1
|
Mota J, Viana A, Martins C, Pais ACS, Santos SAO, Silvestre AJD, Machado JP, Rocha SM. Pairing Red Wine and Closure: New Achievements from Short-to-Medium Storage Time Assays. Foods 2025; 14:783. [PMID: 40077486 PMCID: PMC11899619 DOI: 10.3390/foods14050783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 02/14/2025] [Accepted: 02/19/2025] [Indexed: 03/14/2025] Open
Abstract
The physicochemical and sensory properties of wines are influenced by several factors, starting in the vineyard and evolving during the winemaking stages. After bottling, variables such as bottle position, closure type, storage temperature, and storage time shape wine characteristics. In this study, red wines stored for approximately 0.5 and 3 years with natural cork, micro-agglomerated cork stoppers, and screw cap closures were analyzed. Various techniques were employed to investigate changes during bottle storage, including the determination of volatile components by comprehensive gas chromatography-mass spectrometry with time-of-flight analyzer (GC × GC-ToFMS), phenolic profile by ultra-high-performance liquid chromatography, coupled with tandem mass spectrometry (UHPLC-DAD-MSn), general physicochemical parameters, the oxygen transfer rate of cork stoppers, and sensorial analysis performed by a trained panel. The results revealed that the type of closure created distinct environments within the bottles, slightly influencing both sensory attributes and chemical evolution of the red wines. These findings highlight the value of combining diverse analytical techniques to reveal closure-driven differences, with volatile compound profiling emerging as the most sensitive methodology. Additionally, this study emphasizes that differences modulated by the wine-closure pairing, which become more pronounced during storage, can serve as an oenological tool in the construction of a wine's identity.
Collapse
Affiliation(s)
- João Mota
- LAQV-REQUIMTE & Department of Chemistry, University of Aveiro, Campus Universitário Santiago, 3810-193 Aveiro, Portugal; (J.M.); (A.V.); (C.M.)
| | - André Viana
- LAQV-REQUIMTE & Department of Chemistry, University of Aveiro, Campus Universitário Santiago, 3810-193 Aveiro, Portugal; (J.M.); (A.V.); (C.M.)
| | - Cátia Martins
- LAQV-REQUIMTE & Department of Chemistry, University of Aveiro, Campus Universitário Santiago, 3810-193 Aveiro, Portugal; (J.M.); (A.V.); (C.M.)
| | - Adriana C. S. Pais
- CICECO-Aveiro Institute of Materials & Department of Chemistry, University of Aveiro, Campus Universitário Santiago, 3810-193 Aveiro, Portugal; (A.C.S.P.); (S.A.O.S.); (A.J.D.S.)
| | - Sónia A. O. Santos
- CICECO-Aveiro Institute of Materials & Department of Chemistry, University of Aveiro, Campus Universitário Santiago, 3810-193 Aveiro, Portugal; (A.C.S.P.); (S.A.O.S.); (A.J.D.S.)
| | - Armando J. D. Silvestre
- CICECO-Aveiro Institute of Materials & Department of Chemistry, University of Aveiro, Campus Universitário Santiago, 3810-193 Aveiro, Portugal; (A.C.S.P.); (S.A.O.S.); (A.J.D.S.)
| | - José Pedro Machado
- M.A.Silva Cortiças S.A., Rua Central das Regadas Nº49, 4535-167 Mozelos, Portugal;
| | - Sílvia M. Rocha
- LAQV-REQUIMTE & Department of Chemistry, University of Aveiro, Campus Universitário Santiago, 3810-193 Aveiro, Portugal; (J.M.); (A.V.); (C.M.)
| |
Collapse
|
2
|
Santander M, Chica V, Correa HAM, Rodríguez J, Villagran E, Vaillant F, Escobar S. Unravelling Cocoa Drying Technology: A Comprehensive Review of the Influence on Flavor Formation and Quality. Foods 2025; 14:721. [PMID: 40077424 PMCID: PMC11898522 DOI: 10.3390/foods14050721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/17/2025] [Accepted: 02/18/2025] [Indexed: 03/14/2025] Open
Abstract
Cocoa quality serves as a differentiating factor that provides monetary and non-monetary benefits to farmers, defined by the genotype, agroecological conditions of cultivation, and the post-harvest processes involved in transforming seeds into cocoa beans, including harvesting, pre-conditioning, fermentation, and drying. Drying plays a crucial role in ensuring the sensory, chemical, and microbiological quality of the beans, as simultaneous mass and heat transfer phenomena occur during this process, along with chemical reactions (both enzymatic and non-enzymatic) that influence the concentration and dynamics of phenolic compounds, organic acids, methylxanthines, and the formation of volatiles, directly impacting flavor development in cocoa beans. This paper comprehensively reviews cocoa drying methods, variables, and equipment and analyzes their impact on these flavor-determining compounds. The findings highlight that drying significantly contributes to the production of differentiated and specialty quality traits. An integral relationship between the methods, operating variables, and drying equipment applied to cocoa and their implications for the volatile and non-volatile compounds is described.
Collapse
Affiliation(s)
- Margareth Santander
- Corporación Colombiana de Investigación Agropecuaria (Agrosavia), Process & Quality Cocoa Laboratory, Centros de Investigación La Selva, Palmira, Central and Tibaitata—Km 14 Mosquera-Bogotá, Mosquera 250047, Colombia; (M.S.); (J.R.); (F.V.)
| | - Vanessa Chica
- Departamento de Ingeniería, Facultad de Ingeniería y Administración, Universidad Nacional de Colombia Sede Palmira, Palmira 763531, Colombia; (V.C.); (H.A.M.C.)
| | - Hugo A. Martínez Correa
- Departamento de Ingeniería, Facultad de Ingeniería y Administración, Universidad Nacional de Colombia Sede Palmira, Palmira 763531, Colombia; (V.C.); (H.A.M.C.)
| | - Jader Rodríguez
- Corporación Colombiana de Investigación Agropecuaria (Agrosavia), Process & Quality Cocoa Laboratory, Centros de Investigación La Selva, Palmira, Central and Tibaitata—Km 14 Mosquera-Bogotá, Mosquera 250047, Colombia; (M.S.); (J.R.); (F.V.)
| | - Edwin Villagran
- Corporación Colombiana de Investigación Agropecuaria (Agrosavia), Process & Quality Cocoa Laboratory, Centros de Investigación La Selva, Palmira, Central and Tibaitata—Km 14 Mosquera-Bogotá, Mosquera 250047, Colombia; (M.S.); (J.R.); (F.V.)
| | - Fabrice Vaillant
- Corporación Colombiana de Investigación Agropecuaria (Agrosavia), Process & Quality Cocoa Laboratory, Centros de Investigación La Selva, Palmira, Central and Tibaitata—Km 14 Mosquera-Bogotá, Mosquera 250047, Colombia; (M.S.); (J.R.); (F.V.)
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement—CIRAD, UMR QualiSud, 1, F-34398 Montpellier, France
- UMR Qualisud, Univ Montpellier, CIRAD, Université d’Avignon, Université de la Réunion, Montpellier SupAgro, F-34000 Montpellier, France
| | - Sebastián Escobar
- Cacao of Excellence Programme, Bioversity International, 00118 Roma, Italy;
| |
Collapse
|
3
|
Stöppelmann F, Chan LF, Hildebrand G, Hermann-Ene V, Vetter W, Rigling M, Zhang Y. Molecular decoding a meat-like aroma generated from Laetiporus sulphureus-mediated fermentation of onion (Allium cepa L.). Food Res Int 2024; 192:114757. [PMID: 39147559 DOI: 10.1016/j.foodres.2024.114757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/14/2024] [Accepted: 07/10/2024] [Indexed: 08/17/2024]
Abstract
The organoleptic properties of plant-based meat alternatives do not meet consumer expectations due to the lack of characteristic flavors resembling meat. To address this challenge, a fermentation system utilizing Laetiporussulphureus was developed to generate a meat-like and fatty flavor from a vegetable source, onion. By means of multiple stir bar sorptive extraction and gas chromatography-mass spectrometry-olfactometry, an unsaturated aldehyde, (E,Z)-2,4-decadienal, which imparts a tallow-like and fatty odor, and a sulfurous compound benzothiazole, with a broth-like odor were identified, which well contributed to the characteristic odor of the supernatant. (E,Z)-2,4-Decadienal as the most important odorant (odor activity value = 206) was biosynthesized by transformation of linoleic acid with L.sulphureus, as revealed by isotopic tracing experiments. For the first time in Basidiomycota, the biogenetic pathway of (E,Z)-2,4-decadienal from linoleic acid was proposed.
Collapse
Affiliation(s)
- Felix Stöppelmann
- Department of Flavor Chemistry, Institute of Food Science and Biotechnology, University of Hohenheim, Fruwirthstr. 12, 70599 Stuttgart, Germany.
| | - Lap Fei Chan
- Department of Flavor Chemistry, Institute of Food Science and Biotechnology, University of Hohenheim, Fruwirthstr. 12, 70599 Stuttgart, Germany
| | - Gabriel Hildebrand
- Department of Flavor Chemistry, Institute of Food Science and Biotechnology, University of Hohenheim, Fruwirthstr. 12, 70599 Stuttgart, Germany.
| | - Vanessa Hermann-Ene
- Institute of Food Chemistry (170b), University of Hohenheim, Garbenstr. 28, 70599 Stuttgart, Germany.
| | - Walter Vetter
- Institute of Food Chemistry (170b), University of Hohenheim, Garbenstr. 28, 70599 Stuttgart, Germany.
| | - Marina Rigling
- Department of Flavor Chemistry, Institute of Food Science and Biotechnology, University of Hohenheim, Fruwirthstr. 12, 70599 Stuttgart, Germany.
| | - Yanyan Zhang
- Department of Flavor Chemistry, Institute of Food Science and Biotechnology, University of Hohenheim, Fruwirthstr. 12, 70599 Stuttgart, Germany.
| |
Collapse
|
4
|
Sahin E, Ceylan FD, Demirkoz AB, Karaca AC, Capanoglu E. Comparison of Physicochemical Properties, Antioxidants, and Aroma Profiles of Water- and Sodium-Hydroxide-Treated Natural Cocoa Powder. ACS OMEGA 2024; 9:35730-35743. [PMID: 39184461 PMCID: PMC11339982 DOI: 10.1021/acsomega.4c04173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/02/2024] [Accepted: 07/05/2024] [Indexed: 08/27/2024]
Abstract
Cocoa powder alkalization is an essential process in chocolate manufacturing, and traditionally, this process involves the use of alkaline agents, such as sodium hydroxide (NaOH), potassium hydroxide (KOH), and potassium carbonate (K2CO3). However, these methods involve harsh chemicals and energy-intensive procedures, raising significant environmental concerns. Water (H2O) has emerged as a promising alternative due to its safety, minimally harmful byproducts, and accessibility. Green chemistry principles have gained importance across industries, especially in food production, where sustainable practices are highly valued. This study aimed to develop a greener process by investigating the alkalization potential of H2O and comparing the results with those of NaOH. The particle size distribution, pH, color, antioxidant capacity, phenolic composition, and aroma profile of cocoa powders treated with H2O and NaOH were evaluated. The alkalization temperature significantly affected the color of the cocoa powders, and the alkali solution ratio influenced the L* values of H2O-treated powders. In industrial and commercial specifications, an ΔE value below 3 is considered standard for color measurements. Both H2O-treated and NaOH-treated natural cocoa powders had ΔE values exceeding 3 compared to the untreated powder, indicating that H2O treatment darkens the color in a similar way to that of traditional methods. While NaOH produced a darker color, process optimization allowed both H2O and NaOH treatments to achieve similar color attributes (ΔE < 3). Significant differences were observed in the antioxidant capacity and total phenolic content (TPC) between the H2O-treated and NaOH-treated cocoa powders. H2O treatment positively impacted the antioxidative properties of the cocoa powder. The antioxidant capacity, measured by the DPPH and CUPRAC methods, was significantly higher in H2O-treated samples (295.5-317.7 TEAC mg/100 g and 835-1542 TEAC mg/100 g, respectively) compared to NaOH-treated samples (256.6-306.2 TEAC mg/100 g and 171-849 TEAC mg/100 g, respectively). Additionally, the TPC of H2O-treated cocoa powder [281.3-321.6 gallic acid equivalent (GAE) mg/100 g] was significantly higher than that of NaOH-treated powder (100.0-298.6 GAE mg/100 g). The significant differences in the phenolic profiles suggested that the alkalization process affects individual phenolic compounds differently. Moreover, H2O-treated cocoa powders had significantly higher trimethylpyrazine/tetramethylpyrazine (TrMP/TMP) ratios than those of NaOH-treated samples, indicating notable differences in aroma profiles. This study suggests that H2O can replace NaOH in the alkalization process of the cocoa industry, particularly for lightly treated alkalized cocoa powders that maintain high antioxidant activity and TrMP/TMP ratios. This offers a more environmentally friendly, easily manageable, and sustainable process for cocoa powder alkalization.
