1
|
Wei L, Zhong Y, Wu X, Wei S, Liu Y. Roles of Nitric Oxide and Brassinosteroid in Improving Fruit Quality during Postharvest: Potential Regulators? JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:23671-23688. [PMID: 39406695 DOI: 10.1021/acs.jafc.4c05680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
Most postharvest fruits are highly perishable, which directly impairs fruit taste and causes an economic loss of fresh products. Thus, it is necessary to find effective techniques to alleviate this issue. Recently, nitric oxide (NO) and brassinosteroid (BR) have been developed as postharvest alternatives to improve fruit quality. This work mainly reviews the recent processes of NO and BR in improving fruit quality during postharvest. Exogenous NO or BR treatments delayed fruit senescence, enhanced disease resistance, and alleviated chilling injury in postharvest fruit, and potential physiological and biochemical mechanisms mainly include (1) enhancing antioxidant and defense ability, (2) affecting ethylene biosynthesis, (3) regulating sugar and energy metabolism, (4) mediating plant hormone signaling, and (5) regulating protein S-nitrosylation and DNA methylation. This review concludes the functions and mechanisms of NO and BR in improving postharvest fruit quality. Additionally, a specific finding is the possible crosstalk of applications of NO and BR during postharvest fruit storage, which provides new insights into the applicability of NO and BR for delaying fruit senescence, enhancing disease resistances of fruit, and alleviating chilling injury in postharvest fruit.
Collapse
Affiliation(s)
- Lijuan Wei
- Hubei Key Laboratory of Spices & Horticultural Plant Germplasm Innovation & Utilization, College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Yue Zhong
- Hubei Key Laboratory of Spices & Horticultural Plant Germplasm Innovation & Utilization, College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Xiuqiao Wu
- Hubei Key Laboratory of Spices & Horticultural Plant Germplasm Innovation & Utilization, College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Shouhui Wei
- Hubei Key Laboratory of Spices & Horticultural Plant Germplasm Innovation & Utilization, College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Yiqing Liu
- Hubei Key Laboratory of Spices & Horticultural Plant Germplasm Innovation & Utilization, College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| |
Collapse
|
2
|
Claudiane da Veiga J, Silveira NM, Seabra AB, Bron IU. Exploring the power of nitric oxide and nanotechnology for prolonging postharvest shelf-life and enhancing fruit quality. Nitric Oxide 2024; 142:26-37. [PMID: 37989410 DOI: 10.1016/j.niox.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/10/2023] [Accepted: 11/13/2023] [Indexed: 11/23/2023]
Abstract
Nitric oxide (NO) is a versatile signaling molecule that plays a crucial role in regulating postharvest fruit quality. The utilization of NO donors to elevate endogenous NO levels and induce NO-mediated responses represents a promising strategy for extending fruit shelf-life after harvest. However, the effectiveness of NO treatment is influenced by various factors, including formulation and application methods. In this review, we investigate the impact of NO supply on different fruits, aiming to prolong postharvest shelf-life and enhance fruit quality. Furthermore, we delve into the underlying mechanisms of NO action, particularly its interactions with ethylene and reactive oxygen species (ROS). Excitingly, we also highlight the emerging field of nanotechnology in postharvest applications, discussing the use of nanoparticles as a novel approach for achieving sustained release of NO and enhancing its effects. By harnessing the potential of nanotechnology, our review is a starting point to help identify gaps and future directions in this important, emerging field.
Collapse
Affiliation(s)
- Julia Claudiane da Veiga
- Laboratory of Plant Physiology "Coaracy M. Franco", Center R&D of Agricultural Biosystems and Postharvest, Agronomic Institute (IAC), Campinas SP, Brazil
| | - Neidiquele Maria Silveira
- Department of Biodiversity, Institute of Biosciences, São Paulo State University (UNESP), Rio Claro, SP, Brazil.
| | - Amedea Barozzi Seabra
- Centre for Natural and Human Sciences, Federal University of ABC, Santo André, SP, Brazil
| | - Ilana Urbano Bron
- Laboratory of Plant Physiology "Coaracy M. Franco", Center R&D of Agricultural Biosystems and Postharvest, Agronomic Institute (IAC), Campinas SP, Brazil
| |
Collapse
|
3
|
Gambhir P, Raghuvanshi U, Parida AP, Kujur S, Sharma S, Sopory SK, Kumar R, Sharma AK. Elevated methylglyoxal levels inhibit tomato fruit ripening by preventing ethylene biosynthesis. PLANT PHYSIOLOGY 2023; 192:2161-2184. [PMID: 36879389 PMCID: PMC10315284 DOI: 10.1093/plphys/kiad142] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/16/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Methylglyoxal (MG), a toxic compound produced as a by-product of several cellular processes, such as respiration and photosynthesis, is well known for its deleterious effects, mainly through glycation of proteins during plant stress responses. However, very little is known about its impact on fruit ripening. Here, we found that MG levels are maintained at high levels in green tomato (Solanum lycopersicum L.) fruits and decline during fruit ripening despite a respiratory burst during this transition. We demonstrate that this decline is mainly mediated through a glutathione-dependent MG detoxification pathway and primarily catalyzed by a Glyoxalase I enzyme encoded by the SlGLYI4 gene. SlGLYI4 is a direct target of the MADS-box transcription factor RIPENING INHIBITOR (RIN), and its expression is induced during fruit ripening. Silencing of SlGLYI4 leads to drastic MG overaccumulation at ripening stages of transgenic fruits and interferes with the ripening process. MG most likely glycates and inhibits key enzymes such as methionine synthase and S-adenosyl methionine synthase in the ethylene biosynthesis pathway, thereby indirectly affecting fruit pigmentation and cell wall metabolism. MG overaccumulation in fruits of several nonripening or ripening-inhibited tomato mutants suggests that the tightly regulated MG detoxification process is crucial for normal ripening progression. Our results underpin a SlGLYI4-mediated regulatory mechanism by which MG detoxification controls fruit ripening in tomato.
Collapse
Affiliation(s)
- Priya Gambhir
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| | - Utkarsh Raghuvanshi
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| | - Adwaita Prasad Parida
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| | - Stuti Kujur
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Shweta Sharma
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| | - Sudhir K Sopory
- Plant Stress Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Rahul Kumar
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Arun Kumar Sharma
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| |
Collapse
|
4
|
Cell Wall Integrity Signaling in Fruit Ripening. Int J Mol Sci 2023; 24:ijms24044054. [PMID: 36835462 PMCID: PMC9961072 DOI: 10.3390/ijms24044054] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/04/2023] [Accepted: 02/15/2023] [Indexed: 02/19/2023] Open
Abstract
Plant cell walls are essential structures for plant growth and development as well as plant adaptation to environmental stresses. Thus, plants have evolved signaling mechanisms to monitor the changes in the cell wall structure, triggering compensatory changes to sustain cell wall integrity (CWI). CWI signaling can be initiated in response to environmental and developmental signals. However, while environmental stress-associated CWI signaling has been extensively studied and reviewed, less attention has been paid to CWI signaling in relation to plant growth and development under normal conditions. Fleshy fruit development and ripening is a unique process in which dramatic alternations occur in cell wall architecture. Emerging evidence suggests that CWI signaling plays a pivotal role in fruit ripening. In this review, we summarize and discuss the CWI signaling in relation to fruit ripening, which will include cell wall fragment signaling, calcium signaling, and NO signaling, as well as Receptor-Like Protein Kinase (RLKs) signaling with an emphasis on the signaling of FERONIA and THESEUS, two members of RLKs that may act as potential CWI sensors in the modulation of hormonal signal origination and transduction in fruit development and ripening.
