1
|
Zhu Y, Yakhkeshi S, Yusuf A, Zhang X. Frontiers and emerging topics in a century of Silkie chicken research: insights, challenges, and opportunities. Poult Sci 2025; 104:105030. [PMID: 40101517 PMCID: PMC11960645 DOI: 10.1016/j.psj.2025.105030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 02/28/2025] [Accepted: 03/12/2025] [Indexed: 03/20/2025] Open
Abstract
Silkie chickens are a unique breed renowned for their pigmentation, food and medicine homology properties, and distinctive appearance, making them highly valuable in exhibitions, as pets, in medicinal cuisine, and as a model for melanin research. Despite their vast potential, the growing volume of publications and patents related to Silkie chicken highlights the critical need for systematic organization, summarization, and analysis of this wealth of information. For the first time, this study employs bibliometric tools to summarize and analyze 114 years of research on Silkie chicken. Our study demonstrates that academic studies primarily focus on their nutritional value, melanin production, and genetic mechanisms, while patents emphasize food formulations, breeding methods, and purebred identification. Although there has been significant growth in publications and citations since 2001, international collaboration remains limited. This study presents the need for integrated and multidisciplinary research to unlock the full potential of Silkie chicken and provides a foundational framework for future studies and applications.
Collapse
Affiliation(s)
- Yaojun Zhu
- Chinese-German Joint Institute for Natural Product Research, Shaanxi International Cooperation Demonstration Base, Shaanxi University of Technology, Hanzhong 723000, Shaanxi, China.
| | - Saeed Yakhkeshi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | - Anas Yusuf
- Chinese-German Joint Institute for Natural Product Research, Shaanxi International Cooperation Demonstration Base, Shaanxi University of Technology, Hanzhong 723000, Shaanxi, China.
| | - Xiaoying Zhang
- Chinese-German Joint Institute for Natural Product Research, Shaanxi International Cooperation Demonstration Base, Shaanxi University of Technology, Hanzhong 723000, Shaanxi, China; Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
2
|
Huang X, Li S, Tan Y, Xu C, Huang Y, Yin Z. Proteomic analysis of egg production peak and senescence in the ovaries of Taihe black-boned silky fowl (Gallus gallus domesticus Brisson). BMC Genomics 2025; 26:17. [PMID: 39773120 PMCID: PMC11708302 DOI: 10.1186/s12864-024-11180-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 12/23/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND The Taihe black-boned silky fowl, a distinguished indigenous breed of chicken, is renowned for its dual utility in both traditional medicinal and culinary applications. However, the breed faces significant challenges due to its suboptimal reproductive capabilities and a notably brief egg-laying period, which have impeded its broader development and cultivation. In this research endeavor, we employed an advanced, rapid DIA (Data independent acquisition) quantitative proteomics method on the Astral platform to meticulously analyze the ovarian proteome of these chickens. By analyzing the ovarian proteomic information of Taihe black-boned silky fowl during peak and decline egg-laying periods, we aim to identify potential reproductive candidate proteins and the molecular mechanisms underlying egg-laying decline. This could enable us to implement interventions to improve the reproductive efficiency of this valuable breed. RESULT In this study, a total of 8,281 proteins were identified within the ovarian proteome of the Taihe black-boned silky fowl. Among these, 303 proteins exhibited significant differential expression, with 98 proteins significantly up-regulated and 205 proteins significantly down-regulated. The functional annotation of these proteins illuminated their crucial roles in the steroid hormone synthesis pathways, which are pivotal during the peak of egg production. Furthermore, during the later stages of laying, there was a noticeable upregulation of proteins associated with inflammatory senescence and oxidative stress. This change suggests an increase in reproductive stress within the ovary, highlighting the physiological shifts that affect productivity as the chickens age. CONCLUSION This study identified key candidate protein markers in the Taihe black-boned silky fowl during critical phases of their reproductive cycle, specifically peak and late egg-laying periods. These findings contribute valuable new scientific insights that can be utilized for the breeding optimization and effective management of this unique breed. By elucidating the protein dynamics during different laying phases, the research offers potential strategies aimed at enhancing reproductive performance and extending the reproductive lifespan of the Taihe black-boned silky fowl. This could lead to significant improvements in both the sustainability and profitability of farming this indigenous breed.
Collapse
Affiliation(s)
- Xuan Huang
- Animal Science College, Zhejiang University, Zijingang Campus, Hangzhou, Zhejiang, 310058, China
| | - Shibao Li
- Animal Science College, Zhejiang University, Zijingang Campus, Hangzhou, Zhejiang, 310058, China
| | - Yuting Tan
- Animal Science College, Zhejiang University, Zijingang Campus, Hangzhou, Zhejiang, 310058, China
| | - Chunhui Xu
- Animal Science College, Zhejiang University, Zijingang Campus, Hangzhou, Zhejiang, 310058, China
| | - Yunyan Huang
- Animal Science College, Zhejiang University, Zijingang Campus, Hangzhou, Zhejiang, 310058, China
| | - Zhaozheng Yin
- Animal Science College, Zhejiang University, Zijingang Campus, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
3
|
Li Z, Mushtaq M, Khan M, Fu J, Rahman A, Long Y, Liu Y, Zi X, Sun D, Ge C, Wang K. Evaluation of the Growth Performance and Meat Quality of Different F1 Crosses of Tengchong Snow and Xichou Black Bone Chicken Breeds. Animals (Basel) 2024; 14:3099. [PMID: 39518822 PMCID: PMC11544985 DOI: 10.3390/ani14213099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/22/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Unlike other chicken breeds, Xichuan Black Bone (XBB) chickens are an established breed in China with excellent production performance and unique characteristics, including black meat, beaks, skin, bones, and legs, and they produce blue-shelled eggs. The Tengchong Snow (TS) chicken breed has relatively lower growth performance than commercial breeds but is considered one of the main genetic treasures of black meat in China. To improve the production and meat quality traits of the TS chickens by hybridization, the current study aimed to investigate the growth performance, carcass indices, meat quality physical properties, and muscle fiber traits of fiber traits of F1 crosses of TS with XBB chickens. Three groups of crossbreeding combinations were produced: (1) XT group (XBB × TS ), (2) TX group (TS × XBB ), and (3) TT group (TS × TS ), with the TT group used as a control. A total of 725 healthy chicks (XT group: 247, TX group: 180, TT group: 298) were reared up to 20 weeks of age to estimate the growth performance and associated meat parameters. The results showed that the XT and TX groups had higher body weight and body size compared with the TT group (p < 0.05). Similarly, breast width, breast length, width of body, and carcass weights were also greater (p < 0.05) in the XT and TX groups compared with the TT group. Meat physical properties, including color, water-holding capacity, and tenderness, were improved (p < 0.05) for the XT and TX group compared to the TT group. The XT group had the better color of the leg muscles with the unique orientation of muscle fibers. Based on the results, the XT group is more in line with the future breeding direction as they have greater body weight, larger size, and lower abdominal fat. This study is a baseline technical reference for the protection, evaluation, and utilization of germplasm resources of Tengchong Snow chicken for screening the best matching lines and combinations with local chickens.
Collapse
Affiliation(s)
- Zijian Li
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Z.L.); (Y.L.); (X.Z.); (C.G.)
| | - Maida Mushtaq
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong District, Kunming 650201, China; (M.M.); (M.K.); (J.F.); (D.S.)
| | - Muhammad Khan
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong District, Kunming 650201, China; (M.M.); (M.K.); (J.F.); (D.S.)
| | - Jing Fu
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong District, Kunming 650201, China; (M.M.); (M.K.); (J.F.); (D.S.)
| | - Abdur Rahman
- Department of Animal Sciences, University of Veterinary and Animal Sciences, Jhang Campus, Jhang 35091, Pakistan;
| | - Yingxiang Long
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Z.L.); (Y.L.); (X.Z.); (C.G.)
| | - Yong Liu
- College of Animal Science and Technology, Yunnan Open University, Kunming 650101, China;
| | - Xiannian Zi
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Z.L.); (Y.L.); (X.Z.); (C.G.)
| | - Dawei Sun
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong District, Kunming 650201, China; (M.M.); (M.K.); (J.F.); (D.S.)
| | - Changrong Ge
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Z.L.); (Y.L.); (X.Z.); (C.G.)
| | - Kun Wang
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Z.L.); (Y.L.); (X.Z.); (C.G.)
| |
Collapse
|
4
|
Li R, Li D, Xu S, Zhang P, Zhang Z, He F, Li W, Sun G, Jiang R, Li Z, Tian Y, Liu X, Kang X. Whole-transcriptome sequencing reveals a melanin-related ceRNA regulatory network in the breast muscle of Xichuan black-bone chicken. Poult Sci 2024; 103:103539. [PMID: 38382189 PMCID: PMC10900940 DOI: 10.1016/j.psj.2024.103539] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 02/23/2024] Open
Abstract
The economic losses incurred due to reduced muscle pigmentation highlight the crucial role of melanin-based coloration in the meat of black-bone chickens. Melanogenesis in the breast muscle of black-bone chickens is currently poorly understood in terms of molecular mechanisms. This study employed whole-transcriptome sequencing to analyze black and white breast muscle samples from black-bone chickens, leading to the identification of 367 differentially expressed (DE) mRNAs, 48 DElncRNAs, 104 DEcircRNAs, and 112 DEmiRNAs involved in melanin deposition. Based on these findings, a competitive endogenous RNA (ceRNA) network was developed to better understand the complex mechanisms of melanin deposition. Furthermore, our analysis revealed key DEmRNAs (TYR, DCT, EDNRB, MLPH and OCA2) regulated by DEmiRNAs (gga-miR-140-5p, gga-miR-1682, gga-miR-3529, gga-miR-499-3p, novel-m0012-3p, gga-miR-200b-5p, gga-miR-203a, gga-miR-6651-5p, gga-miR-7455-3p, gga-miR-31-5p, miR-140-x, miR-455-x, novel-m0065-3p, gga-miR-29b-1-5p, miR-455-y, novel-m0085-3p, and gga-miR-196-1-3p). These DEmiRNAs competitively interacted with DElncRNAs including MSTRG.2609.2, MSTRG.4185.1, LOC112530666, LOC112533366, LOC771030, LOC107054724, LOC121107411, LOC100859072, LOC101750037, LOC121108550, LOC121109224, LOC121110876, and LOC101749016, as well as DEcircRNAs, such as novel_circ_000158, novel_circ_000623, novel_001518, and novel_circ_003596. The findings from this study provide insight into the mechanisms that regulate lncRNA, circRNA, miRNA, and mRNA expression in chicken melanin deposition.