Collapse
Affiliation(s)
- Ertan Sahin
- Department
of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, 344469 Istanbul, Türkiye
| | - Fatma Duygu Ceylan
- Department
of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, 344469 Istanbul, Türkiye
| | - Aslı Barla Demirkoz
- Department
of Research and Development Center, Aromsa
Flavours and Food Additives Industry and Trade Inc. Co., Gebze, 41480 Kocaeli, Türkiye
- Department
of Analytical Chemistry, Faculty of Pharmacy, Istanbul Okan University, Tuzla, 34959 Istanbul, Türkiye
| | - Aslı Can Karaca
- Department
of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, 344469 Istanbul, Türkiye
| | - Esra Capanoglu
- Department
of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, 344469 Istanbul, Türkiye
| |
Collapse
|
5
|
Van de Voorde D, Díaz-Muñoz C, Hernandez CE, Weckx S, De Vuyst L. Yeast strains do have an impact on the production of cured cocoa beans, as assessed with Costa Rican Trinitario cocoa fermentation processes and chocolates thereof. Front Microbiol 2023; 14:1232323. [PMID: 37621398 PMCID: PMC10445768 DOI: 10.3389/fmicb.2023.1232323] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/20/2023] [Indexed: 08/26/2023] Open
Abstract
The microbiological and metabolic outcomes of good cocoa fermentation practices can be standardized and influenced through the addition of starter culture mixtures composed of yeast and bacterial strains. The present study performed two spontaneous and 10 starter culture-initiated (SCI) cocoa fermentation processes (CFPs) in Costa Rica with local Trinitario cocoa. The yeast strains Saccharomyces cerevisiae IMDO 050523, Hanseniaspora opuntiae IMDO 020003, and Pichia kudriavzevii IMDO 060005 were used to compose starter culture mixtures in combination with the lactic acid bacterium strain Limosilactobacillus fermentum IMDO 0611222 and the acetic acid bacterium strain Acetobacter pasteurianus IMDO 0506386. The microbial community and metabolite dynamics of the cocoa pulp-bean mass fermentation, the metabolite dynamics of the drying cocoa beans, and the volatile organic compound (VOC) profiles of the chocolate production were assessed. An amplicon sequence variant approach based on full-length 16S rRNA gene sequencing instead of targeting the V4 region led to a highly accurate monitoring of the starter culture strains added, in particular the Liml. fermentum IMDO 0611222 strain. The latter strain always prevailed over the background lactic acid bacteria. A similar approach, based on the internal transcribed spacer (ITS1) region of the fungal rRNA transcribed unit, was used for yeast strain monitoring. The SCI CFPs evolved faster when compared to the spontaneous ones. Moreover, the yeast strains applied did have an impact. The presence of S. cerevisiae IMDO 050523 was necessary for successful fermentation of the cocoa pulp-bean mass, which was characterized by the production of higher alcohols and esters. In contrast, the inoculation of H. opuntiae IMDO 020003 as the sole yeast strain led to underfermentation and a poor VOC profile, mainly due to its low competitiveness. The P. kudriavzevii IMDO 060005 strain tested in the present study did not contribute to a richer VOC profile. Although differences in VOCs could be revealed in the cocoa liquors, no significant effect on the final chocolates could be obtained, mainly due to a great impact of cocoa liquor processing during chocolate-making. Hence, optimization of the starter culture mixture and cocoa liquor processing seem to be of pivotal importance.
Collapse
Affiliation(s)
- Dario Van de Voorde
- Research Group of Industrial Microbiology and Food Biotechnology, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Cristian Díaz-Muñoz
- Research Group of Industrial Microbiology and Food Biotechnology, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Carlos Eduardo Hernandez
- Laboratorio de Calidad e Innovación Agroalimentaria, Escuela de Ciencias Agrarias, Universidad Nacional de Costa Rica, Heredia, Costa Rica
| | - Stefan Weckx
- Research Group of Industrial Microbiology and Food Biotechnology, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Luc De Vuyst
- Research Group of Industrial Microbiology and Food Biotechnology, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
6
|
Ac-Pangan MF, Engeseth NJ, Cadwallader KR. Identification of Important Aroma Components and Sensory Profiles of Minimally Processed (Unroasted) and Conventionally Roasted Dark Chocolates. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37307497 DOI: 10.1021/acs.jafc.3c01366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Roasting is an important unit operation for the development of characteristic chocolate aroma during manufacturing. However, there is an increase in interest in minimally processed chocolate products due to their potential positive health benefits. The odor-important compounds and sensory characteristics of minimally processed (unroasted) and conventionally roasted dark chocolates were determined by gas chromatography-olfactometry, aroma extract dilution analysis (AEDA), and stable isotope dilution analysis (SIDA). Except for acetic acid, all odorants had higher odor-activity values (OAVs) in roasted chocolate. Acetic acid, developed during fermentation and drying, had the highest OAV in both chocolates but was better preserved in unroasted chocolate. Compounds making a greater aroma impact on roasted chocolate compared with unroasted chocolate included dimethyl trisulfide, 2-ethyl-3,5-dimethylpyrazine, and 3-methylbutanal. Nine significant sensory attributes in unroasted and roasted chocolates were identified. Vinegar (aroma) and roasted (aroma and aroma by mouth), sweet (taste), and hardness (texture) attributes differed between unroasted and roasted chocolates. The results of this study enforce the embracement of low thermal processes to showcase the inherent flavor potential of cacao beans but also to support the concept of chocolate "terroir" by potentially preserving important aroma compounds developed during fermentation.
Collapse
Affiliation(s)
- Marlon F Ac-Pangan
- Department of Food Science and Technology, Virginia Polytechnic Institute and State University, 1230 Washington Street Southwest, Blacksburg, Virginia 24061, United States
| | - Nicki J Engeseth
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, 905 South Goodwin Avenue, Urbana, Illinois 61801, United States
| | - Keith R Cadwallader
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, 1302 West Pennsylvania Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
7
|
Guzmán Penella S, Boulanger R, Maraval I, Kopp G, Corno M, Fontez B, Fontana A. Link between Flavor Perception and Volatile Compound Composition of Dark Chocolates Derived from Trinitario Cocoa Beans from Dominican Republic. Molecules 2023; 28:molecules28093805. [PMID: 37175215 PMCID: PMC10180179 DOI: 10.3390/molecules28093805] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
The chemical composition of dark chocolate has a significant impact on its complex flavor profile. This study aims to investigate the relationship between the volatile chemical composition and perceived flavor of 54 dark chocolate samples made from Trinitario cocoa beans from the Dominican Republic. The samples were evaluated by a trained panel and analyzed using gas chromatography-mass spectrometry (GC-MS) to identify and quantify the volatile compounds. Predictive models based on a partial least squares regression (PLS) allowed the identification of key compounds for predicting individual sensory attributes. The models were most successful in classifying samples based on the intensity of bitterness and astringency, even though these attributes are mostly linked to non-volatile compounds. Acetaldehyde, dimethyl sulfide, and 2,3-butanediol were found to be key predictors for various sensory attributes, while propylene glycol diacetate was identified as a possible marker for red fruit aroma. The study highlights the potential of using volatile compounds to accurately predict chocolate flavor potential.
Collapse
Affiliation(s)
- Santiago Guzmán Penella
- CIRAD, UMR Qualisud, F-34398 Montpellier, France
- Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, 97490 Montpellier, France
- Barry Callebaut AG, Hardturmstrasse 181, 8005 Zurich, Switzerland
| | - Renaud Boulanger
- CIRAD, UMR Qualisud, F-34398 Montpellier, France
- Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, 97490 Montpellier, France
| | - Isabelle Maraval
- CIRAD, UMR Qualisud, F-34398 Montpellier, France
- Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, 97490 Montpellier, France
| | - Gabi Kopp
- Barry Callebaut AG, Hardturmstrasse 181, 8005 Zurich, Switzerland
| | - Marcello Corno
- Barry Callebaut AG, Hardturmstrasse 181, 8005 Zurich, Switzerland
| | - Bénédicte Fontez
- MISTEA, Université Montpellier, INRAE, Institut Agro, 34060 Montpellier, France
| | - Angélique Fontana
- Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, 97490 Montpellier, France
| |
Collapse
|
8
|
Akoa SP, Boulanger R, Effa Onomo P, Lebrun M, Ondobo ML, Lahon MC, Ntyam Mendo SA, Niemenak N, Djocgoue P. Sugar profile and volatile aroma composition in fermented dried beans and roasted nibs from six controlled pollinated Cameroonian fine-flavor cocoa (Theobroma cacao L.) hybrids. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
9
|
Sommer S, Hoffmann JL, Fraatz MA, Zorn H. Upcycling of black currant pomace for the production of a fermented beverage with Wolfiporia cocos. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:1313-1322. [PMID: 36936114 PMCID: PMC10020415 DOI: 10.1007/s13197-023-05677-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 01/11/2023] [Accepted: 01/23/2023] [Indexed: 02/09/2023]
Abstract
Pomace as a side stream from black currant juice production is mostly discarded, even though it is rich in nutrients like protein, fiber, sugars, anthocyanins, polyphenols, and other secondary metabolites. Fungi from the division of Basidiomycota have a great enzymatic toolbox to recycle these complex mixtures of nutrients. In particular, the edible medicinal fungus Wolfiporia cocos has been described as a suitable biocatalyst to form pleasant aroma compounds in fermentation processes. Therefore, medium optimization, upscaling, and filtration were performed to produce a beverage based on black currant pomace fermented with W. cocos. A trained panel described the beverage as highly pleasant, reminiscent of honey, flowers and berries with a well-balanced sour and sweet taste. The flavor compounds linalool (citrus), geraniol (flowery), phenylacetic acid (honey), methyl phenylacetate (honey), eugenol (clove), and 2-phenylethanol (rose) were produced during fermentation and the concentrations exceeded their respective odor thresholds. The produced beverage was evaluated with 8.0 ± 1.4 from 10 for the question of whether panelists would buy the product. Fungal fermentation with the edible fungus W. cocos enabled the production of a highly pleasant beverage and additionally may reduce waste by using pomace and table sugar as sole ingredients. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-023-05677-4.