Collapse
|
5
|
Madebo MP, Ayalew Y, Zheng Y, Jin P. Nitric Oxide and Its Donor Sodium-Nitroprusside Regulation of the Postharvest Quality and Oxidative Stress on Fruits: A Systematic Review and Meta-Analysis. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2122995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Miilion Paulos Madebo
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, PR China
- Department of Horticulture, College of Agriculture and Natural Resource, Dilla University, Dilla, Ethiopia
| | - Yenenesh Ayalew
- Department of Horticulture, College of Agriculture and Natural Resource, Dilla University, Dilla, Ethiopia
| | - Yonghua Zheng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, PR China
| | - Peng Jin
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, PR China
| |
Collapse
|
6
|
Li C, Yu W, Liao W. Role of Nitric Oxide in Postharvest Senescence of Fruits. Int J Mol Sci 2022; 23:ijms231710046. [PMID: 36077446 PMCID: PMC9456340 DOI: 10.3390/ijms231710046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 08/29/2022] [Accepted: 09/01/2022] [Indexed: 11/28/2022] Open
Abstract
Nitric oxide (NO) acts as a gaseous signalling molecule and is considered to be a key regulator in the postharvest storage of fruits. Postharvest senescence is one of the most serious threats affecting the usage and economic value of fruits. Most recent studies have found that exogenous NO application can effectively improve the quality and prolong the shelf life of fruit postharvest by inhibiting postharvest diseases and alleviating chilling injury. Understanding the roles of NO is essential to elucidating how NO activates the appropriate set of responses to postharvest senescence. Here, we concluded that exogenous NO treatment alleviated senescence in postharvest fruit and attributed this to the following factors: (1) ethylene biosynthesis, (2) the antioxidant system, (3) polyamine metabolism and γ-aminobutyric acid (GABA) shunting, (4) cell wall metabolism, (5) sugar metabolism, (6) energy metabolism, (7) the CRT/DRE-binding factor (CBF) pathway and (8) S-nitrosylation. Moreover, crosstalk between NO and hydrogen sulfide (H2S), hydrogen peroxide (H2O2), oxalic acid (OA), arginine (Arg), GATA or plant hormone abscisic acid (ABA), melatonin (MT), and methyl jasmonate (MeJA), along with the regulation of key genes, were found to be very important in responses to postharvest senescence. In this study, we focus on the recent knowledge concerning the alleviative effect of NO on postharvest senescence, covering ethylene biosynthesis, the antioxidant system and related gene and protein expression.
Collapse
Affiliation(s)
- Changxia Li
- College of Agriculture, Guangxi University, Nanning 530004, China
- Correspondence:
| | - Wenjin Yu
- College of Agriculture, Guangxi University, Nanning 530004, China
| | - Weibiao Liao
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
7
|
Santos IS, Ribeiro THC, de Oliveira KKP, dos Santos JO, Moreira RO, Lima RR, Lima AA, Chalfun-Junior A. Multigenic regulation in the ethylene biosynthesis pathway during coffee flowering. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:1657-1669. [PMID: 36387981 PMCID: PMC9636343 DOI: 10.1007/s12298-022-01235-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Ethylene regulates different aspects of the plant's life cycle, such as flowering, and acts as a defense signal in response to environmental stresses. Changes induced by water deficit (WD) in gene expression of the main enzymes involved in ethylene biosynthesis, 1-aminocyclopropane-1-carboxylic acid synthase (ACS) and oxidase (ACO), are frequently reported in plants. In this study, coffee (Coffea arabica) ACS and ACO family genes were characterized and their expression profiles were analyzed in leaves, roots, flower buds, and open flowers from plants under well-watered (WW) and water deficit (WD) conditions. Three new ACS genes were identified. Water deficit did not affect ACS expression in roots, however soil drying strongly downregulated ACO expression, indicating a transcriptional constraint in the biosynthesis pathway during the drought that can suppress ethylene production in roots. In floral buds, ACO expression is water-independent, suggesting a higher mechanism of control in reproductive organs during the final flowering stages. Leaves may be the main sites for ethylene precursor (1-aminocyclopropane-1-carboxylic acid, ACC) production in the shoot under well-watered conditions, contributing to an increase in the ethylene levels required for anthesis. Given these results, we suggest a possible regulatory mechanism for the ethylene biosynthesis pathway associated with coffee flowering with gene regulation in leaves being a key point in ethylene production and ACO genes play a major regulatory role in roots and the shoots. This mechanism may constitute a regulatory model for flowering in other woody species. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-022-01235-y.
Collapse
Affiliation(s)
- Iasminy Silva Santos
- Plant Molecular Physiology Laboratory, Biology Department, Federal University of Lavras (UFLA), s/n, Cx., Postal 3037, Lavras, Minas Gerais 37200-900 Brazil
| | - Thales Henrique Cherubino Ribeiro
- Plant Molecular Physiology Laboratory, Biology Department, Federal University of Lavras (UFLA), s/n, Cx., Postal 3037, Lavras, Minas Gerais 37200-900 Brazil
| | - Kellen Kauanne Pimenta de Oliveira
- Plant Molecular Physiology Laboratory, Biology Department, Federal University of Lavras (UFLA), s/n, Cx., Postal 3037, Lavras, Minas Gerais 37200-900 Brazil
| | - Jacqueline Oliveira dos Santos
- Minas Gerais Agricultural Research Company, EPAMIG, Federal University of Lavras (UFLA), s/n, Cx., Postal 3037, Lavras, Minas Gerais 37200-900 Brazil
| | - Rafael Oliveira Moreira
- Plant Molecular Physiology Laboratory, Biology Department, Federal University of Lavras (UFLA), s/n, Cx., Postal 3037, Lavras, Minas Gerais 37200-900 Brazil
| | - Renato Ribeiro Lima
- Statistics Department, Federal University of Lavras (UFLA), s/n, Cx., Postal 3037, Lavras, Minas Gerais 37200-900 Brazil
| | - André Almeida Lima
- Plant Molecular Physiology Laboratory, Biology Department, Federal University of Lavras (UFLA), s/n, Cx., Postal 3037, Lavras, Minas Gerais 37200-900 Brazil
| | - Antonio Chalfun-Junior
- Plant Molecular Physiology Laboratory, Biology Department, Federal University of Lavras (UFLA), s/n, Cx., Postal 3037, Lavras, Minas Gerais 37200-900 Brazil
| |
Collapse
|
8
|
Wei J, Zhang Z, Zhang P, Wu B. Regulation of ethylene biosynthesis and signal transduction by nitric oxide leading to resistance against Alternaria alternata in Hami melon. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:3535-3542. [PMID: 34854489 DOI: 10.1002/jsfa.11697] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 09/17/2021] [Accepted: 12/01/2021] [Indexed: 05/14/2023]
Abstract
BACKGROUND Hami melons are tasty and nutritive, but susceptibility to the fungus Alternaria alternata is one of the main problems leading to the postharvest loss of this fruit. The purpose of this research was to evaluate the effectiveness of nitric oxide (NO) on regulation of ethylene biosynthesis as well as signal transduction against black spot disease caused by A. alternata in the Hami melon. RESULTS Nitric oxide reduced the growth of lesion diameter and lesion depth in melons inoculated with A. alternata. Ethylene production was significantly inhibited by NO, which was supported by the reduction of 1-aminocyclopropene-1-carboxylate (ACC) synthase (ACS) activity and the deferment of ACC content and ACC oxidase (ACO) activity. Nitric oxide treatment also significantly regulated the expression of four ethylene biosynthesis genes CmACS1, CmACS2, CmACO1, and CmACO2, and eight signal ethylene transduction genes CmETR1, CmETR2, CmCTR1, CmEIN2, CmEIL1, CmEBF1, CmERF1B and CmERF2. The modes of NO regulating these genes can be divided into five categories: promotion (CmEIN2, and CmEIL1), delay (CmACS1, CmETR2, CmCTR1 and CmERF2), up-regulation (CmETR1, CmEBF1 and CmERF1B), down-regulation (CmACS2), and first inhibition and then induction (CmACO1 and CmACO2). CONCLUSION The NO treatment enhanced the postharvest disease resistance of Hami melon attacked by A. alternata, possibly by postponing ethylene biosynthesis and signal transduction. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jia Wei
- Institute of Agro-products Storage and Processing, Xinjiang Academy of Agricultural Science, Xinjiang, China
| | - Zheng Zhang
- College of Forestry and Horticulture, Xinjiang Agricultural University, Xinjiang, China
| | - Ping Zhang
- Institute of Agro-products Storage and Processing, Xinjiang Academy of Agricultural Science, Xinjiang, China
| | - Bin Wu
- Institute of Agro-products Storage and Processing, Xinjiang Academy of Agricultural Science, Xinjiang, China
| |
Collapse
|
9
|
Martínez-Lorente SE, Pardo-Hernández M, Martí-Guillén JM, López-Delacalle M, Rivero RM. Interaction between Melatonin and NO: Action Mechanisms, Main Targets, and Putative Roles of the Emerging Molecule NOmela. Int J Mol Sci 2022; 23:ijms23126646. [PMID: 35743084 PMCID: PMC9223470 DOI: 10.3390/ijms23126646] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/07/2022] [Accepted: 06/13/2022] [Indexed: 12/15/2022] Open
Abstract
Melatonin (MEL), a ubiquitous indolamine molecule, has gained interest in the last few decades due to its regulatory role in plant metabolism. Likewise, nitric oxide (NO), a gasotransmitter, can also affect plant molecular pathways due to its function as a signaling molecule. Both MEL and NO can interact at multiple levels under abiotic stress, starting with their own biosynthetic pathways and inducing a particular signaling response in plants. Moreover, their interaction can result in the formation of NOmela, a very recently discovered nitrosated form of MEL with promising roles in plant physiology. This review summarizes the role of NO and MEL molecules during plant development and fruit ripening, as well as their interactions. Due to the impact of climate-change-related abiotic stresses on agriculture, this review also focuses on the role of these molecules in mediating abiotic stress tolerance and the main mechanisms by which they operate, from the upregulation of the entire antioxidant defense system to the post-translational modifications (PTMs) of important molecules. Their individual interaction and crosstalk with phytohormones and H2S are also discussed. Finally, we introduce and summarize the little information available about NOmela, an emerging and still very unknown molecule, but that seems to have a stronger potential than MEL and NO separately in mediating plant stress response.