Collapse
Affiliation(s)
- Ruiting Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, 450046, China
| | - DongHua Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, 450046, China.
| | - Shuohui Xu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, 450046, China
| | - Pengwei Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, 450046, China
| | - Zhiyuan Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, 450046, China
| | - Fumin He
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, 450046, China
| | - Wenting Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, 450046, China; The Shennong Laboratory, Zhengzhou, 450046, China
| | - Guirong Sun
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, 450046, China; The Shennong Laboratory, Zhengzhou, 450046, China
| | - Ruirui Jiang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, 450046, China
| | - Zhuanjian Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, 450046, China
| | - Yadong Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, 450046, China
| | - Xiaojun Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, 450046, China
| | - Xiangtao Kang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, 450046, China; The Shennong Laboratory, Zhengzhou, 450046, China
| |
Collapse
|
5
|
Arora R, Sharma R, Ahlawat S, Chhabra P, Kumar A, Kaur M, Vijh RK, Lal SB, Mishra DC, Farooqi MS, Srivastava S. Transcriptomics reveals key genes responsible for functional diversity in pectoralis major muscles of native black Kadaknath and broiler chicken. 3 Biotech 2023; 13:253. [PMID: 37396468 PMCID: PMC10310660 DOI: 10.1007/s13205-023-03682-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/21/2023] [Indexed: 07/04/2023] Open
Abstract
RNA sequencing-based expression profiles from pectoralis major muscles of black meat (Kadaknath) and white meat (broiler) chicken were compared to identify differentially expressed genes. A total of 156 genes with log2 fold change ≥ ± 2.0 showed higher expression in Kadaknath and 68 genes were expressed at a lower level in comparison to broiler. Significantly enriched biological functions of up-regulated genes in Kadaknath were skeletal muscle cell differentiation, regulation of response to reactive oxygen, positive regulation of fat cell differentiation and melanosome. Significant ontology terms up-regulated in broiler included DNA replication origin binding, G-protein coupled receptor signaling pathway and chemokine activity. Highly inter-connected differentially expressed genes in Kadaknath (ATFs, C/EPDs) were observed to be important regulators of cellular adaptive functions, while in broiler, the hub genes were involved in cell cycle progression and DNA replication. The study is an attempt to get an insight into the transcript diversity of pectoralis major muscles of Kadaknath and broiler chicken. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03682-0.
Collapse
Affiliation(s)
- Reena Arora
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
- Animal Biotechnology Division, G T Road By-Pass, P O Box 129, Karnal, Haryana 132001 India
| | - Rekha Sharma
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Sonika Ahlawat
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Pooja Chhabra
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Ashish Kumar
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Mandeep Kaur
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | | | - Shashi Bhushan Lal
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | | | - Md. Samir Farooqi
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Sudhir Srivastava
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| |
Collapse
|
6
|
Qiu Y, Ying J, Yan F, Yu H, Zhao Y, Li H, Xia S, Chen J, Zhu J. Novel antiosteoporotic peptides purified from protein hydrolysates of taihe black-boned silky fowl: By larval zebrafish model and molecular docking. Food Res Int 2023; 169:112850. [PMID: 37254422 DOI: 10.1016/j.foodres.2023.112850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/27/2023] [Accepted: 04/14/2023] [Indexed: 06/01/2023]
Abstract
The black-boned silky fowl (BSF) muscle protein hydrolysate was gained by alcalase. The hydrolysate could stimulate MC3T3-E1 cell proliferation, as well as enhance alkaline phosphatas (ALP) activity and deposits of minerals. After isolation and purification, 55 peptide sequences with Mascot score over 40 were identified. Combined with molecular docking simulation and molecular dynamics analysis, two novel peptides (PASTGAAK and PGPPGTPF) were identified with the lowest binding energy of -4.99 kcal/mol and -3.07 kcal/mol with receptor BMPR1A of BMP-2/Smad pathway, showing the ability to increase BMPR1A stability. Moreover, both PASTGAAK and PGPPGTPF revealed strong anti-osteoporosis activities in the zebrafish model induced by dexamethasone. Additionally, the identified peptides could be beneficial for the differentiation of MC3T3-E1 cell for upregulating the expression of some osteoblast-related genes and proteins by stimulating BMP-2/Smad pathway. Overall, the two newly identified peptides could be the potential candidate to prevent osteoporosis.
Collapse
Affiliation(s)
- Yang Qiu
- College of Biosystems Engineering & Food Science, Zhejiang University, Hangzhou 310058, China
| | - Jianyue Ying
- Zhejiang University Hospital, Hangzhou 310027, China
| | - Fujie Yan
- College of Biosystems Engineering & Food Science, Zhejiang University, Hangzhou 310058, China
| | - Huilin Yu
- College of Biosystems Engineering & Food Science, Zhejiang University, Hangzhou 310058, China
| | - Yan Zhao
- College of Biosystems Engineering & Food Science, Zhejiang University, Hangzhou 310058, China
| | - Honghao Li
- College of Biosystems Engineering & Food Science, Zhejiang University, Hangzhou 310058, China
| | - Shengyao Xia
- College of Biosystems Engineering & Food Science, Zhejiang University, Hangzhou 310058, China
| | - Jianchu Chen
- College of Biosystems Engineering & Food Science, Zhejiang University, Hangzhou 310058, China.
| | - Jiajin Zhu
- College of Biosystems Engineering & Food Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Engineering Center for Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China; Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China.
| |
Collapse
|
7
|
Zi X, Ge X, Zhu Y, Liu Y, Sun D, Li Z, Liu M, You Z, Wang B, Kang J, Dou T, Ge C, Wang K. Transcriptome Profile Analysis Identifies Candidate Genes for the Melanin Pigmentation of Skin in Tengchong Snow Chickens. Vet Sci 2023; 10:vetsci10050341. [PMID: 37235424 DOI: 10.3390/vetsci10050341] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Tengchong Snow chickens are one of the most precious, black-boned chickens in Yunnan province and usually produce black meat. However, we found a small number of white meat traits in the chicken population during feeding. In order to determine the pattern of melanin deposition and the molecular mechanism of formation in the Tengchong Snow chicken, we measured the luminance value (L value) and melanin content in the skin of black meat chickens (Bc) and white meat chickens (Wc) using a color colorimeter, ELISA kit, and enzyme marker. The results showed that the L value of skin tissues in black meat chickens was significantly lower than that of white meat chickens, and the L value of skin tissues gradually increased with an increase in age. The melanin content of skin tissues in black meat chickens was higher than that of white meat chickens, and melanin content in the skin tissues gradually decreased with an increase in age, but this difference was not significant (p > 0.05); the L value of skin tissues in black meat chickens was negatively correlated with melanin content, and the correlation coefficient was mostly above -0.6. In addition, based on the phenotypic results, we chose to perform the comparative transcriptome profiling of skin tissues at 90 days of age. We screened a total of 44 differential genes, of which 32 were upregulated and 12 were downregulated. These DEGs were mainly involved in melanogenesis, tyrosine metabolism and RNA transport. We identified TYR, DCT, and EDNRB2 as possible master effector genes for skin pigmentation in Tengchong Snow black meat chickens through DEGs analysis. Finally, we measured the mRNA of TYR, DCT, MC1R, EDNRB2, GPR143, MITF, and TYRP1 genes through a quantitative real-time polymerase chain reaction (qPCR) and found that the mRNA of all the above seven genes decreased with increasing age. In conclusion, our study initially constructed an evaluation system for the black-boned traits of Tengchong Snow chickens and found key candidate genes regulating melanin deposition, which could provide an important theoretical basis for the selection and breeding of black-boned chickens.
Collapse
Affiliation(s)
- Xiannian Zi
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Xuehai Ge
- Shenzhen Hualong Sunda Information Technology Co., Ltd., Shenzhen 518000, China
| | - Yixuan Zhu
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Yong Liu
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Dawei Sun
- Yunnan Animal Science and Veterinary Institute, Kunming 650224, China
| | - Zijian Li
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Mengqian Liu
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Zhengrong You
- Zhaotong Animal Husbandry and Veterinary Technology Extension Station, Zhaotong 657000, China
| | - Bo Wang
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Jiajia Kang
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Tengfei Dou
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Changrong Ge
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Kun Wang
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
8
|
Toviwek B, Koonawootrittriron S, Suwanasopee T, Pongprayoon P. Molecular insights into the binding of carnosine and anserine to human serum carnosinase 1 (CN1). PEERJ PHYSICAL CHEMISTRY 2022. [DOI: 10.7717/peerj-pchem.25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Carnosine (CAR) and anserine (ANS) are histidine-containing dipeptides that show the therapeutic properties and protective abilities against diabetes and cognitive deficit. Both dipeptides are rich in meat products and have been used as a supplement. However, in humans, both compounds have a short half-life due to the rapid degradation by dizinc carnosinase 1 (CN1) which is a hurdle for its therapeutic application. To date, a comparative study of carnosine- and anserine-CN1 complexes is limited. Thus, in this work, molecular dynamics (MD) simulations were performed to explore the binding of carnosine and anserine to CN1. CN1 comprises 2 chains (Chains A and B). Both monomers are found to work independently and alternatingly. The displacement of Zn2+ pair is found to disrupt the substrate binding. CN1 employs residues from the neighbour chain (H235, T335, and T337) to form the active site. This highlights the importance of a dimer for enzymatic activity. Anserine is more resistant to CN 1 than carnosine because of its bulky and dehydrated imidazole moiety. Although both dipeptides can direct the peptide oxygen to the active Zn2+ which can facilitate the catalytic reaction, the bulky methylated imidazole on anserine promotes various poses that can retard the hydrolytic activity in contrast to carnosine. Anserine is likely to be the temporary competitive inhibitor by retarding the carnosine catabolism.
Collapse
Affiliation(s)
- Borvornwat Toviwek
- Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | | | - Thanathip Suwanasopee
- Department of Animal Science, Faculty of Agriculture, Kasetsart University, Bangkok, Thailand
| | - Prapasiri Pongprayoon
- Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand
- Center for Advanced Studies in Nanotechnology for Chemical, Food and Agricultural Industries, KU Institute for Advanced Studies, Kasetsart University, Bangkok, Thailand
| |
Collapse
|
9
|
Combining Abilities, Heterosis, Growth Performance, and Carcass Characteristics in a Diallel Cross from Black-Bone Chickens and Thai Native Chickens. Animals (Basel) 2022; 12:ani12131602. [PMID: 35804500 PMCID: PMC9264945 DOI: 10.3390/ani12131602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/17/2022] [Accepted: 06/18/2022] [Indexed: 11/17/2022] Open
Abstract
The purpose of this study was to determine the combining abilities and heterosis for the growth performance and carcass characteristics in crosses between Hmong black-bone (HB), Chinese black-bone (CB), and Thai native (TN) chickens using a mating system diallel crossing. Nine crossbred chickens including HB × HB, CB × CB, TN × TN, HB × TN, TN × HB, CB × HB, HB × CB, TN × CB, and CB × TN, were tested. The total data were 699 recorded at the beginning of the experiment to 595 recorded in weeks 14 of age. Body weight (BW), average daily gain (ADG), feed conversion ratio (FCR), and survival rate (SUR) were recorded. Heterosis and combining ability regarding general combining ability (GCA), specific combining ability (SCA), and reciprocal combining ability (RCA) were estimated. The study found that CB had the greatest BW and ADG at all weeks (p < 0.05) except for hatch, while those of HB were the lowest. The highest GCA was found in CB; meanwhile, GCA was significantly negative in HB of all ages. Crossing between TN × CB had the greatest BW from 8 weeks of age, which was related to positive SCA and RCA values. However, the RCA value of TN × CB was lower than the SCA value of CB × TN. The yield percentages of the carcass in CB (87.00%) were higher than those in TN (85.05%) and HB (82.91%) (p < 0.05). The highest breast and thigh meat lightness (L*) values were obtained in TN (p < 0.05), while those of CB and HB were not different (p > 0.05). In the crossbreed, the yield percentage of the carcass was highest in TN × CB (89.65%) and CB × TN (88.55%) (p > 0.05) and was lowest in TN × HB (71.91%) (p < 0.05). The meat and skin color of the breast and thigh parts in the crossbreed had the lowest lightness in HB × CB (27.91 to 38.23) (p < 0.05), while those of TN × CB and CB × TN were insignificant (p > 0.05). In conclusion, crossing between the TN sires and CB dams has the preferable potential to develop crossbred Thai native chickens for commercial use based on their high growth performance.