Collapse
Affiliation(s)
- Svenja Sommer
- grid.8664.c0000 0001 2165 8627Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Janine Laura Hoffmann
- grid.8664.c0000 0001 2165 8627Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Marco Alexander Fraatz
- grid.8664.c0000 0001 2165 8627Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
- grid.418010.c0000 0004 0573 9904Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392 Giessen, Germany
| | - Holger Zorn
- grid.8664.c0000 0001 2165 8627Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
- grid.418010.c0000 0004 0573 9904Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392 Giessen, Germany
| |
Collapse
|
10
|
Tagliamonte S, De Luca L, Donato A, Paduano A, Balivo A, Genovese A, Romano R, Vitaglione P, Sacchi R. A ‘Mediterranean ice-cream’: Sensory and nutritional aspects of replacing milk cream with extra virgin olive oil. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023] Open
|
11
|
Purbaningrum K, Hidayat C, Witasari LD, Utami T. Flavor Precursors and Volatile Compounds Improvement of Unfermented Cocoa Beans by Hydrolysis Using Bromelain. Foods 2023; 12:foods12040820. [PMID: 36832893 PMCID: PMC9956981 DOI: 10.3390/foods12040820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/04/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023] Open
Abstract
Cocoa fermentation is an essential process that produces flavor precursors. However, many small farmers in Indonesia directly dry their cocoa beans without fermentation due to low yield and long fermentation time, resulting in fewer flavor precursors and cocoa flavor. Therefore, this study aimed to enhance the flavor precursors, particularly free amino acids and volatile compounds, of unfermented cocoa beans by hydrolysis, using bromelain. Unfermented cocoa beans were previously hydrolyzed with bromelain at concentrations of 3.5, 7, and 10.5 U/mL for 4, 6, and 8 h, respectively. An analysis of enzyme activity, degree of hydrolysis, free amino acids, reducing sugar, polyphenols, and volatile compounds was then conducted using unfermented and fermented cocoa beans as negative and positive controls, respectively. The results showed that the highest degree of hydrolysis was 42.95% at 10.5 U/mL for 6 h, although it was not significantly different from the hydrolysis at 3.5 U/mL for 8 h. This indicates a higher reducing sugar and lower polyphenols content than unfermented cocoa beans. There was also an increase in free amino acids, especially hydrophobic amino acids, such as phenylalanine, valine, leucine, alanine, and tyrosine, and desirable volatile compounds, such as pyrazines. Therefore, this suggests that hydrolysis with bromelain increased the flavor precursors and cocoa-bean flavors.
Collapse
|
12
|
Asefi N, Ebrahimzadegan S, Maleki R, Seiiedlou-Heris SS. Effects of roasting on alkylpyrazin compounds and properties of cocoa powder. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:572-580. [PMID: 36712197 PMCID: PMC9873847 DOI: 10.1007/s13197-022-05640-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 04/07/2022] [Accepted: 10/17/2022] [Indexed: 12/24/2022]
Abstract
The volatile flavor compounds are the most important indicators of the quality of cocoa beans, among which pyrazines are considered as the main and key groups affecting the cocoa flavor. In cocoa processing, roasting is an important stage in the technical treatment of cocoa and has a significant impact on chemical properties of cocoa and its flavor. The present study aimed to assess the impact of roasting (temperature and time) on alkyl pyrazines, as key flavor compounds, via gas chromatography-mass spectrometry. Additionally, other properties, including color, polyphenols, chemical properties, and sensory attributes of cocoa powder were investigated. The results indicated that with the change in roasting time and temperature, these properties changed significantly. The cocoa powder roasted at 140 °C for 40 min had the highest browning index value (OD460/OD525), tetramethylpyrazine to trimethylpyrazine (TMP/TrMP) ratio, and sensory evaluation score and the lowest polyphenol content compared to the other samples.
Collapse
Affiliation(s)
- Narmela Asefi
- Department of Food Science and Technology, Tabriz Branch, Faculty of Agriculture, Islamic Azad University, Tabriz, Iran
| | - Samaneh Ebrahimzadegan
- Department of Food Science and Technology, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Ramin Maleki
- Research Department of Chromatography, Urmia Branch, Iranian Academic Center for Education, Culture and Research (ACECR), Urmia, Iran
| | | |
Collapse
|
13
|
Wen A, Yang Z, Liu N, Zeng H, Qin L. Dynamic correlation between tetramethylpyrazine and influencing factors in Bacillus subtilis-fermented dehulled adlay. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
14
|
Sari ABT, Fahrurrozi, Marwati T, Djaafar TF, Hatmi RU, Purwaningsih, Wanita YP, Lisdiyanti P, Perwitasari U, Juanssilfero AB, Rahayu ES. Chemical Composition and Sensory Profiles of Fermented Cocoa Beans Obtained from Various Regions of Indonesia. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2023; 2023:5639081. [PMID: 36942196 PMCID: PMC10024629 DOI: 10.1155/2023/5639081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 03/13/2023]
Abstract
The chemical composition and sensory profile of cocoa beans are essential factors determining the quality of cocoa-based products. In this study, cocoa bean samples were collected from various regions of Indonesia, including Aceh, Banten, Bali, East Java, West Sumatra, West Sulawesi, East Kalimantan, and Yogyakarta. The cocoa beans were fermented and sun-dried according to the producers' protocols and local practices. The sensory profile, fat content, total phenolic content, and the composition of sugars, organic acids, and amino acids of the cocoa bean samples were analyzed. The results revealed that the chemical composition and sensory profiles of the samples were diverse. The sensory profiles of cocoa liquor samples were described by low intensities of cocoa notes with the occurrence of fruity, floral, spicy, and sweet notes. The concentration of acetic acid, lactic acid, and some amino acids (glutamic acid, proline, and methionine) was associated with fresh fruit, browned fruit, and roasted note of the cocoa liquor, respectively. The variation in the environmental conditions and postharvest practices contributed to the diversity of cocoa beans' chemical and sensory characteristics.
Collapse
Affiliation(s)
| | - Fahrurrozi
- 2Research Center for Marine and Land Bioindustry (RCMLB), National Research and Innovation Agency (NRIA), Jl. Raya Senggigi, Kodek Bay, Pemenang, Nort Lombok, West Nusa Tenggara 83352, Indonesia
| | - Tri Marwati
- 3Research Center for Food Technology and Process (RCFTP), National Research and Innovation Agency (NRIA), Yogyakarta, 55861, Indonesia
| | - Titiek Farianti Djaafar
- 3Research Center for Food Technology and Process (RCFTP), National Research and Innovation Agency (NRIA), Yogyakarta, 55861, Indonesia
| | - Retno Utami Hatmi
- 3Research Center for Food Technology and Process (RCFTP), National Research and Innovation Agency (NRIA), Yogyakarta, 55861, Indonesia
| | - Purwaningsih
- 4Asessment Institute for Agriculture Technology (AIAT) of Yogyakarta, Indonesia Ministry of Agriculture, Jl. Stadion Maguwoharjo No. 22, Ngemplak, Sleman, Yogyakarta, 55584, Indonesia
| | - Yeyen Prestyaning Wanita
- 3Research Center for Food Technology and Process (RCFTP), National Research and Innovation Agency (NRIA), Yogyakarta, 55861, Indonesia
| | - Puspita Lisdiyanti
- 5Research Center for Biosystematics and Evolution (RCBE), National Research and Innovation Agency (NRIA), Cibinong 16911, Indonesia
| | - Urip Perwitasari
- 6Research Center for Applied Microbiology (RCAM), National Research and Innovation Agency (NRIA), Jl. Raya Jakarta-Bogor Km 46, Cibinong, 16911, Indonesia
| | - Ario Betha Juanssilfero
- 6Research Center for Applied Microbiology (RCAM), National Research and Innovation Agency (NRIA), Jl. Raya Jakarta-Bogor Km 46, Cibinong, 16911, Indonesia
| | | |
Collapse
|
15
|
Fadel HHM, Asker MMS, Mahmoud MG, Hamed SR, Lotfy SN. Optimization of the production of roasted-nutty aroma by a newly isolated fungus Tolypocladium inflatum SRH81 and impact of encapsulation on its quality. J Genet Eng Biotechnol 2022; 20:159. [DOI: 10.1186/s43141-022-00445-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 11/12/2022] [Indexed: 11/25/2022]
Abstract
Abstract
Background
Pyrazines are used in food industry to impart the foods nutty-roasted flavor. However, their extraction from natural sources is difficult and expensive. At the same time, there is awareness against the chemical food additives. Microorganisms are approved as natural producers of flavors. The aim of the present study was to assess the ability of the newly isolated fungus Tolypocladium inflatum SRH81 to produce pyrazines and studying the effect of encapsulation in gum Arabic on the quality of the biogenerated volatiles. The parameters affecting the biogeneration of pyrazines were optimized. The headspace volatiles of each culture were isolated and identified by solid phase microextraction (HS-SPME) and gas chromatography coupled with mass spectrometry (GC-MS). The volatiles showed the highest pyrazines content and best nutty-roasty flavor was subjected to encapsulation.
Results
The selected fungus was identified as Tolypocladium inflatum SRH81. A high correlation was found between the consumed sugar and dry matter content of each culture. Incubation of the fungus culture enriched with 0.5 g amino acids/50 mL medium for 12 days at pH 8 showed the highest generation of pyrazines and best odor sensory quality. Nine pyrazines were identified among them 2-methylpyrazine was the major compound after incubation for 12 days. A positive correlation was found between the total pyrazines and intensity of roasty-nutty aroma. Encapsulation gave rise to a significant decrease in the total volatiles, while the odor intensity showed insignificant decrease.
Conclusions
The results of the present study revealed the potential ability of Tolypocladium inflatum SRH81, that was isolated from Egyptian soil, to produce pyrazines having roasted- nutty aroma.
Collapse
|
16
|
Kouassi ADD, Koné KM, Assi-Clair BJ, Lebrun M, Maraval I, Boulanger R, Fontana A, Guehi TS. Effect of spontaneous fermentation location on the fingerprint of volatile compound precursors of cocoa and the sensory perceptions of the end-chocolate. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:4466-4478. [PMID: 36193455 PMCID: PMC9525491 DOI: 10.1007/s13197-022-05526-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 09/28/2021] [Accepted: 01/10/2022] [Indexed: 05/27/2023]
Abstract
Cocoa pod-opening delay and bean fermentation promote the organoleptic quality of chocolate. The present research investigated the changes in the volatile fingerprint of cocoa harvested at a traditional plantation. Cocoa beans extracted from 2-days pod-opening delay were simultaneously fermented for 5 days using container and then sun-dried to 7-8% moisture content at five different locations: Akoupé, San Pedro, Soubré, Djekanou and Daloa. The aromatic analysis were done on cocoa using the HS-SPME-GC/MS technique. Professional panelists evaluated the sensory perceptions of the chocolate. The results shows that cocoa fermented in both Daloa and Soubré regions were differentiated by 2,3-butanediol while those processed in other regions presented highest acetoin content. However, fermented cocoa from Soubré region exhibited most amount of 2,3-butanediol, diacetate A whereas 2,3,5,6-tetramethylpyrazine differentiated those from Daloa region. Sensory properties of chocolate were not linked to the aromatic compound precursors profile of beans. The fermentation performed in San Pédro region promote both the generation of more desirable aromatic compounds of cocoa and sensory attributes of the finished chocolate. The fermentation location generates a greater differentiation of the volatile fingerprint of cocoa and the sensory perceptions of the finished chocolate.