Collapse
Affiliation(s)
- Sara E. Martínez-Lorente
- Center of Edaphology and Applied Biology of Segura CEBAS-CSIC, Campus Universitario Espinardo, 30100 Murcia, Spain; (S.E.M.-L.); (M.P.-H.); (J.M.M.-G.); (M.L.-D.)
| | - Miriam Pardo-Hernández
- Center of Edaphology and Applied Biology of Segura CEBAS-CSIC, Campus Universitario Espinardo, 30100 Murcia, Spain; (S.E.M.-L.); (M.P.-H.); (J.M.M.-G.); (M.L.-D.)
| | - José M. Martí-Guillén
- Center of Edaphology and Applied Biology of Segura CEBAS-CSIC, Campus Universitario Espinardo, 30100 Murcia, Spain; (S.E.M.-L.); (M.P.-H.); (J.M.M.-G.); (M.L.-D.)
- Faculty of Biology, Department of Plant Physiology, University of Murcia, Campus Universitario Espinardo, 30100 Murcia, Spain
| | - María López-Delacalle
- Center of Edaphology and Applied Biology of Segura CEBAS-CSIC, Campus Universitario Espinardo, 30100 Murcia, Spain; (S.E.M.-L.); (M.P.-H.); (J.M.M.-G.); (M.L.-D.)
| | - Rosa M. Rivero
- Center of Edaphology and Applied Biology of Segura CEBAS-CSIC, Campus Universitario Espinardo, 30100 Murcia, Spain; (S.E.M.-L.); (M.P.-H.); (J.M.M.-G.); (M.L.-D.)
- Correspondence: ; Tel.: +34-968396200 (ext. 445379)
| |
Collapse
|
10
|
Tayal R, Kumar V, Irfan M. Harnessing the power of hydrogen sulphide (H 2 S) for improving fruit quality traits. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:594-601. [PMID: 34866296 DOI: 10.1111/plb.13372] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Abstract
Hydrogen sulphide (H2 S) is a gaseous molecule and originates endogenously in plants. It is considered a potential signalling agent in various physiological processes of plants. Numerous reports have examined the role of H2 S in fruit ripening and in enhancing fruit quality traits. H2 S coordinates the fruit antioxidant system, fruit ripening phytohormones, such as ethylene and abscisic acid, together with other ripening-related signalling molecules, including nitric oxide and hydrogen peroxide. Although many studies have increased understanding of various aspects of this complex network, there is a gap in understanding crosstalk of H2 S with key players of fruit ripening, postharvest senescence and fruit metabolism. This review focused on deciphering fruit H2 S metabolism, signalling and its interaction with other ripening-related signalling molecules during fruit ripening and postharvest storage. Moreover, we also discuss how H2 S can be used as a tool for improving fruit quality and productivity and reducing postharvest loss of perishable fruits.
Collapse
Affiliation(s)
- R Tayal
- National Institute of Plant Genome Research, New Delhi, India
| | - V Kumar
- Department of Physiology and Cell Biology, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - M Irfan
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| |
Collapse
|
11
|
Ji Y, Xu M, Liu Z, Yuan H, Lv T, Li H, Xu Y, Si Y, Wang A. NUCLEOCYTOPLASMIC shuttling of ETHYLENE RESPONSE FACTOR 5 mediated by nitric oxide suppresses ethylene biosynthesis in apple fruit. THE NEW PHYTOLOGIST 2022; 234:1714-1734. [PMID: 35254663 PMCID: PMC9313842 DOI: 10.1111/nph.18071] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Nitric oxide (NO) is known to modulate the action of several phytohormones. This includes the gaseous hormone ethylene, but the molecular mechanisms underlying the effect of NO on ethylene biosynthesis are unclear. Here, we observed a decrease in endogenous NO abundance during apple (Malus domestica) fruit development and exogenous treatment of apple fruit with a NO donor suppressed ethylene production, suggesting that NO is a ripening suppressor. Expression of the transcription factor MdERF5 was activated by NO donor treatment. NO induced the nucleocytoplasmic shuttling of MdERF5 by modulating its interaction with the protein phosphatase, MdPP2C57. MdPP2C57-induced dephosphorylation of MdERF5 at Ser260 is sufficient to promote nuclear export of MdERF5. As a consequence of this export, MdERF5 proteins in the cytoplasm interacted with and suppressed the activity of MdACO1, an enzyme that converts 1-aminocyclopropane-1-carboxylic acid (ACC) to ethylene. The NO-activated MdERF5 was observed to increase in abundance in the nucleus and bind to the promoter of the ACC synthase gene MdACS1 and directly suppress its transcription. Together, these results suggest that NO-activated nucleocytoplasmic MdERF5 suppresses the action of ethylene biosynthetic genes, thereby suppressing ethylene biosynthesis and limiting fruit ripening.
