1
|
Yagi S, Rahman MTA, Zengin G, Eyupoglu OE, Spina R, Grosjean J, Abdalla AMA, Laurain-Mattar D. Phytoconstituents, antioxidant and enzyme inhibition activities of oilseeds and cakes of four underutilized wild edible plants in Sudan. Food Chem 2025; 486:144670. [PMID: 40367824 DOI: 10.1016/j.foodchem.2025.144670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 03/10/2025] [Accepted: 05/05/2025] [Indexed: 05/16/2025]
Abstract
The present study was aimed at evaluation of the potential usefulness of oilseeds and byproducts (cakes) of Balanites aegyptiaca, Detarium microcarpum, Vangueria madagascariensis and Ziziphus spina-christi as source of antioxidants and enzyme inhibitors. Results showed that the cakes contained higher amount of total phenolic and flavonoids than the oils. Online HPLC-antioxidant assays revealed that in all cake extracts, pelargonidin was the major contributor to the Fe+++ reducing capacity while rutin was the principal contributor in other systems. Cake of D. microcarpum exerted the highest scavenging radical and ions reducing properties. The metal chelating power was only exerted by the oil of Z. spina-christi. All oils and cake extracts displayed considerable acetylcholinesterase, butyrylcholinesterase and α-glucosidase inhibitory activity. The tyrosinase inhibitory activity was mainly displayed by cake extracts. In conclusion these findings suggested that the oils and cakes of these underutilized plants can be used in different food, pharmaceutical and cosmetic applications.
Collapse
Affiliation(s)
- Sakina Yagi
- Department of Botany, Faculty of Science, University of Khartoum, Khartoum, Sudan; Université de Lorraine, INRAE, LAE, F-54000 Nancy, France
| | - Munna Tahir Abdel Rahman
- Department of Botany, Faculty of Science, University of Khartoum, Khartoum, Sudan; Faculty of Clinical Nutrition, Sudan International University, Khartoum, Sudan
| | - Gökhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Konya, Turkey.
| | - Ozan Emre Eyupoglu
- Department of Biochemistry, School of Pharmacy, Istanbul Medipol University, Turkey
| | - Rosella Spina
- Université de Lorraine, INRAE, LAE, F-54000 Nancy, France
| | | | - Ashraf M A Abdalla
- Department of Forest Products and Industries, Faculty of Forestry, PO Box 13314, University of Khartoum, Khartoum 11111, Sudan
| | | |
Collapse
|
2
|
Boungou-Tsona G, Gainche M, Decombat C, Ripoche I, Bikindou K, Delort L, Caldefie-Chézet F, Loumouamou A, Chalard P. Chemical Profile, Antioxidant and Anti-Inflammatory Potency of Extracts of Vitex madiensis Oliv. and Crossopteryx febrifuga (Afzel ex G. Don). PLANTS (BASEL, SWITZERLAND) 2023; 12:386. [PMID: 36679099 PMCID: PMC9864984 DOI: 10.3390/plants12020386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/27/2022] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
Vitex madiensis Oliv. (Lamiaceae) and Crossopteryx febrifuga (Rubiaceae), two plants commonly used in traditional African medicines to treat malaria and pain, were studied either to determine their chemical profiles or to evaluate their antioxidant and anti-inflammatory activities. In this study, we investigated leaves, trunk bark, root bark and fruits methanolic extracts of both plants in order to find out which part of the plant is responsible for the activity. The analyses of the chemical profiles allowed us to confirm the presence of several ecdysteroids, especially 20-hydroxyecdysone in some parts of V. madiensis and to highlight the presence of organic acids and phenol derivatives in C. febrifuga. Among the four parts of the plants studied, only the fruits extract of C. febrifuga could present anti-inflammatory activity by decreasing ROS production. The leaves and trunk bark extracts of V. madiensis showed significant free radical scavenging activity compared to ascorbic acid, and the same extracts decrease ROS production significantly. The activity of these two extracts could be explained by the presence of ecdysteroids and flavonoids. The ROS production inhibition of V. madiensis is particularly interesting to investigate with further analyses.
