1
|
El-Shora HM, Elazab NT, Al-Anazi A, El-Sayyad GS, Ibrahim ME, Alfakharany MW. Fungal tyrosinase immobilized on chitosan, calcium alginate, and silica gel for phenol elimination and dye decolorization. Enzyme Microb Technol 2025; 189:110655. [PMID: 40262435 DOI: 10.1016/j.enzmictec.2025.110655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 04/11/2025] [Accepted: 04/12/2025] [Indexed: 04/24/2025]
Abstract
Aspergillus nidulans (AUMC No. 7147) was utilized for tyrosinase (EC 1.14.18.1) production. In this study, we purified the enzyme, immobilized it on various beads, analyzed its kinetics, and applied it for phenol removal and dye decolorization, including Crystal Violet (CV), Congo Red (CR), Methyl Red (MR), and Malachite Green (MG). Tyrosinase was isolated from Aspergillus nidulans (AUMC No. 7147) with a specific activity of 230.76 units mg⁻¹ protein. The purified enzyme was then immobilized on chitosan, Ca-alginate, and silica gel, achieving immobilization efficiencies of 89.6 %, 75.0 %, and 69.4 %, respectively. After 10 reuse cycles, the immobilized tyrosinase on chitosan and Ca-alginate retained 41 % and 15 % of its initial activity, respectively. The Km values were determined to be 0.23, 0.37, and 0.38 mM, while the Vmax values were 32.5, 33.3-, and 27.5-units mg⁻¹ protein for the free enzyme and the two immobilized forms, respectively. After 30 days of storage at 25°C, the residual activities of tyrosinase immobilized on silica gel, alginate, and chitosan were 14 %, 27 %, and 52 %, respectively. The optimal temperatures for the free and immobilized tyrosinase were 40°C and 50°C, respectively. The activation energies were calculated as 59.66, 54.43, and 48.86 KJ mol⁻¹ . The free tyrosinase exhibited an optimal pH of 7.0, which shifted to pH 8.0 upon immobilization. The enzyme could be reused for at least eight cycles. Phenol was effectively removed by chitosan-immobilized tyrosinase; however, the removal efficiency declined in subsequent cycles. The highest removal percentage was achieved using the chitosan-immobilized enzyme at pH 8.0, and Temp., 50°C, after 2 hours. Additionally, the immobilized enzyme was effective in decolorizing the dyes Crystal Violet (CV), Congo Red (CR), Methyl Red (MR), and Malachite Green (MG). These findings support bioremediation strategies for the safe environmental removal of toxic dyes, and phenol from wastewater.
Collapse
Affiliation(s)
- Hamed M El-Shora
- Department of Botany, Faculty of Science, Mansoura University, Mansoura 35511, Egypt
| | - Nahla T Elazab
- Department of Botany, Faculty of Science, Mansoura University, Mansoura 35511, Egypt; Department of Biology, College of Science, Qassim University, Qassim 51452, Saudi Arabia
| | - Abdulaziz Al-Anazi
- Department of Chemical Engineering, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia
| | - Gharieb S El-Sayyad
- Department of Medical Laboratory Technology, Faculty of Applied Health Sciences Technology, Badr University in Cairo (BUC), Badr City, Cairo, Egypt; Drug Microbiology Lab., Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt.
| | - Mohsen E Ibrahim
- Department of Botany, Faculty of Science, Port-Said University, Port-Saied 42511, Egypt
| | | |
Collapse
|
2
|
D'Almeida AP, Gonçalves LRB, de Albuqueque da Silva TL, Fernandez-Lafuente R, Silva IJD. Alcalase immobilization in iota-carrageenan-matrix hydrogel beads derived from the macroalga Solieria filiformis. Enzyme Microb Technol 2025; 188:110636. [PMID: 40147097 DOI: 10.1016/j.enzmictec.2025.110636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/17/2025] [Accepted: 03/17/2025] [Indexed: 03/29/2025]
Abstract
This study aims to immobilize Bacillus licheniformis (Alcalase) protease in iota-carrageenan (ιCAR) matrix hydrogels via adsorption. CAR was extracted from macroalgae Solieria filiformis and used to produce hydrogels using Al3 + as the gelling agent. Subsequently, enzyme immobilization was performed at 25ºC, for 120 min using particles of ∼2.0 mm diameter, varying the medium pH values (7.0, 8.0, and 9.0). The immobilization at pH 8.0 resulted in the biocatalyst with the highest immobilization yield (100 %), expressed activity (88.9 %), and mass activity (10.4 U/g) for 1.0 mg/g of enzyme loading. When using particles with different diameters (1.0, 2.0, and 3.0 mm), the best results were obtained using 1.0 mm particles. This permitted a 100 % immobilization yield, 95.8 % expressed activity, and high mass activity (11.2 U/g). The lyophilized biocatalyst presented varying macro-pore diameters, ranging from 21 to 126 µm. The immobilized biocatalyst was 11 times more stable than the soluble enzyme at 60ºC and pH 8.0 and presented > 80 % retained activity in the pH range 6.0-9.0.