Collapse
Affiliation(s)
- Ange Didier D. Kouassi
- Food Sciences and Technology Department, UFR-STA, Université Nangui Abrogoua, 02 Bp 801 Abidjan 02, Côte d’Ivoire
| | - Koumba M. Koné
- Food Sciences and Technology Department, UFR-STA, Université Nangui Abrogoua, 02 Bp 801 Abidjan 02, Côte d’Ivoire
| | - Brice J. Assi-Clair
- Food Sciences and Technology Department, UFR-STA, Université Nangui Abrogoua, 02 Bp 801 Abidjan 02, Côte d’Ivoire
| | - Marc Lebrun
- CIRAD, UMR Qualisud, TA B 96/16, 75 Av JF Breton, 34398 Montpellier cedex 5, France
- Qualisud, Univ Montpellier, CIRAD, Université d’Avignon, Université de la Réunion, Montpellier SupAgro, Montpellier, France
| | - Isabelle Maraval
- CIRAD, UMR Qualisud, TA B 96/16, 75 Av JF Breton, 34398 Montpellier cedex 5, France
- Qualisud, Univ Montpellier, CIRAD, Université d’Avignon, Université de la Réunion, Montpellier SupAgro, Montpellier, France
| | - Renaud Boulanger
- CIRAD, UMR Qualisud, TA B 96/16, 75 Av JF Breton, 34398 Montpellier cedex 5, France
- Qualisud, Univ Montpellier, CIRAD, Université d’Avignon, Université de la Réunion, Montpellier SupAgro, Montpellier, France
| | - Angélique Fontana
- CIRAD, UMR Qualisud, TA B 96/16, 75 Av JF Breton, 34398 Montpellier cedex 5, France
- Qualisud, Univ Montpellier, CIRAD, Université d’Avignon, Université de la Réunion, Montpellier SupAgro, Montpellier, France
| | - Tagro S. Guehi
- Food Sciences and Technology Department, UFR-STA, Université Nangui Abrogoua, 02 Bp 801 Abidjan 02, Côte d’Ivoire
| |
Collapse
|
17
|
Automatic and non-targeted analysis of the volatile profile of natural and alkalized cocoa powders using SBSE-GC-MS and chemometrics. Food Chem 2022; 389:133074. [PMID: 35569247 DOI: 10.1016/j.foodchem.2022.133074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 04/19/2022] [Accepted: 04/22/2022] [Indexed: 11/21/2022]
Abstract
A total of 56 key volatile compounds present in natural and alkalized cocoa powders have been rapidly evaluated using a non-target approach using stir bar sorptive extraction gas chromatography mass spectrometry (SBSE-GC-MS) coupled to Parallel Factor Analysis 2 (PARAFAC2) automated in PARADISe. Principal component analysis (PCA) explained 80% of the variability of the concentration, in four PCs, which revealed specific groups of volatile characteristics. Partial least squares discriminant analysis (PLS-DA) helped to identify volatile compounds that were correlated to the different degrees of alkalization. Dynamics between compounds such as the acetophenone increasing and toluene and furfural decreasing in medium and strongly alkalized cocoas allowed its differentiation from natural cocoa samples. Thus, the proposed comprehensive analysis is a useful tool for understanding volatiles, e.g., for the quality control of cocoa powders with significant time and costs savings.
Collapse
|
18
|
EFSA Panel on Food Additives and Flavourings (FAF), Younes M, Aquilina G, Castle L, Degen G, Engel K, Fowler PJ, Frutos Fernandez MJ, Fürst P, Gundert‐Remy U, Gürtler R, Husøy T, Manco M, Moldeus P, Passamonti S, Shah R, Waalkens‐Berendsen I, Wright M, Benigni R, Bolognesi C, Chipman K, Cordelli E, Nørby K, Svendsen C, Carfì M, Martino C, Mennes W. Scientific opinion on Flavouring group evaluation 216 revision 2 (FGE.216Rev2): consideration of the genotoxicity potential of α,β-unsaturated 2-phenyl-2-alkenals from subgroup 3.3 of FGE.19. EFSA J 2022; 20:e07420. [PMID: 35991962 PMCID: PMC9382869 DOI: 10.2903/j.efsa.2022.7420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The EFSA Panel on Food Additives and Flavourings (FAF) was requested to evaluate the genotoxic potential of five flavouring substances from subgroup 3.3 of FGE.19, in the Flavouring Group Evaluation 216 (FGE.216). In FGE.216 and in FGE.216Rev1, the CEF Panel requested additional genotoxicity data on 2-phenylcrotonaldehyde [FL-no: 05.062], the representative for these five substances. New experimental data on [FL-no: 05.062] were provided and are evaluated in the present revision of FGE.216 (FGE.216Rev2). Based on the new data, the Panel concluded that, for all the five substances, the concerns for gene mutations and clastogenicity are ruled out by the negative results observed in an in vivo gene mutation assay and in an in vivo comet assay, respectively. In vitro, [FL-no: 05.062] induced micronuclei through an aneugenic mode of action. The available in vivo micronucleus studies were inconclusive and cannot be used to rule out potential aneugenicity of [FL-no: 05.062] in vivo. Therefore, the Panel compared the lowest concentration resulting in aneugenicity in vitro with the use levels reported for this substance. Based on this comparison, the Panel concluded that the use of the flavouring substance [FL-no: 05.062] at the reported use levels in several food categories would raise a concern for aneugenicity. Based on structural similarity, for the remaining four substances in this FGE [FL-no: 05.099, 05.100, 05.175 and 05.222], an aneugenic potential may also be anticipated. For these four substances, individual data are needed to establish whether they have aneugenic potential. Accordingly, it is currently not appropriate to assess any of these five substances through the Procedure for the evaluation of flavouring substances.
Collapse
|
19
|
Chocolates with Brazilian cocoa: tracking volatile compounds according to consumers’ preference. Food Res Int 2022; 159:111618. [DOI: 10.1016/j.foodres.2022.111618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/14/2022] [Accepted: 07/01/2022] [Indexed: 11/22/2022]
|
20
|
Lin LY, Chen KF, Changchien LL, Chen KC, Peng RY. Volatile Variation of Theobroma cacao Malvaceae L. Beans Cultivated in Taiwan Affected by Processing via Fermentation and Roasting. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103058. [PMID: 35630547 PMCID: PMC9145787 DOI: 10.3390/molecules27103058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 12/02/2022]
Abstract
After being harvested, cacao beans are usually subjected to very complex processes in order to improve their chemical and physical characteristics, like tastefulness with chocolate characteristic flavors. The traditional process consists of three major processing stages: fermentation, drying, and roasting, while most of the fermentation is carried out by an on-farm in-box process. In Taiwan, we have two major cocoa beans, the red and the yellow. We proposed that the major factor affecting the variation in tastes and colors in the finished cocoa might be the difference between cultivars. To uncover this, we examined the effect of the three major processes including fermentation, drying and roasting on these two cocoa beans. Results indicated that the two cultivars really behaved differently (despite before or after processing with fermentation, drying, and roasting) with respect to the patterns of fatty acids (palmitic, stearic, oleic, and arachidonic); triacylglycerols:1,2,3-trioleoyl-glycerol (OOO); 1-stearoyl-2,3-oleoyl-glycerol (SOO); 1-stearoyl-sn-2-oleoyl-3-arachidoyl- glycerol (SOA); 1,3-distearyol-sn-2-oleoyl-glycerol (SOS); organic acids (citric, tartaric, acetic, and malic); soluble sugars (glucose and fructose); amino acids; total phenolics; total flavonoids; and volatiles. Our findings suggest that to choose specific processing conditions for each specific cocoa genotype is the crucial point of processing cocoa with consistent taste and color.
Collapse
Affiliation(s)
- Li-Yun Lin
- Department of Food and Applied Technology, Hungkuang University, No. 1018, Sec. 6, Taiwan Boulevard, Shalu District, Taichung City 43302, Taiwan; (L.-Y.L.); (K.-F.C.)
| | - Kwei-Fan Chen
- Department of Food and Applied Technology, Hungkuang University, No. 1018, Sec. 6, Taiwan Boulevard, Shalu District, Taichung City 43302, Taiwan; (L.-Y.L.); (K.-F.C.)
| | - Lin-Ling Changchien
- Department of Physical Therapy, Hungkuang University, No. 1018, Sec. 6, Taiwan Boulevard, Shalu District, Taichung City 43302, Taiwan;
| | - Kuan-Chou Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, No. 250, Wu-Xin St., Taipei 11031, Taiwan;
- Department of Urology, Taipei Medical University Shuang-Ho Hospital, 250, Wu-Xin St., Xin-Yi District, Taipei 11031, Taiwan
- Correspondence:
| | - Robert Y. Peng
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, No. 250, Wu-Xin St., Taipei 11031, Taiwan;
- Research Institute of Biotechnology, School of Health Care, Hungkuang University, 1018, Sec. 6, Taiwan Boulevard, Shalu District, Taichung City 43302, Taiwan
| |
Collapse
|
21
|
Abijaude J, Sobreira P, Santiago L, Greve F. Improving Data Security with Blockchain and Internet of Things in the Gourmet Cocoa Bean Fermentation Process. SENSORS (BASEL, SWITZERLAND) 2022; 22:3029. [PMID: 35459017 PMCID: PMC9031426 DOI: 10.3390/s22083029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 03/22/2022] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
Brazil was one of the largest cocoa producers in the world, mainly supported by the South of Bahia region. After the 1980s, the witch-broom disease demolished plantations, and farmers were forced into bankruptcy. The worldwide search for gourmet cocoa has rekindled interest in this production, whose fermentation process is a key step in obtaining fine cocoa, thanks to the fact that many processing properties and sensory attributes are developed in this phase. This article presents a blockchain-IoT-based system for the control and monitoring of these events, aiming to catalog in smart contracts valuable information for improvement of the cocoa fermentation process, and future research. Blockchain is used as a distributed database that implements an application-level security layer. A proof of concept was modeled and the performance of the emulated system was evaluated in the OMNet simulator, where a technique based on the SNMP protocol was applied to reduce the amount of data exchanged and resources served/consumed in this representation. Then, a physical platform was developed and preliminary experiments were performed on a real farm, as a way to verify the improvement of the cocoa fermentation process when using a technological approach.
Collapse
Affiliation(s)
- Jauberth Abijaude
- Computer Science Institute, Federal University of Bahia, Salvador 40170-110, Bahia, Brazil; (L.S.); (F.G.)
- Exact Science Departament, Santa Cruz State University, Ilheus 45662-900, Bahia, Brazil
| | - Péricles Sobreira
- Computer Science and Engineering Department, University of Quebec at Outaouais, Gatineau, QC J8Y3G5, Canada;
| | - Levy Santiago
- Computer Science Institute, Federal University of Bahia, Salvador 40170-110, Bahia, Brazil; (L.S.); (F.G.)
| | - Fabíola Greve
- Computer Science Institute, Federal University of Bahia, Salvador 40170-110, Bahia, Brazil; (L.S.); (F.G.)
| |
Collapse
|
22
|
Physicochemical Phenomena in the Roasting of Cocoa (Theobroma cacao L.). FOOD ENGINEERING REVIEWS 2022. [DOI: 10.1007/s12393-021-09301-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
23
|
Wang J, Tang X, Chu Q, Zhang M, Zhang Y, Xu B. Characterization of the Volatile Compounds in Camellia oleifera Seed Oil from Different Geographic Origins. Molecules 2022; 27:molecules27010308. [PMID: 35011538 PMCID: PMC8746305 DOI: 10.3390/molecules27010308] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/30/2021] [Accepted: 01/01/2022] [Indexed: 01/18/2023] Open
Abstract
Volatile flavor of edible oils is an important quality index and factor affecting consumer choice. The purpose of this investigation was to characterize virgin Camellia oleifera seed oil (VCO) samples from different locations in southern China in terms of their volatile compounds to show the classification of VCO with respect to geography. Different samples from 20 producing VCO regions were collected in 2020 growing season, at almost the same maturity stage, and processed under the same conditions. Headspace solid-phase microextraction (HS-SPME) with a gas chromatography–mass spectrometer system (GC–MS) was used to analyze volatile compounds. A total of 348 volatiles were characterized, including aldehydes, ketones, alcohols, acids, esters, alkenes, alkanes, furans, phenols, and benzene; the relative contents ranged from 7.80–58.68%, 1.73–12.52%, 2.91–37.07%, 2.73–46.50%, 0.99–12.01%, 0.40–14.95%, 0.00–27.23%, 0.00–3.75%, 0.00–7.34%, and 0.00–1.55%, respectively. The VCO geographical origins with the largest number of volatile compounds was Xixiangtang of Guangxi (L17), and the least was Beireng of Hainan (L19). A total of 23 common and 98 unique volatile compounds were detected that reflected the basic and characteristic flavor of VCO, respectively. After PCA, heatmap and PLS-DA analysis, Longchuan of Guangdong (L8), Qingshanhu of Jiangxi (L16), and Panlong of Yunnan (L20) were in one group where the annual average temperatures are relatively low, where annual rainfalls are also low. Guangning of Guangdong (L6), Yunan of Guangdong (L7), Xingning of Guangdong (L9), Tianhe of Guangdong (L10), Xuwen of Guangdong (L11), and Xiuying of Hainan (L18) were in another group where the annual average temperatures are relatively high, and the altitudes are low. Hence, volatile compound distributions confirmed the differences among the VCO samples from these geographical areas, and the provenance difference evaluation can be carried out by flavor.