Collapse
Affiliation(s)
- Yinglin Ji
- Key Laboratory of Fruit Postharvest Biology (Liaoning Province)Key Laboratory of Protected Horticulture (Ministry of Education)National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning)College of HorticultureShenyang Agricultural UniversityShenyang110866China
| | - Mingyang Xu
- Key Laboratory of Fruit Postharvest Biology (Liaoning Province)Key Laboratory of Protected Horticulture (Ministry of Education)National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning)College of HorticultureShenyang Agricultural UniversityShenyang110866China
| | - Zhi Liu
- Liaoning Institute of PomologyXiongyue115009China
| | - Hui Yuan
- Key Laboratory of Fruit Postharvest Biology (Liaoning Province)Key Laboratory of Protected Horticulture (Ministry of Education)National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning)College of HorticultureShenyang Agricultural UniversityShenyang110866China
| | - Tianxing Lv
- Liaoning Institute of PomologyXiongyue115009China
| | - Hongjian Li
- Key Laboratory of Fruit Postharvest Biology (Liaoning Province)Key Laboratory of Protected Horticulture (Ministry of Education)National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning)College of HorticultureShenyang Agricultural UniversityShenyang110866China
- Liaoning Institute of PomologyXiongyue115009China
| | - Yaxiu Xu
- Key Laboratory of Fruit Postharvest Biology (Liaoning Province)Key Laboratory of Protected Horticulture (Ministry of Education)National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning)College of HorticultureShenyang Agricultural UniversityShenyang110866China
| | - Yajing Si
- Key Laboratory of Fruit Postharvest Biology (Liaoning Province)Key Laboratory of Protected Horticulture (Ministry of Education)National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning)College of HorticultureShenyang Agricultural UniversityShenyang110866China
| | - Aide Wang
- Key Laboratory of Fruit Postharvest Biology (Liaoning Province)Key Laboratory of Protected Horticulture (Ministry of Education)National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning)College of HorticultureShenyang Agricultural UniversityShenyang110866China
| |
Collapse
|
12
|
Hussain A, Shah F, Ali F, Yun BW. Role of Nitric Oxide in Plant Senescence. FRONTIERS IN PLANT SCIENCE 2022; 13:851631. [PMID: 35463429 PMCID: PMC9022112 DOI: 10.3389/fpls.2022.851631] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/15/2022] [Indexed: 05/27/2023]
Abstract
In plants senescence is the final stage of plant growth and development that ultimately leads to death. Plants experience age-related as well as stress-induced developmental ageing. Senescence involves significant changes at the transcriptional, post-translational and metabolomic levels. Furthermore, phytohormones also play a critical role in the programmed senescence of plants. Nitric oxide (NO) is a gaseous signalling molecule that regulates a plethora of physiological processes in plants. Its role in the control of ageing and senescence has just started to be elucidated. Here, we review the role of NO in the regulation of programmed cell death, seed ageing, fruit ripening and senescence. We also discuss the role of NO in the modulation of phytohormones during senescence and the significance of NO-ROS cross-talk during programmed cell death and senescence.
Collapse
Affiliation(s)
- Adil Hussain
- Department of Entomology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Farooq Shah
- Department of Agronomy, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Farman Ali
- Department of Entomology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Byung-Wook Yun
- Department of Applied Biosciences, College of Agriculture and Life Science, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
13
|
Steffens CA, Santana GRO, Amarante CVTD, Antonovviski JL, Miqueloto T, Anami JM, Fenili CL. Treatment with nitric oxide in controlled atmosphere storage to preserve the quality of ‘Laetitia’ plums. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.113033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Induction of Metabolic Changes in Amino Acid, Fatty Acid, Tocopherol, and Phytosterol Profiles by Exogenous Methyl Jasmonate Application in Tomato Fruits. PLANTS 2022; 11:plants11030366. [PMID: 35161348 PMCID: PMC8838126 DOI: 10.3390/plants11030366] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 02/07/2023]
Abstract
Methyl jasmonate hormone can stimulate the production of several metabolites responsible for improving fruit quality and nutritional attributes related to human health. In this context, efforts to manipulate tomatoes, such as using hormonal treatment to increase metabolite levels essential to plant growth and human nutrition, have received considerable attention. The aim of this study was to show the impact of metabolic profile on fruit quality and nutritional properties under exogenous methyl jasmonate during fruit ripening. The treatments were performed using 100 ppm of methyl jasmonate and 100 ppm of gaseous ethylene over 24 h. Ethylene emission, fruit surface color and metabolomics analysis were measured at 4, 10, and 21 days after harvest, considering the untreated fruits as control group. Methyl jasmonate induced the production of amino acids—mainly glutamine, glutamic acid and γ-aminobutyric acid (at least 14-fold higher)—and fatty acids—mainly oleic, linoleic, and linolenic acids (at least three-fold higher than untreated fruits); while exogenous ethylene predominantly affected sugar metabolism, increasing the levels of fructose, mannose and glucose to at least two-fold that levels in the untreated fruits. Additionally, methyl jasmonate significantly affected secondary metabolites, inducing by at least 80% the accumulation of α-tocopherol and β-sitosterol in fully ripe fruits. Our results suggest that the postharvest application of the hormone methyl jasmonate can contribute to the sensory characteristics and increase the nutritional value of the fruits since important changes related to the tomato metabolome were associated with compounds responsible for the fruit quality and health benefits.
Collapse
|
15
|
Zuccarelli R, Rodríguez-Ruiz M, Lopes-Oliveira PJ, Pascoal GB, Andrade SCS, Furlan CM, Purgatto E, Palma JM, Corpas FJ, Rossi M, Freschi L. Multifaceted roles of nitric oxide in tomato fruit ripening: NO-induced metabolic rewiring and consequences for fruit quality traits. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:941-958. [PMID: 33165620 DOI: 10.1093/jxb/eraa526] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/30/2020] [Indexed: 06/11/2023]
Abstract
Nitric oxide (NO) has been implicated as part of the ripening regulatory network in fleshy fruits. However, very little is known about the simultaneous action of NO on the network of regulatory events and metabolic reactions behind ripening-related changes in fruit color, taste, aroma and nutritional value. Here, we performed an in-depth characterization of the concomitant changes in tomato (Solanum lycopersicum) fruit transcriptome and metabolome associated with the delayed-ripening phenotype caused by NO supplementation at the pre-climacteric stage. Approximately one-third of the fruit transcriptome was altered in response to NO, including a multilevel down-regulation of ripening regulatory genes, which in turn restricted the production and tissue sensitivity to ethylene. NO also repressed hydrogen peroxide-scavenging enzymes, intensifying nitro-oxidative stress and S-nitrosation and nitration events throughout ripening. Carotenoid, tocopherol, flavonoid and ascorbate biosynthesis were differentially affected by NO, resulting in overaccumulation of ascorbate (25%) and flavonoids (60%), and impaired lycopene production. In contrast, the biosynthesis of compounds related to tomato taste (sugars, organic acids, amino acids) and aroma (volatiles) was slightly affected by NO. Our findings indicate that NO triggers extensive transcriptional and metabolic rewiring at the early ripening stage, modifying tomato antioxidant composition with minimal impact on fruit taste and aroma.
Collapse
Affiliation(s)
- Rafael Zuccarelli
- Departamento de Botânica, Universidade de São Paulo, USP, São Paulo, Brazil
| | | | | | - Grazieli B Pascoal
- Departamento de Alimentos e Nutrição Experimental, Universidade de São Paulo, USP, São Paulo, Brazil
- Curso de Graduação em Nutrição, Universidade Federal de Uberlândia, Minas Gerais, Brazil
| | - Sónia C S Andrade
- Departamento de Genética e Biologia Evolutiva, Universidade de São Paulo, USP, São Paulo, Brazil
| | - Cláudia M Furlan
- Departamento de Botânica, Universidade de São Paulo, USP, São Paulo, Brazil
| | - Eduardo Purgatto
- Departamento de Alimentos e Nutrição Experimental, Universidade de São Paulo, USP, São Paulo, Brazil
| | - José M Palma
- Group of Antioxidants, Free Radicals, and Nitric Oxide in Biotechnology, Food and Agriculture, Estación Experimental del Zaidín, CSIC, Granada, Spain
| | - Francisco J Corpas
- Group of Antioxidants, Free Radicals, and Nitric Oxide in Biotechnology, Food and Agriculture, Estación Experimental del Zaidín, CSIC, Granada, Spain
| | - Magdalena Rossi
- Departamento de Botânica, Universidade de São Paulo, USP, São Paulo, Brazil
| | - Luciano Freschi
- Departamento de Botânica, Universidade de São Paulo, USP, São Paulo, Brazil
| |
Collapse
|
16
|
Corpas FJ, González-Gordo S, Palma JM. Nitric oxide: A radical molecule with potential biotechnological applications in fruit ripening. J Biotechnol 2020; 324:211-219. [PMID: 33115661 DOI: 10.1016/j.jbiotec.2020.10.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/14/2020] [Accepted: 10/16/2020] [Indexed: 12/26/2022]
Abstract
Nitric oxide (NO) is a short-life and free radical molecule involved in a wide range of cellular, physiological and stressful processes in higher plants. In recent years it has been observed that exogenous NO application can palliate adverse damages against abiotic and biotic stresses. Conversely, there is accumulating information indicating that endogenous NO participates significantly in the mechanism of modulation of the ripening in climacteric and non-climacteric fruits. Even more, when NO is exogenously applied, it can mediate beneficial effects during ripening and postharvest storage being one of the main effects the increase of antioxidant systems. Consequently, NO could be a promising biotechnological tool to improve crops through ameliorating nutritional indexes and to alleviate damages during fruit ripening and postharvest management. Thus, this approach should be complementary to previous strategies to allow preserving the quality and healthiness of fruits with a view of enhancing their added value. The present mini-review aims to provide an overview of NO biochemistry in plants and updated information on the relevance of NO in fruit ripening and postharvest stages with a view to its biotechnological applications.