Collapse
Affiliation(s)
- Alan Portal D'Almeida
- Department of Chemical Engineering, Federal University of Ceará, Pici Campus, Fortaleza, Brazil
| | | | | | | | - Ivanildo José da Silva
- Department of Chemical Engineering, Federal University of Ceará, Pici Campus, Fortaleza, Brazil.
| |
Collapse
|
3
|
Atalay AI, Tosun R, Saftan M. Effect of Dietary Supplementation of Red and Larch Pine Needle Powders on Productivity, Egg Quality, Yolk Fatty Acids and Cholesterol and Hatchability of Laying Quails. J Anim Physiol Anim Nutr (Berl) 2025. [PMID: 39810286 DOI: 10.1111/jpn.14102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 12/02/2024] [Accepted: 12/28/2024] [Indexed: 01/16/2025]
Abstract
This study aimed to determine the efficacy of red pine and larch pine needles powder at different doses on productive performance, egg quality, hatching parameters, total fatty acid and cholesterol levels of laying quails. A total of 126 (84 ♀ and 42 ♂) 20-week-old laying quail were randomly distributed into seven experimental diets with three replicates of six (four female and two male) birds per cage. The groups were fed a basal diet (CON group), a basal diet with red pine needle powder (RPNP group) (1.5%, 3% and 4.5%), or a basal diet with larch pine needle powder (LPNP group) (1.5%, 3% and 4.5%) for 9 weeks. The results showed that the additives which were added into the ration did not affect feed intake and feed conversion ratio among the performance parameters compared to the control group (p > 0.05). Egg production increased by 13%-14% in RPNP 1.5% and LPNP 4.5% groups compared to the control group (p < 0.05). Egg weight increased by 4.04% only at the RPNP 4.5% dose (p < 0.05). However, egg weight decreased by 3.68%, 2.88% and 5.75% in RPNP 3% and LPNP 3% and 4.5% doses, respectively (p < 0.05). The highest increase in egg mass compared to the control was 13.61% in the RPNP 1.5% dose (p < 0.05). Egg shape index increased by 8.18% in the RPNP 1.5% group and 11.11% in the LPNP 3% group (p < 0.05). Haugh units increased by 1.87% and 1.77% in RPNP 1.5% and LPNP 4.5% doses, respectively (p < 0.05). The amount of broken eggs increased in the LPNP 1.5% (2.86%) and LPNP 3% (3.65%) doses relative to the control group (0.40%) (p < 0.05). Egg yolk decreased by 7.2%-17.6% in RPNP 1.5% and 3% groups and LPNP 3% and 4.5% doses (p < 0.05). Egg yolk diameter decreased by 3.21%-6.56% in RPNP 1.5% and 3% groups and LPNP 4.5% doses (p < 0.05). Yolk index decreased by an average of 5.5%-7% in RPNP 1.5% and 4.5% doses and LPNP 4.5% doses (p < 0.05). Pine needle supplementation increased total monounsaturated fatty acids in egg yolks by 6% compared to the control group, while cholesterol levels decreased by 7.73% compared to the control (p < 0.05). On the other hand, pine needle addition had no effect on incubation parameters (p > 0.05). Our results clearly indicated that the 1.5% red pine needles powder could be used as an additive to increase the egg production, egg mass and Haugh units in laying quails.
Collapse
Affiliation(s)
- Ali Ihsan Atalay
- Faculty of Agriculture Department of Animal Science, Sehit Bülent Yurtseven Kampüsü, Igdır University, Igdir, Turkey
| | - Ramazan Tosun
- Faculty of Agriculture Department of Animal Science, Sehit Bülent Yurtseven Kampüsü, Igdır University, Igdir, Turkey
| | - Metin Saftan
- Faculty of Agriculture Department of Animal Science, Sehit Bülent Yurtseven Kampüsü, Igdır University, Igdir, Turkey
| |
Collapse
|
4
|
Santos MPF, de Souza Junior EC, Villadóniga C, Vallés D, Castro-Sowinski S, Bonomo RCF, Veloso CM. Proteases: Importance, Immobilization Protocols, Potential of Activated Carbon as Support, and the Importance of Modifying Supports for Immobilization. BIOTECH 2024; 13:13. [PMID: 38804295 PMCID: PMC11130871 DOI: 10.3390/biotech13020013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/29/2024] Open
Abstract
Although enzymes have been used for thousands of years, their application in industrial processes has gained importance since the 20th century due to technological and scientific advances in several areas, including biochemistry [...].
Collapse
Affiliation(s)
- Mateus Pereira Flores Santos
- Programa de Pós-Graduação em Biologia e Biotecnologia de Microrganismos (PPGBBM), Universidade Estadual de Santa Cruz (UESC), Rodovia Jorge Amado, km 16, Ilhéus 45662-900, Bahia, Brazil;
| | - Evaldo Cardozo de Souza Junior
- Laboratório de Engenharia de Processos, Universidade Estadual do Sudoeste da Bahia (UESB), BR 415, km 04, s/n, Itapetinga 45700-000, Bahia, Brazil; (E.C.d.S.J.); (C.M.V.)
| | - Carolina Villadóniga
- Laboratório de Biocatalisadores e suas Aplicações, Instituto de Química Biológica, Faculdade de Ciências, Universidade da República, Iguá 4225, Montevideo 11400, Uruguay; (C.V.); (D.V.); (S.C.-S.)
| | - Diego Vallés
- Laboratório de Biocatalisadores e suas Aplicações, Instituto de Química Biológica, Faculdade de Ciências, Universidade da República, Iguá 4225, Montevideo 11400, Uruguay; (C.V.); (D.V.); (S.C.-S.)
| | - Susana Castro-Sowinski
- Laboratório de Biocatalisadores e suas Aplicações, Instituto de Química Biológica, Faculdade de Ciências, Universidade da República, Iguá 4225, Montevideo 11400, Uruguay; (C.V.); (D.V.); (S.C.-S.)
| | - Renata Cristina Ferreira Bonomo
- Laboratório de Engenharia de Processos, Universidade Estadual do Sudoeste da Bahia (UESB), BR 415, km 04, s/n, Itapetinga 45700-000, Bahia, Brazil; (E.C.d.S.J.); (C.M.V.)
| | - Cristiane Martins Veloso
- Laboratório de Engenharia de Processos, Universidade Estadual do Sudoeste da Bahia (UESB), BR 415, km 04, s/n, Itapetinga 45700-000, Bahia, Brazil; (E.C.d.S.J.); (C.M.V.)
