile technology. Finally, we explore aspects about the development of this technology and its applications and discuss areas of future growth.
Collapse
Affiliation(s)
- Ana T. Silva
- CIQUP/IMS,
Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre 687, s/n, Porto 4169-007, Portugal
| | - Rui Figueiredo
- CIQUP/IMS,
Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre 687, s/n, Porto 4169-007, Portugal
| | - Manuel Azenha
- CIQUP/IMS,
Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre 687, s/n, Porto 4169-007, Portugal
| | - Pedro A.S. Jorge
- INESC
TEC−Institute for Systems and Computer Engineering, Technology
and Science, Faculty of Sciences, University
of Porto, 4169-007 Porto, Portugal
- Department
of Physics and Astronomy, Faculty of Sciences, University of Porto, Rua do Campo Alegre 687, s/n, Porto 4169-007, Portugal
| | - Carlos M. Pereira
- CIQUP/IMS,
Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre 687, s/n, Porto 4169-007, Portugal
| | - José A. Ribeiro
- CIQUP/IMS,
Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre 687, s/n, Porto 4169-007, Portugal
| |
Collapse
|
21
|
Wang J, Ni R, Jiang T, Peng D, Ming Y, Cui H, Liu Y. The applications of functional materials-based nano-formulations in the prevention, diagnosis and treatment of chronic inflammation-related diseases. Front Pharmacol 2023; 14:1222642. [PMID: 37593176 PMCID: PMC10427346 DOI: 10.3389/fphar.2023.1222642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/17/2023] [Indexed: 08/19/2023] Open
Abstract
Chronic inflammation, in general, refers to systemic immune abnormalities most often caused by the environment or lifestyle, which is the basis for various skin diseases, autoimmune diseases, cardiovascular diseases, liver diseases, digestive diseases, cancer, and so on. Therapeutic strategies have focused on immunosuppression and anti-inflammation, but conventional approaches have been poor in enhancing the substantive therapeutic effect of drugs. Nanomaterials continue to attract attention for their high flexibility, durability and simplicity of preparation, as well as high profitability. Nanotechnology is used in various areas of clinical medicine, such as medical diagnosis, monitoring and treatment. However, some related problems cannot be ignored, including various cytotoxic and worsening inflammation caused by the nanomaterials themselves. This paper provides an overview of functional nanomaterial formulations for the prevention, diagnosis and treatment of chronic inflammation-related diseases, with the intention of providing some reference for the enhancement and optimization of existing therapeutic approaches.
Collapse
Affiliation(s)
- Jingjing Wang
- Department of pharmacy, Daping Hospital, Army Medical University, Chongqing, China
- Medical Research Institute, Southwest University, Chongqing, China
| | - Rui Ni
- Department of pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Tingting Jiang
- Department of pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Dan Peng
- Department of pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Yue Ming
- Department of pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Hongjuan Cui
- Medical Research Institute, Southwest University, Chongqing, China
| | - Yao Liu
- Department of pharmacy, Daping Hospital, Army Medical University, Chongqing, China
- Medical Research Institute, Southwest University, Chongqing, China
| |
Collapse
|
22
|
Takenaka S, Moro H, Shimizu U, Koizumi T, Nagano K, Edanami N, Ohkura N, Domon H, Terao Y, Noiri Y. Preparing of Point-of-Care Reagents for Risk Assessment in the Elderly at Home by a Home-Visit Nurse and Verification of Their Analytical Accuracy. Diagnostics (Basel) 2023; 13:2407. [PMID: 37510151 PMCID: PMC10378029 DOI: 10.3390/diagnostics13142407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/10/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
With the rising number of older adults residing at home, there is a growing need for risk assessment and patient management in home nursing. This study aims to develop point-of-care test (POCT) reagents that can aid in risk assessment and home care, especially in settings with limited resources. Our focus was on creating a C-reactive protein (CRP) POCT, which can accurately diagnose clinically significant judgment values in home nursing. Additionally, we assessed the utility of the HemoCue WBC DIFF system in providing differential counts of white blood cells (WBC). These performances were compared with a laboratory test using blood samples from patients with pneumonia. The CRP POCT showed a comparable result to that of a laboratory method, with an average kappa index of 0.883. The leukocyte count showed good agreement with the reference method. While the correlation coefficients for both neutrophil and lymphocyte counts were deemed acceptable, it was observed that the measured values tended to be smaller in cases where the cell count was higher. This proportional error indicates a weak correlation with the neutrophil-to-lymphocyte ratio. CRP POCT and WBC counts provided reliable and accurate judgments. These tools may benefit risk management for older adults at home, patients with dementia who cannot communicate, and those living in depopulated areas.