Collapse
|
10
|
Wei Q, Cui H, Hu Y, Li J, Yue S, Tang C, Zhao Q, Yu Y, Li H, Qin Y, Yang Y, Zhang J. Comparative characterization of Taihe silky chicken and Cobb chicken using LC/MS-based lipidomics and GC/MS-based volatilomics. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Wu R, Chen C, Zhang X. Label-Free LC-MS/MS Analysis Reveals Different Proteomic Profiles between Egg Yolks of Silky Fowl and Ordinary Chickens. Foods 2022; 11:foods11071035. [PMID: 35407122 PMCID: PMC8997978 DOI: 10.3390/foods11071035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/26/2022] [Accepted: 03/28/2022] [Indexed: 02/06/2023] Open
Abstract
The proteomic profiles of Silky fowl egg yolk (SFEY) and Leghorn egg yolk (LEY) were analyzed by bottom-up label-free liquid chromatography–tandem mass spectrometry (LC-MS/MS). From a total of 186 identified proteins, 26 proteins were found significantly differentially abundant between two yolks, of which, 19 were up-regulated and 7 were down-regulated in SFEY, particularly, vitelline membrane outer layer protein 1, transthyretin and ovoinhibitor were up-regulated by 26, 25, and 16 times, respectively. In addition, there were 57 and 6 unique proteins in SFEY and LEY, respectively. Gene Ontology (GO) revealed SFEY contained relatively more abundant protease inhibitors and coagulation-related proteins. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed differentially abundant proteins in SFEY may be actively involved in the regulation of the neuroactive ligand–receptor interaction pathway. This study provides a theoretical basis for the understanding of proteomic and biological differences between these two yolks and can guide for further exploration of nutritional and biomedical use of Silky fowl egg.
Collapse
Affiliation(s)
- Rao Wu
- Chinese-German Joint Laboratory for Natural Product Research, College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, China;
| | - Chen Chen
- Chinese-German Joint Laboratory for Natural Product Research, College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, China;
- Correspondence: (C.C.); (X.Z.)
| | - Xiaoying Zhang
- Chinese-German Joint Laboratory for Natural Product Research, College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, China;
- Centre of Molecular & Environmental Biology, Department of Biology, University of Minho, 4710-057 Braga, Portugal
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
- Correspondence: (C.C.); (X.Z.)
| |
Collapse
|
12
|
An attempt to valorize the only black meat chicken breed of India by delineating superior functional attributes of its meat. Sci Rep 2022; 12:3555. [PMID: 35241766 PMCID: PMC8894494 DOI: 10.1038/s41598-022-07575-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 02/21/2022] [Indexed: 11/23/2022] Open
Abstract
Kadaknath, the only black chicken indigenous to India, faces the threat of extinction due to declining numbers. Its meat is used in tribal medicine for invigorating and health-promoting properties. Expectations of immune-boosting and therapeutic properties in its meat are creating a buzz these days. Thus, Kadaknath meat was explored and further compared with the commercial Cobb 400 broiler (Cobb) for the functional traits that might be contributing towards proclaimed pharmacological benefits. Birds (n = 20/ group) were raised under similar management conditions and the two primal chicken meat cuts (breast and thigh) were collected at the marketing age. Kadaknath meat was found to be an enriched source of functional biomolecules (carnosine, anserine, creatine). Its breast meat carnosine content was more than double of the Cobb broiler, 6.10 ± 0.13 and 2.73 ± 0.1 mg/ g of wet tissue, respectively. Similarly, the thigh meat of Kadaknath was a significantly (P < 0.05) richer source of carnosine. The genetic background was a key determinant for muscle carnosine content as a significant abundance of CARNS1 and SLC36A1 expression was identified in the Kadaknath breast. The superior functional property of Kadaknath meat was established by the antioxidant capacity established by the Oxygen radical absorbance capacity assay and a stronger ability to inhibit the formation of advanced glycation end products (AGEs). The identification of fairly unknown nutritional and functional advantages of Kadaknath meat could potentially change the paradigm with its meat consumption. It will help in developing a brand name for Kadaknath products that will propel an increase in its market share and ultimately conservation of this unique but endangered poultry germplasm.
Collapse
|
13
|
Dou T, Yan S, Liu L, Wang K, Jian Z, Xu Z, Zhao J, Wang Q, Sun S, Talpur MZ, Duan X, Gu D, He Y, Du Y, Abdulwahid AM, Li Q, Rong H, Cao W, Su Z, Zhao G, Liu R, Zhao S, Huang Y, Te Pas MFW, Ge C, Jia J. Integrative analysis of transcriptomics and metabolomics to reveal the melanogenesis pathway of muscle and related meat characters in Wuliangshan black-boned chickens. BMC Genomics 2022; 23:173. [PMID: 35236293 PMCID: PMC8892760 DOI: 10.1186/s12864-022-08388-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 02/03/2022] [Indexed: 12/02/2022] Open
Abstract
Background Melanin is an important antioxidant in food and has been used in medicine and cosmetology. Chicken meat with high melanin content from black-boned chickens have been considered a high nutritious food with potential medicinal properties. The molecular mechanism of melanogenesis of skeletal muscle in black-boned chickens remain poorly understood. This study investigated the biological gene-metabolite associations regulating the muscle melanogenesis pathways in Wuliangshan black-boned chickens with two normal boned chicken breeds as control. Results We identified 25 differentially expressed genes and 11 transcription factors in the melanogenesis pathways. High levels of the meat flavor compounds inosine monophosphate, hypoxanthine, lysophospholipid, hydroxyoctadecadienoic acid, and nicotinamide mononucleotide were found in Wuliangshan black-boned chickens. Conclusion Integrative analysis of transcriptomics and metabolomics revealed the dual physiological functions of the PDZK1 gene, involved in pigmentation and/or melanogenesis and regulating the phospholipid signaling processes in muscle of black boned chickens. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08388-w.
Collapse
Affiliation(s)
- Tengfei Dou
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, Yunnan Province, People's Republic of China
| | - Shixiong Yan
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, Yunnan Province, People's Republic of China
| | - Lixian Liu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, Yunnan Province, People's Republic of China.,Yunnan Vocational and Technical College of Agriculture, Kunming, 650031, Yunnan Province, People's Republic of China
| | - Kun Wang
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, Yunnan Province, People's Republic of China
| | - Zonghui Jian
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, Yunnan Province, People's Republic of China
| | - Zhiqiang Xu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, Yunnan Province, People's Republic of China.,College of Food Science, Yunnan Agricultural University, Kunming, 650201, Yunnan Province, People's Republic of China
| | - Jingying Zhao
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, Yunnan Province, People's Republic of China
| | - Qiuting Wang
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, Yunnan Province, People's Republic of China
| | - Shuai Sun
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, Yunnan Province, People's Republic of China
| | - Mir Zulqarnain Talpur
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, Yunnan Province, People's Republic of China
| | - Xiaohua Duan
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, Yunnan Province, People's Republic of China.,Yunnan University of Traditional Chinese Medical, Kunming, 650500, Yunnan Province, People's Republic of China
| | - Dahai Gu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, Yunnan Province, People's Republic of China.,College of Food Science, Yunnan Agricultural University, Kunming, 650201, Yunnan Province, People's Republic of China
| | - Yang He
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, Yunnan Province, People's Republic of China
| | - Yanli Du
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, Yunnan Province, People's Republic of China
| | - Alsoufi Mohammed Abdulwahid
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, Yunnan Province, People's Republic of China
| | - Qihua Li
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, Yunnan Province, People's Republic of China
| | - Hua Rong
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, Yunnan Province, People's Republic of China
| | - Weina Cao
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, Yunnan Province, People's Republic of China
| | - Zhengchang Su
- Department of Bioinformatics and Genomics, College of Computing and Informatics, the University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Guiping Zhao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Ranran Liu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Sumei Zhao
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, Yunnan Province, People's Republic of China
| | - Ying Huang
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, Yunnan Province, People's Republic of China
| | - Marinus F W Te Pas
- Wageningen Livestock Research, Wageningen UR, Wageningen, 238050, The Netherlands. .,Visiting Professor Yunnan Agricultural University, Kunming, 650201, Yunnan Province, People's Republic of China.
| | - Changrong Ge
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, Yunnan Province, People's Republic of China.
| | - Junjing Jia
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, Yunnan Province, People's Republic of China.
| |
Collapse
|
14
|
Buranawit K, Laenoi W. Genetic parameters for production traits in F1 reciprocal crossbred Chee Fah and Fah Luang chickens. ANIMAL PRODUCTION SCIENCE 2022. [DOI: 10.1071/an20155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
ContextRecently, Chee Fah and Fah Luang chickens have been registered as a black-bone native chicken in Thailand. Only a few studies revealed genetic information about them. No publication has reported any data related to their cross-mating, particularly, genetic parameters.AimsThis study aimed to estimate genetic parameters for production traits of F1 generation of reciprocal crossbred Chee Fah and Fah Luang chickens.MethodsA dataset of production traits of two crossbred groups was used in the present study. Effects of breed, month-day of incubation and sex were tested at P<0.05. Genetic parameters were estimated using the restricted maximum likelihood method with multi-trait animal model.Key resultsThe crossbred Chee Fah×Fah Luang was significantly heavier and consumed more feed than Fah Luang×Chee Fah (P<0.05). Male chickens had significantly better 20-week-old bodyweight, feed conversion ratio and average daily gain compared with females for both crossbred groups (P<0.05). The effect of month-day of incubation had a significant influence on production traits (P<0.05), except for day-old bodyweight. Heritabilities for production traits of crossbred chickens were low to high. The highest estimate was observed for day-old bodyweight (0.97), followed by feed intake (0.40), 20-week-old bodyweight (0.06), average daily gain (0.05) and feed conversion ratio (0.03), respectively. Both positive and negative genetic correlations were found among their production traits. Favourable relationships were found between average daily gain versus bodyweight and versus feed conversion ratio (rgg=0.99 and −0.90, respectively). Similarly, production traits showed phenotypic correlations in both directions, which ranged from −0.95 to 0.99.ConclusionsHeritability estimations for production traits were found in low to high magnitude. The desirable genetic relationships were found between feed conversion ratio and day-old bodyweight, 20-week-old bodyweight and average daily gain, and between 20-week-old bodyweight and average daily gain.ImplicationsThese findings could be considered as a source of genetic data for enhancing production traits of crossbred black-bone native chickens.