Collapse
Affiliation(s)
- Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture. Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, C/ Profesor Albareda, 1, 18008 Granada, Spain.
| | - Salvador González-Gordo
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture. Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, C/ Profesor Albareda, 1, 18008 Granada, Spain
| | - José M Palma
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture. Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, C/ Profesor Albareda, 1, 18008 Granada, Spain
| |
Collapse
|
17
|
Zhang W, Cao J, Fan X, Jiang W. Applications of nitric oxide and melatonin in improving postharvest fruit quality and the separate and crosstalk biochemical mechanisms. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.03.024] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
18
|
Osorio S, Carneiro RT, Lytovchenko A, McQuinn R, Sørensen I, Vallarino JG, Giovannoni JJ, Fernie AR, Rose JKC. Genetic and metabolic effects of ripening mutations and vine detachment on tomato fruit quality. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:106-118. [PMID: 31131540 PMCID: PMC6920187 DOI: 10.1111/pbi.13176] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 02/26/2019] [Accepted: 05/20/2019] [Indexed: 05/18/2023]
Abstract
Tomato (Solanum lycopersicum) fruit ripening is regulated co-operatively by the action of ethylene and a hierarchy of transcription factors, including RIPENING INHIBITOR (RIN) and NON-RIPENING (NOR). Mutations in these two genes have been adopted commercially to delay ripening, and accompanying textural deterioration, as a means to prolong shelf life. However, these mutations also affect desirable traits associated with colour and nutritional value, although the extent of this trade-off has not been assessed in detail. Here, we evaluated changes in tomato fruit pericarp primary metabolite and carotenoid pigment profiles, as well as the dynamics of specific associated transcripts, in the rin and nor mutants during late development and postharvest storage, as well of those of the partially ripening delayed fruit ripening (dfd) tomato genotype. These profiles were compared with those of the wild-type tomato cultivars Ailsa Craig (AC) and M82. We also evaluated the metabolic composition of M82 fruit ripened on or off the vine over a similar period. In general, the dfd mutation resulted in prolonged firmness and maintenance of quality traits without compromising key metabolites (sucrose, glucose/fructose and glucose) and sectors of intermediary metabolism, including tricarboxylic acid cycle intermediates. Our analysis also provided insights into the regulation of carotenoid formation and highlighted the importance of the polyamine, putrescine, in extending fruit shelf life. Finally, the metabolic composition analysis of M82 fruit ripened on or off the vine provided insights into the import into fruit of compounds, such as sucrose, during ripening.
Collapse
Affiliation(s)
- Sonia Osorio
- Max‐Planck‐Institut für Molekulare PflanzenphysiologiePotsdam‐GolmGermany
- Department of Molecular Biology and BiochemistryInstituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”University of Malaga‐Consejo Superior de Investigaciones CientíficasMálagaSpain
| | - Raphael T. Carneiro
- Plant Biology SectionSchool of Integrative Plant ScienceCornell UniversityIthacaNYUSA
| | - Anna Lytovchenko
- Max‐Planck‐Institut für Molekulare PflanzenphysiologiePotsdam‐GolmGermany
| | - Ryan McQuinn
- Plant Biology SectionSchool of Integrative Plant ScienceCornell UniversityIthacaNYUSA
- Boyce Thompson Institute for Plant Research and USDA‐ARSRobert W. Holley CenterIthacaNYUSA
| | - Iben Sørensen
- Plant Biology SectionSchool of Integrative Plant ScienceCornell UniversityIthacaNYUSA
| | - José G. Vallarino
- Max‐Planck‐Institut für Molekulare PflanzenphysiologiePotsdam‐GolmGermany
- Department of Molecular Biology and BiochemistryInstituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”University of Malaga‐Consejo Superior de Investigaciones CientíficasMálagaSpain
| | - James J. Giovannoni
- Plant Biology SectionSchool of Integrative Plant ScienceCornell UniversityIthacaNYUSA
- Boyce Thompson Institute for Plant Research and USDA‐ARSRobert W. Holley CenterIthacaNYUSA
| | - Alisdair R. Fernie
- Max‐Planck‐Institut für Molekulare PflanzenphysiologiePotsdam‐GolmGermany
| | - Jocelyn K. C. Rose
- Plant Biology SectionSchool of Integrative Plant ScienceCornell UniversityIthacaNYUSA
| |
Collapse
|
19
|
Palma JM, Freschi L, Rodríguez-Ruiz M, González-Gordo S, Corpas FJ. Nitric oxide in the physiology and quality of fleshy fruits. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4405-4417. [PMID: 31359063 DOI: 10.1093/jxb/erz350] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 07/18/2019] [Indexed: 05/21/2023]
Abstract
Fruits are unique to flowering plants and confer a selective advantage as they facilitate seed maturation and dispersal. In fleshy fruits, development and ripening are associated with numerous structural, biochemical, and physiological changes, including modifications in the general appearance, texture, flavor, and aroma, which ultimately convert the immature fruit into a considerably more attractive and palatable structure for seed dispersal by animals. Treatment with exogenous nitric oxide (NO) delays fruit ripening, prevents chilling damage, promotes disease resistance, and enhances the nutritional value. The ripening process is influenced by NO, which operates antagonistically to ethylene, but it also interacts with other regulatory molecules such as abscisic acid, auxin, jasmonic acid, salicylic acid, melatonin, and hydrogen sulfide. NO content progressively declines during fruit ripening, with concomitant increases in protein nitration and nitrosation, two post-translational modifications that are promoted by reactive nitrogen species. Dissecting the intimate interactions of NO with other ripening-associated factors, including reactive oxygen species, antioxidants, and the aforementioned phytohormones, remains a challenging subject of research. In this context, integrative 'omics' and gene-editing approaches may provide additional knowledge of the impact of NO in the regulatory processes involved in controlling physiology and quality traits in both climacteric and non-climacteric fruits.
Collapse
Affiliation(s)
- José M Palma
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Estación Experimental del Zaidín, CSIC, Granada, Spain
| | - Luciano Freschi
- Laboratório de Fisiologia do Desenvolvimento Vegetal, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Marta Rodríguez-Ruiz
- Laboratório de Fisiologia do Desenvolvimento Vegetal, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Salvador González-Gordo
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Estación Experimental del Zaidín, CSIC, Granada, Spain
| | - Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Estación Experimental del Zaidín, CSIC, Granada, Spain
| |
Collapse
|
20
|
Kolbert Z, Feigl G, Freschi L, Poór P. Gasotransmitters in Action: Nitric Oxide-Ethylene Crosstalk during Plant Growth and Abiotic Stress Responses. Antioxidants (Basel) 2019; 8:E167. [PMID: 31181724 PMCID: PMC6616412 DOI: 10.3390/antiox8060167] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/03/2019] [Accepted: 06/05/2019] [Indexed: 01/29/2023] Open
Abstract
Since their first description as atmospheric gases, it turned out that both nitric oxide (NO) and ethylene (ET) are multifunctional plant signals. ET and polyamines (PAs) use the same precursor for their synthesis, and NO can be produced from PA oxidation. Therefore, an indirect metabolic link between NO and ET synthesis can be considered. NO signal is perceived primarily through S-nitrosation without the involvement of a specific receptor, while ET signal is sensed by a well-characterized receptor complex. Both NO and ET are synthetized by plants at various developmental stages (e.g., seeds, fruits) and as a response to numerous environmental factors (e.g., heat, heavy metals) and they mutually regulate each other's levels. Most of the growth and developmental processes (e.g., fruit ripening, de-etiolation) are regulated by NO-ET antagonism, while in abiotic stress responses, both antagonistic (e.g., dark-induced stomatal opening, cadmium-induced cell death) and synergistic (e.g., UV-B-induced stomatal closure, iron deficiency-induced expression of iron acquisition genes) NO-ET interplays have been revealed. Despite the numerous pieces of experimental evidence revealing NO-ET relationships in plants, the picture is far from complete. Understanding the mechanisms of NO-ET interactions may contribute to the increment of yield and intensification of stress tolerance of crop plants in changing environments.