| |
Collapse
|
5
|
Yang NE, Lee DH, Hwang J, Son WY, Kim KS, Kim GY, Kim HW. Proteolytic Activity of Silkworm Thorn ( Cudrania tricuspidata) Fruit for Enzymatic Hydrolysis of Food Proteins. Molecules 2024; 29:693. [PMID: 38338437 PMCID: PMC10856028 DOI: 10.3390/molecules29030693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/27/2024] [Accepted: 01/28/2024] [Indexed: 02/12/2024] Open
Abstract
This study aimed to isolate the proteolytic fraction from the silkworm thorn fruit (Cudrania tricuspidata) through ethanol precipitation at different ratios, and to determine its proteolytic activity and optimal activity conditions. Furthermore, the hydrolysis characteristics and antioxidant activity of soy protein isolate (SPI) and whey protein concentrate (WPC) hydrolyzates obtained through the enzymatic hydrolysis of freeze-dried silkworm thorn fruit powder (SF) were evaluated. For isolation and partial purification of proteolytic fraction, the water-solubilized fraction of the silkworm thorn fruit was purified through ethanol precipitation at four different ratios of 1:1, 1:2, 1:4, and 1:6 (v/v). The protein recovery rate, caseinolytic activity, protein pattern, and optimal activity (pH, temperature, and inhibitors) of fractional ethanol precipitate obtained from the silkworm thorn fruit (ESF) were evaluated. The proteolytic fraction obtained from silkworm thorn fruit exhibited a major protein band around 65-70 kDa and showed the highest proteolytic activity at a 1:4 ratio of ethanol precipitation (p < 0.05). The optimal activity of the measured enzyme fraction was determined to be at pH 9.0 and 50 °C, and the proteolytic activity of ESF was almost inhibited by phenyl methyl sulphonyl fluoride (PMSF, 2 mM), a serine protease inhibitor. Compared to Alcalase and papain, extensively used as commercial enzymes, the silkworm thorn fruit powder was less effective in hydrolyzing SPI and WPC. Nevertheless, SPI and WPC hydrolyzates mediated with silkworm thorn fruit powder showed even better antioxidant activities than those mediated with Alcalase and papain. Thus, our results show the potential application of silkworm thorn fruit as a novel source of plant protease for producing human-grade protein hydrolyzates.
Collapse
Affiliation(s)
- Na-Eun Yang
- Department of GreenBio Science, Gyeongsang National University, Jinju 52725, Republic of Korea;
| | - Da-Hoon Lee
- Division of Animal Bioscience & Integrated Biotechnology, Gyeongsang National University, Jinju 52828, Republic of Korea; (D.-H.L.); (J.H.); (W.-Y.S.)
| | - Jun Hwang
- Division of Animal Bioscience & Integrated Biotechnology, Gyeongsang National University, Jinju 52828, Republic of Korea; (D.-H.L.); (J.H.); (W.-Y.S.)
| | - Woo-Young Son
- Division of Animal Bioscience & Integrated Biotechnology, Gyeongsang National University, Jinju 52828, Republic of Korea; (D.-H.L.); (J.H.); (W.-Y.S.)
| | - Kyeong-Soo Kim
- Department of Pharmaceutical Engineering, Gyeongsang National University, Jinju 52725, Republic of Korea;
| | - Gwang-Yeon Kim
- Sancheong Hanbang Kkujippong Farming Association Corporation, Sancheong 52255, Republic of Korea;
| | - Hyun-Wook Kim
- Department of GreenBio Science, Gyeongsang National University, Jinju 52725, Republic of Korea;
- Division of Animal Bioscience & Integrated Biotechnology, Gyeongsang National University, Jinju 52828, Republic of Korea; (D.-H.L.); (J.H.); (W.-Y.S.)
| |
Collapse
|
6
|
Bilal M, Qamar SA, Carballares D, Berenguer-Murcia Á, Fernandez-Lafuente R. Proteases immobilized on nanomaterials for biocatalytic, environmental and biomedical applications: Advantages and drawbacks. Biotechnol Adv 2024; 70:108304. [PMID: 38135131 DOI: 10.1016/j.biotechadv.2023.108304] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/30/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023]
Abstract
Proteases have gained significant scientific and industrial interest due to their unique biocatalytic characteristics and broad-spectrum applications in different industries. The development of robust nanobiocatalytic systems by attaching proteases onto various nanostructured materials as fascinating and novel nanocarriers has demonstrated exceptional biocatalytic performance, substantial stability, and ease of recyclability over multiple reaction cycles under different chemical and physical conditions. Proteases immobilized on nanocarriers may be much more resistant to denaturation caused by extreme temperatures or pH values, detergents, organic solvents, and other protein denaturants than free enzymes. Immobilized proteases may present a lower inhibition. The use of non-porous materials in the immobilization prevents diffusion and steric hindrances during the binding of the substrate to the active sites of enzymes compared to immobilization onto porous materials; when using very large or solid substrates, orientation of the enzyme must always be adequate. The advantages and problems of the immobilization of proteases on nanoparticles are discussed in this review. The continuous and batch reactor operations of nanocarrier-immobilized proteases have been successfully investigated for a variety of applications in the leather, detergent, biomedical, food, and pharmaceutical industries. Information about immobilized proteases on various nanocarriers and nanomaterials has been systematically compiled here. Furthermore, different industrial applications of immobilized proteases have also been highlighted in this review.