Collapse
Affiliation(s)
- Ghislaine Boungou-Tsona
- Equipe Pluridisciplinaire de Recherche en Alimentation et Nutrition (EPRAN), Faculté des Sciences et Techniques, Université Marien Ngouabi, Brazzaville BP 389, Congo
- Département des Sciences Chimiques, Institut National de Recherche en Sciences Exactes et Naturelles (IRSEN), UR Chimie des Substances Naturelles, Cité Scientifique de Brazzaville, Brazzaville BP 2400, Congo
- Institut de Chimie de Clermont-Ferrand, Université Clermont Auvergne, Clermont Auvergne INP, Centre National de la Recherche Scientifique, F-63000 Clermont-Ferrand, France
| | - Maël Gainche
- Institut de Chimie de Clermont-Ferrand, Université Clermont Auvergne, Clermont Auvergne INP, Centre National de la Recherche Scientifique, F-63000 Clermont-Ferrand, France
| | - Caroline Decombat
- Unité de Nutrition Humaine, l’Alimentation et l’Environnement, Institut National de Recherche pour l’Agriculture, Université Clermont-Auvergne, CRNH Auvergne, F-63000 Clermont-Ferrand, France
| | - Isabelle Ripoche
- Institut de Chimie de Clermont-Ferrand, Université Clermont Auvergne, Clermont Auvergne INP, Centre National de la Recherche Scientifique, F-63000 Clermont-Ferrand, France
| | - Kevin Bikindou
- Equipe Pluridisciplinaire de Recherche en Alimentation et Nutrition (EPRAN), Faculté des Sciences et Techniques, Université Marien Ngouabi, Brazzaville BP 389, Congo
- Département des Sciences Chimiques, Institut National de Recherche en Sciences Exactes et Naturelles (IRSEN), UR Chimie des Substances Naturelles, Cité Scientifique de Brazzaville, Brazzaville BP 2400, Congo
| | - Laetitia Delort
- Unité de Nutrition Humaine, l’Alimentation et l’Environnement, Institut National de Recherche pour l’Agriculture, Université Clermont-Auvergne, CRNH Auvergne, F-63000 Clermont-Ferrand, France
| | - Florence Caldefie-Chézet
- Unité de Nutrition Humaine, l’Alimentation et l’Environnement, Institut National de Recherche pour l’Agriculture, Université Clermont-Auvergne, CRNH Auvergne, F-63000 Clermont-Ferrand, France
| | - Aubin Loumouamou
- Equipe Pluridisciplinaire de Recherche en Alimentation et Nutrition (EPRAN), Faculté des Sciences et Techniques, Université Marien Ngouabi, Brazzaville BP 389, Congo
- Département des Sciences Chimiques, Institut National de Recherche en Sciences Exactes et Naturelles (IRSEN), UR Chimie des Substances Naturelles, Cité Scientifique de Brazzaville, Brazzaville BP 2400, Congo
| | - Pierre Chalard
- Institut de Chimie de Clermont-Ferrand, Université Clermont Auvergne, Clermont Auvergne INP, Centre National de la Recherche Scientifique, F-63000 Clermont-Ferrand, France
| |
Collapse
|
3
|
Dogara AM. Biological Activity and Chemical Composition of Detarium microcarpum Guill. and Perr-A Systematic Review. Adv Pharmacol Pharm Sci 2022; 2022:7219401. [PMID: 36254172 PMCID: PMC9569227 DOI: 10.1155/2022/7219401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/11/2022] [Accepted: 09/14/2022] [Indexed: 11/18/2022] Open
Abstract
Historically, natural products have been the principal source of medications for the treatment of human diseases. Traditional medical practitioners employ Detarium microcarpum as a treatment for diabetes, malaria, wounds, inflammation, and even cancer. This study emphasizes the importance of harmonizing D. microcarpum research so that results from various sources may be directly compared to reach a scientific conclusion. We searched Google Scholar, Science Direct, Google.com, Wiley, PubMed, Hindawi, and Springer for research papers on Detarium microcarpum. This analysis excludes untrustworthy online data, thesis papers, and review publications on D. microcarpum. The leaves and stem bark were shown to have high antioxidant, anti-inflammatory, antibacterial, antidiabetic, and anticancer properties. The study also discovered that too much consumption is harmful. Polyphenols and flavonoids were the most commonly reported compounds. However, human safety and efficacy are yet to be fully evaluated, and further well-designed clinical trials are needed to confirm preclinical findings. The leaves and stem bark extracts and isolated compound mechanism of action should be investigated. It is necessary to set a standard dose and ensure its safety.