Collapse
Affiliation(s)
- Zsuzsanna Kolbert
- Department of Plant Biology, University of Szeged, 6726 Szeged, Hungary.
| | - Gábor Feigl
- Department of Plant Biology, University of Szeged, 6726 Szeged, Hungary.
| | - Luciano Freschi
- Laboratory of Plant Physiology and Biochemistry, Department of Botany, University of Sao Paulo, Sao Paulo 05422-970, Brazil.
| | - Péter Poór
- Department of Plant Biology, University of Szeged, 6726 Szeged, Hungary.
| |
Collapse
|
21
|
Mukherjee S. Recent advancements in the mechanism of nitric oxide signaling associated with hydrogen sulfide and melatonin crosstalk during ethylene-induced fruit ripening in plants. Nitric Oxide 2019; 82:25-34. [DOI: 10.1016/j.niox.2018.11.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 10/11/2018] [Accepted: 11/18/2018] [Indexed: 12/11/2022]
|
22
|
Corpas FJ, Freschi L, Rodríguez-Ruiz M, Mioto PT, González-Gordo S, Palma JM. Nitro-oxidative metabolism during fruit ripening. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:3449-3463. [PMID: 29304200 DOI: 10.1093/jxb/erx453] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 12/03/2017] [Indexed: 05/21/2023]
Abstract
Pepper (Capsicum annuum L.) and tomato (Solanum lycopersicum L.), which belong to the Solanaceae family, are among the most cultivated and consumed fleshy fruits worldwide and constitute excellent sources of many essential nutrients, such as vitamins A, C, and E, calcium, and carotenoids. While fruit ripening is a highly regulated and complex process, tomato and pepper have been classified as climacteric and non-climacteric fruits, respectively. These fruits differ greatly in shape, color composition, flavor, and several other features which undergo drastic changes during the ripening process. Such ripening-related metabolic and developmental changes require extensive alterations in many cellular and biochemical processes, which ultimately leads to fully ripe fruits with nutritional and organoleptic features that are attractive to both natural dispersers and human consumers. Recent data show that reactive oxygen and nitrogen species (ROS/RNS) are involved in fruit ripening, during which molecules, such as hydrogen peroxide (H2O2), NADPH, nitric oxide (NO), peroxynitrite (ONOO-), and S-nitrosothiols (SNOs), interact to regulate protein functions through post-translational modifications. In light of these recent discoveries, this review provides an update on the nitro-oxidative metabolism during the ripening of two of the most economically important fruits, discusses the signaling roles played by ROS/RNS in controlling this complex physiological process, and highlights the potential biotechnological applications of these substances to promote further improvements in fruit ripening regulation and nutritional quality. In addition, we suggest that the term 'nitro-oxidative eustress' with regard to fruit ripening would be more appropriate than nitro-oxidative stress, which ultimately favors the consolidation of the plant species.
Collapse
Affiliation(s)
- Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Granada, Spain
| | - Luciano Freschi
- Department of Botany, Institute of Biosciences, University of São Paulo (USP), São Paulo, Brazil
| | - Marta Rodríguez-Ruiz
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Granada, Spain
| | - Paulo T Mioto
- Department of Botany, Biological Sciences Center, Universidade Federal de Santa Catarina, Campus Reitor João David Ferreira Lima, s/n, Florianópolis, Brazil
| | - Salvador González-Gordo
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Granada, Spain
| | - José M Palma
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Granada, Spain
| |
Collapse
|
23
|
Bodanapu R, Gupta SK, Basha PO, Sakthivel K, Sreelakshmi Y, Sharma R. Nitric Oxide Overproduction in Tomato shr Mutant Shifts Metabolic Profiles and Suppresses Fruit Growth and Ripening. FRONTIERS IN PLANT SCIENCE 2016; 7:1714. [PMID: 27965677 PMCID: PMC5124567 DOI: 10.3389/fpls.2016.01714] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 10/31/2016] [Indexed: 05/23/2023]
Abstract
Nitric oxide (NO) plays a pivotal role in growth and disease resistance in plants. It also acts as a secondary messenger in signaling pathways for several plant hormones. Despite its clear role in regulating plant development, its role in fruit development is not known. In an earlier study, we described a short root (shr) mutant of tomato, whose phenotype results from hyperaccumulation of NO. The molecular mapping localized shr locus in 2.5 Mb region of chromosome 9. The shr mutant showed sluggish growth, with smaller leaves, flowers and was less fertile than wild type. The shr mutant also showed reduced fruit size and slower ripening of the fruits post-mature green stage to the red ripe stage. Comparison of the metabolite profiles of shr fruits with wild-type fruits during ripening revealed a significant shift in the patterns. In shr fruits intermediates of the tricarboxylic acid (TCA) cycle were differentially regulated than WT indicating NO affected the regulation of TCA cycle. The accumulation of several amino acids, particularly tyrosine, was higher, whereas most fatty acids were downregulated in shr fruits. Among the plant hormones at one or more stages of ripening, ethylene, Indole-3-acetic acid and Indole-3-butyric acid increased in shr, whereas abscisic acid declined. Our analyses indicate that the retardation of fruit growth and ripening in shr mutant likely results from the influence of NO on central carbon metabolism and endogenous phytohormones levels.
Collapse
|
24
|
Zhou Y, Li S, Zeng K. Exogenous nitric oxide-induced postharvest disease resistance in citrus fruit to Colletotrichum gloeosporioides. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:505-512. [PMID: 25639938 DOI: 10.1002/jsfa.7117] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 12/19/2014] [Accepted: 01/28/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND Nitric oxide (NO) is an important signaling molecule involved in numerous plant responses to biotic and abiotic stresses. To investigate the effects of NO on the control of postharvest anthracnose caused by Colletotrichum gloeosporioides in citrus fruit and its possible mechanisms, citrus fruit were treated with an NO donor. RESULTS The results showed that exogenous NO released from 50 µmol L(-1) sodium nitroprusside aqueous solution could effectively reduce the disease incidence and lesion diameter of citrus fruit inoculated with C. gloeosporioides during storage at 20 °C. Exogenous NO could regulate hydrogen peroxide levels, stimulate the synthesis of phenolic compounds, and induce phenylalanine ammonia-lyase, peroxidase, polyphenol oxidase, catalase activities, and the ascorbate-glutathione cycle. Furthermore, exogenous NO could inhibit weight loss, improve the ascorbic acid and titratable acidity content, and delay the increase in total soluble solids content in citrus fruit during storage at 20 °C. CONCLUSIONS The results suggest that the use of exogenous NO is a potential method for inducing the disease resistance of fruit to fungal pathogens and for extending the postharvest life of citrus fruit.
Collapse
Affiliation(s)
- Yahan Zhou
- College of Food Science, Southwest University, Chongqing, 400715, People's Republic of China
| | - Shunmin Li
- College of Food Science, Southwest University, Chongqing, 400715, People's Republic of China
| | - Kaifang Zeng
- College of Food Science, Southwest University, Chongqing, 400715, People's Republic of China
- Laboratory of Quality and Safety Risk Assessment for Agro-products on Storage and Preservation (Chongqing), Ministry of Agriculture, Chongqing, 400715, People's Republic of China
| |
Collapse
|
25
|
|
26
|
Kumar R, Khurana A, Sharma AK. Role of plant hormones and their interplay in development and ripening of fleshy fruits. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:4561-75. [PMID: 25028558 DOI: 10.1093/jxb/eru277] [Citation(s) in RCA: 279] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Plant hormones have been extensively studied for their roles in the regulation of various aspects of plant development. However, in the last decade important new insights have been made into their action during development and ripening, in both dry and fleshy fruits. Emerging evidence suggests that relative functions of plant hormones are not restricted to a particular stage, and a complex network of more than one plant hormone is involved in controlling various aspects of fruit development. Though some areas are extensively covered, considerable gaps in our knowledge and understanding still exist in the control of hormonal networks and crosstalk between different hormones during fruit expansion, maturation, and various other aspects of ripening. Here, we evaluate the new knowledge on their relative roles during tomato fruit development with a view to understand their mechanism of action in fleshy fruits. For a better understanding, pertinent evidences available on hormonal crosstalk during fruit development in other species are also discussed. We envisage that such detailed knowledge will help design new strategies for effective manipulation of fruit ripening.