Collapse
Affiliation(s)
- Muhammad Bilal
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, G. Narutowicza 11/12 Str., 80-233 Gdansk, Poland; Advanced Materials Center, Gdansk University of Technology, 11/12 Narutowicza St., 80-233 Gdansk, Poland.
| | - Sarmad Ahmad Qamar
- Department of Environmental, Biological & Pharmaceutical Sciences, and Technologies, University of Campania 'Luigi Vanvitelli', Via Vivaldi 43, 81100 Caserta, Italy
| | - Diego Carballares
- Department of Biocatalysis, ICP-CSIC, C/ Marie Curie 2, Campus UAM-CSIC Cantoblanco, Madrid, Spain
| | - Ángel Berenguer-Murcia
- Departamento de Química Inorgánica e Instituto Universitario de Materiales, Universidad de Alicante, 03080 Alicante, Spain
| | | |
Collapse
|
7
|
El Salamony DH, El Gayar DA, El Mahdy AR, Zaghloul TI. Preparation and characterization of silica nanoparticles as an efficient carrier for two bio‐detergents based enzymes. J SURFACTANTS DETERG 2023. [DOI: 10.1002/jsde.12663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Affiliation(s)
- Dina H. El Salamony
- Department of Biotechnology Institute of Graduate Studies and Research, Alexandria University Alexandria Egypt
| | - Dina A. El Gayar
- Chemical Engineering Department, Faculty of Engineering Alexandria University Alexandria Egypt
| | - Ahmed R. El Mahdy
- Food Science and Technology Department, Faculty of Agriculture Alexandria University Alexandria Egypt
| | - Taha I. Zaghloul
- Department of Biotechnology Institute of Graduate Studies and Research, Alexandria University Alexandria Egypt
| |
Collapse
|
8
|
Liu Y, Wang K, Zheng H, Ma M, Li S, Ma L. Papain immobilization on interconnected-porous chitosan macroparticles: Application in controllable hydrolysis of egg white for foamability improvement. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
9
|
Immobilization of Alcalase on Silica Supports Modified with Carbosilane and PAMAM Dendrimers. Int J Mol Sci 2022; 23:ijms232416102. [PMID: 36555742 PMCID: PMC9783553 DOI: 10.3390/ijms232416102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Enzyme immobilization is a powerful strategy for enzyme stabilization and recyclability. Materials covered with multipoint molecules are very attractive for this goal, since the number of active moieties to attach the enzyme increases with respect to monofunctional linkers. This work evaluates different dendrimers supported on silica to immobilize a protease enzyme, Alcalase. Five different dendrimers were employed: two carbosilane (CBS) dendrimers of different generations (SiO2-G0Si-NH2 and SiO2-G1Si-NH2), a CBS dendrimer with a polyphenoxo core (SiO2-G1O3-NH2), and two commercial polyamidoamine (PAMAM) dendrimers of different generations (SiO2-G0PAMAM-NH2 and SiO2-G1PAMAM-NH2). The results were compared with a silica support modified with a monofunctional molecule (2-aminoethanethiol). The effect of the dendrimer generation, the immobilization conditions (immobilization time, Alcalase/SiO2 ratio, and presence of Ca2+ ions), and the digestion conditions (temperature, time, amount of support, and stirring speed) on Alcalase activity has been evaluated. Enzyme immobilization and its activity were highly affected by the kind of dendrimer and its generation, observing the most favorable behavior with SiO2-G0PAMAM-NH2. The enzyme immobilized on this support was used in two consecutive digestions and, unlike CBS supports, it did not retain peptides released in the digestion.
Collapse
|
10
|
Hu X, Zhang Q, Zhang Q, Ding J, Liu Y, Qin W. An updated review of functional properties, debittering methods, and applications of soybean functional peptides. Crit Rev Food Sci Nutr 2022; 63:8823-8838. [PMID: 35482930 DOI: 10.1080/10408398.2022.2062587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Soybean functional peptides (SFPs) are obtained via the hydrolysis of soybean protein into polypeptides, oligopeptides, and a small amount of amino acids. They have nutritional value and a variety of functional properties, including regulating blood lipids, lowering blood pressure, anti-diabetes, anti-oxidant, preventing COVID-19, etc. SFPs have potential application prospects in food processing, functional food development, clinical medicine, infant milk powder, special medical formulations, among others. However, bitter peptides containing relatively more hydrophobic amino acids can be formed during the production of SFPs, seriously restricting the application of SFPs. High-quality confirmatory human trials are needed to determine effective doses, potential risks, and mechanisms of action, especially as dietary supplements and special medical formulations. Therefore, the physiological activities and potential risks of soybean polypeptides are summarized, and the existing debitterness technologies and their applicability are reviewed. The technical challenges and research areas to be addressed in optimizing debittering process parameters and improving the applicability of SFPs are discussed, including integrating various technologies to obtain higher quality functional peptides, which will facilitate further exploration of physiological mechanism, metabolic pathway, tolerance, bioavailability, and potential hazards of SFPs. This review can help promote the value of SFPs and the development of the soybean industry.