Collapse
|
15
|
Jian H, Zu P, Rao Y, Li W, Mou T, Lin J, Zhang F. Comparative analysis of melanin deposition between Chishui silky fowl and Taihe silky fowl. JOURNAL OF APPLIED ANIMAL RESEARCH 2021. [DOI: 10.1080/09712119.2021.1981911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Huafeng Jian
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, The Ministry of Education, Guizhou University, Guiyang, People’s Republic of China
- Guizhou Province Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guizhou University, Guiyang, People’s Republic of China
- Research Institute of Poultry, Guizhou University, Guiyang, People’s Republic of China
- Guizhou University Science and Research Poultry Farm, Guiyang, People’s Republic of China
| | - Panyu Zu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, The Ministry of Education, Guizhou University, Guiyang, People’s Republic of China
- Guizhou Province Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guizhou University, Guiyang, People’s Republic of China
- Research Institute of Poultry, Guizhou University, Guiyang, People’s Republic of China
- Guizhou University Science and Research Poultry Farm, Guiyang, People’s Republic of China
| | - Yongchao Rao
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, The Ministry of Education, Guizhou University, Guiyang, People’s Republic of China
- Guizhou Province Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guizhou University, Guiyang, People’s Republic of China
- Research Institute of Poultry, Guizhou University, Guiyang, People’s Republic of China
- Guizhou University Science and Research Poultry Farm, Guiyang, People’s Republic of China
| | - Wei Li
- Guizhou Province Management Station of Livestock Genetic Resources, Guiyang, People’s Republic of China
| | - Tenghui Mou
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, The Ministry of Education, Guizhou University, Guiyang, People’s Republic of China
- Guizhou Province Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guizhou University, Guiyang, People’s Republic of China
- Research Institute of Poultry, Guizhou University, Guiyang, People’s Republic of China
- Guizhou University Science and Research Poultry Farm, Guiyang, People’s Republic of China
| | - Jiadong Lin
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, The Ministry of Education, Guizhou University, Guiyang, People’s Republic of China
- Guizhou Province Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guizhou University, Guiyang, People’s Republic of China
- Research Institute of Poultry, Guizhou University, Guiyang, People’s Republic of China
- Guizhou University Science and Research Poultry Farm, Guiyang, People’s Republic of China
| | - Fuping Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, The Ministry of Education, Guizhou University, Guiyang, People’s Republic of China
- Guizhou Province Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guizhou University, Guiyang, People’s Republic of China
- Research Institute of Poultry, Guizhou University, Guiyang, People’s Republic of China
- Guizhou University Science and Research Poultry Farm, Guiyang, People’s Republic of China
| |
Collapse
|
16
|
Khumpeerawat P, Duangjinda M, Phasuk Y. Factors affecting gene expression associated with the skin color of black-bone chicken in Thailand. Poult Sci 2021; 100:101440. [PMID: 34547619 PMCID: PMC8463778 DOI: 10.1016/j.psj.2021.101440] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 07/03/2021] [Accepted: 08/15/2021] [Indexed: 11/19/2022] Open
Abstract
The objective of this study was to investigate the effect of breed, sex, and age on the gene expression level of melanocortin 1 receptor (MC1R), DOPA chrome tautomerase (DCT), tyrosinase-related protein 1 (TYRP1), tyrosinase (TYR), and agouti signaling protein (ASIP) genes in Thai commercial chicken lines. All chicken have received Newscastle vaccination, and no antibiotics or any drugs were used in this study. Four chicken breeds including Black-Chinese, KU-Phuparn, Sri Mok, and Pradu Hang Dam were used in this study. These breeds can be classified by their skin color into 3 group including black (Black Chinese and KU-Phuparn), light black (Sri Mok), and yellowish white (Pradu Hang Dam). One hundred chickens per breed were used in this study. Breast skin tissue was randomly collected from 8 chickens (4 males, 4 females) per breed at 4, 8, 12, and 16 wk of age. The mRNA expression was analyzed using qRT-PCR and the gene expression level was calculated as 2-ΔΔCT. From the results, breed significantly (P < 0.01) affected the expression level for the 5 genes evaluated. Birds with the black skin color had greater TYRP1 and TYR gene expression when compared to chickens with light black and yellowish-white skin color, respectively. Whereas, chickens with yellowish-white skin color had greater ASIP gene expression when compared to chickens having the other skin colors. Sex significantly affected DCT, TYRP1, and TYR gene expression where the gene expression in males was greater when compared to females (P < 0.05). Age affected all gene expression levels (P < 0.01). At 4 wk of age, MC1R, DCT, TYRP1, and TYR gene expression was the highest and decreased as bird age increased (P < 0.05); however, ASIP gene expression was greatest at 8 wk of age. After 8 wk of age all gene expression for the genes evaluated in this study decreased as age increased. In addition, an interaction between breed and sex (P < 0.05) impacted DCT and ASIP gene expression. The results from this study showed that all genes evaluated can be used as candidate markers to further improve the blackness of the chicken's skin because the most desired skin color is black in the Thai black-bone chicken population.
Collapse
Affiliation(s)
- Panuwat Khumpeerawat
- Department of Animal Science, Faculty of Agricultural, Khon Kaen University, Mueang Khon Kaen 40000, Thailand
| | - Monchai Duangjinda
- Department of Animal Science, Faculty of Agricultural, Khon Kaen University, Mueang Khon Kaen 40000, Thailand; Network Center for Animal Breeding and Omics Research, Faculty of Agricultural, Khon Kaen University, Mueang Khon Kaen 40000, Thailand.
| | - Yupin Phasuk
- Department of Animal Science, Faculty of Agricultural, Khon Kaen University, Mueang Khon Kaen 40000, Thailand; Network Center for Animal Breeding and Omics Research, Faculty of Agricultural, Khon Kaen University, Mueang Khon Kaen 40000, Thailand
| |
Collapse
|
17
|
Kubota S, Promkhun K, Sinpru P, Suwanvichanee C, Molee W, Molee A. RNA Profiles of the Korat Chicken Breast Muscle with Increased Carnosine Content Produced through Dietary Supplementation with β-Alanine or L-Histidine. Animals (Basel) 2021; 11:ani11092596. [PMID: 34573562 PMCID: PMC8464878 DOI: 10.3390/ani11092596] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/28/2021] [Accepted: 08/31/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Carnosine is a bioactive food component with several potential health benefits for humans due to its physiological functions. Dietary supplementation with β-alanine or L-histidine can increase the carnosine content of skeletal muscles in chickens. Dietary supplementation with β-alanine or L-histidine has produced a slow-growing chicken variety with high carnosine content in the breast meat; however, the supplementation with L-histidine alone softens the meat toughness, which may affect consumers’ willingness to buy the meat. Gene expression is a key factor that influences meat quality. Understanding the molecular mechanisms that affect carnosine content and meat toughness would allow the production of more value-added slow-growing chickens. We compared global gene expression in chicken breast muscles with differing carnosine contents and meat toughness produced through dietary supplementation with β-alanine or L-histidine. We identified differentially expressed genes involved in regulating myosin, collagen, intramuscular fat, and calpain—factors that may affect meat tenderness. Pathway enrichment analysis indicated that the insulin-related and adipocytokine signaling pathways were altered by dietary supplementation with β-alanine or L-histidine. These data will be useful for future studies on carnosine content and meat toughness in slow-growing chickens. Abstract Korat chicken (KRC) is a slow-growing chicken bred in Thailand, whose meat exhibits a unique toughness. A previous study produced KRC breast meat containing high carnosine content through dietary supplementation with β-alanine or L-histidine; however, the KRC that were fed an L-histidine-supplemented diet produced meat that was significantly more tender. Herein, we performed RNA-Seq to identify candidate genes involved in the regulation of carnosine content and meat toughness. Total RNA was isolated from five female KRC breast muscles in each treatment group that KRC fed diets without supplementation, supplemented with β-alanine or L-histidine. Compared to the non-supplemented group, we identified 118 and 198 differentially expressed genes (DEGs) in the β-alanine or L-histidine supplementation groups, respectively. Genes potentially related to meat tenderness—i.e., those regulating myosin, collagen, intramuscular fat, and calpain—were upregulated (LOC107051274, ACSBG1, and CAPNS2) and downregulated (MYO7B, MYBPH, SERPINH1, and PGAM1). However, carnosine synthase gene was not identified. Functional enrichment analysis identified pathways affected by dietary supplementation, including the insulin signaling pathway (β-alanine supplementation) and the insulin resistance and adipocytokine signaling pathways (L-histidine supplementation). The FoxO signaling pathway was identified as a regulatory network for both supplementation groups. The identified genes can be used as molecular markers of meat tenderness in slow-growing chickens.
Collapse
|
18
|
Cho E, Kim M, Manjula P, Cho SH, Seo D, Lee SS, Lee JH. A retroviral insertion in the tyrosinase ( TYR) gene is associated with the recessive white plumage color in the Yeonsan Ogye chicken. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2021; 63:751-758. [PMID: 34447952 PMCID: PMC8367395 DOI: 10.5187/jast.2021.e71] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/04/2021] [Accepted: 05/09/2021] [Indexed: 01/16/2023]
Abstract
The recessive white (locus c) phenotype observed in chickens is associated with three alleles (recessive white c, albino ca , and red-eyed white cre ) and causative mutations in the tyrosinase (TYR) gene. The recessive white mutation (c) inhibits the transcription of TYR exon 5 due to a retroviral sequence insertion in intron 4. In this study, we genotyped and sequenced the insertion in TYR intron 4 to identify the mutation causing the unusual white plumage of Yeonsan Ogye chickens, which normally have black plumage. The white chickens had a homozygous recessive white genotype that matched the sequence of the recessive white type, and the inserted sequence exhibited 98% identity with the avian leukosis virus ev-1 sequence. In comparison, brindle and normal chickens had the homozygous color genotype, and their sequences were the same as the wild-type sequence, indicating that this phenotype is derived from other mutation(s). In conclusion, white chickens have a recessive white mutation allele. Since the size of the sample used in this study was limited, further research through securing additional samples to perform validation studies is necessary. Therefore, after validation studies, a selection system for conserving the phenotypic characteristics and genetic diversity of the population could be established if additional studies to elucidate specific phenotype-related genes in Yeonsan Ogye are performed.
Collapse
Affiliation(s)
- Eunjin Cho
- Department of Bio-Big Data, Chungnam National University, Daejeon 34134, Korea
| | - Minjun Kim
- Department of Bio-AI Convergence, Chungnam National University, Daejeon 34134, Korea
| | - Prabuddha Manjula
- Division of Animal & Dairy Science, Chungnam National University, Daejeon 34134, Korea
| | - Sung Hyun Cho
- Division of Animal & Dairy Science, Chungnam National University, Daejeon 34134, Korea
| | - Dongwon Seo
- Department of Bio-AI Convergence, Chungnam National University, Daejeon 34134, Korea.,Division of Animal & Dairy Science, Chungnam National University, Daejeon 34134, Korea
| | - Seung-Sook Lee
- Division of Animal & Dairy Science, Chungnam National University, Daejeon 34134, Korea.,Jisan Farm, Nonsan 32910, Korea
| | - Jun Heon Lee
- Department of Bio-Big Data, Chungnam National University, Daejeon 34134, Korea.,Department of Bio-AI Convergence, Chungnam National University, Daejeon 34134, Korea.,Division of Animal & Dairy Science, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
19
|
Carnosine Content and Its Association with Carnosine-Related Gene Expression in Breast Meat of Thai Native and Black-Bone Chicken. Animals (Basel) 2021; 11:ani11071987. [PMID: 34359114 PMCID: PMC8300356 DOI: 10.3390/ani11071987] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/30/2021] [Accepted: 06/30/2021] [Indexed: 12/11/2022] Open
Abstract
This study aimed to investigate the carnosine content and ATP-grasp domain-containing protein 1 (CARNS1) gene expression and their relationship with breast meat of Black Chinese (BC), KU-Phuparn (KP), Pradu Hang Dam (PD), and Black Chinese × Pradu Hang Dam (Sri Mok: SM) to aid in the selection and mating programs for developing functional meat in Thai chicken populations. The results show that the carnosine content in each breed and breed group varied from 428.08 to 553.93 mg/100 g, whereas the relative expression of CARNS1 ranged from 0.84 to 1.56. The BC and KP chicken breeds had a higher carnosine content (p < 0.01) and higher CARNS1 expression level (p < 0.05) than the SM and PD chicken breeds. The carnosine content and relative gene expression for each age ranged from 423.02 to 577.83 mg/100 g and 0.68 to 1.83, respectively. At 4 weeks of age, the carnosine content (p < 0.01) and gene expression (p < 0.05) were the highest. However, they decreased as chicken age increased further. The carnosine content and gene expression linearly decreased as chicken age increased (p < 0.01). The correlation coefficient between the level of gene expression and carnosine content was moderately positive. The results from this study showed that different breeds and ages of chickens have different amounts of carnosine, and CARNS1 could act as a biomarker to study marker-assisted selection to improve functional meat in the chicken population in Thailand.