Collapse
Affiliation(s)
- Abdulrahman Mahmoud Dogara
- Biology Education Department, Faculty of Education, Tishk International University, Erbil, Kurdistan Region, Iraq
| |
Collapse
|
4
|
Effects of in vitro simulated digestion on the antioxidant activity of different Camellia sinensis (L.) Kuntze leaves extracts. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-021-03864-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
Abstract
AbstractThe stability of tea phenolic compounds is influenced by pH value and digestive processes. However, the complex mixture of constituents in tea may modulate the stability of these compounds during digestion. In this study, tea infusions obtained from green, black, and Oolong tea leaves were exposed to in vitro simulated gastrointestinal digestion, and the stability of ( +)-catechin, caffeine, (−)-epicatechin, epigallocatechin-3-gallate (EGCG), and gallic acid was compared to that of isolated compounds. Changes in antioxidant activity were also evaluated by means of DPPH assay and in a H2O2-induced in vitro oxidative stress model, using Caco-2 cells. The stability of teas antioxidant constituents was different when using teas extract, compared to the reference compound alone, with the total phenolic content being more stable in extracts containing them in higher amount. EGCG degradation correlated well with changes in the DPPH inhibition assay, confirming its pivotal role in the antioxidant activity of tea. Differently, the antioxidant effect in the in vitro cell-based model was much more related to the initial total phenolic content of the extracts, with green tea being more effective than black tea and Oolong tea. Moreover, the antioxidant activity of teas was strongly affected by gastrointestinal digestion. Taken together, these findings suggest a protective role of teas phytocomplex against gastrointestinal digestion of antioxidant constituents. In conclusion, the effect of gastrointestinal digestion on the antioxidant activity of tea should be taken into account, as this may be different from one extract to another and information on the stability of active constituents cannot be extrapolated from data obtained using single compounds.
Collapse
|
5
|
Jug U, Naumoska K, Vovk I. (-)-Epicatechin-An Important Contributor to the Antioxidant Activity of Japanese Knotweed Rhizome Bark Extract as Determined by Antioxidant Activity-Guided Fractionation. Antioxidants (Basel) 2021; 10:antiox10010133. [PMID: 33477734 PMCID: PMC7832395 DOI: 10.3390/antiox10010133] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 01/14/2023] Open
Abstract
The antioxidant activities of Japanese knotweed rhizome bark extracts, prepared with eight different solvents or solvent mixtures (water, methanol, 80% methanol(aq), acetone, 70% acetone(aq), ethanol, 70% ethanol(aq), and 90% ethyl acetate(aq)), were determined using a 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical-scavenging assay. Low half maximal inhibitory concentration (IC50) values (2.632–3.720 µg mL−1) for all the extracts were in the range of the IC50 value of the known antioxidant ascorbic acid at t0 (3.115 µg mL−1). Due to the highest extraction yield (~44%), 70% ethanol(aq) was selected for the preparation of the extract for further investigations. The IC50 value calculated for its antioxidant activity remained stable for at least 14 days, while the IC50 of ascorbic acid increased over time. The stability study showed that the container material was of great importance for the light-protected storage of the ascorbic acid(aq) solution in a refrigerator. Size exclusion–high-performance liquid chromatography (SEC-HPLC)–UV and reversed phase (RP)-HPLC-UV coupled with multistage mass spectrometry (MSn) were developed for fractionation of the 70% ethanol(aq) extract and for further compound identification, respectively. In the most potent antioxidant SEC fraction, determined using an on-line post-column SEC-HPLC-DPPH assay, epicatechin, resveratrol malonyl hexoside, and its in-source fragments (resveratrol and resveratrol acetyl hexoside) were tentatively identified by RP-HPLC-MSn. Moreover, epicatechin was additionally confirmed by two orthogonal methods, SEC-HPLC-UV and high-performance thin-layer chromatography (HPTLC) coupled with densitometry. Finally, the latter technique enabled the identification of (−)-epicatechin. (−)-Epicatechin demonstrated potent and stable time-dependent antioxidant activity (IC50 value ~1.5 µg mL−1) for at least 14 days.
