1
|
Zamani A, Khajavi M, Abedian Kenari A, Haghbin Nazarpak M, Solouk A, Esmaeili M, Gisbert E. Physicochemical and Biochemical Properties of Trypsin-like Enzyme from Two Sturgeon Species. Animals (Basel) 2023; 13:ani13050853. [PMID: 36899710 PMCID: PMC10000239 DOI: 10.3390/ani13050853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
This work aimed to determine the physicochemical and biochemical properties of trypsin from beluga Huso huso and sevruga Acipenser stellatus, two highly valuable sturgeon species. According to the results obtained from the methods of casein-zymogram and inhibitory activity staining, the molecular weight of trypsin for sevruga and beluga was 27.5 and 29.5 kDa, respectively. Optimum pH and temperature values for both trypsins were recorded at 8.5 and 55 °C by BAPNA (a specific substrate), respectively. The stability of both trypsins was well-preserved at pH values from 6.0 to 11.0 and temperatures up to 50 °C. TLCK and SBTI, two specific trypsin inhibitors, showed a significant inhibitory effect on the enzymatic activity of both trypsins (p < 0.05). The enzyme activity was significantly increased in the presence of Ca+2 and surfactants and decreased by oxidizing agents, Cu+2, Zn+2, and Co+2 (p < 0.05). However, univalent ions Na+ and K+ did not show any significant effect on the activity of both trypsins (p > 0.05). The results of our study show that the properties of trypsin from beluga and sevruga are in agreement with data reported in bony fish and can contribute to the clear understanding of trypsin activity in these primitive species.
Collapse
Affiliation(s)
- Abbas Zamani
- Fisheries Department, Faculty of Natural Resources and Environment, Malayer University, 4th km of Arak Road, Malayer 6574184621, Iran
- New Technologies Research Center, Amirkabir University of Technology, Tehran 1591634653, Iran
- Correspondence: ; Tel./Fax: +98-81-32355330
| | - Maryam Khajavi
- Fisheries Department, Faculty of Natural Resources and Environment, Malayer University, 4th km of Arak Road, Malayer 6574184621, Iran
| | - Abdolmohammad Abedian Kenari
- Department of Aquaculture, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Noor P.O. Box 46414-356, Iran
| | | | - Atefeh Solouk
- Department of Biomaterial and Tissue Engineering, Medical Engineering Faculty, Amirkabir University of Technology, Tehran 1591634311, Iran
| | - Mina Esmaeili
- Department of Fisheries, Faculty of Animal Sciences and Fisheries, Sari Agricultural Sciences and Natural Resources University, Sari 4818168984, Iran
| | - Enric Gisbert
- IRTA, Centre de la Rápita, Aquaculture Program, Crta. del Poble Nou Km 5.5, 43540 la Rápita, Spain
| |
Collapse
|
2
|
Kanno G, Klomklao S, Kumagai Y, Kishimura H. A thermostable trypsin from freshwater fish Japanese dace (Tribolodon hakonensis): a comparison of the primary structures among fish trypsins. FISH PHYSIOLOGY AND BIOCHEMISTRY 2019; 45:561-571. [PMID: 30547269 DOI: 10.1007/s10695-018-0600-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 12/03/2018] [Indexed: 06/09/2023]
Abstract
Trypsin from Japanese dace (Tribolodon hakonensis) (JD-T) living in freshwater (2-18 °C) was purified. JD-T represented typical fish trypsin characteristics regarding the effects of protease inhibitor, calcium-ion, and pH. For the effect of temperature, JD-T quite resembled to the trypsins from tropical-zone marine fish and freshwater fish (the catfish cultured in Thailand), i.e., the optimum temperature was 60 °C, and it was stable below 60 °C at pH 8.0 for 15 min incubation. From the data, it seemed that the trypsin from freshwater fish is thermostable in spite of the fact that their habitat temperatures are low. So, we determined the primary structure of JD-T to discuss its thermostability-structure relationship. JD-T possessed basic structural features of fish trypsin such as the catalytic triad, the Asp189 residue for substrate specificity, 12 Cys residues forming six disulfide-bridges, and the calcium-ion-binding loop. On the other hand, the contents of charged amino acid residues in whole JD-T molecule (16.2%) and N-terminal region (13.8%) were similar to those of tropical-zone marine fish and other freshwater fish trypsins. Then, JD-T conserved the five amino acid residues (Glu70, Asn72, Val75, Glu77, and Glu80) coordinate with calcium-ion, and the proportion of negatively charged amino acids to charged amino acids in the calcium-ion-binding region of JD-T (75.0%) was equivalent to those of tropical-zone marine fish and freshwater fish trypsins. Therefore, it was suggested that the high thermostability of JD-T are stemmed from these structural specificities.