Collapse
Affiliation(s)
- Jing Wang
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou 510520, China; (J.W.); (X.T.); (M.Z.); (B.X.)
| | - Xuxiao Tang
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou 510520, China; (J.W.); (X.T.); (M.Z.); (B.X.)
| | - Qiulu Chu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China;
| | - Mengyu Zhang
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou 510520, China; (J.W.); (X.T.); (M.Z.); (B.X.)
| | - Yingzhong Zhang
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou 510520, China; (J.W.); (X.T.); (M.Z.); (B.X.)
- Correspondence: ; Tel.: +86-020-8707-1272
| | - Baohua Xu
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou 510520, China; (J.W.); (X.T.); (M.Z.); (B.X.)
| |
Collapse
|
24
|
Comparison of the Chemical and Sensorial Evaluation of Dark Chocolate Bars. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11219964] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
As it mimics olfactory perception, headspace analysis is frequently used for examination of products like chocolate, in which aroma is a key feature. Chemical analysis by itself, however, only provides half the picture, as final consumer’s perception cannot be compared to that of a Gas Chromatography-Mass Spectrometry (GC-MS) port, but rather to a panel test assessment. The aim of the present study was the evaluation of combined chemical (by means of headspace solid-phase microextraction and GC-MS) and panel test data (by means of a sensory evaluation operated by 6 untrained panelists) obtained for 24 dark chocolate bars to assess whether these can discriminate between bars from different brands belonging to different commercial segments (hard discount, HD; supermarket, SM; organic bars, BIO). In all samples, with the only exception of one supermarket bar (in which esters exhibited the highest relative abundance), pyrazines were detected as the most abundant chemical class (HD: 56.3–74.2%; BIO: 52.0–76.4%; SM: 31.2–88.9%). Non-terpene alcohols, aldehydes, and esters followed as quantitatively relevant groups of compounds. The obtained data was then subjected to hierarchical cluster (HCA) and principal component (PCA) analysis. The statistical distribution of samples obtained for the chemical data did not match that obtained with panelists’ sensorial data. Moreover, although an overall ability of grouping samples of the same commercial origin was evidenced for hard discount and supermarket bars, no sharp grouping was possible.
Collapse
|
25
|
Britto de Andrade A, Lins da Cruz M, Antonia de Souza Oliveira F, Soares SE, Druzian JI, Radomille de Santana LR, Oliveira de Souza C, da Silva Bispo E. Influence of under-fermented cocoa mass in chocolate production: Sensory acceptance and volatile profile characterization during the processing. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
26
|
Türk G, Şen K. Changes of various quality characteristics and aroma compounds of astragalus honey obtained from different altitudes of Adana‐Turkey. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Gürkan Türk
- Department of Food Engineering Faculty of Engineering and Architecture Nevsehir Haci Bektas Veli University Nevsehir Turkey
| | - Kemal Şen
- Department of Food Engineering Faculty of Engineering and Architecture Nevsehir Haci Bektas Veli University Nevsehir Turkey
| |
Collapse
|
27
|
Martinez SJ, Batista NN, Ramos CL, Dias DR, Schwan RF. Brazilian cocoa hybrid-mix fermentation: Impact of microbial dominance as well as chemical and sensorial properties. J Food Sci 2021; 86:2604-2614. [PMID: 34009655 DOI: 10.1111/1750-3841.15758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/31/2021] [Accepted: 04/02/2021] [Indexed: 11/28/2022]
Abstract
High-yield resistant hybrids are used in cocoa fermentation and result in chocolates with different sensorial profiles. This work aimed to characterize the fermentation microbiologically and physicochemically. Hybrids CEPEC 2004, FA13, PH15, and CEPEC 2002 were used for fermentation. The yeast, acetic acid bacteria, lactic acid bacteria, and mesophilic bacteria population were evaluated in their respective medium. Carbohydrates and acids were detected using a high-performance liquid chromatography system, and volatiles were analyzed using gas chromatography-mass spectrometry equipment. Finally, a consumer acceptance test followed by a check-all-that-apply question and a temporal dominance of sensations assessment was performed in chocolate. The fermentation resulted in a typical succession: yeast-dominated at first, followed by lactic acid, acetic acid, and mesophilic bacteria. In the pulp, carbohydrates and citric acid were consumed. Low concentrations of acetic acid (0.09-1.75 g/kg) were detected. Acids, esters, and alcohols were the most abundant groups. The chocolate profile resulted in sweet, acidic, and fruity, satisfying consumers' tastes. PRACTICAL APPLICATION: The cocoa hybrid-mix fermentation can improve the fermentation process and chocolate quality. The mixture generated a different sensory profile in comparison to other fermentations. The fruity chocolate was accepted and liked by consumers.
Collapse
Affiliation(s)
| | - Nádia Nara Batista
- Food Science Department, Federal University of Lavras, Lavras, Minas Gerais, Brazil
| | - Cíntia Lacerda Ramos
- Food Science and Technology, Federal University of Vales do Jequitinhonha e Mucuri, Diamantina, Minas Gerais, Brazil
| | - Disney Ribeiro Dias
- Food Science Department, Federal University of Lavras, Lavras, Minas Gerais, Brazil
| | | |
Collapse
|
28
|
Characterisation of the chocolate aroma in roast jackfruit seeds. Food Chem 2021; 354:129537. [PMID: 33756328 DOI: 10.1016/j.foodchem.2021.129537] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 11/22/2022]
Abstract
The seeds of the jackfruit (Artocarpus heterophyllus Lam.) are an abundant waste-stream in Brazil and a potential source of chocolate aroma. The aim of the study was to characterise the aroma compounds in flours prepared from the roasted jackfruit seeds and compare them with a typical Brazilian cocoa powder. Jackfruits seeds were either left untreated, acidified or fermented before drying and roasting. The volatiles were extracted using solid phase micro extraction or solid phase extraction and analysed by gas chromatography mass spectrometry. The most odour-active volatiles were identified by GC-Olfactometry. Most of the compounds known to be odour-active character impact compounds in cocoa products were also found in the jackfruit seed flours, however, the jackfruit seeds produced many additional pyrazines, some of which were responsible for the characteristic earthy "roasted jackfruit seed" aroma. The fermented sample had the most similar aroma profile to cocoa powder.
Collapse
|
29
|
Lemarcq V, Van de Walle D, Monterde V, Sioriki E, Dewettinck K. Assessing the flavor of cocoa liquor and chocolate through instrumental and sensory analysis: a critical review. Crit Rev Food Sci Nutr 2021; 62:5523-5539. [PMID: 33605811 DOI: 10.1080/10408398.2021.1887076] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The performance of appropriate instrumental and/or sensory analyses is essential to gain insights into the flavor profile of cocoa products. This three-part review is compiled of an overview of the most commonly used instrumental techniques to study cocoa liquor and chocolate flavor, their perception by a trained panel and the potential relationship between them. Each part is the result of a thorough literature study, principally focusing on the assumptions, features and limitations of these techniques. Reviewing of the literature revealed that cocoa matrix effects and methodology restraints were not always considered when instrumentally analyzing cocoa flavor. With respect to sensory analyses, various studies lacked reporting of accomplished trainings and performance of panelists. Moreover, a discrepancy was noticed in the descriptive flavor lexicon employed. Finally, when linking instrumental and sensory data, linear modeling is regularly applied, which might not always be appropriate. This review paper addresses the challenges associated with flavor assessment, intending to incite researchers to critically study cocoa flavor and apply standardized protocols and procedures.
Collapse
Affiliation(s)
- Valérie Lemarcq
- Food Structure and Function Research Group (FSF), Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Davy Van de Walle
- Food Structure and Function Research Group (FSF), Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.,Cacaolab BV, Desteldonk, Belgium
| | - Viena Monterde
- Food Structure and Function Research Group (FSF), Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Eleni Sioriki
- Food Structure and Function Research Group (FSF), Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Koen Dewettinck
- Food Structure and Function Research Group (FSF), Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.,Cacaolab BV, Desteldonk, Belgium
| |
Collapse
|
30
|
He J, Wu X, Zhou Y, Chen J. Effects of different preheat treatments on volatile compounds of camellia (Camellia oleifera Abel.) seed oil and formation mechanism of key aroma compounds. J Food Biochem 2021; 45:e13649. [PMID: 33587297 DOI: 10.1111/jfbc.13649] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/21/2021] [Accepted: 01/25/2021] [Indexed: 11/28/2022]
Abstract
In this study, volatile compounds of camellia seed oil (CSO) prepared by different preheat treatments (microwave, frying, roasting, and steaming) were identified by headspace solid-phase microextraction combined with gas chromatography-mass spectrometry (HS-SPME/GC-MS). A total of 107 volatile compounds were identified in CSO samples, including aldehydes (16), alcohols (6), ketones (3), heterocyclic compounds (26), esters (23), hydrocarbons (15), and others (17). Among them, untreated CSO is mainly hydrocarbons, roasting and steaming CSO are mainly aldehydes and alcohols, while microwave and roasting CSO are dominated by aldehydes and heterocyclic compounds. Fourteen volatile compounds with high relative odor activity value (ROAV ≥ 1) were selected as key aroma compounds (KACs). Principal Component Analysis (PCA) and Cluster Analysis (CA) were performed on 14 KACs, which determined that there were 3, 3, 3, 7, and 6 characteristic aroma compounds (CACs) in untreated, microwaved, frying, roasting, and steaming CSO. Additionally, the potential formation pathways and mechanism of KACs were discussed. PRACTICAL APPLICATIONS: Flavor is an important factor for consumers to choose edible oils, and it is also one of the indicators of oil quality. Different flavors of CSO can cater to the needs of different consumers. CSO manufactories can choose different preheat treatments to produce CSO with various flavors to meet different customers' need. CSO with new flavor can extend its market share and increase its value.
Collapse
Affiliation(s)
- Junhua He
- Guangdong Camellia oleifera Engineering Technology Research Center, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Xuehui Wu
- Guangdong Camellia oleifera Engineering Technology Research Center, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Yue Zhou
- Guangdong Camellia oleifera Engineering Technology Research Center, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Jiahui Chen
- Guangdong Camellia oleifera Engineering Technology Research Center, College of Food Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
31
|
Mass Spectrometry-Based Flavor Monitoring of Peruvian Chocolate Fabrication Process. Metabolites 2021; 11:metabo11020071. [PMID: 33530548 PMCID: PMC7911988 DOI: 10.3390/metabo11020071] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 01/16/2021] [Accepted: 01/21/2021] [Indexed: 02/03/2023] Open
Abstract
Flavor is one of the most prominent characteristics of chocolate and is crucial in determining the price the consumer is willing to pay. At present, two types of cocoa beans have been characterized according to their flavor and aroma profile, i.e., (1) the bulk (or ordinary) and (2) the fine flavor cocoa (FFC). The FFC has been distinguished from bulk cocoa for having a great variety of flavors. Aiming to differentiate the FFC bean origin of Peruvian chocolate, an analytical methodology using gas chromatography coupled to mass spectrometry (GC-MS) was developed. This methodology allows us to characterize eleven volatile organic compounds correlated to the aromatic profile of FFC chocolate from this geographical region (based on buttery, fruity, floral, ethereal sweet, and roasted flavors). Monitoring these 11 flavor compounds during the chain of industrial processes in a retrospective way, starting from the final chocolate bar towards pre-roasted cocoa beans, allows us to better understand the cocoa flavor development involved during each stage. Hence, this methodology was useful to distinguish chocolates from different regions, north and south of Peru, and production lines. This research can benefit the chocolate industry as a quality control protocol, from the raw material to the final product.