Collapse
Affiliation(s)
- Xinjie Hu
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Qinqiu Zhang
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Qing Zhang
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Jie Ding
- College of Food Science, Sichuan Agricultural University, Ya'an, China
- College of Food Science and Technology, Sichuan Tourism University, Chengdu, China
| | - Yaowen Liu
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Wen Qin
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| |
Collapse
|
11
|
Glomm WR, Wubshet SG, Lindberg D, Dankel KR, Afseth NK, Stenstad PM, Johnsen H. Immobilized protease on magnetic particles for enzymatic protein hydrolysis of poultry by-products. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Li J, Yang X, Swallah MS, Fu H, Ji L, Meng X, Yu H, Lyu B. Soy protein isolate: an overview on foaming properties and air–liquid interface. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15390] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jiaxin Li
- College of Food Science and Engineering Jilin Agricultural University Changchun 130118 China
- Soybean Research & Development Centre Division of Soybean Processing Chinese Agricultural Research System Changchun 130118 China
| | - Xiaoqing Yang
- College of Food Science and Engineering Jilin Agricultural University Changchun 130118 China
- Soybean Research & Development Centre Division of Soybean Processing Chinese Agricultural Research System Changchun 130118 China
| | - Mohammed Sharif Swallah
- College of Food Science and Engineering Jilin Agricultural University Changchun 130118 China
| | - Hongling Fu
- College of Food Science and Engineering Jilin Agricultural University Changchun 130118 China
- Soybean Research & Development Centre Division of Soybean Processing Chinese Agricultural Research System Changchun 130118 China
| | - Lei Ji
- College of Food Science and Engineering Jilin Agricultural University Changchun 130118 China
- Soybean Research & Development Centre Division of Soybean Processing Chinese Agricultural Research System Changchun 130118 China
| | - Xiangze Meng
- College of Food Science and Engineering Jilin Agricultural University Changchun 130118 China
- Soybean Research & Development Centre Division of Soybean Processing Chinese Agricultural Research System Changchun 130118 China
| | - Hansong Yu
- College of Food Science and Engineering Jilin Agricultural University Changchun 130118 China
- Soybean Research & Development Centre Division of Soybean Processing Chinese Agricultural Research System Changchun 130118 China
| | - Bo Lyu
- Soybean Research & Development Centre Division of Soybean Processing Chinese Agricultural Research System Changchun 130118 China
- College of Food Science Northeast Agricultural University Harbin 150030 China
| |
Collapse
|
13
|
Arya PS, Yagnik SM, Rajput KN, Panchal RR, Raval VH. Understanding the Basis of Occurrence, Biosynthesis, and Implications of Thermostable Alkaline Proteases. Appl Biochem Biotechnol 2021; 193:4113-4150. [PMID: 34648116 DOI: 10.1007/s12010-021-03701-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 10/04/2021] [Indexed: 12/29/2022]
Abstract
The group of hydrolytic enzymes synonymously known as proteases is predominantly most favored for the class of industrial enzymes. The present work focuses on the thermostable nature of these proteolytic enzymes that occur naturally among mesophilic and thermophilic microbes. The broad thermo-active feature (40-80 °C), ease of cultivation, maintenance, and bulk production are the key features associated with these enzymes. Detailing of contemporary production technologies, and controllable operational parameters including the purification strategies, are the key features that justify their industrial dominance as biocatalysts. In addition, the rigorous research inputs by protein engineering and enzyme immobilization studies add up to the thermo-catalytic features and application capabilities of these enzymes. The work summarizes key features of microbial proteases that make them numero-uno for laundry, biomaterials, waste management, food and feed, tannery, and medical as well as pharmaceutical industries. The quest for novel and/or designed and engineered thermostable protease from unexplored sources is highly stimulating and will address the ever-increasing industrial demands.
Collapse
Affiliation(s)
- Prashant S Arya
- Department of Microbiology and Biotechnology, School of Sciences, Gujarat University, Ahmedabad, 380009, India
| | - Shivani M Yagnik
- Department of Microbiology and Biotechnology, School of Sciences, Gujarat University, Ahmedabad, 380009, India
| | - Kiransinh N Rajput
- Department of Microbiology and Biotechnology, School of Sciences, Gujarat University, Ahmedabad, 380009, India
| | - Rakeshkumar R Panchal
- Department of Microbiology and Biotechnology, School of Sciences, Gujarat University, Ahmedabad, 380009, India
| | - Vikram H Raval
- Department of Microbiology and Biotechnology, School of Sciences, Gujarat University, Ahmedabad, 380009, India.
| |
Collapse
|
14
|
Mylkie K, Nowak P, Rybczynski P, Ziegler-Borowska M. Polymer-Coated Magnetite Nanoparticles for Protein Immobilization. MATERIALS (BASEL, SWITZERLAND) 2021; 14:E248. [PMID: 33419055 PMCID: PMC7825442 DOI: 10.3390/ma14020248] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/26/2020] [Accepted: 12/28/2020] [Indexed: 11/20/2022]
Abstract
Since their discovery, magnetic nanoparticles (MNPs) have become materials with great potential, especially considering the applications of biomedical sciences. A series of works on the preparation, characterization, and application of MNPs has shown that the biological activity of such materials depends on their size, shape, core, and shell nature. Some of the most commonly used MNPs are those based on a magnetite core. On the other hand, synthetic biopolymers are used as a protective surface coating for these nanoparticles. This review describes the advances in the field of polymer-coated MNPs for protein immobilization over the past decade. General methods of MNP preparation and protein immobilization are presented. The most extensive section of this article discusses the latest work on the use of polymer-coated MNPs for the physical and chemical immobilization of three types of proteins: enzymes, antibodies, and serum proteins. Where possible, the effectiveness of the immobilization and the activity and use of the immobilized protein are reported. Finally, the information available in the peer-reviewed literature and the application perspectives for the MNP-immobilized protein systems are summarized as well.
Collapse
Affiliation(s)
| | | | | | - Marta Ziegler-Borowska
- Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland; (K.M.); (P.N.); (P.R.)