Collapse
Affiliation(s)
- Rahul Kumar
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India. Current address: Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Ashima Khurana
- Zakir Husain Delhi College, University of Delhi, New Delhi 110002, India
| | - Arun K Sharma
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India.
| |
Collapse
|
27
|
Paul V, Pandey R. Role of internal atmosphere on fruit ripening and storability-a review. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2014; 51:1223-50. [PMID: 24966416 PMCID: PMC4062679 DOI: 10.1007/s13197-011-0583-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 10/03/2011] [Accepted: 11/07/2011] [Indexed: 11/28/2022]
Abstract
Concentrations of different gases and volatiles present or produced inside a fruit are determined by the permeability of the fruit tissue to these compounds. Primarily, surface morphology and anatomical features of a given fruit determine the degree of permeance across the fruit. Species and varietal variability in surface characteristics and anatomical features therefore influence not only the diffusibility of gases and volatiles across the fruits but also the activity and response of various metabolic and physiological reactions/processes regulated by these compounds. Besides the well-known role of ethylene, gases and volatiles; O2, CO2, ethanol, acetaldehyde, water vapours, methyl salicylate, methyl jasmonate and nitric oxide (NO) have the potential to regulate the process of ripening individually and also in various interactive ways. Differences in the prevailing internal atmosphere of the fruits may therefore be considered as one of the causes behind the existing varietal variability of fruits in terms of rate of ripening, qualitative changes, firmness, shelf-life, ideal storage requirement, extent of tolerance towards reduced O2 and/or elevated CO2, transpirational loss and susceptibility to various physiological disorders. In this way, internal atmosphere of a fruit (in terms of different gases and volatiles) plays a critical regulatory role in the process of fruit ripening. So, better and holistic understanding of this internal atmosphere along with its exact regulatory role on various aspects of fruit ripening will facilitate the development of more meaningful, refined and effective approaches in postharvest management of fruits. Its applicability, specially for the climacteric fruits, at various stages of the supply chain from growers to consumers would assist in reducing postharvest losses not only in quantity but also in quality.
Collapse
Affiliation(s)
- Vijay Paul
- Division of Plant Physiology, Indian Agricultural Research Institute, New Delhi, 110 012 India
| | - Rakesh Pandey
- Division of Plant Physiology, Indian Agricultural Research Institute, New Delhi, 110 012 India
| |
Collapse
|
28
|
Freschi L. Nitric oxide and phytohormone interactions: current status and perspectives. FRONTIERS IN PLANT SCIENCE 2013; 4:398. [PMID: 24130567 PMCID: PMC3793198 DOI: 10.3389/fpls.2013.00398] [Citation(s) in RCA: 147] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 09/19/2013] [Indexed: 05/16/2023]
Abstract
Nitric oxide (NO) is currently considered a ubiquitous signal in plant systems, playing significant roles in a wide range of responses to environmental and endogenous cues. During the signaling events leading to these plant responses, NO frequently interacts with plant hormones and other endogenous molecules, at times originating remarkably complex signaling cascades. Accumulating evidence indicates that virtually all major classes of plant hormones may influence, at least to some degree, the endogenous levels of NO. In addition, studies conducted during the induction of diverse plant responses have demonstrated that NO may also affect biosynthesis, catabolism/conjugation, transport, perception, and/or transduction of different phytohormones, such as auxins, gibberellins, cytokinins, abscisic acid, ethylene, salicylic acid, jasmonates, and brassinosteroids. Although still not completely elucidated, the mechanisms underlying the interaction between NO and plant hormones have recently been investigated in a number of species and plant responses. This review specifically focuses on the current knowledge of the mechanisms implicated in NO-phytohormone interactions during the regulation of developmental and metabolic plant events. The modifications triggered by NO on the transcription of genes encoding biosynthetic/degradative enzymes as well as proteins involved in the transport and signal transduction of distinct plant hormones will be contextualized during the control of developmental, metabolic, and defense responses in plants. Moreover, the direct post-translational modification of phytohormone biosynthetic enzymes and receptors through S-nitrosylation will also be discussed as a key mechanism for regulating plant physiological responses. Finally, some future perspectives toward a more complete understanding of NO-phytohormone interactions will also be presented and discussed.
Collapse
Affiliation(s)
- Luciano Freschi
- Laboratory of Plant Physiology and Biochemistry, Department of Botany, University of Sao PauloSao Paulo, Brazil
| |
Collapse
|
29
|
Li XP, Wu B, Guo Q, Wang JD, Zhang P, Chen WX. Effects of Nitric Oxide on Postharvest Quality and Soluble Sugar Content in Papaya Fruit during Ripening. J FOOD PROCESS PRES 2012. [DOI: 10.1111/jfpp.12007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Xue-ping Li
- Guangdong Provincial Key Laboratory for Postharvest Science and Technology of Fruits and Vegetables; College of Horticulture; South China Agricultural University; Guangzhou 510642 Guangdong Province China
| | - Bin Wu
- Farm Product Storage and Processing Institute; Xinjiang Academy of Agricultural Sciences; Urumqi China
| | - Qin Guo
- College of Chemistry & Chemical Engineering; XinJiang University; Urumqi Xinjiang Uygur Autonomous Region China
| | - Ji-de Wang
- College of Chemistry & Chemical Engineering; XinJiang University; Urumqi Xinjiang Uygur Autonomous Region China
| | - Pin Zhang
- Farm Product Storage and Processing Institute; Xinjiang Academy of Agricultural Sciences; Urumqi China
| | - Wei-xin Chen
- Guangdong Provincial Key Laboratory for Postharvest Science and Technology of Fruits and Vegetables; College of Horticulture; South China Agricultural University; Guangzhou 510642 Guangdong Province China
| |
Collapse
|
30
|
Niu YH, Guo FQ. Nitric oxide regulates dark-induced leaf senescence through EIN2 in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2012; 54:516-25. [PMID: 22765302 DOI: 10.1111/j.1744-7909.2012.01140.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The nitric oxide (NO)-deficient mutant nos1/noa1 exhibited an early leaf senescence phenotype. ETHYLENE INSENSITIVE 2 (EIN2) was previously reported to function as a positive regulator of ethylene-induced senescence. The aim of this study was to address the question of how NO interacts with ethylene to regulate leaf senescence by characterizing the double mutant ein2-1 nos1/noa1 (Arabidopsis thaliana). Double mutant analysis revealed that the nos1/noa1-mediated, dark-induced early senescence phenotype was suppressed by mutations in EIN2, suggesting that EIN2 is involved in nitric oxide signaling in the regulation of leaf senescence. The results showed that chlorophyll degradation in the double mutant leaves was significantly delayed. In addition, nos1/noa1-mediated impairment in photochemical efficiency and integrity of thylakoid membranes was reverted by EIN2 mutations. The rapid upregulation of the known senescence marker genes in the nos1/noa1 mutant was severely inhibited in the double mutant during leaf senescence. Interestingly, the response of dark-grown nos1/noa1 mutant seedlings to ethylene was similar to that of wild type seedlings. Taken together, our findings suggest that EIN2 is involved in the regulation of early leaf senescence caused by NO deficiency, but NO deficiency caused by NOS1/NOA1 mutations does not affect ethylene signaling.