Collapse
|
32
|
Torres-Moreno M, Tarrega A, Blanch C. Effect of cocoa roasting time on volatile composition of dark chocolates from different origins determined by HS-SPME/GC-MS. CYTA - JOURNAL OF FOOD 2021. [DOI: 10.1080/19476337.2020.1860137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Miriam Torres-Moreno
- Research Group on Methodology, Methods, Models and Outcomes of Health and Social Sciences (M3O). Faculty of Health Sciences and Welfare, Centre for Health and Social Care Research (CESS), University of Vic-Central University of Catalonia (UVIC-UCC), Vic, Spain
| | - Amparo Tarrega
- Food Science Department, Instituto de Agroquímica y Tecnología de Los Alimentos (IATA-CSIC), Valencia, Spain
| | - Consol Blanch
- Research Group on Methodology, Methods, Models and Outcomes of Health and Social Sciences (M3O). Faculty of Health Sciences and Welfare, Centre for Health and Social Care Research (CESS), University of Vic-Central University of Catalonia (UVIC-UCC), Vic, Spain
| |
Collapse
|
33
|
Papageorgiou M, Paraskevopoulou A, Pantazi F, Skendi A. Cake Perception, Texture and Aroma Profile as Affected by Wheat Flour and Cocoa Replacement with Carob Flour. Foods 2020; 9:E1586. [PMID: 33147689 PMCID: PMC7692711 DOI: 10.3390/foods9111586] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 11/30/2022] Open
Abstract
Carob flour has been used in the production of a wide range of functional food formulations such as bakery goods either as a natural sweetener or food ingredient that, when roasted, exerts a chocolate/cocoa-reminiscent flavor and color. The aim of the present study was twofold; firstly to study the effect of an increasing incorporation of roasted carob flour (0-70% flour basis) on the quality and sensory attributes of a conventional cocoa cake recipe and secondly to investigate the obtained volatile fraction responsible for the aroma by means of headspace solid phase microextraction (HS-SPME) technique coupled to gas chromatography/mass spectrometry (GC/MS) while comparing it with the control, cocoa-containing cake recipe. Thirty and fifty percent carob flour incorporation rendered cakes with acceptable texture and sensory attributes, comparable to the control cake recipe containing 20% cocoa. Similarity to cocoa aroma was attributed to a great number of odor active compounds mainly belonging to aldehydes, lactones, furan/pyran derivatives, and pyrrole derivatives.
Collapse
Affiliation(s)
- Maria Papageorgiou
- Department of Food Science and Technology, International Hellenic University, POB 141, GR-57400 Thessaloniki, Greece;
| | - Adamantini Paraskevopoulou
- Laboratory of Food Chemistry and Technology, School of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Foteini Pantazi
- Laboratory of Food Chemistry and Technology, School of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Adriana Skendi
- Department of Food Science and Technology, International Hellenic University, POB 141, GR-57400 Thessaloniki, Greece;
| |
Collapse
|
34
|
Xia C, He Y, Cheng S, He J, Pan D, Cao J, Sun Y. Free fatty acids responsible for characteristic aroma in various sauced-ducks. Food Chem 2020; 343:128493. [PMID: 33158671 DOI: 10.1016/j.foodchem.2020.128493] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 09/27/2020] [Accepted: 10/25/2020] [Indexed: 11/26/2022]
Abstract
To investigate the effects of various duck sources on the lipid oxidation and aroma flavor of sauced-ducks, Mallard (ML), Sheldrake (SD), Muscovy (MC), and Cherry-Valley (CV) ducks were used in sauced-duck processing. The results showed significantly different thiobarbituric acid reactive substances (TBARS) values of the four samples (SD > CV > ML > MC, p < 0.05), while the contents of unsaturated fatty acids (UFAs) were ML > SD/CV > MC (p < 0.05). Altogether, 105 volatile flavor compounds were detected in sauced-ducks, including acids, alcohols, aldehydes, ketones, esters, hydrocarbons, furans, nitrogen compounds, and others. The volatile compounds were observed differentially composed in the four products, and nineteen potential characteristic biomarkers were explored. The correlation analysis indicated that the characteristic aroma flavor of sauced-ducks were significantly associated with specific free fatty acids. These information are useful for learning aroma formation and meat selection and identification in duck products.
Collapse
Affiliation(s)
- Chenlan Xia
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, PR China; Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, PR China
| | - Yuxin He
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, PR China
| | - Shuang Cheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, PR China
| | - Jun He
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, PR China; Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, PR China.
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, PR China; Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, PR China.
| | - Jinxuan Cao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, PR China; Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, PR China
| | - Yangying Sun
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, PR China
| |
Collapse
|
35
|
Wang C, Yu J, Gallagher DL, Byrd J, Yao W, Wang Q, Guo Q, Dietrich AM, Yang M. Pyrazines: A diverse class of earthy-musty odorants impacting drinking water quality and consumer satisfaction. WATER RESEARCH 2020; 182:115971. [PMID: 32554269 DOI: 10.1016/j.watres.2020.115971] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/16/2020] [Accepted: 05/23/2020] [Indexed: 06/11/2023]
Abstract
The presence of earthy-musty odors in drinking water is a major concern for water suppliers and consumers worldwide. While geosmin and 2-methylisoborneol are the most studied earthy-musty odor-causing compounds, pyrazine and its alkyl and methoxy compounds possess similar odors and are widely distributed in nature, foods, and beverages. In this study, odor characteristics of pyrazines and their presence in natural and treated waters were determined. Pyrazine, 2,6-dimethyl-pyrazine (DMP), 2,3,5-trimethyl-pyrazine (TrMP), 2-ethyl-5(6)-methyl-pyrazine (EMP), 2,3,5,6-tetramethyl-pyrazine (TeMP), 2-isobutyl-3-methoxy-pyrazine (IBMP) and 2-isopropyl-3-methoxy-pyrazine (IPMP) were measured in source and finished drinking water across China. 2-Methoxy-3,5-dimethyl-pyrazine (MDMP), IBMP, and IPMP were investigated in rivers in Virginia, USA. The results showed that "musty" and "sweet" were the most common descriptors for pyrazine, DMP, MDMP, TrMP, and TeMP. While IBMP and IPMP were never detected in 140 source or drinking water samples from across China, pyrazine, DMP, MDMP, TrMP, and TeMP occurred throughout with concentrations of n.d.-62.2 ng/L-aq in source water and n.d.-39.6 ng/L-aq in finished water. IBMP, IPMP, and MDMP were present in two Virginia rivers; MDMP occurred in 18% of the samples with concentrations of n.d.-4.4 ng/L, many of which were above the aqueous odor threshold of 0.043 ng/L MDMP. The removal efficiencies through conventional water treatment were poor, ranging from negative removals to ∼10%. Advanced oxidation water treatment could only remove EMP and TrMP. The widespread presence of earthy-musty-sweet pyrazines in source and drinking waters on two continents, their poor removal during water treatment, and ng/L odor threshold concentrations confirm their potential to be T&O issues for consumers.
Collapse
Affiliation(s)
- Chunmiao Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianwei Yu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Daniel L Gallagher
- Civil and Environmental Engineering, 413 Durham Hall, Virginia Tech, 1145 Perry Street, MC 0246, Blacksburg, VA, 24061, United States
| | - Julia Byrd
- Civil and Environmental Engineering, 413 Durham Hall, Virginia Tech, 1145 Perry Street, MC 0246, Blacksburg, VA, 24061, United States
| | - Wenchuo Yao
- Civil and Environmental Engineering, 413 Durham Hall, Virginia Tech, 1145 Perry Street, MC 0246, Blacksburg, VA, 24061, United States
| | - Qi Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qingyuan Guo
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Andrea M Dietrich
- Civil and Environmental Engineering, 413 Durham Hall, Virginia Tech, 1145 Perry Street, MC 0246, Blacksburg, VA, 24061, United States.
| | - Min Yang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
36
|
Deuscher Z, Gourrat K, Repoux M, Boulanger R, Labouré H, Le Quéré JL. Key Aroma Compounds of Dark Chocolates Differing in Organoleptic Properties: A GC-O Comparative Study. Molecules 2020; 25:E1809. [PMID: 32326405 PMCID: PMC7221797 DOI: 10.3390/molecules25081809] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/10/2020] [Accepted: 04/12/2020] [Indexed: 02/04/2023] Open
Abstract
Dark chocolate samples were previously classified into four sensory categories. The classification was modelled based on volatile compounds analyzed by direct introduction mass spectrometry of the chocolates' headspace. The purpose of the study was to identify the most discriminant odor-active compounds that should characterize the four sensory categories. To address the problem, a gas chromatography-olfactometry (GC-O) study was conducted by 12 assessors using a comparative detection frequency analysis (cDFA) approach on 12 exemplary samples. A nasal impact frequency (NIF) difference threshold combined with a statistical approach (Khi² test on k proportions) revealed 38 discriminative key odorants able to differentiate the samples and to characterize the sensory categories. A heatmap emphasized the 19 most discriminant key odorants, among which heterocyclic molecules (furanones, pyranones, lactones, one pyrrole, and one pyrazine) played a prominent role with secondary alcohols, acids, and esters. The initial sensory classes were retrieved using the discriminant key volatiles in a correspondence analysis (CA) and a hierarchical cluster analysis (HCA). Among the 38 discriminant key odorants, although previously identified in cocoa products, 21 were formally described for the first time as key aroma compounds of dark chocolate. Moreover, 13 key odorants were described for the first time in a cocoa product.