| |
Collapse
|
15
|
Shao J, Zhang G, Fu J, Zhang B. Advancement of the preparation methods and biological activity of peptides from sesame oil byproducts: a review. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2020. [DOI: 10.1080/10942912.2020.1849276] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Jiawei Shao
- Department of Food Science and Nutrition, University of Jinan, Jinan, China
| | - Guixiang Zhang
- Department of Food Science and Nutrition, University of Jinan, Jinan, China
| | - Jianxin Fu
- Department of Food Science and Nutrition, University of Jinan, Jinan, China
| | - Bingwen Zhang
- Department of Food Science and Nutrition, University of Jinan, Jinan, China
| |
Collapse
|
16
|
Tacias-Pascacio VG, Morellon-Sterling R, Siar EH, Tavano O, Berenguer-Murcia Á, Fernandez-Lafuente R. Use of Alcalase in the production of bioactive peptides: A review. Int J Biol Macromol 2020; 165:2143-2196. [PMID: 33091472 DOI: 10.1016/j.ijbiomac.2020.10.060] [Citation(s) in RCA: 164] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/05/2020] [Accepted: 10/08/2020] [Indexed: 12/11/2022]
Abstract
This review aims to cover the uses of the commercially available protease Alcalase in the production of biologically active peptides since 2010. Immobilization of Alcalase has also been reviewed, as immobilization of the enzyme may improve the final reaction design enabling the use of more drastic conditions and the reuse of the biocatalyst. That way, this review presents the production, via Alcalase hydrolysis of different proteins, of peptides with antioxidant, angiotensin I-converting enzyme inhibitory, metal binding, antidiabetic, anti-inflammatory and antimicrobial activities (among other bioactivities) and peptides that improve the functional, sensory and nutritional properties of foods. Alcalase has proved to be among the most efficient proteases for this goal, using different protein sources, being especially interesting the use of the protein residues from food industry as feedstock, as this also solves nature pollution problems. Very interestingly, the bioactivities of the protein hydrolysates further improved when Alcalase is used in a combined way with other proteases both in a sequential way or in a simultaneous hydrolysis (something that could be related to the concept of combi-enzymes), as the combination of proteases with different selectivities and specificities enable the production of a larger amount of peptides and of a smaller size.
Collapse
Affiliation(s)
- Veymar G Tacias-Pascacio
- Facultad de Ciencias de la Nutrición y Alimentos, Universidad de Ciencias y Artes de Chiapas, Lib. Norte Pte. 1150, 29039 Tuxtla Gutiérrez, Chiapas, Mexico; Tecnológico Nacional de México/Instituto Tecnológico de Tuxtla Gutiérrez, Carretera Panamericana Km. 1080, 29050 Tuxtla Gutiérrez, Chiapas, Mexico.
| | | | - El-Hocine Siar
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC, Madrid, Spain; Equipe TEPA, Laboratoire LNTA, INATAA, Université des Frères Mentouri Constantine 1, Constantine 25000, Algeria
| | - Olga Tavano
- Faculty of Nutrition, Alfenas Federal Univ., 700 Gabriel Monteiro da Silva St, Alfenas, MG 37130-000, Brazil
| | - Ángel Berenguer-Murcia
- Departamento de Química Inorgánica e Instituto Universitario de Materiales, Universidad de Alicante, Alicante, Spain
| | - Roberto Fernandez-Lafuente
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC, Madrid, Spain; Center of Excellence in Bionanoscience Research, Member of the External Scientific Advisory Board, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
17
|
Liu Y, Cai Z, Ma M, Sheng L, Huang X. Effect of eggshell membrane as porogen on the physicochemical structure and protease immobilization of chitosan-based macroparticles. Carbohydr Polym 2020; 242:116387. [PMID: 32564851 DOI: 10.1016/j.carbpol.2020.116387] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/27/2020] [Accepted: 04/27/2020] [Indexed: 01/20/2023]
Abstract
Chitosan-based macroparticle is a common carrier for enzyme immobilization applied in food industry. Driven by the requirement of large carrier pores for the biomacromolecular substrates such as protein, the eggshell membrane powder (ESMP) was employed as multifunctional porogen to improve the physicochemical structure of chitosan-based macroparticles. The prepared macroparticles were characterized by SEM, XRD, FTIR, Raman spectroscopy, nitrogen adsorption-desorption isotherms, and thermogravimetric analysis. The results showed that an increase of ESMP percentage could improve the porosity of macro holes in macroparticles, and it also enlarged the size of mesopores. Moreover, the ESMP significantly increased (P < 0.05) the amount of papain immobilization, whereas the specific activity of immobilized papain achieved a maximum value of 871.95 U/mg at CSESM2 and then declined with the increase of ESMP. Therefore, the inclusion of 20 % ESMP in chitosan-based macroparticles gave the highest activity of its immobilized protease.
Collapse
Affiliation(s)
- Yuanyuan Liu
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China
| | - Zhaoxia Cai
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China
| | - Meihu Ma
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China.
| | - Long Sheng
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China
| | - Xi Huang
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China
| |
Collapse
|
18
|
Demarchi CA, Debrassi A, de Campos Buzzi F, Nedelko N, Ślawska-Waniewska A, Dłużewski P, Dal Magro J, Scapinello J, Rodrigues CA. Adsorption of the dye Remazol Red 198 (RR198) by O-carboxymethylchitosan-N-lauryl/γ-Fe2O3 magnetic nanoparticles. ARAB J CHEM 2019. [DOI: 10.1016/j.arabjc.2015.08.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
19
|
Weldrick PJ, Hardman MJ, Paunov VN. Enhanced Clearing of Wound-Related Pathogenic Bacterial Biofilms Using Protease-Functionalized Antibiotic Nanocarriers. ACS APPLIED MATERIALS & INTERFACES 2019; 11:43902-43919. [PMID: 31718141 DOI: 10.1021/acsami.9b16119] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Biofilms are prevalent in chronic wounds and once formed are very hard to remove, which is associated with poor outcomes and high mortality rates. Biofilms are comprised of surface-attached bacteria embedded in an extracellular polymeric substance (EPS) matrix, which confers increased antibiotic resistance and host immune evasion. Therefore, disruption of this matrix is essential to tackle the biofilm-embedded bacteria. Here, we propose a novel nanotechnology to do this, based on protease-functionalized nanogel carriers of antibiotics. Such active antibiotic nanocarriers, surface coated with the protease Alcalase 2.4 L FG, "digest" their way through the biofilm EPS matrix, reach the buried bacteria, and deliver a high dose of antibiotic directly on their cell walls, which overwhelms their defenses. We demonstrated their effectiveness against six wound biofilm-forming bacteria, Staphylococcus aureus, Pseudomonas aeruginosa, Staphylococcus epidermidis, Klebsiella pneumoniae, Escherichia coli, and Enterococcus faecalis. We confirmed a 6-fold decrease in the biofilm mass and a substantial reduction in bacterial cell density using fluorescence, atomic force, and scanning electron microscopy. Additionally, we showed that co-treatments of ciprofloxacin and Alcalase-coated Carbopol nanogels led to a 3-log reduction in viable biofilm-forming cells when compared to ciprofloxacin treatments alone. Encapsulating an equivalent concentration of ciprofloxacin into the Alcalase-coated nanogel particles boosted their antibacterial effect much further, reducing the bacterial cell viability to below detectable amounts after 6 h of treatment. The Alcalase-coated nanogel particles were noncytotoxic to human adult keratinocyte cells (HaCaT), inducing a very low apoptotic response in these cells. Overall, we demonstrated that the Alcalase-coated nanogels loaded with a cationic antibiotic elicit very strong biofilm-clearing effects against wound-associated biofilm-forming pathogenic bacteria. This nanotechnology approach has the potential to become a very powerful treatment of chronically infected wounds with biofilm-forming bacteria.