Collapse
|
20
|
Kriangwanich W, Piboon P, Sakorn W, Buddhachat K, Kochagul V, Pringproa K, Mekchay S, Nganvongpanit K. Consistency of dark skeletal muscles in Thai native black-bone chickens ( Gallus gallus domesticus). PeerJ 2021; 9:e10728. [PMID: 33520473 PMCID: PMC7811297 DOI: 10.7717/peerj.10728] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 12/17/2020] [Indexed: 11/20/2022] Open
Abstract
Black-bone chickens (Gallus gallus domesticus) have become economically valuable, particularly in Southeast Asia as a consequence of popular traditional Chinese medical practices. Chickens with whole body organ darkness are considered to have higher value and are, therefore, more often requested. This research study aimed to investigate the darkness in 34 skeletal muscles of 10 Thai black-bone chickens (five males and five females). The evaluation of muscle darkness was done on two levels: (i) a color chart was employed at the macroanatomical level and (ii) by using melanin pigment to evaluate the structure at the microanatomy level. The results revealed that the accumulation of melanin pigment in the muscle tissue was observed in the endomysium, perimysium and epimysium. With respect to the results of the color chart test, iliotibialis lateralis pars preacetabularis, gastrocnemius, fibularis longus and puboischiofemoralis pars medialis showed the highest degree of darkness, while serratus profundus, pectoralis, iliotibialis cranialis, flexor cruris lateralis, and flexor cruris medialis appeared to be the least dark. In addition, we found that the highest and lowest amounts of melanin pigment was noted in the flexor carpi ulnaris and pectoralis (p < 0.05), respectively; however, there was no significant difference (p > 0.05) observed between the sexes. These results reveal that the 34 specified muscles of black-bone chickens showed uneven distribution of darkness due to the differing accumulations of melanin pigments of each muscle.This information may provide background knowledge for a better understanding of melanin accumulation and lead to breeding improvements in Thai black-bone chickens.
Collapse
Affiliation(s)
- Wannapimol Kriangwanich
- Department of Veterinary Biosciences and Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Promporn Piboon
- Department of Veterinary Biosciences and Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Wirakorn Sakorn
- Department of Veterinary Biosciences and Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Kittisak Buddhachat
- Department of Biology, Faculty of Science, Naresuan University, Phitsanulok, Thailand.,Excellence Center in Veterinary Bioscience, Chiang Mai University, Chiang Mai, Thailand
| | - Varankpicha Kochagul
- Veterinary Diagnostic Laboratory, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Kidsadagon Pringproa
- Department of Veterinary Biosciences and Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand.,Excellence Center in Veterinary Bioscience, Chiang Mai University, Chiang Mai, Thailand
| | - Supamit Mekchay
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Korakot Nganvongpanit
- Department of Veterinary Biosciences and Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand.,Excellence Center in Veterinary Bioscience, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
21
|
Li D, Sun G, Zhang M, Cao Y, Zhang C, Fu Y, Li F, Li G, Jiang R, Han R, Li Z, Wang Y, Tian Y, Liu X, Li W, Kang X. Breeding history and candidate genes responsible for black skin of Xichuan black-bone chicken. BMC Genomics 2020; 21:511. [PMID: 32703156 PMCID: PMC7376702 DOI: 10.1186/s12864-020-06900-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 07/09/2020] [Indexed: 12/21/2022] Open
Abstract
Background Domesticated chickens have a wide variety of phenotypes, in contrast with their wild progenitors. Unlike other chicken breeds, Xichuan black-bone chickens have blue-shelled eggs, and black meat, beaks, skin, bones, and legs. The breeding history and the economically important traits of this breed have not yet been explored at the genomic level. We therefore used whole genome resequencing to analyze the breeding history of the Xichuan black-bone chickens and to identify genes responsible for its unique phenotype. Results Principal component and population structure analysis showed that Xichuan black-bone chicken is in a distinct clade apart from eight other breeds. Linkage disequilibrium analysis showed that the selection intensity of Xichuan black-bone chickens is higher than for other chicken breeds. The estimated time of divergence between the Xichuan black-bone chickens and other breeds is 2.89 ka years ago. Fst analysis identified a selective sweep that contains genes related to melanogenesis. This region is probably associated with the black skin of the Xichuan black-bone chickens and may be the product of long-term artificial selection. A combined analysis of genomic and transcriptomic data suggests that the candidate gene related to the black-bone trait, EDN3, might interact with the upstream ncRNA LOC101747896 to generate black skin color during melanogenesis. Conclusions These findings help explain the unique genetic and phenotypic characteristics of Xichuan black-bone chickens, and provide basic research data for studying melanin deposition in animals.
Collapse
Affiliation(s)
- Donghua Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Guirong Sun
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450046, China
| | - Meng Zhang
- The First Hospital, Jilin University, Changchun, 130062, Jilin, China
| | - Yanfang Cao
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Chenxi Zhang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yawei Fu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Fang Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Guoxi Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450046, China
| | - Ruirui Jiang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450046, China
| | - Ruili Han
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450046, China
| | - Zhuanjian Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450046, China
| | - Yanbin Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450046, China
| | - Yadong Tian
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450046, China
| | - Xiaojun Liu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Wenting Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China.
| | - Xiangtao Kang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China. .,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450046, China.
| |
Collapse
|
22
|
Mikhailova MV, Prozorovskiy VN, Zolotarev KV, Ipatova OM, Mikhailov AN, Kharenko EN, Artemov AV. Carnosine Levels in the Muscle Tissues of Sturgeons and Their Hybrids. APPL BIOCHEM MICRO+ 2020. [DOI: 10.1134/s0003683820030084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Distribution of Melanin Pigmentation in 33 Organs of Thai Black-Bone Chickens ( Gallus gallus domesticus). Animals (Basel) 2020; 10:ani10050777. [PMID: 32365908 PMCID: PMC7278803 DOI: 10.3390/ani10050777] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/25/2020] [Accepted: 04/29/2020] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Consumers are selectively attracted to the black-bone chicken breed for the characteristic darkness that is observed in many of its organs. However, the degree of darkness in all organs of the black-bone chicken is still relatively unknown. The question of whether hyperpigmentation is present in every organ or just in some organs is an important one. Additionally, the question of whether a similar hyperpigmentation pattern exists in all animals is also of significant interest. Presently, no reports have yet attempted to explain the distribution and location of the melanin pigment that is present in Thai Royal black-bone chickens. The results of this study will help to provide valuable background knowledge with regard to the anatomy of the black-bone chickens. We found that gender does not have an effect on the hyperpigmentation of each organ in black-bone chickens. Organs and/or tissue samples taken from some of the chickens, such as the heart, kidney, and abdominal fat, did not reveal any degree of hyperpigmentation while the liver of all chickens did not display any degree of hyperpigmentation. Finally, most organs did reveal some degree of melanin pigmentation in all layers. This was true with the exception of certain layers of the collected tissue samples, such as in the tissue samples of the epithelium and the tunica mucosa in some organs, that did not display any degree of pigmentation. Abstract The black-bone chicken (Gallus gallus domesticus) is a breed of chicken that is commonly found in Thailand. This breed is known for having a number of black colored organs. Consumers have been notably attracted to the black-bone chicken breed for the characteristic darkness that is observed in many of its organs. However, the degree of darkness in all organs of the black-bone chicken is still in question. Importantly, there have not yet been any published reports on the distribution of melanin pigment in the organs of the black-bone chicken. This research study aims to examine the distribution of the melanin pigment in 33 organs of the Thai black-bone chicken. Ten black-bone chickens (five male, five female) were included in this study. Thirty-two organs including the brain, spinal cord, sciatic nerve, larynx, trachea, syrinx, lungs, heart, pericardium, aorta, brachial vein, kidney, cloaca, oviduct, testis, gastrocnemius muscle, femur, tongue, esophagus, crop, proventriculus, gizzard, duodenum, jejunum, ileum, cecum, pancreas, liver, gall bladder, omentum, abdominal fat, spleen, and skin were examined in this study. Histological sections taken from tissue samples of each of these organs were studied. The findings revealed that the presence of the melanin pigment was not significantly different (p > 0.005) between male and female specimens. Notably, the liver was the only organ in which the melanin pigment had not accumulated. Consequently, there was not a uniform pattern of melanin pigment accumulation throughout the organs of the chickens. The melanin pigment was present in all of the tissue layers of most organs, while the melanin pigment was found in only specific layers of some of the organs. In conclusion, the distribution of melanin pigmentation in the organs of each of the animals in this study was found to be different. However, in some tissue samples, such as those obtained from the liver, no accumulation of the melanin pigment was observed.
Collapse
|
24
|
Saenmuang S, Phothiset S, Chumnanka C. Extraction and characterization of gelatin from black-bone chicken by-products. Food Sci Biotechnol 2019; 29:469-478. [PMID: 32296557 DOI: 10.1007/s10068-019-00696-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 08/20/2019] [Accepted: 10/01/2019] [Indexed: 10/25/2022] Open
Abstract
In this study, gelatins from black-bone chicken feet and skin (BCFG and BCSG) were extracted using different NaOH concentrations, and their physicochemical properties were characterized and compared to commercial bovine gelatin (BG). It was found that the yield of BCFG was higher than BCSG, however, it contained higher amount of ash. All studied gelatins were composed of two distinct α-chains, while β-chain and γ-chain were not present. The BCFG and BCSG were found to have lower pH, lower hydroxyproline content and lower thermal stability, but higher gel strength as compared with the BG. The colors of BCSG and BCSG were slightly darker than BG. The NaOH concentration did not show strong influence on physicochemical properties of the extracted gelatins, however, thermal stability and gel strength of BCSG tended to decrease with increasing of NaOH concentration. These findings suggested that black-bone chicken feet and skin could be a great source for the production of gelatin.
Collapse
Affiliation(s)
- Soraya Saenmuang
- Department of Food Technology and Nutrition, Faculty of Natural Resources and Agro-Industry, Kasetsart University, Chalermphrakiat Sakon Nakhon Province Campus, 59/4 Moo 1 Chiangkrue, Muang, Sakon Nakhon 47000 Thailand
| | - Suphatta Phothiset
- Department of Food Technology and Nutrition, Faculty of Natural Resources and Agro-Industry, Kasetsart University, Chalermphrakiat Sakon Nakhon Province Campus, 59/4 Moo 1 Chiangkrue, Muang, Sakon Nakhon 47000 Thailand
| | - Chuleeporn Chumnanka
- Department of Food Technology and Nutrition, Faculty of Natural Resources and Agro-Industry, Kasetsart University, Chalermphrakiat Sakon Nakhon Province Campus, 59/4 Moo 1 Chiangkrue, Muang, Sakon Nakhon 47000 Thailand
| |
Collapse
|
25
|
Li W, Liu Y, Jiang W, Yan X. Proximate Composition and Nutritional Profile of Rainbow Trout ( Oncorhynchus mykiss) Heads and Skipjack tuna ( Katsuwonus Pelamis) Heads. Molecules 2019; 24:E3189. [PMID: 31480782 PMCID: PMC6749204 DOI: 10.3390/molecules24173189] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 08/28/2019] [Accepted: 08/31/2019] [Indexed: 02/05/2023] Open
Abstract
In order to evaluate the application potential of rainbow trout (Oncorhynchus mykiss) heads and skipjack tuna (Katsuwonus pelamis) heads; proximate composition, amino acids, fatty acids, carnosine, and anserine contents were analyzed in this study. Rainbow trout heads showed significantly higher protein (29.31 g/100 g FW, FW is abbreviation of fresh weight) and lipid (6.03 g/100 g FW) contents than skipjack tuna heads (18.47 g/100 g FW protein and 4.83 g/100 g FW lipid) (p < 0.05). Rainbow trout heads and skipjack tuna heads exhibited similar amino acid composition. Essential amino acids constituted more than 40% of total amino acids in both rainbow trout head and skipjack tuna head. The fatty acid profile was different between rainbow trout heads and skipjack tuna heads. Rainbow trout heads mainly contained 38.64% polyunsaturated fatty acids (PUFAs) and 38.57% monounsaturated fatty acids (MUFAs), whereas skipjack tuna heads mainly contained 54.46% saturated fatty acids (SFAs). Skipjack tuna heads contained 4563 mg/kg FW anserine and 1761 mg/kg FW carnosine, which were both significantly higher than those of rainbow trout heads (p < 0.05). These results demonstrate that both rainbow trout heads and skipjack tuna heads may be used as materials for recycling high-quality protein. Meanwhile, rainbow trout heads can be used to extract oil with high contents of unsaturated fatty acids, while skipjack tuna heads may be a source for obtaining carnosine and anserine.