Collapse
Affiliation(s)
- Shoji Takenaka
- Division of Cariology, Operative Dentistry and Endodontics, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan
| | - Hiroshi Moro
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan
| | - Utako Shimizu
- Faculty of Medicine, Niigata University Graduate School of Health Sciences, Niigata 951-8514, Japan
| | - Takeshi Koizumi
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan
| | - Kei Nagano
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan
| | - Naoki Edanami
- Division of Cariology, Operative Dentistry and Endodontics, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan
| | - Naoto Ohkura
- Division of Cariology, Operative Dentistry and Endodontics, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan
| | - Hisanori Domon
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan
| | - Yutaka Terao
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan
| | - Yuichiro Noiri
- Division of Cariology, Operative Dentistry and Endodontics, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan
| |
Collapse
|
23
|
Cui J, Sun R, Zhao X, Zhao M, Zhang X, Li Y, Wang L, Shi C, Ma C. A homogeneous hybridization magnetic biosensor based on electric field assistance for ultrafast nucleic acid detection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023. [PMID: 37379082 DOI: 10.1039/d3ay00548h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Electrochemical biosensing is a sensitive strategy widely used in the field of nucleic acid detection. However, electrochemical biosensors generally involve time-consuming and labor-intensive probe immobilization processes. In this study, an electrochemical DNA biosensor based on homogeneous hybridization in solution was designed for nucleic acid detection without probe immobilization, which is different from most biosensors. The capture probe, detection probe, and target DNA were hybridized rapidly under an electric field to form a "sandwich" structure within 90 s, and the "sandwich" hybrid could be specifically coupled to streptavidin-modified magnetic beads within 5 min. Finally, the magnetic beads were enriched by using polypyrrole (PPy)/carbon nanotube (CNT)-modified magnetic electrodes and the signal was detected by differential pulse voltammetry (DPV). The magnetic biosensor constructed in this study could detect targets over a good linear dynamic range spanning 100 pM to 100 nM in 400 s, while those involving conventional hybridization methods always take 2 h or more. Because of the specific binding of streptavidin and biotin, this strategy showed high specificity. Taken together, the homogenous hybridization magnetic biosensor constructed with electric field assistance presents a potential diagnostic method for rapid DNA detection and provides a new idea for rapid nucleic acid detection in clinical practice.
Collapse
Affiliation(s)
- Jinling Cui
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
- College of Chemistry and Molecular Engineering, State Key Laboratory Base of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Ritong Sun
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| | - Xiaoli Zhao
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| | - Mingyuan Zhao
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| | - Xiaojun Zhang
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| | - Yong Li
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| | - Lei Wang
- College of Chemistry and Molecular Engineering, State Key Laboratory Base of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Chao Shi
- Qingdao Nucleic Acid Rapid Testing International Science and Technology Cooperation Base, College of Life Sciences, Department of Pathogenic Biology, School of Basic Medicine, The Clinical Laboratory Department of the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, PR China
| | - Cuiping Ma
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| |
Collapse
|
24
|
Fragão-Marques M, Ozben T. Digital transformation and sustainability in healthcare and clinical laboratories. Clin Chem Lab Med 2023; 61:627-633. [PMID: 36473150 DOI: 10.1515/cclm-2022-1092] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022]
Abstract
Healthcare, and in particular, clinical laboratories, are major contributors to carbon emissions and waste. Sustainability in healthcare has shifted from an environmental concern towards a holistic definition that includes balancing socio-ecological and socio-technical systems, including health services effectiveness and cost efficiency. Digital transformation can reduce waste and the cost of services by enhancing effectiveness while maintaining quality. Digital health interventions can provide personalized patient-centered care on a global scale and include decision support systems that have the potential to improve the performance and quality of healthcare. The right interfaces must be used so that the advantages of going digital are felt throughout the health system: a successful and sustainable implementation of digital innovation depends on its integration into a functional health ecosystem. Telehealth has the potential to reduce carbon emissions due to the reduced daily commute of health professionals, although research is limited. Recently, economic models have changed from the linear "take-make-dispose" to circular models based on recycling and upcycling that have the goal of keeping products, components, and materials at their highest utility and value. The previous linear models threaten human health and well-being and harm natural ecosystems.