Collapse
Affiliation(s)
- Gaku Kanno
- Laboratory of Marine Chemical Resource Development, Graduate School of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido, 041-8611, Japan
| | - Sappasith Klomklao
- Department of Food Science and Technology, Faculty of Agro- and Bio- Industry, Thaksin University, Phatthalung Campus, Pa-Phayom, Phatthalung, 93210, Thailand
| | - Yuya Kumagai
- Laboratory of Marine Chemical Resource Development, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido, 041-8611, Japan
| | - Hideki Kishimura
- Laboratory of Marine Chemical Resource Development, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido, 041-8611, Japan.
| |
Collapse
|
3
|
França RCDP, Assis CRD, Santos JF, Torquato RJS, Tanaka AS, Hirata IY, Assis DM, Juliano MA, Cavalli RO, Carvalho Jr LBD, Bezerra RS. Bovine pancreatic trypsin inhibitor immobilized onto sepharose as a new strategy to purify a thermostable alkaline peptidase from cobia ( Rachycentron canadum ) processing waste. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1033-1034:210-217. [DOI: 10.1016/j.jchromb.2016.08.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 08/13/2016] [Accepted: 08/17/2016] [Indexed: 10/21/2022]
|
4
|
Zamani A, Rezaei M, Madani R, Habibi Rezaie M. Trypsin Enzyme from Viscera of Common Kilka (Clupeonella cultriventris caspia): Purification, Characterization, and Its Compatibility with Oxidants and Surfactants. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2014. [DOI: 10.1080/10498850.2012.712630] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
5
|
Zhou LZ, Ruan MM, Cai QF, Liu GM, Sun LC, Su WJ, Cao MJ. Purification, characterization and cDNA cloning of a trypsin from the hepatopancreas of snakehead (Channa argus). Comp Biochem Physiol B Biochem Mol Biol 2012; 161:247-54. [DOI: 10.1016/j.cbpb.2011.11.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 11/27/2011] [Accepted: 11/27/2011] [Indexed: 11/29/2022]
|
6
|
Ktari N, Ben Khaled H, Nasri R, Jellouli K, Ghorbel S, Nasri M. Trypsin from zebra blenny (Salaria basilisca) viscera: Purification, characterisation and potential application as a detergent additive. Food Chem 2012. [DOI: 10.1016/j.foodchem.2011.07.015] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
7
|
Chymotrypsin from the hepatopancreas of cuttlefish (Sepia officinalis) with high activity in the hydrolysis of long chain peptide substrates: Purification and biochemical characterisation. Food Chem 2012. [DOI: 10.1016/j.foodchem.2011.07.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
8
|
Kanno G, Kishimura H, Yamamoto J, Ando S, Shimizu T, Benjakul S, Klomklao S, Nalinanon S, Chun BS, Saeki H. Cold-adapted structural properties of trypsins from walleye pollock (Theragra chalcogramma) and Arctic cod (Boreogadus saida). Eur Food Res Technol 2011. [DOI: 10.1007/s00217-011-1592-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
9
|
Chun BS, Kishimura H, Nalinanon S, Klomklao S, Benjakul S. Mackerel trypsin purified from defatted viscera by supercritical carbon dioxide. JOURNAL OF AMINO ACIDS 2011; 2011:728082. [PMID: 22312468 PMCID: PMC3268041 DOI: 10.4061/2011/728082] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 05/10/2011] [Indexed: 11/20/2022]
Abstract
Viscera of mackerel (Scomber sp.) were defatted by supercritical carbon dioxide (SCO(2)) treatment. Trypsin (SC-T) was then extracted from the defatted powder and purified by a series of chromatographies including Sephacryl S-200 and Sephadex G-50. The purified SC-T was nearly homogeneous on SDS-PAGE, and its molecular weight was estimated as approximately 24,000 Da. N-terminal twenty amino acids sequence of SC-T was IVGGYECTAHSQPHQVSLNS. The specific trypsin inhibitors, soybean trypsin inhibitor and TLCK, strongly inhibited the activities of SC-T. The pH and temperature optimums of SC-T were at around pH 8.0 and 60°C, respectively, using N(α)-p-tosyl-L-arginine methyl ester as a substrate. The SC-T was unstable below pH 5.0 and above 40°C, and it was stabilized by calcium ion. These enzymatic characteristics of SC-T were the same as those of other fish trypsins, especially spotted mackerel (S. borealis) trypsin, purified from viscera defatted by acetone. Therefore, we concluded that the SCO(2) defatting process is useful as a substitute for organic solvent defatting process.
Collapse
Affiliation(s)
- Byung-Soo Chun
- Department of Food Science and Technology, Pukyong National University, Busan 608-737, Republic of Korea
| | - Hideki Kishimura
- Research Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido 041-8611, Japan
| | - Sitthipong Nalinanon
- Faculty of Agro-Industry, King Mongkut's Institute of Technology Ladkrabang, Choakhunthaharn Building, Choakhunthaharn Rd., Ladkrabang, Bangkok 10520, Thailand
| | - Sappasith Klomklao
- Department of Food Technology, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Soottawat Benjakul
- Department of Food Science and Technology, Faculty of Technology and Community Development, Thaksin University, Phattalung Campus, Phattalung 93110, Thailand
| |
Collapse
|