Collapse
Affiliation(s)
- Yun-Han Niu
- The National Key Laboratory of Plant Molecular Genetics and National Center for Plant Gene Research (Shanghai), Institute of Plant Physiology & Ecology, Shanghai Institutes for Biological Sciences, the Chinese Academy of Sciences, Shanghai 200032, China
| | | |
Collapse
|
31
|
Pegoraro C, Santos RSD, Krüger MM, Tiecher A, Maia LCD, Rombaldi CV, Oliveira ACD. Effects of hypoxia storage on gene transcript accumulation during tomato fruit ripening. ACTA ACUST UNITED AC 2012. [DOI: 10.1590/s1677-04202012000200007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
32
|
Manjunatha G, Gupta KJ, Lokesh V, Mur LAJ, Neelwarne B. Nitric oxide counters ethylene effects on ripening fruits. PLANT SIGNALING & BEHAVIOR 2012; 7:476-83. [PMID: 22499176 PMCID: PMC3419037 DOI: 10.4161/psb.19523] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Ethylene plays a key role in promoting fruit ripening, so altering its biosynthesis/signaling could be an important means to delay this process. Nitric oxide (NO)-generated signals are now being shown to regulate ethylene pathways. NO signals have been shown to transcriptionally repress the expression of genes involved in ethylene biosynthesis enzymes and post-translationally modify methionine adenosyl transferase (MAT) activity through S-nitrosylation to reduce the availably of methyl groups required to produce ethylene. Additionally, NO cross-talks with plant hormones and other signal molecules and act to orchestrate the suppression of ethylene effects by modulating enzymes/proteins that are generally triggered by ethylene signaling at post-climacteric stage. Thus, medication of endogenous NO production is suggested as a strategy to postpone the climacteric stage of many tropical fruits.
Collapse
Affiliation(s)
- Girigowda Manjunatha
- Plant Cell Biotechnology Department; Central Food Technological Research Institute; Mysore, India
| | - Kapuganti J. Gupta
- Department of Plant Physiology; University of Rostock; Rostock, Germany
- Correspondence to: Kapuganti J Gupta and Bhagyalakshmi Neelwarne; and
| | - Veeresh Lokesh
- Plant Cell Biotechnology Department; Central Food Technological Research Institute; Mysore, India
| | - Luis AJ Mur
- IBERS; Penglais Campus Aberystwyth; Aberystwyth University; Wales UK
| | - Bhagyalakshmi Neelwarne
- Plant Cell Biotechnology Department; Central Food Technological Research Institute; Mysore, India
- Correspondence to: Kapuganti J Gupta and Bhagyalakshmi Neelwarne; and
| |
Collapse
|
33
|
Parra-Lobato MC, Gomez-Jimenez MC. Polyamine-induced modulation of genes involved in ethylene biosynthesis and signalling pathways and nitric oxide production during olive mature fruit abscission. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:4447-65. [PMID: 21633085 PMCID: PMC3170544 DOI: 10.1093/jxb/err124] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
After fruit ripening, many fruit-tree species undergo massive natural fruit abscission. Olive (Olea europaea L.) is a stone-fruit with cultivars such as Picual (PIC) and Arbequina (ARB) which differ in mature fruit abscission potential. Ethylene (ET) is associated with abscission, but its role during mature fruit abscission remains largely uncharacterized. The present study investigates the possible roles of ET and polyamine (PA) during mature fruit abscission by modulating genes involved in the ET signalling and biosynthesis pathways in the abscission zone (AZ) of both cultivars. Five ET-related genes (OeACS2, OeACO2, OeCTR1, OeERS1, and OeEIL2) were isolated in the AZ and adjacent cells (AZ-AC), and their expression in various olive organs and during mature fruit abscission, in relation to interactions between ET and PA and the expression induction of these genes, was determined. OeACS2, OeACO2, and OeEIL2 were found to be the only genes that were up-regulated in association with mature fruit abscission. Using the inhibition of ET and PA biosynthesis, it is demonstrated that OeACS2 and OeEIL2 expression are under the negative control of PA while ET induces their expression in AZ-AC. Furthermore, mature fruit abscission depressed nitric oxide (NO) production present mainly in the epidermal cells and xylem of the AZ. Also, NO production was differentially responsive to ET, PA, and different inhibitors. Taken together, the results indicate that PA-dependent ET signalling and biosynthesis pathways participate, at least partially, during mature fruit abscission, and that endogenous NO and 1-aminocyclopropane-1-carboxylic acid maintain an inverse correlation, suggesting an antagonistic action of NO and ET in abscission signalling.
Collapse
|
34
|
Integrated application of nitric oxide and modified atmosphere packaging to improve quality retention of button mushroom (Agaricus bisporus). Food Chem 2011; 126:1693-9. [DOI: 10.1016/j.foodchem.2010.12.060] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Revised: 11/04/2010] [Accepted: 12/08/2010] [Indexed: 11/20/2022]
|
35
|
Manjunatha G, Lokesh V, Neelwarne B. Nitric oxide in fruit ripening: trends and opportunities. Biotechnol Adv 2010; 28:489-99. [PMID: 20307642 DOI: 10.1016/j.biotechadv.2010.03.001] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2009] [Revised: 02/22/2010] [Accepted: 03/12/2010] [Indexed: 10/19/2022]
Abstract
Monitoring ethylene is crucial in regulating post-harvest life of fruits. The concept of nitric oxide (NO) involvement in antagonizing ethylene is new. NO mediated physiologies casted through regulation of plant hormones are widely reported during developmental and stress chemistry having no direct link with ripening. Research in NO biology and understanding its interplay with other signal molecules in ripening fruits suggest ways of achieving greater synergies with NO applications. Experiments focused at convincingly demonstrating the involvement of NO in altering ripening-related ethylene profile of fruits, would help develop new processes for shelf life extension. This issue being the central theme of this review, the putative mechanisms of NO intricacies with other primary and secondary signals are hypothesized. The advantage of eliciting NO endogenously may open up various biotechnological opportunities for its precise delivery into the target tissues.
Collapse
Affiliation(s)
- G Manjunatha
- Plant Cell Biotechnology Department, Central Food Technological Research Institute, Mysore-570 020, India
| | | | | |
Collapse
|
36
|
Kim HB, Lee H, Oh CJ, Lee HY, Eum HL, Kim HS, Hong YP, Lee Y, Choe S, An CS, Choi SB. Postembryonic seedling lethality in the sterol-deficient Arabidopsis cyp51A2 mutant is partially mediated by the composite action of ethylene and reactive oxygen species. PLANT PHYSIOLOGY 2010; 152:192-205. [PMID: 19915013 PMCID: PMC2799356 DOI: 10.1104/pp.109.149088] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Accepted: 11/05/2009] [Indexed: 05/21/2023]
Abstract
Seedling-lethal phenotypes of Arabidopsis (Arabidopsis thaliana) mutants that are defective in early steps in the sterol biosynthetic pathway are not rescued by the exogenous application of brassinosteroids. The detailed molecular and physiological mechanisms of seedling lethality have yet to be understood. Thus, to elucidate the underlying mechanism of lethality, we analyzed transcriptome and proteome profiles of the cyp51A2 mutant that is defective in sterol 14alpha-demethylation. Results revealed that the expression levels of genes involved in ethylene biosynthesis/signaling and detoxification of reactive oxygen species (ROS) increased in the mutant compared with the wild type and, thereby, that the endogenous ethylene level also increased in the mutant. Consistently, the seedling-lethal phenotype of the cyp51A2 mutant was partly attenuated by the inhibition of ethylene biosynthesis or signaling. However, photosynthesis-related genes including Rubisco large subunit, chlorophyll a/b-binding protein, and components of photosystems were transcriptionally and/or translationally down-regulated in the mutant, accompanied by the transformation of chloroplasts into gerontoplasts and a reduction in both chlorophyll contents and photosynthetic activity. These characteristics observed in the cyp51A2 mutant resemble those of leaf senescence. Nitroblue tetrazolium staining data revealed that the mutant was under oxidative stress due to the accumulation of ROS, a key factor controlling both programmed cell death and ethylene production. Our results suggest that changes in membrane sterol contents and composition in the cyp51A2 mutant trigger the generation of ROS and ethylene and eventually induce premature seedling senescence.
Collapse
|