Collapse
Affiliation(s)
- Weinan Li
- Key Laboratory of Key Technical Factors in Zhejiang Seafood Health Hazards, Institute of Innovation & Application, Zhejiang Ocean University, Zhoushan 316022, China
- Laboratory of Seafood Processing, Innovative and Application Institute, Zhejiang Ocean University, Zhoushan 316022, China
| | - Yu Liu
- Key Laboratory of Key Technical Factors in Zhejiang Seafood Health Hazards, Institute of Innovation & Application, Zhejiang Ocean University, Zhoushan 316022, China
- Laboratory of Seafood Processing, Innovative and Application Institute, Zhejiang Ocean University, Zhoushan 316022, China
| | - Wei Jiang
- Key Laboratory of Key Technical Factors in Zhejiang Seafood Health Hazards, Institute of Innovation & Application, Zhejiang Ocean University, Zhoushan 316022, China.
- Laboratory of Seafood Processing, Innovative and Application Institute, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Xiaojun Yan
- Laboratory of Seafood Processing, Innovative and Application Institute, Zhejiang Ocean University, Zhoushan 316022, China.
| |
Collapse
|
26
|
Li D, Wang X, Fu Y, Zhang C, Cao Y, Wang J, Zhang Y, Li Y, Chen Y, Li Z, Li W, Jiang R, Sun G, Tian Y, Li G, Kang X. Transcriptome Analysis of the Breast Muscle of Xichuan Black-Bone Chickens Under Tyrosine Supplementation Revealed the Mechanism of Tyrosine-Induced Melanin Deposition. Front Genet 2019; 10:457. [PMID: 31156710 PMCID: PMC6529781 DOI: 10.3389/fgene.2019.00457] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 04/30/2019] [Indexed: 01/18/2023] Open
Abstract
The Xichuan black-bone chicken, which is a rare local chicken species in China, is an important genetic resource of black-bone chickens. Tyrosine can affect melanin production, but the molecular mechanism underlying tyrosine-induced melanin deposition in Xichuan black-bone chickens is poorly understood. Here, the blackness degree and melanin content of the breast muscle of Xichuan black-bone chickens fed a basic diet with five levels of added tyrosine (i.e., 0.2, 0.4, 0.6, 0.8, and 1.0%; these groups were denoted test groups I-V, respectively) were assessed, and the results showed that 0.8% tyrosine was the optimal level of added tyrosine. Moreover, the effects of tyrosine supplementation on the proliferation and tyrosinase content of melanocytes in Xichuan black-bone chickens were evaluated. The results revealed a dose-dependent relationship between tyrosine supplementation and melanocyte proliferation. In addition, 417 differentially expressed genes (DEGs), including 160 upregulated genes and 257 downregulated genes, were identified in a comparative analysis of the transcriptome profiles constructed using the pooled total RNA from breast muscle tissues of the control group and test group IV, respectively (fold change ≥2.0, P < 0.05). These DEGs were mainly involved in melanogenesis, the calcium signaling pathway, the Wnt signaling pathway, the mTOR signaling pathway, and vascular smooth muscle contraction. The pathway analysis of the DEGs identified some key genes associated with pigmentation, such as DCT and EDNRB2. In summary, the melanin content of breast muscle could be markedly enhanced by adding an appropriate amount of tyrosine to the diet of Xichuan black-bone chickens, and the EDNRB2-mediated molecular regulatory network could play a key role in the biological process of tyrosine-induced melanin deposition. These results have deepened the understanding of the molecular regulatory mechanism of melanin deposition in black-bone chickens and provide a basis for the regulation of nutrition and genetic breeding associated with melanin deposition in Xichuan black-bone chickens.
Collapse
Affiliation(s)
- Donghua Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Xinlei Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Yawei Fu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Chenxi Zhang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Yanfang Cao
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Jie Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Yanhua Zhang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Yuanfang Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Yi Chen
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Zhuanjian Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Wenting Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Ruirui Jiang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Henan Agricultural University, Zhengzhou, China
| | - Guirong Sun
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Henan Agricultural University, Zhengzhou, China
| | - Yadong Tian
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Henan Agricultural University, Zhengzhou, China
| | - Guoxi Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Henan Agricultural University, Zhengzhou, China
| | - Xiangtao Kang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
27
|
Yu S, Wang G, Liao J. Association of a novel SNP in the ASIP gene with skin color in black-bone chicken. Anim Genet 2019; 50:283-286. [PMID: 30883845 DOI: 10.1111/age.12768] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2018] [Indexed: 11/28/2022]
Abstract
The agouti signaling protein gene (ASIP) is a widely studied pigmentation gene that plays an important role in melanin synthesis. To determine the variety of ASIP expression in the Muchuan Black-Bone chicken, we examined genetic variation in the ASIP promoter region. A single nucleotide polymorphism (c.-1826A>T) was found to be associated with the skin color (dorsal and subalar) of black-bone chicken. Individuals with TT and AT genotypes had higher ASIP mRNA levels in the skin than did those with the AA genotype (P < 0.01). In addition, individuals with the TT genotype had higher ASIP mRNA levels than did those with the AT genotype (P < 0.05). Expression of melanogenesis-related genes (melanocortin 1 receptor and tyrosinase genes) was higher in the skin of chickens with the TT and AT genotypes than in those with the AA genotype (P < 0.01). A luciferase assay showed that promoter activity was higher in chickens with the TT genotype than in those with the AA genotype. Putative transcription factor prediction suggested that the c.-1826A>T mutation might shift the promoter binding affinity with differential transcription factors. In summary, we identified a novel mutation in the ASIP gene promoter that may affect chicken skin color by altering ASIP transcriptional activity.
Collapse
Affiliation(s)
- S Yu
- Engineering Research Center of Sichuan Province Higher School of Local Chicken Breeds Industrialization in Southern Sichuan, College of Life Science, Leshan Normal University, Leshan, 614000, China
| | - G Wang
- Engineering Research Center of Sichuan Province Higher School of Local Chicken Breeds Industrialization in Southern Sichuan, College of Life Science, Leshan Normal University, Leshan, 614000, China
| | - J Liao
- Engineering Research Center of Sichuan Province Higher School of Local Chicken Breeds Industrialization in Southern Sichuan, College of Life Science, Leshan Normal University, Leshan, 614000, China
| |
Collapse
|
28
|
Mi S, Shang K, Jia W, Zhang CH, Fan YQ. Characterization and authentication of Taihe black-boned silky fowl (Gallus gallus domesticus Brisson) muscles based on mineral profiling using ICP-MS. Microchem J 2019. [DOI: 10.1016/j.microc.2018.08.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
29
|
Yu S, Wang G, Liao J, Tang M. Transcriptome profile analysis identifies candidate genes for the melanin pigmentation of breast muscle in Muchuan black-boned chicken. Poult Sci 2018; 97:3446-3455. [PMID: 29982752 DOI: 10.3382/ps/pey238] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 06/07/2018] [Indexed: 12/28/2022] Open
Abstract
Melanin-based coloration in the meat of black-boned chicken is a major economic issue in China. Variation in the pigmentation (hypopigmentation) of chicken muscle causes direct economic losses every year. To determine the molecular mechanisms involved in the melanogenesis of muscle tissue, this study used high-throughput sequencing to compare differences in the transcriptome between black (BM) and white (WM) chicken breast muscles. We constructed 6 cDNA libraries from BM and WM groups in Muchuan black-boned chickens. A comparison between the BM and WM groups revealed 264 differentially expressed genes, of which 152 were upregulated, whereas 112 were downregulated in black muscle. Gene ontology and a Kyoto Encyclopedia of Genes and Genomes pathway analysis identified several differentially enriched biological functions and processes of the 2 muscles. Seven promising candidate genes [PMEL, Ras-related protein RAB29, and 5 solute carrier superfamily genes: SLC6A9, SLC38A4, SLC22A5, SLC35F3, and SLC16A3] may play an important role in the melanogenesis of chicken muscle. Our data provide a valuable resource for identifying genes whose functions are critical for muscle melanogenesis, and will assist studies of the molecular mechanisms of melanogenesis regulation in chicken muscle.
Collapse
Affiliation(s)
- Shigang Yu
- Engineering Research Center of Sichuan Province Higher School of Local Chicken Breeds Industrialization in Southern Sichuan, College of Life Science, Leshan Normal University, Leshan 614000, China
| | - Gang Wang
- Engineering Research Center of Sichuan Province Higher School of Local Chicken Breeds Industrialization in Southern Sichuan, College of Life Science, Leshan Normal University, Leshan 614000, China
| | - Juan Liao
- Engineering Research Center of Sichuan Province Higher School of Local Chicken Breeds Industrialization in Southern Sichuan, College of Life Science, Leshan Normal University, Leshan 614000, China
| | - Mei Tang
- Engineering Research Center of Sichuan Province Higher School of Local Chicken Breeds Industrialization in Southern Sichuan, College of Life Science, Leshan Normal University, Leshan 614000, China
| |
Collapse
|
30
|
Mi S, Shang K, Jia W, Zhang CH, Li X, Fan YQ, Wang H. Characterization and discrimination of Taihe black-boned silky fowl ( Gallus gallus domesticus Brisson ) muscles using LC/MS-based lipidomics. Food Res Int 2018; 109:187-195. [DOI: 10.1016/j.foodres.2018.04.038] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 04/02/2018] [Accepted: 04/17/2018] [Indexed: 12/11/2022]
|
31
|
Overholt MF, Kim GD, Boler DD, Kerr BJ, Dilger AC. Influence of feeding thermally peroxidized soybean oil to finishing pigs on carcass characteristics, loin quality, and shelf life of loin chops. J Anim Sci 2018; 96:2710-2722. [PMID: 29726946 PMCID: PMC6095266 DOI: 10.1093/jas/sky176] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 05/01/2018] [Indexed: 11/12/2022] Open
Abstract
The objective of this study was to evaluate the effect of feeding soybean oil (SO) with varying levels of peroxidation on carcass traits and shelf life of loins. Fifty-six barrows were randomly assigned to 1 of 4 diets containing 10% fresh SO (22.5 °C) or thermally processed SO (45 °C for 288 h, 90 °C for 72 h, or 180 °C for 6 h), each infused with air at a rate of 15 liter/min. Individually housed pigs were provided ad libitum access to feed for 81 d. At 82 d, pigs were slaughtered and hot carcass weight and liver weights were recorded. Carcass characteristics and fresh loin quality were evaluated 1 d postmortem. Loin chops from each carcass were overwrap-packaged and subjected to a 10-d simulated retail display. Daily measurements of L*, a*, b*, reflectance, and visual discoloration were conducted, evaluation of cooking loss and Warner-Bratzler shear force (WBSF) was conducted on chops stored 0, 5, and 10 d, and thiobarbituric acid reactive substances (TBARS) were evaluated on chops stored 0 and 10 d. Shelf life-related data were analyzed as a completely randomized design with repeated measures in time, with storage location (shelf) as a random effect. Carcasses of 90 °C pigs weighed 6.0, 8.6, and 6.9 kg less (P < 0.03) than 22.5 °C, 45 °C, and 180 °C carcasses, respectively. Livers of 90 °C and 180 °C pigs were 14.3% and 11.7%, respectively, heavier (P ≤ 0.02) than those from pigs fed 22.5 °C SO, with livers of 45 °C being intermediate. Livers of 90 °C pigs represented 0.12 percentage units less (P = 0.02) of ending live weight than livers of 180 °C pigs, and 180 °C livers were 0.12 percentage units less (P < 0.01) of ending live weight than those from pigs fed 22.5 °C SO, with 45 °C being intermediate. There was no difference (P ≥ 0.19) in back fat depth, loin muscle area, or estimated carcass lean percentage among SO treatments, nor was there an effect (P ≥ 0.13) of SO on any early post-mortem loin quality traits or loin composition. There was no effect (P > 0.14) of SO on cooking loss, WBSF, L*, a*, b*, hue angle, reflectance, discoloration, or TBARS; however, there was a tendency (P = 0.09) for chops of 45 °C pigs to have greater (P < 0.04) chroma than either 22.5 °C or 180 °C, with 90 °C being intermediate. Overall, feeding SO cooked at 90 °C for 72 h resulted in reduced carcass weight and dressing percentage; however, there was no evidence that feeding peroxidized SO was detrimental to shelf life of loin chops.