Collapse
Affiliation(s)
- Zoé Deuscher
- Centre des Sciences du Goût et de l’Alimentation (CSGA), AgroSup Dijon, CNRS, INRAE, Université de Bourgogne Franche-Comté, F-21000 Dijon, France
- CIRAD, UMR Qualisud, F-34398 Montpellier, France
| | - Karine Gourrat
- Centre des Sciences du Goût et de l’Alimentation (CSGA), AgroSup Dijon, CNRS, INRAE, Université de Bourgogne Franche-Comté, F-21000 Dijon, France
- ChemoSens Platform, CSGA, F-21000 Dijon, France
| | - Marie Repoux
- Valrhona, 14 av. du Président Roosevelet, F-26602 Tain l’Hermitage, France
| | - Renaud Boulanger
- CIRAD, UMR Qualisud, F-34398 Montpellier, France
- Qualisud, Univ Montpellier, CIRAD, Montpellier SupAgro, Univ d’Avignon, Univ de La Réunion, F-34000 Montpellier, France
| | - Hélène Labouré
- Centre des Sciences du Goût et de l’Alimentation (CSGA), AgroSup Dijon, CNRS, INRAE, Université de Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Jean-Luc Le Quéré
- Centre des Sciences du Goût et de l’Alimentation (CSGA), AgroSup Dijon, CNRS, INRAE, Université de Bourgogne Franche-Comté, F-21000 Dijon, France
| |
Collapse
|
37
|
Rojas S M, Chejne F, Ciro H, Montoya J. Roasting impact on the chemical and physical structure of
Criollo
cocoa variety (
Theobroma cacao L
). J FOOD PROCESS ENG 2020. [DOI: 10.1111/jfpe.13400] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Myriam Rojas S
- Facultad de Minas, Escuela de Procesos y EnergíaUniversidad Nacional de Colombia Medellín Antioquia Colombia
| | - Farid Chejne
- Facultad de Minas, Escuela de Procesos y EnergíaUniversidad Nacional de Colombia Medellín Antioquia Colombia
| | - Héctor Ciro
- Departamento de Ingeniería agrícola y alimentosUniversidad Nacional de Colombia Medellín, Antioquia Colombia
| | - Jorge Montoya
- Facultad de Minas, Escuela de Procesos y EnergíaUniversidad Nacional de Colombia Medellín Antioquia Colombia
| |
Collapse
|
38
|
Lolli V, Acharjee A, Angelino D, Tassotti M, Del Rio D, Mena P, Caligiani A. Chemical Characterization of Capsule-Brewed Espresso Coffee Aroma from the Most Widespread Italian Brands by HS-SPME/GC-MS. Molecules 2020; 25:E1166. [PMID: 32150929 PMCID: PMC7179241 DOI: 10.3390/molecules25051166] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 03/03/2020] [Indexed: 11/16/2022] Open
Abstract
Coffee capsules market is on the rise as it allows access to a wide selection of coffee, differing in taste and brand. However, few data about the chemical characterization of the capsule-brewed coffee aroma are available. In this work, an untargeted approach using headspace solid-phase microextraction (HS-SPME) coupled to gas chromatography-mass spectrometry (GC-MS) and combined to chemometrics was performed to study and compare aroma profile from 65 capsule-brewed espresso coffees (ECs) commercialized by five of the most representative brands in Italy. Volatile profiles obtained from ECs were subjected to multivariate statistical analysis, which generally did not show a significant variability among coffees belonging to the same brand, except for those modified after the addition of specific flavor additives or aromatic substances (such as caramel, chocolate, etc.). Similarities may be related to the starting coffee brew or the processing method, which is likely the same for each individual brand. Additionally, partial least squares discriminant analysis (PLS-DA) showed that capsules from a specific brand contain the highest concentration of pyrazines, thus characterized by an intense and characteristic aroma, and a stronger note than those from the other brands. This study supports that the chemical analysis in conjunction with chemometric tools is a useful approach for assessing flavor quality, even if the need remains to identify volatile markers of high-quality beverages.
Collapse
Affiliation(s)
- Veronica Lolli
- Department of Food and Drug, University of Parma, 43124 Parma, Italy; (M.T.); (D.D.R.); (P.M.); (A.C.)
| | - Animesh Acharjee
- Institute of Cancer and Genomic Sciences, Centre for Computational Biology, University of Birmingham, B15 2TT, UK;
- Institute of Translational Medicine, University of Birmingham, B15 2TT, UK
- NIHR Surgical Reconstruction and Microbiology Research Centre, University Hospital Birmingham, Birmingham B15 2WB, UK
| | - Donato Angelino
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy;
| | - Michele Tassotti
- Department of Food and Drug, University of Parma, 43124 Parma, Italy; (M.T.); (D.D.R.); (P.M.); (A.C.)
| | - Daniele Del Rio
- Department of Food and Drug, University of Parma, 43124 Parma, Italy; (M.T.); (D.D.R.); (P.M.); (A.C.)
- School of Advanced Studies on Food and Nutrition, University of Parma, 43124 Parma, Italy
- Department of Veterinary Science, University of Parma, 43124 Parma, Italy
| | - Pedro Mena
- Department of Food and Drug, University of Parma, 43124 Parma, Italy; (M.T.); (D.D.R.); (P.M.); (A.C.)
| | - Augusta Caligiani
- Department of Food and Drug, University of Parma, 43124 Parma, Italy; (M.T.); (D.D.R.); (P.M.); (A.C.)
| |
Collapse
|
39
|
Marseglia A, Musci M, Rinaldi M, Palla G, Caligiani A. Volatile fingerprint of unroasted and roasted cocoa beans (Theobroma cacao L.) from different geographical origins. Food Res Int 2020; 132:109101. [PMID: 32331661 DOI: 10.1016/j.foodres.2020.109101] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 02/03/2020] [Accepted: 02/13/2020] [Indexed: 10/25/2022]
Abstract
The aroma characterization of 58 unroasted cocoa beans from 22 different geographical origins was performed by head space solid phase micro-extraction (HS-SPME) combined with gas chromatography-mass spectrometry (GC-MS). Sampling is representative of the average world production (America, Africa, and Southeast Asia). Analysis of cocoa beans before and after roasting were performed to follow the aroma modification with the aim to achieve a cocoa volatile fingerprint and a discrimination model based on beans origin. A total of 57 volatiles was identified in unroasted cocoa beans, while 71 volatiles were identified in roasted cocoa beans. The compounds belong to several chemical groups including esters, alcohols, organic acids, aldehydes, ketones and pyrazines. Datasets were submitted to multivariate statistical analysis (Principal Component Analysis, PCA). Results allowed to discriminate unroasted cocoa beans based on their geographical origin: samples coming from African countries were separated from samples of American regions, whereas samples from Southeast Asia lie between the other two continents suggesting that Asian samples have intermediate characteristics between African and South American cocoa beans. PCA, applied on the corresponding roasted samples, showed that although the same roasting treatment has been applied to all the samples, the differences among the unroasted samples were also maintained in the aromatic profile after roasting. The discrimination model based on volatile fingerprint combined with chemometric tools, showed interesting potential for origin authentication of both unroasted and roasted cocoa beans.
Collapse
Affiliation(s)
- Angela Marseglia
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy.
| | - Marilena Musci
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Massimiliano Rinaldi
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Gerardo Palla
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Augusta Caligiani
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| |
Collapse
|
40
|
Ascrizzi R, Flamini G. Wild Harenna coffee: flavour profiling from the bean to the cup. Eur Food Res Technol 2020. [DOI: 10.1007/s00217-020-03429-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
41
|
Quelal‐Vásconez MA, Lerma‐García MJ, Pérez‐Esteve É, Talens P, Barat JM. Roadmap of cocoa quality and authenticity control in the industry: A review of conventional and alternative methods. Compr Rev Food Sci Food Saf 2020; 19:448-478. [DOI: 10.1111/1541-4337.12522] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 11/06/2019] [Accepted: 11/19/2019] [Indexed: 02/06/2023]
Affiliation(s)
| | | | - Édgar Pérez‐Esteve
- Departamento de Tecnología de AlimentosUniversitat Politècnica de València Valencia Spain
| | - Pau Talens
- Departamento de Tecnología de AlimentosUniversitat Politècnica de València Valencia Spain
| | - José Manuel Barat
- Departamento de Tecnología de AlimentosUniversitat Politècnica de València Valencia Spain
| |
Collapse
|
42
|
Ouattara HG, Elias RJ, Dudley EG. Microbial synergy between Pichia kudriazevii YS201 and Bacillus subtilis BS38 improves pulp degradation and aroma production in cocoa pulp simulation medium. Heliyon 2020; 6:e03269. [PMID: 31993527 PMCID: PMC6971349 DOI: 10.1016/j.heliyon.2020.e03269] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/22/2019] [Accepted: 01/16/2020] [Indexed: 11/21/2022] Open
Abstract
Interactions between two major microorganisms from Ivorian cocoa fermentation, namely Bacillus subtilis BS38 and Pichia kudriazevii YS201, were investigated during fermentation in cocoa pulp simulation medium. The strains were mutually inhibitory, with Bacillus being more susceptible to this antagonistic effect than Pichia. However, both strains yielded different pulp-degrading enzymes, namely polygalacturonase (PG) from Pichia and pectate lyase (Pel) from Bacillus, that cooperate to efficiently breakdown pectin and vegetable pulp. The quantification of aromas from microbial cultures using Gas Chromatography-Mass Spectroscopy (GC-MS) coupled with headspace microextration (SPME) method, showed that P. kudriazevii produce mainly alcohols such as ethanol (63.165 g/L), phenylethanol (1.005 g/L), methylbutanol (0.138 g/L) and esters, notably ethyl acetate (0.037 g/L) and isoamyl acetate (0.032 g/L). The volatile fraction produced by Bacillus was dominated by butanediol (5.707 g/L), acetoin (1.933 g/L), phenylethanol (0.035 g/L) and acetic acid (0.034 g/L). In co-culture, Bacillus produced low levels of aroma compounds whereas a moderate decrease in the production of these compounds was observed in the yeasts strain. Thus, the dominant aromas present in the co-culture were mainly those from the yeasts strain; however, a 1.37 fold increase of ethanol production was observed in co-culture indicating a synergy between the strains. This study showed that cooperation between B. subtilis BS38 and P. kudriazevii YS201 leads principally to increasing pulp degradation and ethanol production, known as desirable properties for a well processing of cocoa fermentation.
Collapse
Affiliation(s)
- Honoré G. Ouattara
- Laboratory of Biotechnology, UFR Biosciences, University Felix Houphouet-Boigny, Abidjan, Cote d'Ivoire
- Department of Food Science, College of Agricultural Sciences, The Pennsylvania State University, United States
| | - Ryan J. Elias
- Department of Food Science, College of Agricultural Sciences, The Pennsylvania State University, United States
| | - Edward G. Dudley
- Department of Food Science, College of Agricultural Sciences, The Pennsylvania State University, United States
| |
Collapse
|
43
|
Brunetto MDR, Gallignani de Bernardi MA, Orozco Contreras WJ, Clavijo Roa SDS, Delgado Cayama YJ, Ayala Montilla CD, Zambrano García A. RP-HPLC-DAD determination of free amino acids in cocoa samples during fermentation and roasting. REVISTA COLOMBIANA DE QUÍMICA 2020. [DOI: 10.15446/rev.colomb.quim.v1n49.77811] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Amino acids (AA) composition in cocoa beans can predict the synthesis of compounds which affect cocoa flavor. Thus, their determination is of great interest for the community implied in the commercialization and production of cocoa. In consequence, in this work, the analysis of AA produced during cocoa beans fermentation and roasting was carried out. A high-performance liquid chromatographic method with DAD detection at 254 nm was optimized and validated for their selective determination in six varieties of cocoa beans with different genotypes, all of them grown in Venezuela. AA were extracted by defatted milled cocoa powder ultrasonication using purified water at 70 ºC. Then, they were derivatized with phenyl isothiocyanate, and their derivatives were separated, using a reversed-phase column with gradient elution, achieving a satisfactory resolution among the peaks (greater than 1.0) in less than 29 min. 110 cocoa samples were analyzed. Results showed a significant content of free AA, ranging from 3.87 to 5.97 g/kg in absence of fermentation with a predominance of acidic AA. Moreover, there is a progressive increase in the AA content while fermentation process occurs, with a predominance of hydrophobic AA such as alanine, valine, isoleucine, leucine, phenylalanine, and tyrosine. On the other hand, all cocoa types showed a partial degradation of free AA during the roasting step, especially the hydrophobic ones.