Collapse
Affiliation(s)
- Urška Jug
- Department of Food Chemistry, National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia;
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia
| | - Katerina Naumoska
- Department of Food Chemistry, National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia;
- Correspondence: (K.N.); (I.V.); Tel.: +386-1476-0521 (K.N.); +386-1476-0341 (I.V.)
| | - Irena Vovk
- Department of Food Chemistry, National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia;
- Correspondence: (K.N.); (I.V.); Tel.: +386-1476-0521 (K.N.); +386-1476-0341 (I.V.)
| |
Collapse
|
6
|
Stability and Antiglycoxidant Potential of Bilberry Anthocyanins in Simulated Gastrointestinal Tract Model. Foods 2020; 9:foods9111695. [PMID: 33228062 PMCID: PMC7699394 DOI: 10.3390/foods9111695] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 11/17/2022] Open
Abstract
Anthocyanins from Vaccinium myrtillus fruits have been reported in vitro to exert potent radical scavenging and antiglycation activities. However, the physiological relevance of such properties remains unclear given the potential susceptibility of anthocyanin derivatives to digestive conditions. A simulated gastrointestinal tract model was thus implemented to assess the impact of gastric and intestinal phases on the chemical integrity of bilberry anthocyanins and their antiglycoxidant effects. Results demonstrated that the investigated activities as well as total and individual anthocyanin contents were marginally affected by gastric conditions. By contrast, with recoveries ranging from 16.1 to 41.2%, bilberry anthocyanins were shown to be highly sensitive to the intestinal phase. Of major interest, a much better preservation was observed for radical scavenging and antiglycation activities as attested by recovery rates ranging from 79.1 to 86.7%. Consistently with previous observations, the present study confirms the moderate bioaccessibility of anthocyanin constituents. It does however provide valuable information supporting the persistence of substantial radical scavenging and antiglycation activities at each step of the digestion process. Taken together, these data indicate that digestive conditions might not abolish the potential positive effects of bilberry consumption on both oxidative and carbonyl stresses.