Collapse
Affiliation(s)
| | - Gap-Don Kim
- Department of Animal Sciences, University of Illinois, Urbana, IL
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Dustin Dee Boler
- Department of Animal Sciences, University of Illinois, Urbana, IL
| | - Brian Jay Kerr
- USDA-ARS National Laboratory for Agriculture and the Environment, Ames, IA
| | - Anna C Dilger
- Department of Animal Sciences, University of Illinois, Urbana, IL
| |
Collapse
|
32
|
Lee CW, Lee JR, Kim MK, Jo C, Lee KH, You I, Jung S. Quality Improvement of Pork Loin by Dry Aging. Korean J Food Sci Anim Resour 2016; 36:369-76. [PMID: 27433108 PMCID: PMC4942552 DOI: 10.5851/kosfa.2016.36.3.369] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/25/2016] [Accepted: 03/28/2016] [Indexed: 11/06/2022] Open
Abstract
This study aimed to investigate the effects of dry aging on the quality of pork loin. Longissimus lumborum muscles were dissected from the right half of five pork carcasses and were used as the control samples. The left halves of the carcasses were aged at 2±1℃ and a relative humidity of 80% for 40 d. The total aerobic bacteria count was similar between the control and dry-aged pork loin (p>0.05). Lactic-acid bacteria was absent in both the control and dry-aged pork loins. Dry-aged pork loin contained low moisture and high protein and ash compared to the controls (p<0.05). The pH was higher and cooking loss was lower in dry-aged pork loin compared to that in the control (p<0.05). Flavor related compounds, such as total free amino acid, hypoxanthine, and inosine of pork loin were higher in dry-aged pork loin; whereas, inosine 5'-monophosphate and guanosine 5'-monophosphate were low in dry-aged pork loin than control (p<0.05). There was no difference in carnosine and anserine content between dry-aged pork loin and the control (p>0.05). Dry-aged pork loin had lower hardness and shear force and received higher core in sensory evaluation than the control (p<0.05). According to the results, dry aging improved textural and sensorial quality of pork loin.
Collapse
Affiliation(s)
- Cheol Woo Lee
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Korea
| | - Ju Ri Lee
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Korea
| | - Min Kyu Kim
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Korea
| | - Cheorun Jo
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agricultural and Life Science, Seoul National University, Seoul 08826, Korea
| | - Kyung Haeng Lee
- Department of Food and Nutrition, Korea National University of Transportaion, Jeungpyung 27909, Korea
| | | | - Samooel Jung
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
33
|
Endogenous L-Carnosine Level in Diabetes Rat Cardiac Muscle. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:6230825. [PMID: 27190533 PMCID: PMC4846745 DOI: 10.1155/2016/6230825] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 01/18/2016] [Accepted: 01/18/2016] [Indexed: 11/17/2022]
Abstract
A novel method for quantitation of cardiac muscle carnosine levels using HPLC-UV is described. In this simple and reliable method, carnosine from the rat cardiac muscle and the internal standard, thymopentin, were extracted by protein precipitation with acetonitrile. The method was linear up to 60.96 μg·mL(-1) for L-carnosine. The calibration curve was linear in concentration ranges from 0.5 to 60.96 μg·mL(-1). The relative standard deviations obtained for intra- and interday precision were lower than 12% and the recoveries were higher than 90% for both carnosine and internal standard. We successfully applied this method to the analysis of endogenous carnosine in cardiac muscle of the diabetes rats and healthy control rats. The concentration of carnosine was significantly lower in the diabetes rats group, compared to that in the healthy control rats. These results support the usefulness of this method as a means of quantitating carnosine and illustrate the important role of L-carnosine in cardiac muscle.
Collapse
|
34
|
Jayasena DD, Jung S, Kim SH, Kim HJ, Alahakoon AU, Lee JH, Jo C. Endogenous functional compounds in Korean native chicken meat are dependent on sex, thermal processing and meat cut. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2015; 95:771-775. [PMID: 25155754 DOI: 10.1002/jsfa.6882] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 07/07/2014] [Accepted: 08/18/2014] [Indexed: 06/03/2023]
Abstract
BACKGROUND In this study the effects of sex, meat cut and thermal processing on the carnosine, anserine, creatine, betaine and carnitine contents of Korean native chicken (KNC) meat were determined. Forty 1-day-old chicks (20 chicks of each sex) from a commercial KNC strain (Woorimatdag™) were reared under similar standard commercial conditions with similar diets, and ten birds of each sex were randomly selected and slaughtered at 14 weeks of age. Raw and cooked meat samples were prepared from both breast and leg meats and analyzed for the aforementioned functional compounds. RESULTS Female KNCs had significantly higher betaine and creatine contents. The breast meat showed significantly higher carnosine and anserine contents, whereas the leg meat had a higher betaine and carnitine content. The content of all functional compounds was significantly depleted by thermal processing. CONCLUSION This study confirms that KNC meat is a good source of the above-mentioned functional compounds, which can be considered attractive nutritional quality factors. However, their concentrations were significantly affected by thermal processing conditions, meat cut and sex. Further experiments are needed to select the best thermal processing method to preserve these functional compounds.
Collapse
Affiliation(s)
- Dinesh D Jayasena
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 305-764, Republic of Korea; Department of Animal Science, Uva Wellassa University, Badulla 90000, Sri Lanka
| | | | | | | | | | | | | |
Collapse
|
35
|
Jayasena DD, Jung S, Bae YS, Park HB, Lee JH, Jo C. Comparison of the amounts of endogenous bioactive compounds in raw and cooked meats from commercial broilers and indigenous chickens. J Food Compost Anal 2015. [DOI: 10.1016/j.jfca.2014.06.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
36
|
Zhang H, Ge T, Peng S, Zhong S, Zhou Z. Microstructure Features of Proventriculus and Ultrastructure of the Gastric Gland Cells in Chinese Taihe Black-bone Silky Fowl (Gallus gallus domesticusBrisson). Anat Histol Embryol 2014; 45:1-8. [DOI: 10.1111/ahe.12164] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 10/22/2014] [Indexed: 11/29/2022]
Affiliation(s)
- H. Zhang
- College of Animal Science and Technology; Jiangxi Agricultural University; Nanchang 330045 China
| | - T. Ge
- College of Animal Science and Technology; Jiangxi Agricultural University; Nanchang 330045 China
| | - S. Peng
- College of Animal Science and Technology; Jiangxi Agricultural University; Nanchang 330045 China
| | - S. Zhong
- College of Animal Science and Technology; Jiangxi Agricultural University; Nanchang 330045 China
| | - Z. Zhou
- College of Animal Science and Technology; Jiangxi Agricultural University; Nanchang 330045 China
| |
Collapse
|
37
|
Jayasena DD, Jung S, Bae YS, Kim SH, Lee SK, Lee JH, Jo C. Changes in endogenous bioactive compounds of Korean native chicken meat at different ages and during cooking. Poult Sci 2014; 93:1842-9. [PMID: 24812230 DOI: 10.3382/ps.2013-03721] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This study aimed to examine the effect of bird age on the contents of endogenous bioactive compounds, including carnosine, anserine, creatine, betaine, and carnitine, in meat from a certified meat-type commercial Korean native chicken strain (KNC; Woorimatdag). Additionally, the effects of the meat type (breast or leg meat) and the state of the meat (raw or cooked) were examined. Cocks of KNC were raised under similar standard commercial conditions at a commercial chicken farm. At various ages (10, 11, 12, 13, and 14 wk), breast and leg meats from a total of 10 birds from each age group were obtained. Raw and cooked meat samples were then prepared separately and analyzed for bioactive compounds. The age of the KNC had a significant effect only on the betaine content. The breast meat of KNC had higher amounts of carnosine and anserine but had lower amounts of betaine and carnitine than the leg meat (P < 0.05). The KNC meat lost significant amounts of all bioactive compounds during cooking (P < 0.05). Leg meat had high retention percentages of carnosine and anserine after cooking, whereas breast meat showed almost complete retention of betaine and carnitine. The results of this study provide useful and rare information regarding the presence, amounts, and determinants of endogenous bioactive compounds in KNC meat, which can be useful for selection and breeding programs, and also for popularizing indigenous chicken meat.
Collapse
Affiliation(s)
- Dinesh D Jayasena
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 305-764, Republic of Korea Department of Animal Science, Uva Wellassa University, Badulla 90000, Sri Lanka
| | - Samooel Jung
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 305-764, Republic of Korea
| | - Young Sik Bae
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 305-764, Republic of Korea
| | - Sun Hyo Kim
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 305-764, Republic of Korea
| | - Soo Kee Lee
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 305-764, Republic of Korea
| | - Jun Heon Lee
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 305-764, Republic of Korea
| | - Cheorun Jo
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 151-921, Republic of Korea
| |
Collapse
|
38
|
Kim SK, Kwon D, Kwon DA, Paik IK, Auh JH. Optimizing Carnosine Containing Extract Preparation from Chicken Breast for Anti-glycating agents. Korean J Food Sci Anim Resour 2014; 34:127-32. [PMID: 26760755 PMCID: PMC4597823 DOI: 10.5851/kosfa.2014.34.1.127] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 02/03/2014] [Accepted: 02/06/2014] [Indexed: 11/06/2022] Open
Abstract
Optimization of carnosine and anserine extraction from chicken breast was performed using response surface methodology (RSM) to obtain the maximized physiological activities for anti-glycation and anti-oxidation. The optimum extraction conditions were water extraction for 1.6 h in the case of the 20-wk laying hen muscle and water extraction for 2.12 h in the case of 90-wk laying hen muscle. Higher carnosine and anserine contents were measured in the 20-wk laying hen muscle, along with higher physiological activities, which increased in direct proportion with the dipeptide contents. The extracts prepared from the 20-wk laying hen under optimum conditions showed 57% inhibition of advanced glycated end-product formation, 64% inhibition of lipid peroxidation, and 61% of DPPH radical scavenging effects. On the other hand, 52% inhibition of AGE formation, 62% inhibition of lipid peroxidation, and 53% of DPPH radical scavenging effect were demonstrated within the 90-wk laying hen. In addition, the ratio of carnosine was a key indicator for the physiological activities of the extracts.