Collapse
Affiliation(s)
- Mariana Fragão-Marques
- Faculty of Medicine of the University of Porto, Porto, Portugal.,UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal.,São João University Hospital Center, Porto, Portugal
| | - Tomris Ozben
- Department of Clinical Biochemistry, Medical Faculty, Akdeniz University, Antalya, Turkiye.,Medical Faculty, Clinical and Experimental Medicine, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
25
|
An innovative wireless electrochemical card sensor for field-deployable diagnostics of Hepatitis B surface antigen. Sci Rep 2023; 13:3523. [PMID: 36864072 PMCID: PMC9981757 DOI: 10.1038/s41598-023-30340-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 02/21/2023] [Indexed: 03/04/2023] Open
Abstract
A wireless-based detection utilizing an innovative electrochemical card (eCard) sensor controlled by a smartphone was developed for targeting Hepatitis B surface antigen (HBsAg). A simple label-free electrochemical platform allows a convenient operation for point-of-care diagnosis. A disposable screen-printed carbon electrode was modified straightforwardly layer-by-layer with chitosan followed by glutaraldehyde, allowing a simple but effective, reproducible, and stable method for covalently immobilizing antibodies. The modification and immobilization processes were verified by electrochemical impedance spectroscopy and cyclic voltammetry. The smartphone-based eCard sensor was used to quantify HBsAg by measuring the change in current response of the [Fe(CN)6]3-/4- redox couple before and after the presence of HBsAg. Under the optimal conditions, the linear calibration curve for HBsAg was found to be 10-100,000 IU/mL with a detection limit of 9.55 IU/mL. The HBsAg eCard sensor was successfully applied to detect 500 chronic HBV-infected serum samples with satisfactory results, demonstrating the excellent applicability of this system. The sensitivity and specificity of this sensing platform were found to be 97.75% and 93%, respectively. As illustrated, the proposed eCard immunosensor offered a rapid, sensitive, selective, and easy-to-use platform for healthcare providers to rapidly determine the infection status of HBV patients.
Collapse
|
26
|
Bogdan M, Meca AD, Turcu-Stiolica A, Oancea CN, Kostici R, Surlin MV, Florescu C. Insights into the Relationship between Pentraxin-3 and Cancer. Int J Mol Sci 2022; 23:15302. [PMID: 36499628 PMCID: PMC9739619 DOI: 10.3390/ijms232315302] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 11/21/2022] [Accepted: 11/29/2022] [Indexed: 12/11/2022] Open
Abstract
Although cancer can be cured if detected early and treated effectively, it is still a leading cause of death worldwide. Tumor development can be limited by an appropiate immune response, but it can be promoted by chronic extensive inflammation through metabolic dysregulation and angiogenesis. In the past decade, numerous efforts have been made in order to identify novel candidates with predictive values in cancer diagnostics. In line with this, researchers have investigated the involvement of pentraxin-3 (PTX-3) in cellular proliferation and immune escape in various types of cancers, although it has not been clearly elucidated. PTX-3 is a member of the long pentraxin subfamily which plays an important role in regulating inflammation, innate immunity response, angiogenesis, and tissue remodeling. Increased synthesis of inflammatory biomarkers and activation of different cellular mechanisms can induce PTX-3 expression in various types of cells (neutrophils, monocytes, lymphocytes, myeloid dendritic cells, fibroblasts, and epithelial cells). PTX-3 has both pro- and anti-tumor functions, thus dual functions in oncogenesis. This review elucidates the potential usefulness of PTX-3 as a serum biomarker in cancer. While future investigations are needed, PTX-3 is emerging as a promising tool for cancer's diagnosis and prognosis, and also treatment monitoring.
Collapse
Affiliation(s)
- Maria Bogdan
- Department of Pharmacology, Faculty of Pharmacy, University of Medicine and Pharmacy, 200349 Craiova, Romania
| | - Andreea-Daniela Meca
- Department of Pharmacology, Faculty of Pharmacy, University of Medicine and Pharmacy, 200349 Craiova, Romania
| | - Adina Turcu-Stiolica
- Department of Pharmacoeconomics, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Carmen Nicoleta Oancea
- Department of Biochemistry, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Roxana Kostici
- Department of Toxicology, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Marin Valeriu Surlin
- Department of General Surgery, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Cristina Florescu
- Department of Cardiology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| |
Collapse
|