Collapse
Affiliation(s)
- Paul J Weldrick
- Department of Chemistry and Biochemistry , University of Hull , Hull HU6 7RX , U.K
| | - Matthew J Hardman
- Centre for Atherothrombosis and Metabolic Disease , Hull York Medical School , Hull HU6 7RX , U.K
| | - Vesselin N Paunov
- Department of Chemistry and Biochemistry , University of Hull , Hull HU6 7RX , U.K
| |
Collapse
|
20
|
Bilal M, Iqbal HMN. Sustainable bioconversion of food waste into high-value products by immobilized enzymes to meet bio-economy challenges and opportunities - A review. Food Res Int 2019; 123:226-240. [PMID: 31284972 DOI: 10.1016/j.foodres.2019.04.066] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/15/2019] [Accepted: 04/29/2019] [Indexed: 02/05/2023]
Abstract
Over the past few years, food waste has intensified much attention from the local public, national and international organizations as well as a wider household territory due to increasing environmental, social and economic concerns, climate change and scarcity of fossil fuel resources. On one aspect, food-processing waste represents a substantial ecological burden. On the other hand, these waste streams are rich in carbohydrates, proteins, and lipids, thus hold significant potential for biotransformation into an array of high-value compounds. Indeed, the high sugar, protein, and fat content render food waste streams as attractive feedstocks for enzymatic valorization given the plentiful volumes generated annually. Enzymes as industrial biocatalysts offer unique advantages over traditional chemical processes with regard to eco-sustainability, and process efficiency. Herein, an effort has been made to delineate immobilized enzyme-driven valorization of food waste streams into marketable products such as biofuels, bioactive compounds, biodegradable plastics, prebiotics, sweeteners, rare sugars, surfactants, etc. Current challenges and prospects are also highlighted with respect to the development of industrially adaptable biocatalytic systems to achieve the ultimate objectives of sustainable manufacturing combined with minimum waste generation. Applications-based strategies to enzyme immobilization are imperative to design cost-efficient and sustainable industrially applicable biocatalysts. With a deeper apprehension of support material influences, and analyzing the extreme environment, enzymes might have significant potential in improving the overall sustainability of food processing.
Collapse
Affiliation(s)
- Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China.
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N.L. CP 64849, Mexico.
| |
Collapse
|
21
|
Immobilization of β-galactosidase on chitosan-coated magnetic nanoparticles and its application for synthesis of lactulose-based galactooligosaccharides. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.05.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
22
|
Memon AH, Ding R, Yuan Q, Wei Y, Liang H. Facile synthesis of alcalase-inorganic hybrid nanoflowers used for soy protein isolate hydrolysis to improve its functional properties. Food Chem 2019; 289:568-574. [PMID: 30955650 DOI: 10.1016/j.foodchem.2019.03.096] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 03/10/2019] [Accepted: 03/19/2019] [Indexed: 01/10/2023]
Abstract
In this work, a facile approach was developed to synthesized alcalase-inorganic hybrid nanocomposite (alcalase@CaHPO4) by immobilizing alcalase with calcium hydrogen phosphate (CaHPO4). The nanocomposite possessed flower-like morphological features with excellent hydrolysis activity on soybean protein isolates (SPI) with 1.57 fold higher compared to free alcalase. The experiment was evident of alcalase@CaHPO4 hybrid nanoflowers with 90% sustainability after the seven cycles of reusability and 80-100% relative activity at 50-70 °C and with 65% at pH 4 in acidic condition. Soybean protein hydrolysates (SPHs) produced by immobilized alcalase possessed 70% radical-scavenging capacity at 0.8 mg/mL concentration and 20% calcium-binding capacity at pH 6. The solubility of SPHs produced by alcalase@CaHPO4 hybrid nanoflowers was also improved by 15% compared to free alcalase. The high radical scavenging capability, good calcium binding capacity and improved solubility of SPHs prepared through alcalase@CaHPO4 hybrid nanoflowers would be highly promising in food industries.
Collapse
Affiliation(s)
- Amjad Hussain Memon
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, PR China
| | - Runsheng Ding
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, PR China
| | - Qipeng Yuan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, PR China
| | - Yun Wei
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, PR China
| | - Hao Liang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, PR China.
| |
Collapse
|
23
|
Peng L, Ye Q, Liu X, Liu S, Meng X. Optimization of aqueous enzymatic method for Camellia sinensis oil extraction and reuse of enzymes in the process. J Biosci Bioeng 2019; 128:716-722. [PMID: 31208799 DOI: 10.1016/j.jbiosc.2019.05.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 05/06/2019] [Accepted: 05/23/2019] [Indexed: 01/16/2023]
Abstract
Aqueous enzymatic extraction of Camellia sinensis oil was studied. The results suggested that saponin removal pretreatment assisted by ultrasound was effective in decreasing emulsification and in enhancing the free oil recovery. After 70% isopropanol extraction for 30 min under ultrasound, the residue of C. sinensis seeds was further hydrolyzed with free cellulase and Alcalase for 5 h, and calcium ions were concurrently added during enzymatic hydrolysis (nCa2+: nsaponin = 1:2), and free oil recovery up to 94.14% was obtained. Separate immobilization and co-immobilization of Alcalase and cellulase were performed by alginate entrapment combined with glutaraldehyde crosslinking. Specific activity and recovery of activity for Alcalase and cellulase were acceptable. After immobilization, Alcalase and cellulase exhibited higher activity at a wider pH and temperature range. Reuse experiments of immobilized enzymes were conducted. The deactivation kinetics immobilized enzymes were simulated and half-life of immobilized enzyme was estimated. The results indicated that a magnetic supporter facilitated the recovery of immobilized enzymes from tea seed slurry, and that immobilized Alcalase and cellulase had good reusability.