Collapse
|
7
|
Screening and Characterization of Antiglycoxidant Anthocyanins from Vaccinium myrtillus Fruit Using DPPH and Methylglyoxal Pre-Column HPLC Assays. Antioxidants (Basel) 2020; 9:antiox9060512. [PMID: 32532151 PMCID: PMC7346134 DOI: 10.3390/antiox9060512] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/04/2020] [Accepted: 06/09/2020] [Indexed: 01/09/2023] Open
Abstract
Vaccinium myrtillus fruit (bilberry) is well known for its high richness in anthocyanins, which may be responsible for its preventive effects on several oxidative and carbonyl stress-related pathologies. However, limited data are available regarding the antioxidant and antiglycative contributions of its constituents. Spectrometric analyses were performed to evaluate anthocyanin content, radical scavenging and antiglycative properties of an anthocyanin-rich extract from bilberries. Additionally, original DPPH and methylglyoxal pre-column HPLC methods were instigated to allow straightforward identification of the main contributors to radical and carbonyl trapping effects. Finally, representative pure anthocyanins were evaluated using classical DPPH and antiglycation assays. Delphinidin, petunidin and cyanidin glycosides were identified as the most effective radical scavenging constituents in both HPLC and spectrometric DPPH evaluations. Potent antiglycative activities were also assessed for cyanidin, delphinidin and petunidin glucosides as attested by their respective IC50 values of 114.2 ± 7.8, 130.5 ± 2.8, and 132.4 ± 3.7 µM. Interestingly, methylglyoxal spiking evaluation demonstrated that all bilberry anthocyanins exerted noticeable and comparable α-dicarbonyl trapping effects. Anthocyanins can be regarded as potent antiglycoxidant agents that might account for some health benefits of bilberries consumption. Besides, significant differences in their contributions were successfully highlighted by the employed pre-column HPLC assays.
Collapse
|
8
|
Antioxidant evaluation-guided chemical profiling and structure-activity analysis of leaf extracts from five trees in Broussonetia and Morus (Moraceae). Sci Rep 2020; 10:4808. [PMID: 32179776 PMCID: PMC7075987 DOI: 10.1038/s41598-020-61709-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 03/02/2020] [Indexed: 01/06/2023] Open
Abstract
Morus and Broussonetia trees are widely used as food and/or feed. Among 23 phenolics identified from leaves of five Moraceae species using UPLC–QTOF–MS/MS, 15 were screened using DPPH/ABTS-guided HPLCs, including seven weak (flavonoids with one hydroxyl on B-ring) and eight strong (four caffeoylquinic acids and four flavonoids, each with a double hydroxyl on B-ring) antioxidants. We then determined the activity and synergistic effects of individual antioxidants and a mixture of the eight strongest antioxidants using DPPH-guided HPLC. Our findings revealed that (1) flavonoid glucuronide may have a more negative effect on antioxidant activity than glucoside, and (2) other compounds in the mixture may exert a negative synergistic effect on antioxidant activity of the four flavonoids with B-ring double hydroxyls but not the four caffeoylquinic acids. In conclusion, the eight phenolics with the strongest antioxidant ability reliably represented the bioactivity of the five extracts examined in this study. Moreover, the Morus alba hybrid had more phenolic biosynthesis machinery than its cross-parent M. alba, whereas the Broussonetia papyrifera hybrid had significantly less phenolic machinery than B. papyrifera. This difference is probably the main reason for livestock preference for the hybrid of B. papyrifera over B. papyrifera in feed.
Collapse
|
9
|
In Vitro Anti-Inflammatory and Immunomodulatory Activities of an Extract from the Roots of Bupleurum rotundifolium. MEDICINES 2019; 6:medicines6040101. [PMID: 31614667 PMCID: PMC6963863 DOI: 10.3390/medicines6040101] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 09/30/2019] [Accepted: 10/04/2019] [Indexed: 02/01/2023]
Abstract
BACKGROUND Some Bupleurum species, such as the Bupleurum chinense DC. or the Bupleurum scorzonerifolium Willd have been extensively studied (especially their roots) for the treatment of inflammation. In contrast, only compounds extracted from the aerial parts of Bupleurum rotundifolium have been studied and showed anti-inflammatory or antiproliferative activities. This study was conducted to investigate the antioxidant, anti-inflammatory, and immunomodulatory effects of Bupleurum rotundifolium roots. METHODS To tackle the various aspects of inflammation, we studied in vitro a methanolic extract from the roots of Bupleurum rotundifolium on peripheral blood mononuclear cells (PBMCs), polymorphonuclear neutrophils (PMNs), and the monocytic cells THP-1. Its antioxidant capacities and iron-chelating activity were assessed. The extract was tested on THP-1 differentiation, reactive oxygen species (ROS) production by leukocytes, neutrophils chemotaxis, cytokines, PGE2 production, and NF-κB activation in PBMCs. RESULTS The extract showed a decreased ROS production in stimulated cells. It increased PBMC chemokine secretion and up-regulated the differentiation of THP-1 monocytes into macrophage-like cells, indicating a potential interest of the extract in the resolution of acute inflammation. In addition, the analysis of cytokine production suggests that Bupleurum rotundifolium has immunomodulatory properties. CONCLUSIONS Cytokines secretion, especially IL-1β and IL-12p70, provided us with a set of indicators suggesting that the extract might be able to drive the polarization of macrophages and lymphocytes toward a Th2 anti-inflammatory profile in excessive inflammation.