Collapse
Affiliation(s)
- Seung-Ki Kim
- Department of Food Science and Technology, Chung-Ang University, Anseong 465-756, Korea
| | - Dodan Kwon
- Department of Food Science and Technology, Chung-Ang University, Anseong 465-756, Korea
| | - Da-Ae Kwon
- Department of Food Science and Technology, Chung-Ang University, Anseong 465-756, Korea
| | - In Kee Paik
- Department of Animal Science and Technology, Chung-Ang University, Anseong 465-756, Korea
| | - Joong-Hyuck Auh
- Department of Food Science and Technology, Chung-Ang University, Anseong 465-756, Korea
| |
Collapse
|
39
|
Kojima S, Saegusa H, Sakata M. Histidine-Containing Dipeptide Concentration and Antioxidant Effects of Meat Extracts from Silky Fowl: Comparison with Meat-Type Chicken Breast and Thigh Meats. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2014. [DOI: 10.3136/fstr.20.621] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
40
|
Shen Y, Cai L, Wang Y, Wei R, He M, Wang S, Wang G, Cheng Z. Genetic mutations of avian leukosis virus subgroup J strains extended their host range. J Gen Virol 2013; 95:691-699. [PMID: 24272684 DOI: 10.1099/vir.0.059915-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The genetic diversity of avian leukosis virus subgroup J (ALV-J) is determined not only by the env gene, but also by its 3' UTR and 3' LTR. They all play important roles in extending the host range and tumour development. In the present study, one ALV-J strain (ZB110604-6) from Black-Bone Silky Fowl (BSF) and three ALV-J strains (ZB110604-3/4/5) from grey partridge (GP), which bore multiple tumours and breed in one house of Farm A, were demonstrated extending their host to GP, while two other ALV-J strains (LC110515-3/4) from BSF of Farm B could not infect the embryo fibroblast of GP. The BSF is a unique species of chicken in China, while the GP is a close relative of the pheasant that previously demonstrated resistance to ALV-J. Histopathology showed that various tumours were induced by ALV-J in the two species. Phylogenetic tree analysis showed that the isolates from Farms A and B, rather than species, belong to two different clusters of ALV-J. Genetic mutations analysis revealed that the isolates obtained from Farm A showed a higher frequency of mutation in the hypervariable region 2 domain than in other variable regions of the gp85 gene. From the nucleotide alignment of the 3' UTR and 3' LTR gene, and the spectrum of tumours observed in this study, we speculate that the deletions or mutations in the redundant transmembrane region, E element and U3 (CAAT boxes, CArG box and Y box) might associate with tumour formation and development. The extension of the host range of ALV-J to the GP suggested that housing different species together provides more opportunities for ALV-J to evolve rapidly.
Collapse
Affiliation(s)
- Yanwei Shen
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, PR China
| | - Liming Cai
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, PR China
| | - Yanming Wang
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, PR China
| | - Rongrong Wei
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, PR China
| | - Menglian He
- Vocation College of Animal Science and Veterinary Medicine, Wei Fang 261061, PR China
| | - Shanhui Wang
- Xuzhou Vocation College of Bioengineering, Xu Zhou 221006, PR China
| | - Guihua Wang
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, PR China
| | - Ziqiang Cheng
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, PR China
| |
Collapse
|
41
|
Cai L, Shen Y, Wang G, Guo H, Liu J, Cheng Z. Identification of two novel multiple recombinant avian leukosis viruses in two different lines of layer chicken. J Gen Virol 2013; 94:2278-2286. [PMID: 23884361 DOI: 10.1099/vir.0.054239-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Avian leukosis virus (ALV) is the most common oncogenetic retrovirus that emerges spontaneously as a result of recombination between exogenous viruses, exogenous viruses and endogenous viruses, and exogenous viruses and non-homologous cellular genes. In the present study, two natural recombinant avian leukosis viruses (rALVs) (LC110515-5 and LC110803-5) carrying a subgroup C gp85 gene, a subgroup E gp37 gene, and a subgroup J 3'UTR and 3'LTR were isolated from two different lines of layer flocks, Black-bone silky fowl (BSF) and commercial layer chicken, that suffered from myeloid leukosis. Although tumours were not observed in rALV-infected individual chickens, other non-neoplastic inflammatory lesions were evident. The two rALVs were cultured on DF-1 cells and identified by PCR, immunofluorescence assay and gene sequencing. The gp85 nucleotide sequence in the two isolates displayed a high identity (>95 %) with that of the gp85 gene in ALV-C, but the identity was less than 90 % with ALV-A/B/D/E and only 51 % with ALV-J. Phylogenetic analysis of the nucleotide and amino acid sequences confirmed that the two isolates were recombinant between ALV-C, ALV-E and ALV-J. Subgroup C ALV is rarely found in field cases. This report is the first to provide evidence that ALV-C has recombined with ALV-E and ALV-J in two different chicken lines. The source and characteristics of the two rALVs and ALV-C need to be further investigated.
Collapse
Affiliation(s)
- Liming Cai
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Yanwei Shen
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Guihua Wang
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Huijun Guo
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an 271018, China
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Jianzhu Liu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an 271018, China
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Ziqiang Cheng
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an 271018, China
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| |
Collapse
|
42
|
Liu W, Gu R, Lin F, Lu J, Yi W, Ma Y, Dong Z, Cai M. Isolation and identification of antioxidative peptides from pilot-scale black-bone silky fowl (Gallus gallus domesticus Brisson) muscle oligopeptides. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2013; 93:2782-2788. [PMID: 23408437 DOI: 10.1002/jsfa.6099] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 08/14/2012] [Accepted: 02/13/2013] [Indexed: 06/01/2023]
Abstract
BACKGROUND A pilot-scale production was developed to produce oligopeptide powder from black-bone silky fowl (Gallus gallus domesticus Brisson) muscle (BSFP) by two-step enzymatic hydrolysis and multistage separation. The resultant BSFP was assessed for antioxidant activities against four free radicals (hydroxyl, 1,1-dipheny-2-picrylhydrazyl (DPPH), superoxide and peroxyl) and against the peroxidation of linoleic acid in a lipid peroxidation model system. After separation by reversed-phase high-performance liquid chromatography (RP-HPLC), five major fractions of BSFP were tested for DPPH radical scavenging activity and subjected to mass spectrometry to identify the active peptides. RESULTS BSFP showed potential antioxidant activity in four assay systems. Three RP-HPLC fractions produced higher antioxidant effect than BSFP, with Fraction 4 showing the strongest activity. A total of 18 peptides were identified, and two peptides - Leu-Trp-Arg and Asn-Met - had strong scavenging activity, with IC50 values of 2.28 ± 0.05 and 4.65 ± 0.09 mg mL(-1) , respectively. Asn-Met is a novel antioxidative peptide that has not been previously reported. CONCLUSIONS The results showed that the pilot-scale production of BSFP was a practical way to produce peptides with high value and potential antioxidant activity. BSFP and its antioxidative peptides can be a source of natural antioxidant and used as a food additive.
Collapse
Affiliation(s)
- Wenying Liu
- China National Research Institute of Food and Fermentation Industries, Beijing, 100027, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Liu J, Huang Y, Tian Y, Nie S, Xie J, Wang Y, Xie M. Purification and identification of novel antioxidative peptide released from Black-bone silky fowl (Gallus gallus domesticus Brisson). Eur Food Res Technol 2013. [DOI: 10.1007/s00217-013-1987-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
44
|
Kim SK, Kim YM, Baek IK, Auh JH. Carnosine and Anserine in Chicken: Distribution, Age-dependency and their Anti-glycation Activity. Korean J Food Sci Anim Resour 2012. [DOI: 10.5851/kosfa.2012.32.1.45] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
45
|
Tian Y, Zhu S, Xie M, Wang W, Wu H, Gong D. Composition of fatty acids in the muscle of black-bone silky chicken (Gallus gellus demesticus brissen) and its bioactivity in mice. Food Chem 2011. [DOI: 10.1016/j.foodchem.2010.11.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
46
|
Liu JH, Tian YG, Wang Y, Nie SP, Xie MY, Zhu S, Wang CY, Zhang P. Characterization and in vitro antioxidation of papain hydrolysate from black-bone silky fowl (Gallus gallus domesticus Brisson) muscle and its fractions. Food Res Int 2011. [DOI: 10.1016/j.foodres.2010.10.050] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
47
|
Geng SS, Li HZ, Wu XK, Dang JM, Tong H, Zhao CY, Liu Y, Cai YQ. Effect of Wujijing Oral Liquid on menstrual disturbance of women. JOURNAL OF ETHNOPHARMACOLOGY 2010; 128:649-653. [PMID: 20051257 DOI: 10.1016/j.jep.2009.12.041] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Revised: 11/26/2009] [Accepted: 12/28/2009] [Indexed: 05/28/2023]
Abstract
OBJECTIVE Wujijing Oral Liquid (WJJ) contained principally the flesh essence of the black-boned chicken. As a kind of food and medicine in China, it was used to treat the menstrual disturbance traditionally, but the exact mechanism of the action was not yet clear. The clinical effects of the WJJ on the symptoms of the menstrual disturbance and the reproductive hormones were studied in this paper. MATERIALS AND METHODS The 53 women with the menstrual disturbance were selected as the study object, and then they were randomly divided to receive either WJJ 10mL twice daily (n=28) or the placebo (n=25) from the 1st day after menstrual flow for 2 menstrual cycles. On the 1st day after the discontinuation of the medication but before the treatment, the scores for the menstrual pattern and the related symptoms were obtained and the blood samples were collected to test the reproductive hormones. The serum levels of the follicle-stimulating hormone (FSH), luteinizing hormone (LH), prolactin (PRL) and estradiol (E2) were examined by enzyme-linked immunosorbent assay (ELISA). The levels of progesterone (P) and testosterone (T) in serum were measured by the radioimmunoassay. RESULTS The score for the primary and related symptoms of the menstruation was increased significantly among patients treated with the WJJ. The differences on the FSH, PRL, and E2 levels of patients were significant before and after the treatment with WJJ. Comparing the WJJ group and the placebo group, the levels of P and T differed significantly after treatment. The oral liquid of WJJ was found to be safe, as it did not cause any change in the hepatic and renal functional parameters. CONCLUSION The oral liquid of Wujijing could improve the menstrual disturbance and were generally safe and well tolerated. The possible mechanism could be associated with its effects in reinforcing the kidney and regulating the hypothalamus-pituitary-ovary axis (HPOA).
Collapse
Affiliation(s)
- Shan Shan Geng
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, 140 Han Zhong Road, Nanjing 210029, China
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Physicochemical characterisation and antioxidant activity of melanin from the muscles of Taihe Black-bone silky fowl (Gallus gallus domesticus Brisson). Food Chem 2009. [DOI: 10.1016/j.foodchem.2008.11.015] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
49
|
Structural characterization of melanin from Black-bone silky fowl (Gallus gallus domesticus Brisson). Pigment Cell Melanoma Res 2009; 22:134-6. [DOI: 10.1111/j.1755-148x.2008.00529.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
50
|
Chen SR, Jiang B, Zheng JX, Xu GY, Li JY, Yang N. Isolation and characterization of natural melanin derived from silky fowl (Gallus gallus domesticus Brisson). Food Chem 2008. [DOI: 10.1016/j.foodchem.2008.04.053] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|