Collapse
|
44
|
Mohamadi Alasti F, Asefi N, Maleki R, SeiiedlouHeris SS. Investigating the flavor compounds in the cocoa powder production process. Food Sci Nutr 2019; 7:3892-3901. [PMID: 31890167 PMCID: PMC6924302 DOI: 10.1002/fsn3.1244] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 09/05/2019] [Accepted: 09/14/2019] [Indexed: 11/25/2022] Open
Abstract
Flavor is one of the most important quality properties of cacao beans, playing a key role in the admissibility of cocoa products, such as cocoa powder. This study examined the industrial processes influencing the flavor of cacao beans. The Ivory Coast cacao beans were used after their alkaline treatment with potassium carbonate (up to pH 7.5-8) and being roasted at 115-120°C for 60-70 min. The volatile components were extracted using Likens-Nickerson simultaneous distillation-extraction (SDE) apparatus. The volatile compound profiles were identified by means of gas chromatography-mass spectrometry (GC-MS), as a result of which several compounds (alcohols, carboxylic acids, aldehydes, ketones, esters, and pyrazines) were recognized. Alkalization and roasting were shown to be two important steps in the cacao beans processing that can affect the final cocoa powder flavor. In addition, pyrazines and esters were two major groups of flavor compounds formed during the roasting stage by the Maillard reaction. The percentage of 2,3,5,6-tetramethylpyrazine was detected in the cacao beans equal to 0.5%. After the liquor pressing stage, tetramethylpyrazine increased to its highest amount (3%) in cocoa powder. It was found that the cocoa powder contained 2.69% of tetramethylpyrazine, 3.22% isobutyl benzoate, and 1.38% linalool. The highest percentage of increase in the mean amounts of 2,3,5,6-tetramethylpyrazine, isobutyl benzoate, and linalool were observed in the roasting stage, after which the percentages diminished.
Collapse
Affiliation(s)
| | - Narmela Asefi
- Department of Food Science and TechnologyTabriz BranchIslamic Azad UniversityTabrizIran
| | - Ramin Maleki
- Research Department of ChromatographyIranian Academic Center for EducationCulture & Research (ACECR)Urmia BranchUrmiaIran
| | | |
Collapse
|
45
|
Roda A, Lambri M. Changes in Antioxidants and Sensory Properties of Italian Chocolates and Related Ingredients Under Controlled Conditions During an Eighteen-Month Storage Period. Nutrients 2019; 11:E2719. [PMID: 31717543 PMCID: PMC6893601 DOI: 10.3390/nu11112719] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 10/25/2019] [Accepted: 10/29/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND While there has been an increasing interest in the health properties of chocolate, limited research has looked into the changes of antioxidants occurring in the time span from production to the best before date, which was a period of 18 months in this study. METHODS Humidity, ash, pH, acidity, fiber, carotenoids, retinols, tocopherols, sugars, proteins, theobromine, caffeine, polyphenols, fats, the peroxide value, organic acids, and volatile compounds, along with the sensory profile, were monitored at 18-week intervals for 18 months under conditions simulating a factory warehouse or a point of sale. RESULTS At the end of the storage period, more polyphenols were lost (64% and 87%) than vitamin E (5% and 14%) in cocoa mass and cocoa powder, respectively. Conversely, a greater loss in vitamin E (34% and 86%) than in polyphenols (19% and 47%) was shown in the hazelnut paste and gianduja chocolate, respectively. The sensory profiling of cocoa mass, cocoa powder, and hazelnut paste revealed increases in grittiness and astringency, as well as decreases in melting, bitterness, and toasted aroma. Moreover, in the hazelnut paste and gianduja chocolate, oiliness increased with a toasted and caramel aroma. Furthermore, dark chocolate was more gritty, acidic, and bitter. Milk chocolate lost its nutty aroma but maintained its sweetness and creaminess. CONCLUSIONS These results should contribute an important reference for companies and consumers, in order to preserve the antioxidants and understand how antioxidants and sensory properties change from the date of production until the best before date.
Collapse
Affiliation(s)
| | - Milena Lambri
- DiSTAS—Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy;
| |
Collapse
|
46
|
Hinneh M, Van de Walle D, Tzompa-Sosa DA, De Winne A, Termote S, Messens K, Van Durme J, Afoakwa EO, De Cooman L, Dewettinck K. Tuning the aroma profiles of FORASTERO cocoa liquors by varying pod storage and bean roasting temperature. Food Res Int 2019; 125:108550. [DOI: 10.1016/j.foodres.2019.108550] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/21/2019] [Accepted: 07/10/2019] [Indexed: 10/26/2022]
|
47
|
Scalone GLL, Textoris-Taube K, De Meulenaer B, De Kimpe N, Wöstemeyer J, Voigt J. Cocoa-specific flavor components and their peptide precursors. Food Res Int 2019; 123:503-515. [DOI: 10.1016/j.foodres.2019.05.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/10/2019] [Accepted: 05/12/2019] [Indexed: 10/26/2022]
|
48
|
Barišić V, Kopjar M, Jozinović A, Flanjak I, Ačkar Đ, Miličević B, Šubarić D, Jokić S, Babić J. The Chemistry behind Chocolate Production. Molecules 2019; 24:E3163. [PMID: 31480281 PMCID: PMC6749277 DOI: 10.3390/molecules24173163] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/28/2019] [Accepted: 08/29/2019] [Indexed: 12/19/2022] Open
Abstract
Chocolate production is a complex process during which numerous chemical reactions occur. The most important processes, involving most of the reactions important for development of the proper chocolate flavor, are fermentation, drying and roasting of cocoa bean, and chocolate conching. During fermentation, formation of important precursors occurs, which are essential for further chemical reactions in the following processes of chocolate production. Roasting is one of the most important processes due to the occurrence of Maillard's reactions, during which aroma compounds are formed. In this paper, we have reviewed the most important chemical reactions that occur with proteins, carbohydrates, lipids, and polyphenols. Additionally, we present other components that may be naturally present or form during the production process, such as methylxanthines, aldehydes, esters, ketones, pyrazines, acids, and alcohols.
Collapse
Affiliation(s)
- Veronika Barišić
- Josip Juraj Strossmayer University of Osijek, Faculty of Food Technology Osijek, Franje Kuhača 20, 31000 Osijek, Croatia
| | - Mirela Kopjar
- Josip Juraj Strossmayer University of Osijek, Faculty of Food Technology Osijek, Franje Kuhača 20, 31000 Osijek, Croatia
| | - Antun Jozinović
- Josip Juraj Strossmayer University of Osijek, Faculty of Food Technology Osijek, Franje Kuhača 20, 31000 Osijek, Croatia
| | - Ivana Flanjak
- Josip Juraj Strossmayer University of Osijek, Faculty of Food Technology Osijek, Franje Kuhača 20, 31000 Osijek, Croatia
| | - Đurđica Ačkar
- Josip Juraj Strossmayer University of Osijek, Faculty of Food Technology Osijek, Franje Kuhača 20, 31000 Osijek, Croatia.
| | - Borislav Miličević
- Josip Juraj Strossmayer University of Osijek, Faculty of Food Technology Osijek, Franje Kuhača 20, 31000 Osijek, Croatia
| | - Drago Šubarić
- Josip Juraj Strossmayer University of Osijek, Faculty of Food Technology Osijek, Franje Kuhača 20, 31000 Osijek, Croatia
| | - Stela Jokić
- Josip Juraj Strossmayer University of Osijek, Faculty of Food Technology Osijek, Franje Kuhača 20, 31000 Osijek, Croatia
| | - Jurislav Babić
- Josip Juraj Strossmayer University of Osijek, Faculty of Food Technology Osijek, Franje Kuhača 20, 31000 Osijek, Croatia
| |
Collapse
|
49
|
Fuentes S, Chacon G, Torrico DD, Zarate A, Gonzalez Viejo C. Spatial Variability of Aroma Profiles of Cocoa Trees Obtained through Computer Vision and Machine Learning Modelling: A Cover Photography and High Spatial Remote Sensing Application. SENSORS (BASEL, SWITZERLAND) 2019; 19:E3054. [PMID: 31373303 PMCID: PMC6678375 DOI: 10.3390/s19143054] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/07/2019] [Accepted: 07/09/2019] [Indexed: 02/03/2023]
Abstract
Cocoa is an important commodity crop, not only to produce chocolate, one of the most complex products from the sensory perspective, but one that commonly grows in developing countries close to the tropics. This paper presents novel techniques applied using cover photography and a novel computer application (VitiCanopy) to assess the canopy architecture of cocoa trees in a commercial plantation in Queensland, Australia. From the cocoa trees monitored, pod samples were collected, fermented, dried, and ground to obtain the aroma profile per tree using gas chromatography. The canopy architecture data were used as inputs in an artificial neural network (ANN) algorithm, with the aroma profile, considering six main aromas, as targets. The ANN model rendered high accuracy (correlation coefficient (R) = 0.82; mean squared error (MSE) = 0.09) with no overfitting. The model was then applied to an aerial image of the whole cocoa field studied to produce canopy vigor, and aroma profile maps up to the tree-by-tree scale. The tool developed could significantly aid the canopy management practices in cocoa trees, which have a direct effect on cocoa quality.
Collapse
Affiliation(s)
- Sigfredo Fuentes
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Melbourne, VIC 3010, Australia.
| | - Gabriela Chacon
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Damir D Torrico
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Melbourne, VIC 3010, Australia
- Department of Wine, Food and Molecular Biosciences, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand
| | - Andrea Zarate
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Claudia Gonzalez Viejo
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Melbourne, VIC 3010, Australia
| |
Collapse
|
50
|
Barbosa-Pereira L, Rojo-Poveda O, Ferrocino I, Giordano M, Zeppa G. Assessment of volatile fingerprint by HS-SPME/GC-qMS and E-nose for the classification of cocoa bean shells using chemometrics. Food Res Int 2019; 123:684-696. [PMID: 31285018 DOI: 10.1016/j.foodres.2019.05.041] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/08/2019] [Accepted: 05/29/2019] [Indexed: 01/01/2023]
Abstract
The cocoa bean shell (CBS) is a main by-product of cocoa processing, with great potential to be used as an ingredient for functional foods because of its nutritional and flavour properties. This study aimed to characterise and classify CBSs obtained from cocoa beans of diverse cultivars and collected in different geographical origins through their volatile profile assessed using headspace solid-phase microextraction gas chromatography-mass spectrometry (HS-SPME/GC-qMS) and E-nose combined with principal component analysis (PCA). The study provides, for the first time in a representative set of samples, a comprehensive fingerprint and semi-quantitative data for >100 volatile organic compounds (VOCs), such as aldehydes, ketones, pyrazines, alcohols, and acids. Through PCA, a clear separation of the Criollo cultivar from the other cultivars was achieved with both GC-qMS and E-nose analytical techniques because of the high content of key-aroma VOCs. Several biomarkers identified by GC-qMS, such as 2-hepanol, 2-methylpropanoic acid, and 2,3,5-trimethylpyrazine, recognized as key-aroma compounds for cocoa beans, were found suitable for the classification of CBSs according to their quality and origin. GC-qMS and E-nose appeared to be suitable analytical approaches to classify CBSs, with a high correlation between both analytical techniques. The volatile fingerprint and classification of CBSs could allow for the selection of samples with a specific flavour profile according to the food application and, therefore, constitute an interesting approach to valorise this by-product as a food ingredient.
Collapse
Affiliation(s)
- Letricia Barbosa-Pereira
- Department of Agriculture, Forestry and Food Sciences (DISAFA), University of Turin, Grugliasco, Italy.
| | - Olga Rojo-Poveda
- Department of Agriculture, Forestry and Food Sciences (DISAFA), University of Turin, Grugliasco, Italy; RD3 Department-Unit of Pharmacognosy, Bioanalysis and Drug Discovery, Faculty of Pharmacy, Université Libre de Bruxelles, Brussels, Belgium
| | - Ilario Ferrocino
- Department of Agriculture, Forestry and Food Sciences (DISAFA), University of Turin, Grugliasco, Italy
| | - Manuela Giordano
- Department of Agriculture, Forestry and Food Sciences (DISAFA), University of Turin, Grugliasco, Italy
| | - Giuseppe Zeppa
- Department of Agriculture, Forestry and Food Sciences (DISAFA), University of Turin, Grugliasco, Italy
| |
Collapse
|