Collapse
|
10
|
Hassanin HAM, Koko M, Abdalla M, Mu W, Jiang B. Detarium microcarpum: A novel source of nutrition and medicine: A review. Food Chem 2018; 274:900-906. [PMID: 30373026 DOI: 10.1016/j.foodchem.2018.09.070] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 08/09/2018] [Accepted: 09/11/2018] [Indexed: 12/22/2022]
Abstract
Detarium microcarpum is a plant indigenous to Africa, which occurs naturally in many African countries, particularly in savannah regions. Its leaves and fruits are used mainly as food and as folk medicine. It has anti-diabetic, antioxidant, and hepatitis C inhibitor properties and has been traditionally utilised in cancer treatment. This review examines published work on the nutritional, pharmacological, and traditional uses of Detarium microcarpum. This plant may become valuable if the fruit, stems, roots, and leaves are extracted for nutraceutical purposes.
Collapse
Affiliation(s)
- Hinawi A M Hassanin
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Marwa Koko
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Mohammed Abdalla
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Bo Jiang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
11
|
A Novel HPLC Method for Direct Detection of Nitric Oxide Scavengers from Complex Plant Matrices and Its Application to Aloysia triphylla Leaves. Molecules 2018; 23:molecules23071574. [PMID: 29958472 PMCID: PMC6100114 DOI: 10.3390/molecules23071574] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 06/22/2018] [Accepted: 06/26/2018] [Indexed: 11/17/2022] Open
Abstract
The present study aimed at developing an original pre-column HPLC assay allowing rapid characterization of nitric oxide (NO) scavengers from complex plant extracts. Sodium nitroprusside (SNP) was employed as a NO donor and spiked with an aqueous extract from Aloysia triphylla leaves prior to HPLC analysis. Relying on the ability of radical scavenging constituents to be oxidized upon reaction with radicals, this assay successfully allowed direct identification of three potential NO scavengers, including verbascoside, isoverbascoside, and luteolin-7-O-diglucuronide. These three phenolics were also individually assessed for their NO scavenging activities by using a Griess colorimetric assay. With respective IC50 values of 56 ± 4, 51 ± 3, and 69 ± 5 µg/mL, verbascoside, isoverbascoside, and luteolin-7-O-diglucuronide were all reported as potent NO scavenging compounds, confirming the efficiency of the SNP spiking HPLC assay. The present method can, thus, be considered as a valuable and effective approach for speeding up the discovery of NO scavenging constituents.
Collapse
|
12
|
Senejoux F, Ndoye S, Fraisse D, Akendengué B, Dioum M, Gueye R, Sall C, Seck I, Felgines C, Seck M. Antioxidant and antiglycation properties of two mango (Mangifera indica L.) cultivars from Senegal. Asian Pac J Trop Biomed 2018. [DOI: 10.4103/2221-1691.227994] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
13
|
Geoffroy TR, Meda NR, Stevanovic T. Suitability of DPPH spiking for antioxidant screening in natural products: the example of galloyl derivatives from red maple bark extract. Anal Bioanal Chem 2017; 409:5225-5237. [DOI: 10.1007/s00216-017-0465-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 06/05/2017] [Accepted: 06/12/2017] [Indexed: 12/17/2022]
|