Collapse
Affiliation(s)
- Li Peng
- Ocean College, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, PR China
| | - Qin Ye
- Ocean College, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, PR China
| | - Xiaoying Liu
- Ocean College, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, PR China
| | - Shulai Liu
- Ocean College, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, PR China
| | - Xianghe Meng
- Ocean College, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, PR China.
| |
Collapse
|
24
|
Transforming food waste: how immobilized enzymes can valorize waste streams into revenue streams. NPJ Sci Food 2018; 2:19. [PMID: 31304269 PMCID: PMC6550151 DOI: 10.1038/s41538-018-0028-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 10/11/2018] [Indexed: 11/08/2022] Open
Abstract
Food processing generates byproduct and waste streams rich in lipids, carbohydrates, and proteins, which contribute to its negative environmental impact. However, these compounds hold significant economic potential if transformed into revenue streams such as biofuels and ingredients. Indeed, the high protein, sugar, and fat content of many food waste streams makes them ideal feedstocks for enzymatic valorization. Compared to synthetic catalysts, enzymes have higher specificity, lower energy requirement, and improved environmental sustainability in performing chemical transformations, yet their poor stability and recovery limits their performance in their native state. This review article surveys the current state-of-the-art in enzyme stabilization & immobilization technologies, summarizes opportunities in enzyme-catalyzed valorization of waste streams with emphasis on streams rich in mono- and disaccharides, polysaccharides, lipids, and proteins, and highlights challenges and opportunities in designing commercially translatable immobilized enzyme systems towards the ultimate goals of sustainable food production and reduced food waste.
Collapse
|
25
|
Cao LP, Wang JJ, Zhou T, Ruan R, Liu YH. Bamboo (Phyllostachys pubescens) as a Natural Support for Neutral Protease Immobilization. Appl Biochem Biotechnol 2018; 186:109-121. [PMID: 29508212 DOI: 10.1007/s12010-018-2697-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 01/09/2018] [Indexed: 12/28/2022]
Abstract
Lignin polymers in bamboo (Phyllostachys pubescens) were decomposed into polyphenols at high temperatures and oxidized for the introduction of quinone groups from peroxidase extracted from bamboo shoots and catalysis of UV. According to the results of FT-IR spectra analysis, neutral proteases (NPs) can be immobilized on the oxidized lignin by covalent bonding formed by amine group and quinone group. The optimum condition for the immobilization of NPs on the bamboo bar was obtained at pH 7.0, 40 °C, and duration of 4 h; the amount of immobilized enzyme was up to 5 mg g-1 bamboo bar. The optimal pH for both free NP (FNP) and INP was approximately 7.0, and the maximum activity of INP was determined at 60 °C, whereas FNP presented maximum activity at 50 °C. The Km values of INP and FNP were determined as 0.773 and 0.843 mg ml-1, respectively; INP showed a lower Km value and Vmax, than FNP, which demonstrated that INP presented higher affinity to substrate. Compared to FNP, INP showed broader thermal and storage stability under the same trial condition. With respect to cost, INP presented considerable recycling efficiency for up to six consecutive cycles.
Collapse
Affiliation(s)
- Lei-Peng Cao
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, 330047, China
| | - Jing-Jing Wang
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, 330047, China
| | - Ting Zhou
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, 330047, China
| | - Roger Ruan
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, 330047, China
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, Paul, MN, 55108, USA
| | - Yu-Huan Liu
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, 330047, China.
| |
Collapse
|
26
|
Žuža MG, Milašinović NZ, Jonović MM, Jovanović JR, Kalagasidis Krušić MT, Bugarski BM, Knežević-Jugović ZD. Design and characterization of alcalase–chitosan conjugates as potential biocatalysts. Bioprocess Biosyst Eng 2017; 40:1713-1723. [DOI: 10.1007/s00449-017-1826-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 08/02/2017] [Indexed: 11/30/2022]
|
27
|
Dai H, Ou S, Liu Z, Huang H. Pineapple peel carboxymethyl cellulose/polyvinyl alcohol/mesoporous silica SBA-15 hydrogel composites for papain immobilization. Carbohydr Polym 2017; 169:504-514. [DOI: 10.1016/j.carbpol.2017.04.057] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/18/2017] [Accepted: 04/20/2017] [Indexed: 11/17/2022]
|
28
|
Yazid NA, Barrena R, Sánchez A. The immobilisation of proteases produced by SSF onto functionalized magnetic nanoparticles: Application in the hydrolysis of different protein sources. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2017.01.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
29
|
Hu TG, Cheng JH, Zhang BB, Lou WY, Zong MH. Immobilization of Alkaline Protease on Amino-Functionalized Magnetic Nanoparticles and Its Efficient Use for Preparation of Oat Polypeptides. Ind Eng Chem Res 2015. [DOI: 10.1021/ie504691j] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Teng-Gen Hu
- School of Biosciences & Bioengineering, South China University of Technology, Guangzhou 510006, China
| | | | | | | | | |
Collapse
|